
LispWorks®

Release Notes and
Installation Guide
Version 7.1

Copyright and Trademarks
LispWorks Release Notes and Installation Guide

Version 7.1

October 2017

Copyright © 2017 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be construed as a
commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or inaccuracies that may appear in this
publication. The software described in this book is furnished under license and may only be used or copied in accordance with the terms of
that license.

LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the registered trade-
marks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986, 1987, 1988 Xerox
Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, pro-
vided that this copyright and permission notice appear in all copies and supporting documentation, and that the name of M.I.T. not be used
in advertising or publicity pertaining to distribution of the software without specific, written prior permission. M.I.T. makes no representa-
tion about the suitability of this software for any purpose. It is provided “as is” without express or implied warranty. M.I.T. disclaims all war-
ranties with regard to this software, including all implied warranties of merchantability and fitness. In no event shall M.I.T. be liable for any
special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of con-
tract, negligence or other tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of ICU software obtained from http://source.icu-project.org and which bears the following copyright and permis-
sion notice:
ICU License - ICU 1.8.1 and later
COPYRIGHT AND PERMISSION NOTICE
Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Soft-
ware"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright
notice(s) and this permission notice appear in all copies of the Software and that both the above copyright notice(s) and this permission
notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIM-
ITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF
THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or
other dealings in this Software without prior written authorization of the copyright holder. All trademarks and registered trademarks men-
tioned herein are the property of their respective owners.

US Government Restricted Rights
The LispWorks Software is a commercial computer software program developed at private expense and is provided with restricted rights.
The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth in the accompanying End User
License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR 12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14
Alt III, as applicable. Rights reserved under the copyright laws of the United States.

Address

LispWorks Ltd
St. John’s Innovation Centre
Cowley Road
Cambridge
CB4 0WS
England

Telephone

From North America: 877 759 8839
(toll-free)

From elsewhere: +44 1223 421860

Fax
From North America: 617 812 8283
From elsewhere: +44 870 2206189

www.lispworks.com

http://www.lispworks.com

Contents
1 Introduction 1

LispWorks Editions 1
LispWorks for Mobile Runtime 3
Evaluation quick guide 4
Further details 4
About this Guide 5

2 Installation on Mac OS X 7

Choosing the Graphical User Interface 7
Documentation 8
Software and hardware requirements 8
Installing LispWorks for Macintosh 9
Starting LispWorks for Macintosh 13
Uninstalling LispWorks for Macintosh 15
Upgrading the LispWorks Edition 15
Upgrading to 64-bit LispWorks 15

3 Installation on Windows 17

Documentation 17
Installing LispWorks for Windows 18
Uninstalling LispWorks for Windows 20
Upgrading the LispWorks Edition 20
Upgrading to 64-bit LispWorks 21

iii

Contents

iv
4 Installation on Linux 23

Software and hardware requirements 23
License agreement 25
Software delivery and installer formats 26
Installing LispWorks for Linux 26
LispWorks looks for a license key 32
Running LispWorks 32
Configuring the image 34
Printable LispWorks documentation 34
Uninstalling LispWorks for Linux 34
Upgrading the LispWorks Edition 34
Upgrading to 64-bit LispWorks 35

5 Installation on x86/x64 Solaris 37

Software and hardware requirements 37
Software delivery and installer format 39
Installing LispWorks for x86/x64 Solaris 40
LispWorks looks for a license key 41
Running LispWorks 42
Configuring the image 43
Printable LispWorks documentation 43
Uninstalling LispWorks for x86/x64 Solaris 43
Upgrading the LispWorks Edition 43
Upgrading to 64-bit LispWorks 44

6 Installation on FreeBSD 45

Software and hardware requirements 45
License agreement 47
Software delivery and installer format 47
Installing LispWorks for FreeBSD 48
LispWorks looks for a license key 50
Running LispWorks 50
Configuring the image 51
Printable LispWorks documentation 51
Uninstalling LispWorks for FreeBSD 51
Upgrading the LispWorks Edition 52
Upgrading to 64-bit LispWorks 52

Contents
7 Installation on AIX 53

Software and hardware requirements 53
License agreement 55
Software delivery and installer format 55
Installing LispWorks for AIX 55
LispWorks looks for a license key 57
Running LispWorks 57
Configuring the image 58
Printable LispWorks documentation 58
Uninstalling LispWorks for AIX 59
Upgrading the LispWorks Edition 59
Upgrading to 64-bit LispWorks 59

8 Installation on SPARC Solaris 61

Introduction 61
Extracting software from the CD-ROM 61
Moving the LispWorks image and library 63
Obtaining and Installing your license keys 64
Configuring the LispWorks image 65
Using the Documentation 67
Using Delivery, LispWorks ORB, CLIM 2.0, KnowledgeWorks and Com-
mon SQL 68

9 Installation of LispWorks for Mobile Runtime 69

Installing LispWorks for Android Runtime 69
Installing LispWorks for iOS Runtime 69

10 Configuration on Mac OS X 71

Introduction 71
License keys 72
Configuring your LispWorks installation 72
Saving and testing the configured image 74
Initializing LispWorks 77
Loading CLIM 2.0 78
The Common SQL interface 78
Common Prolog and KnowledgeWorks 80

 v

Contents

vi
11 Configuration on Windows 81

Introduction 81
License keys 82
Configuring your LispWorks installation 82
Saving and testing the configured image 83
Initializing LispWorks 86
Loading CLIM 2.0 86
The Common SQL interface 87
Common Prolog and KnowledgeWorks 88
Runtime library requirement on Windows 88

12 Configuration on Linux, x86/x64 Solaris, FreeBSD &
AIX 89

Introduction 89
License keys 90
Configuring your LispWorks installation 90
Saving and testing the configured image 92
Initializing LispWorks 94
Loading CLIM 2.0 94
The Common SQL interface 95
Common Prolog and KnowledgeWorks 96
Documentation on x86/x64 Solaris, FreeBSD and AIX 96

13 Configuration on SPARC Solaris 97

Disk requirements 97
Software Requirements 97
The CD-ROM 98
Installing LispWorks 99
Components of the LispWorks distribution 103
Printing copies of the LispWorks documentation 104
Configuring your LispWorks installation 104
LispWorks initialization arguments 108

14 Troubleshooting, Patches and Reporting Bugs 111

Troubleshooting 111
Troubleshooting on Windows 114

Contents
Troubleshooting on Mac OS X 114
Troubleshooting on Linux 115
Troubleshooting on x86/x64 Solaris 117
Troubleshooting on FreeBSD 117
Troubleshooting on SPARC Solaris 117
Troubleshooting on X11/Motif 118
Updating with patches 120
Reporting bugs 124
Transferring LispWorks to a different machine 129

15 Release Notes 131

Keeping your old LispWorks installation 131
Updating your code for LispWorks 7.1 131
Platform support 132
Multiprocessing 133
GTK+ window system 135
New CAPI features 136
New graphics ports features 137
Other CAPI and Graphics Ports changes 138
More new features 140
IDE changes 146
Editor changes 149
Foreign Language interface changes 150
COM/Automation changes 151
Objective-C changes 151
Common SQL changes 152
KnowledgeWorks changes 152
Application delivery changes 153
CLIM changes 154
Other changes 155
Changes in the installers 159
Documentation changes 159
Known Problems 160
Binary Incompatibility 162

Index 163

 vii

Contents

viii

1

1 Introduction
1.1 LispWorks Editions
LispWorks is available in several product editions on desktop platforms.

The main differences between the editions are outlined below. Further
information can be found at www.lispworks.com/products

Note: 32-bit LispWorks on SPARC Solaris is licensed differently to other
platforms, as detailed in “32-bit LispWorks for SPARC Solaris” on page 3.

1.1.1 Personal Edition

LispWorks Personal Edition allows you to explore a fully-enabled Common
Lisp programming environment and to develop small- to medium-scale
programs for personal and academic use. It includes:

• Native graphical IDE

• Full Common Lisp compiler

• COM/Automation API on Microsoft Windows

LispWorks Personal Edition has several limitations. These are:

• A heap size limit

• A time limit of 5 hours for each session.
1

http://www.lispworks.com/products

1 Introduction

2

• The functions save-image, deliver, and load-all-patches are not
available.

• Initialization files are not available.

• HobbyistDV, Professional and Enterprise Edition module loading is not
included.

LispWorks Personal Edition has no license fee. Download it from

www.lispworks.com/downloads.

1.1.2 Hobbyist Edition

LispWorks 7.1 Hobbyist Edition is available to individual licensees for non-
commercial and non-academic use. It is a fully-functional Common Lisp IDE
without most of the limitations of the Personal Edition:

• No heap size limit.

• No session time limit.

• The functions save-image and load-all-patches are available.

• Initialization files are available.

HobbyistDV, Professional and Enterprise Edition module loading is not
included. In particular, the function deliver is omitted so runtimes cannot be
generated.

1.1.3 HobbyistDV Edition

LispWorks 7.1 HobbyistDV Edition is available to individual licensees for
non-commercial and non-academic use. It has all the features of the Hobbyist
Edition plus:

• The function deliver allowing generation of non-commercial end-user
applications and libraries.

1.1.4 Professional Edition

LispWorks 7.1 Professional Edition includes all the features of the Hobby-
istDV Edition plus:

http://www.lispworks.com/downloads

1.2 LispWorks for Mobile Runtime
• Fully supported commercial product.

• Delivery of commercial end-user applications and libraries

• CLIM 2.0 on X11/Motif and Windows

• 30-day free “Getting Started” technical support

1.1.5 Enterprise Edition

LispWorks 7.1 Enterprise Edition provides further support for the software
needs of the modern enterprise. It has all the features of the Professional Edi-
tion plus:

• Database access through the Common SQL interface

• Portable distributed computing through CORBA

• Expert systems programming through KnowledgeWorks and
embedded Prolog compiler

On most platforms you can choose either the 32-bit or 64-bit implementation
of LispWorks. These implementations are licensed separately.

1.1.6 32-bit LispWorks for SPARC Solaris

On SPARC Solaris the Edition model described above does not apply to 32-bit
LispWorks. 32-bit LispWorks 7.1 for SPARC Solaris is available with a basic
developer license, and the add-on products CLIM, KnowledgeWorks, Lisp-
Works ORB and Application Delivery are each separately available.

64-bit LispWorks Enterprise for SPARC Solaris is separately available and fol-
lows the “LispWorks Editions” licensing model described above.

1.2 LispWorks for Mobile Runtime
LispWorks for Android Runtime and LispWorks for iOS Runtime are new
products which you can use to build LispWorks runtimes for inclusion in
mobile apps.
 3

1 Introduction

4

1.3 Evaluation quick guide
If you are evaluating LispWorks, then the following notes might prove to be
useful.

• LispWorks support (lisp-support@lispworks.com) will be happy to
answer any issues you have.

• The LispWorks distribution contains various examples demonstrating
various features of LispWorks. All the examples are in the directory
"examples" inside the LispWorks installation.

You can find this directory by evaluating the following in a LispWorks
Listener:

(example-file "")

Each example contains comments that explain what it demonstrates.

In many cases it is convenient to copy the example and modify it to do
what you want, rather than writing your own code from scratch.

• If you encounter an error that is not obviously a bug in your code, it is
always best to produce a full bug report as described in “Generate a bug
report template” on page 125. This will speed up the resolution of the
issue.

• If you have performance issues, you should use room, extended-time
and profile to narrow the problem. See the LispWorks User Guide and
Reference Manual for details of these diagnostic functions and macros.
You should also report it to LispWorks support, as LispWorks is efficient
in general and we do not expect performance problems.

1.4 Further details
For further information about LispWorks products visit

www.lispworks.com

To purchase LispWorks please follow the instructions at:

www.lispworks.com/buy

http://www.lispworks.com/buy
http://www.lispworks.com

1.5 About this Guide
1.5 About this Guide
This document is an installation guide and release notes for LispWorks 7.1 on
Mac OS X, Windows, Linux, x86/x64 Solaris, FreeBSD, AIX and SPARC
Solaris platforms, and LispWorks for Mobile Runtime. It also explains how to
configure LispWorks to best suit your local conditions and needs.

This guide provides instructions for installing and loading the modules
included with each Edition or add-on product.

Unless explicitly mentioned, instructions in this manual refer to the Hobbyist,
HobbyistDV, Professional and Enterprise Editions, rather than the Personal
Edition or LispWorks for Mobile Runtime which are distributed separately.

1.5.1 Installation and Configuration

Chapters 2-8 explain in brief and sufficient terms how to complete a Lisp-
Works installation on Mac OS X, Windows, Linux, x86/x64 Solaris, FreeBSD,
AIX or SPARC Solaris. Choose the chapter for your platform: Chapter 2,
“Installation on Mac OS X”, Chapter 3, “Installation on Windows”, Chapter 4,
“Installation on Linux”, Chapter 5, “Installation on x86/x64 Solaris”,
Chapter 6, “Installation on FreeBSD”, Chapter 7, “Installation on AIX” or
Chapter 8, “Installation on SPARC Solaris”.

Chapter 9 briefly mentions installation of LispWorks for Mobile Runtime.

Chapters 10-13 explain in detail everything necessary to configure, run, and
test LispWorks 7.1. Choose the chapter for your platform: Chapter 10, “Con-
figuration on Mac OS X”, Chapter 11, “Configuration on Windows”,
Chapter 12, “Configuration on Linux, x86/x64 Solaris, FreeBSD & AIX” or
Chapter 13, “Configuration on SPARC Solaris”. This also includes sections on
initializing LispWorks and loading some of the modules. You should have no
difficulty configuring, running, and testing LispWorks using these instruc-
tions if you have a basic familiarity with your operating system and Common
Lisp.

1.5.2 Troubleshooting

Chapter 14, “Troubleshooting, Patches and Reporting Bugs” discusses other
issues that may arise when installing and configuring LispWorks. It includes a
 5

1 Introduction

6

section that provides answers to problems you may have encountered,
sections on the LispWorks patching system (used to allow bug fixes and pri-
vate patch changes between releases of LispWorks), and details of how to
report any bugs you encounter.

1.5.3 Release Notes

Chapter 15, “Release Notes” highlights what is new in this release and special
issues for your consideration.

2

2 Installation on Mac OS X
This chapter is an installation guide for LispWorks 7.1 (32-bit) for Macintosh
and LispWorks 7.1 (64-bit) for Macintosh. Chapter 10 discusses post-installa-
tion and configuration in detail, but this chapter presents the instructions nec-
essary to get LispWorks up and running on your system.

2.1 Choosing the Graphical User Interface
LispWorks for Macintosh supports three different graphical interfaces. Most
users choose the native Mac OS X GUI, but you can use the X11 GUI option
instead, which supports both GTK+ and Motif. (Motif is deprecated, though.)

Different executables and supporting files are supplied for the two GUI
options. You need to decide at installation time which of these you will use, or
you can install support for both. If you install just one GUI option and later
decide to install the other, you can simply run the installer again.

LispWorks for Macintosh Personal Edition supports only the native Mac OS X
GUI.
7

2 Installation on Mac OS X

8

2.2 Documentation
The LispWorks documentation set is included in two electronic formats:
HTML and PDF. You can chose whether to install it as described in Section 2.4,
“Installing LispWorks for Macintosh”.

The HTML format can be used from within the LispWorks IDE via the Help
menu. You will need to have a suitable web browser installed. You can also
reach the HTML documentation via the alias LispWorks 7.1/HTML Docu-
mentation.htm. If you choose not to install the documentation, you will not
be able to access the HTML Documentation from the LispWorks Help menu.

The PDF format is suitable for printing. Each manual in the documentation set
is presented in a separate PDF file in the LispWorks library under
manual/offline/pdf. The simplest way to locate these PDF files is the alias
LispWorks 7.1/PDF Documentation. To view and print these files, you will
need a PDF viewer such as Preview (standard on Mac OS X) or Adobe®
Reader® (which can be downloaded from the Adobe website at
www.adobe.com).

2.3 Software and hardware requirements
LispWorks 7.1 supports Macintosh computers containing Intel CPUs.

An overview of system requirements is provided in the table Table 2.1. The
sections that follow discuss any relevant details.

Table 2.1 System requirements on Mac OS X

Product Hardware Requirements Software Requirements

LispWorks (32-bit)
for Macintosh

Intel processor.

170MB of disk space
including documentation.

Mac OS X version 10.5.x or
higher

GTK+ 2 (version 2.4 or
higher) if you want to run the
GTK+ GUI.

Open Motif 2.3 and Imlib2
1.4.9 if you want to run the
deprecated Motif GUI.

http://www.adobe.com

2.4 Installing LispWorks for Macintosh
2.4 Installing LispWorks for Macintosh

2.4.1 Main installation and patches

The LispWorks 7.1 installer contains each of the Editions. Additionally, there
may be a patch installer which upgrades LispWorks to version 7.1.x. You need
to complete the main installation before adding patches.

2.4.2 Information for Beta testers

Users of LispWorks 7.1 Beta should completely uninstall it (including any
patches added to the beta installation) before installing LispWorks 7.1.

See “Uninstalling LispWorks for Macintosh” on page 15 for instructions.

2.4.3 Information for users of previous versions

You can install LispWorks 7.1 in the same location as LispWorks 7.0 or previ-
ous versions. If you always choose the default install location, a new folder
named LispWorks 7.1 (32-bit) or LispWorks 7.1 (64-bit) will be cre-
ated alongside the other versions.

LispWorks (64-bit)
for Macintosh

Intel processor.

194MB of disk space
including documentation

Mac OS X version 10.5.x or
higher

GTK+ 2 (version 2.4 or
higher) if you want to run the
GTK+ GUI.

Open Motif 2.3 and Imlib2
1.4.9 if you want to run the
deprecated Motif GUI.

Table 2.1 System requirements on Mac OS X

Product Hardware Requirements Software Requirements
 9

2 Installation on Mac OS X

10
2.4.4 Launch the LispWorks installer

The LispWorks installer is a pkg file, with the following name:

LispWorks71-32bit_Installer.pkg (32-bit LispWorks)

LispWorks71-32bit_Installer.pkg (64-bit Lispworks)

LispWorksPersonal71_Installer.pkg (LispWorks Personal Edition)

To install LispWorks, launch this file, which should run the Mac OS X Installer
application. If this does not happen, right-click on th file and choose Open
With > Installer.

The Introduction page should be displayed. Click Continue to go to the next
step.

2.4.5 The Read Me

The Read Me presented next by the installer is a plain text version of this
LispWorks Release Notes and Installation Guide.

2.4.6 The License Agreement

Check the license agreement, then click Continue. You will be asked if you
agree to the license terms. Click the Agree button only if you accept the terms
of the license. If you click Disagree, then the installer will not proceed.

2.4.7 Install Location

All the files installed with LispWorks are placed in the LispWorks folder,
which is named LispWorks 7.1 (32-bit), LispWorks 7.1 (64-bit) or
LispWorks Personal 7.1 depending on which edition you are installing.
The LispWorks folder is placed in the main Applications folder for use by all
users.

Note: The Applications folder may display in the Finder with a name
localized for your language version of Mac OS X.

2.4 Installing LispWorks for Macintosh
2.4.8 Choose your installation type

The default Standard Install includes the native Mac OS X GUI and the docu-
mentation, but you can also customize the install, for examle to select the X11
GUI option.

Different executables and supporting files are supplied for the two GUI
options. If you install just one of these and later decide to install the other, you
can simply run the installer again.

2.4.8.1 The native Mac OS X GUI

If you simply want to install LispWorks for the native Mac OS X GUI, and the
documentation, click Install.

2.4.8.2 The X11 GTK+ and Motif GUIs

If you want to use LispWorks with either of the alternative X11 GUIs, click
Customize and select the option LispWorks with X11 IDE under Extra items.

The default X11 GUI is GTK+. Motif is also available, but is deprecated. You
can select Motif at run time.

Note: to run LispWorks with an X11 GUI, you will need both of these
installed:

• An X server such as Apple’s X11.app, available at www.apple.com, and

• one of GTK+ 2 (version 2.4 or higher) or Open Motif 2.3.

If you use Open Motif, you will also need Imlib2 version 1.4.9 or later.

None of these are required at the time you install LispWorks, however.

The X11 GUIs are not available for the Personal Edition.

2.4.8.3 The Documentation

If you use the Standard Install the documentation will be installed.

If you do not wish to install the documentation, click Customize and uncheck
the LispWorks documentation option under Standard items.
 11

http://www.apple.com

2 Installation on Mac OS X

12
2.4.9 Installing and entering license data

Now click Install.

You will be prompted for an administrator’s name and password.

If you are not installing the LispWorks Personal Edition, then enter your serial
number and license key when the installer asks for these details.

Your license key will be supplied to you in email from Lisp Support or Lisp
Sales.

If you have problems with your LispWorks license key, send it to lisp-
keys@lispworks.com, showing the complete output after you enter it, prefer-
ably with a screenshot.

2.4.10 LispWorks is added to the Dock

The installer adds LispWorks to the Dock.

2.4.11 Finishing up

You should now see a message confirming that installation of LispWorks was
successful. Click the Close button.

Note: LispWorks needs to be able find its library at run time and therefore the
LispWorks installation should not be moved around piecemeal. If you must
move it, move the entire LispWorks installation folder. If you simply want to
run LispWorks from somewhere more convenient, then consider adding an
alias.

2.4.12 Installing Patches

After completing the main installation of LispWorks, ensure you install the
latest patches which are available for download at www.lisp-
works.com/downloads/patch-selection.html. Patch installation instruc-
tions are in the README file accompanying the patch download.

http://www.lispworks.com/downloads/patch-selection.html#lwm
http://www.lispworks.com/downloads/patch-selection.html#lwm

2.5 Starting LispWorks for Macintosh
2.4.13 Obtaining X11 GTK+

LispWorks does not provide GTK+ libraries, so you need to install third-party
libraries, such as

• the gtk+2 package from the Fink Project at www.finkproject.org, or

• the gtk2 package from MacPorts at www.macports.org

Note: you need the x11 gtk2 libraries, not GTK-OSX (Quartz).

2.4.14 Obtaining Open Motif and Imlib2

LispWorks 7.1 for Macintosh on X11/Motif requires Open Motif 2.3 and
Imlib2 1.4.9.

The Open Motif library for LispWorks is /usr/local/lib/libXm.4.dylib.

Lisp Support can supply suitable Motif and Imlib2 libraries if you need them.

Note: The Motif GUI is deprecated. A GTK+ GUI is available.

2.5 Starting LispWorks for Macintosh

2.5.1 Start the native Mac OS X LispWorks GUI

Assuming you have installed this option, you can now start LispWorks with
the native Mac OS X GUI by double-clicking on the LispWorks icon in the
LispWorks folder.

Note: The LispWorks folder is described in “Install Location” on page 10.

If you added LispWorks to the Dock during installation, you can also start
LispWorks from the Dock. If you did not add LispWorks to the Dock during
installation, you can add it simply by dragging the LispWorks icon from the
Finder to the Dock.

If you want to create a LispWorks image that does not start the GUI
automatically, then see Section 10.4.5, “Saving a non-windowing image” (this
option is not available in the Personal Edition).

See Section 10.3, “Configuring your LispWorks installation” for more
information about configuring your LispWorks image for your own needs.
 13

http://www.macports.org
http://www.finkproject.org

2 Installation on Mac OS X

14
Note: for the Personal Edition, the folder name and icon name are LispWorks
Personal.

2.5.2 Start the GTK+ LispWorks GUI

Assuming you have installed the "LispWorks with X11 IDE" option, and that
you have X11 running and GTK+ installed, you can now start LispWorks with
the GTK+ GUI.

Follow this session in the X11 terminal for 32-bit LispWorks (the filenames will
be slightly different for 64-bit LispWorks):

bash-3.2$ cd "/Applications/LispWorks 7.1 (32-bit)"
bash-3.2$./lispworks-7-1-0-x86-darwin-gtk
; Loading text file /Applications/LispWorks 7.1 (32-
bit)/Library/lib/7-1-0-0/private-patches/load.lisp
LispWorks(R): The Common Lisp Programming Environment
Copyright (C) 1987-2017 LispWorks Ltd. All rights reserved.
Version 7.1.0
Saved by LispWorks as lispworks-7-1-0-x86-darwin-gtk, at 28 Apr
2017 15:05
User lw on machine.lispworks.com
; Loading text file /Applications/LispWorks 7.1 (32-
bit)/Library/lib/7-1-0-0/config/siteinit.lisp
; Loading text file /Applications/LispWorks 7.1 (32-
bit)/Library/lib/7-1-0-0/private-patches/load.lisp
; Loading text file /u/ldisk/lw/.lispworks

The LispWorks GTK+ IDE should appear.

See Section 10.3, “Configuring your LispWorks installation” for more informa-
tion about configuring your LispWorks image for your own needs.

2.5.3 Start the Motif LispWorks GUI

Assuming you have installed the "LispWorks with X11 IDE" option, and that
you have X11 running and Motif and Imlib2 installed, you can use LispWorks
with the Motif GUI.

You first must load the Motif GUI into the supplied lispworks-7-1-0-x86-
darwin-gtk or lispworks-7-1-0-amd64-darwin-gtk image, by

(require "capi-motif")

2.6 Uninstalling LispWorks for Macintosh
This loads the necessary module and makes Motif the default library for
CAPI.

Then you can start the LispWorks IDE by calling the function env:start-
environment. You might want to save an image with the "capi-motif" mod-
ule pre-loaded: do this with a save-image script containing

(require "capi-motif")

2.6 Uninstalling LispWorks for Macintosh
To uninstall LispWorks you should run the file uninstall.command in the
LispWorks folder. This must be run as an administrator user.

2.7 Upgrading the LispWorks Edition
Some LispWorks features such as Delivery, Common SQL and Knowledge-
Works are not available in all Editions. You can add these features by upgrad-
ing.

After purchasing your upgrade from lisp-sales@lispworks.com, select
Help > Register... and enter your new license key.

2.8 Upgrading to 64-bit LispWorks
To upgrade from 32-bit to 64-bit LispWorks, contact

lisp-sales@lispworks.com
 15

mailto:lisp-sales@lispworks.com
mailto:lisp-sales@lispworks.com

2 Installation on Mac OS X

16

3

3 Installation on Windows
This chapter is an installation guide for LispWorks 7.1 (32-bit) for Windows
and LispWorks 7.1 (64-bit) for Windows. Chapter 11 discusses post-installa-
tion and configuration in detail, but this chapter presents the instructions nec-
essary to get LispWorks up and running on your system.

3.1 Documentation
The LispWorks documentation set is available in two electronic forms: HTML
and PDF. You can choose whether to install either of these.

If you install the HTML documentation, then it can be used from within the
the LispWorks IDE via the Help menu. It is also available from the Windows 7
Start menu under Start > All Programs > LispWorks 7.1 > HTML Documentation or
on the Windows 8 start screen.

The PDF format is suitable for printing. Each manual in the documentation set
is presented in a separate PDF file, available from the Start menu under Start >
All Programs > LispWorks 7.1 > PDF Documentation. To view and print these
files, you will need a PDF viewer such as Adobe® Reader®. If you do not
already have this, it can be downloaded from the Adobe website.
17

3 Installation on Windows

18
3.2 Installing LispWorks for Windows

3.2.1 Main installation and patches

The LispWorks 7.1 installer contains each of the Editions. Additionally, there
may be a patch installer which upgrades LispWorks to version 7.1.x. You need
to complete the main installation before adding patches.

3.2.2 Visual Studio runtime components and Windows Installer

On systems where this is not present, installing LispWorks will automatically
install a copy of the Microsoft.VC80.CRT component, which contains the
Microsoft Visual Studio runtime DLLs needed by LispWorks.

3.2.3 Installing over previous versions

You can install LispWorks 7.1 in the same location as LispWorks 7.0, Lisp-
Works 6.x, LispWorks 5.x or LispWorks 4.4.5. This is the default installation
location.

You can also install LispWorks 7.1 without uninstalling older versions such as
Xanalys LispWorks 4.4 or Xanalys LispWorks 4.3 provided that the chosen
installation directory is different.

3.2.4 Information for Beta testers

Users of LispWorks 7.1 Beta should completely uninstall it before installing
LispWorks 7.1. Remember to remove any patches added since the Beta release.

See “Uninstalling LispWorks for Windows” on page 20 for instructions.

3.2.5 To install LispWorks

To install LispWorks (32-bit) for Windows run LispWorks71-32bit.exe. You
will have downloaded this from the x86-win32 folder.

To install LispWorks (64-bit) for Windows run LispWorks71-64bit.exe. You
will have downloaded this from the x64-windows folder.

Follow the instructions on screen and read the remainder of this section.

3.2 Installing LispWorks for Windows
3.2.5.1 Entering the License Data

Enter your serial number and license key when the installer asks for these
details in the Customer Information screen.

Your license key will be supplied to you in email from Lisp Support or Lisp
Sales.

If you have problems with your LispWorks license key, send it to lisp-
keys@lispworks.com, describing what happens after you enter it, preferably
with a screenshot.

Note: the LispWorks Personal Edition installer does not ask you to enter
license data.

3.2.5.2 Installation location

By default 32-bit LispWorks installs in All Users space in C:\Program Files

(x86)\LispWorks\

By default 64-bit LispWorks installs in All Users space in
C:\Program Files\LispWorks\

To install LispWorks in a non-default location (for example, to ensure it is
accessible only by the licensed user on a multi-user system such as a login
server (remote desktop)), select Custom setup in the Setup Type screen. Then
click Change... in the Custom Setup screen and choose the desired location in
the Change Current Destination Folder dialog. Do not simply move the
LispWorks folder later, as this will break the installation.

3.2.5.3 Installing the Documentation

By default all the documentation is installed.

If you do not want to install the HTML Documentation, select Custom setup in
the Setup Type screen and select This feature will not be available in the HTML
Documentation feature in the Custom Setup screen.

You can also choose not to install the PDF Documentation, in a similar way.

You can add the HTML Documentation and the PDF Documentation later, by
re-running the installer. The documentation is also available at www.lisp-
works.com/documentation.
 19

http://www.lispworks.com/documentation
http://www.lispworks.com/documentation

3 Installation on Windows

20
3.2.5.4 Installing Patches

After completing the main installation of the Professional or Enterprise
Edition, ensure you install the latest patches which are available for download
at www.lispworks.com/downloads/patch-selection.html.

Patch installation instructions are in the README file accompanying the
patch download.

3.2.5.5 Starting LispWorks

After installation LispWorks can be invoked from the Start menu or Start
screen (on Windows 8).

Note: After installation you must not move or copy the LispWorks folder,
since the system records the installation location. Moreover LispWorks needs
to be able find its library at run time and therefore the LispWorks installation
should not be moved around piecemeal. If you simply want to run LispWorks
from somewhere more convenient, then consider adding a shortcut.

3.3 Uninstalling LispWorks for Windows
To uninstall LispWorks:

1. Select Programs and Features in the Control Panel or App & features in
Settings on Windows 10.

2. Select LispWorks 7.1 (32-bit) or LispWorks 7.1 (64-bit) and click Uninstall.

This will uninstall LispWorks along with any installed updates. It will not
remove any private patches.

3.4 Upgrading the LispWorks Edition
Some LispWorks features such as Delivery, Common SQL and Knowledge-
Works are not available in all Editions. You can add these features by upgrad-
ing.

After purchasing your upgrade from lisp-sales@lispworks.com, select Help >
Register... and enter your new license key.

http://www.lispworks.com/downloads/patch-selection.html#lww
mailto:lisp-sales@lispworks.com

3.5 Upgrading to 64-bit LispWorks
3.5 Upgrading to 64-bit LispWorks
To upgrade from 32-bit to 64-bit LispWorks, contact

lisp-sales@lispworks.com
 21

mailto:lisp-sales@lispworks.com

3 Installation on Windows

22

4

4 Installation on Linux
This chapter is an installation guide for LispWorks 7.1 (32-bit) for x86/x86_64
Linux, LispWorks 7.1 (64-bit) for x86_64 Linux, LispWorks 7.1 (32-bit) for
ARM Linux and LispWorks 7.1 (64-bit) for ARM64 Linux. Chapter 12 dis-
cusses post-installation and configuration in detail, but this chapter presents
the instructions necessary to get LispWorks up and running on your system.

4.1 Software and hardware requirements
An overview of system requirements is provided in Table 4.1. The sections
that follow discuss any relevant details.

Hardware
Requirements

Software Requirements

155MB of disk space for
Enterprise Edition (32-bit)
plus documentation

Any distribution with glibc
2.6 or later for x86/x86_64
and 2.17 or later for
ARM/ARM64

Table 4.1 System requirements on Linux
23

4 Installation on Linux

24
4.1.1 GUI libraries

LispWorks 7.1 for Linux requires that the X11 release 6 (or higher) is installed.
It also requires that either GTK+ or Open Motif with Imlib2 are installed.

The remainder of this section contains the details for each of these distinct
GUI options.

4.1.1.1 GTK+

In order for the LispWorks IDE to run “out of the box”, GTK+ must be
installed on the target machine.

GTK+ 2 (version 2.4 or higher) is required.

4.1.1.2 Motif

Open Motif version 2.2 or 2.3 is required to run LispWorks with the Motif
GUI.

175MB of disk space for
Enterprise Edition (64-bit)
plus documentation

GTK+ 2 (version 2.4 or
higher) to run the GTK+
GUI.

Open Motif 2.2.x or 2.3.x
and Imlib2 1.4.3 or later to
run the deprecated Motif
GUI

Any modern machine is
likely to have sufficient
RAM to run LispWorks as
distributed.

Firefox or Opera web
browser for viewing on-line
documentation

Hardware
Requirements

Software Requirements

Table 4.1 System requirements on Linux

4.2 License agreement
Download and install Open Motif 2.2.x or 2.3.x from your Linux distribution
or from www.motifzone.net. Your systems administrator may be able to help
if you do not know how to do this.

You will also need Imlib2 version 1.4.3 or later. Install this from your Linux dis-
tribution.

Note: You should be able to run the LispWorks 7.1 Motif GUI and LispWorks
7.0, LispWorks 6.x or LispWorks 5.x simultaneously with Open Motif
installed.

4.1.2 Disk requirements

To install without documentation and optional modules, 32-bit LispWorks
requires about 45MB and 64-bit LispWorks requires about 60MB. Installing the
documentation adds about 110MB and the optional modules about 15MB. A
full installation of the 64-bit Enterprise Edition with all documentation and
optional modules requires about 185MB.

The documentation includes printable PDF format manuals. You may delete
any of these that you do not need. They are available at www.lisp-
works.com/documentation in any case, and the same manuals are also avail-
able there in PostScript format.

4.2 License agreement
Before installing, you must read and agree to the license terms.

To do this download the license script from the link we sent to you.

Now run:

sh lwl-license.sh

or, if you are installing the Personal Edition:

sh lwlper-license.sh

Note: You must run this script as the same user that later performs the instal-
lation. In particular, if you are going to install LispWorks from the RPM file,
you must run the license script while logged on as root.

Enter “yes” if you agree to the license terms.
 25

http://www.lispworks.com/documentation
http://www.lispworks.com/documentation
http://www.motifzone.net/

4 Installation on Linux

26
4.3 Software delivery and installer formats
LispWorks 7.1 for Linux is supplied as a download. Two formats are provided:

• Red Hat Package Management (RPM) files for x86 and x86_64. RPM is a
utility like tar, except it can actually install products after unpacking
them. See Section 4.4.3 for more information

• tar files

4.3.1 Contents of the LispWorks distribution

The supplied installers contain all of the relevant modules.

For RPM installations, the RPM package name is lispworks (or lispworks-
personal for the Personal Edition).

The Professional and Enterprise Edition modules are in separately installable
RPM packages. These are: CLIM 2.0, KnowledgeWorks, LispWorks ORB, and
Common SQL. Section 1.1 provides Edition details.

For the Professional Edition the separately installable packages are:

lispworks-clim

and for the Enterprise Edition the separately installable packages are:

lispworks-clim
lispworks-kw
lispworks-corba
lispworks-sql

The installation instructions provide the names of the individual distribution
files.

4.4 Installing LispWorks for Linux

4.4.1 Main installation and patches

The LispWorks 7.1 installer contains each of the Editions. Additionally, there
may be a patch installer which upgrades LispWorks to version 7.1.x. You need
to complete the main installation before adding patches.

4.4 Installing LispWorks for Linux
4.4.2 Information for Beta testers

Users of LispWorks 7.1 Beta should completely uninstall it (including any
patches added to the beta installation) before installing LispWorks 7.1.

See “Uninstalling LispWorks for Linux” on page 34 for instructions.

4.4.3 Installation from the binary RPM file (x86 and x86_64 only)

For installation on ARM and ARM64, see Section 4.4.4, “Installation from the
tar files”.

We recommend that you use RPM 4.3 or later (however see below for prob-
lems with --prefix argument with some versions of RPM). The distribution
files are also provided in tar format in case you do not have a suitable version
of RPM or are using another distribution of Linux.

If you already have LispWorks 7.1 Beta installed, please uninstall it before
installing this product. See Section 4.9, “Uninstalling LispWorks for Linux”.

Some versions of RPM may cause problems (eg. RPM 3.0). If you get the fol-
lowing message when using the --prefix argument:

rpm: only one of --prefix or --relocate may be used

try upgrading to RPM 3.0.2 or greater.

Installation of LispWorks for Linux from the RPM file must be done while you
are logged on as root.

4.4.3.1 Installation directories

By default 32-bit LispWorks is installed in /usr/lib/LispWorks and a sym-
bolic link to the executable is placed in /usr/bin/lispworks-7-1-0-x86-
linux. Similarly, 64-bit LispWorks is installed in /usr/lib64/LispWorks and
a symbolic link to the executable is placed in /usr/bin/lispworks-7-1-0-
amd64-linux. However, the RPM is relocatable, and the --prefix option can
be used to allow the installation of LispWorks in a non-default directory. The
default prefix is /usr.

Note: RPM version 4.2 has a bug which can hinder secondary installations
(CLIM, Common SQL, LispWorks ORB or KnowledgeWorks) in a user-
 27

4 Installation on Linux

28
specified directory. See “RPM_INSTALL_PREFIX not set” on page 115 for a
workaround.

Note: the Personal Edition installs by default in
/usr/lib/LispWorksPersonal. Do not attempt to to install different editions
in the same location, since some filenames coincide and uninstallation may
break.

4.4.3.2 Selecting the correct RPM files

The main RPM file in the LispWorks distribution is named using the following
pattern

lispworks-7.1-n.arch.rpm

The integer n denotes a build number and will be same in all files in your dis-
tribution. The string arch will be either i386 for 32-bit LispWorks or x86_64
for 64-bit LispWorks. The text below assumes 32-bit LispWorks.

Note: For the Personal Edition, use lispworks-personal-7.1-*.i386.rpm
wherever lispworks-7.1-*.i386.rpm is mentioned in this document. See
Section 1.1.1, “Personal Edition” for more information specific to the Personal
Edition.

4.4.3.3 Installing or upgrading LispWorks for Linux

To install or upgrade LispWorks from the RPM file, perform the following
steps as root:

1. Follow the instructions under Section 4.2, “License agreement”.

2. Locate the RPM installation file lispworks-7.1-n.i386.rpm.

3. Install or upgrade LispWorks in the standard RPM way, for example:

rpm --install lispworks-7.1-n.i386.rpm

This command installs LispWorks in /usr/lib/LispWorks. A com-
mand line of the form

rpm --install --prefix <directory> lispworks-7.1-n.i386.rpm

installs LispWorks in <directory>.

4.4 Installing LispWorks for Linux
The directory name must be an absolute pathname. Relative pathnames and
pathnames including shell-expanded characters such as . and ~ do not work.

Note: LispWorks needs to be able find its library at run time and therefore the
LispWorks installation should not be moved around piecemeal. If you simply
want to run LispWorks from somewhere more convenient, then consider add-
ing a symbolic link.

See Section 4.6 for instructions on entering your license details.

4.4.3.4 Installing CLIM 2.0

The following module is packaged as a separate RPM file for installation after
the main lispworks package. It is available in LispWorks Professional and
Enterprise Editions only.

Install this module if required by substituting the above filename into the
same commands you used to install the main lispworks package.

If you used a --prefix argument when installing LispWorks, then use the
same prefix for this module.

4.4.3.5 Installing loadable Enterprise Edition modules

The following modules are packaged as separate RPM files for installation
after the main lispworks package.

File Distribution Layered Product

lispworks-clim-7.1-n.i386.rpm CLIM 2.0

Table 4.2 File distributions for layered products in Professional and
Enterprise Editions

File Distribution Layered Product

lispworks-clim-7.1-n.i386.rpm CLIM 2.0

Table 4.3 File distributions for layered products in the Enterprise Edition
 29

4 Installation on Linux

30
Install these modules as described in Section 4.4.3.4.

4.4.3.6 Documentation and saving space

Documentation in HTML and PDF format is provided with all editions. Post-
Script format is available to download. To obtain copies of the printable man-
uals, see Section 4.8, “Printable LispWorks documentation”.

Documentation is installed by default in the lib/7-1-0-0/manual sub-direc-
tory of the LispWorks installation directory.

Using RPM, you can save space by choosing not to install the documentation.
For example, use the following command (all on one line):

rpm --install --excludedocs --prefix <directory>
lispworks-7.1-n.i386.rpm

To install the documentation at a later stage, you need to use the
--replacepkgs option:

rpm --install --prefix <directory> --replacepkgs
lispworks-7.1-n.i386.rpm

4.4.3.7 Installing Patches

After completing the main RPM installation of LispWorks and any modules,
ensure you install the latest patches from the RPM file available for download
at www.lispworks.com/downloads/patch-selection.html. Patch installa-
tion instructions are in the README file accompanying the patch download.

lispworks-kw-7.1-n.i386.rpm KnowledgeWorks

lispworks-corba-7.1-n.i386.rpm LispWorks ORB

lispworks-sql-7.1-n.i386.rpm Common SQL

File Distribution Layered Product

Table 4.3 File distributions for layered products in the Enterprise Edition

http://www.lispworks.com/downloads/patch-selection.html#lwl

4.4 Installing LispWorks for Linux
4.4.4 Installation from the tar files

The LispWorks distribution is also provided as tar files compressed using
gzip for use if you do not have an appropriate version of RPM to unpack the
RPM binary file. The gzipped files for LispWorks are as follows:

Table 4.4 Files for LispWorks

Note: The gzipped files for the LispWorks Personal Edition have similar
names.

To install from these files:

1. Follow the instructions under Section 4.2, “License agreement”.

2. Use cd to change directory to the location of the downloaded files before
running the installation script.

3. Run the installation script lwl-install.sh (or lwlper-install.sh for
the Personal Edition). as root if the directory specified by the installation
directory requires it (the default does).

This script takes --prefix and --excludedocs arguments like rpm to control
the installation directory and amount of documentation installed.

For example, to install 32-bit LispWorks in /usr/lispworks, without
documentation you would use:

lw71-x86-linux.tar.gz 32-bit LispWorks x86 image, mod-
ules and examples

lw71-arm-linux.tar.gz 32-bit LispWorks ARM image,
modules and examples

lw71-amd64-linux.tar.gz 64-bit LispWorks x86_64 image,
modules and examples

lw71-arm64-linux.tar.gz 64-bit LispWorks ARM64 image,
modules and examples

lwdoc71-x86-linux.tar.gz Documentation in HTML and PDF
formats for all architectures
 31

4 Installation on Linux

32
sh lwl-install.sh --excludedocs --prefix /usr/lispworks

Note: the default location under /usr/local is appropriate for this
unmanaged (non-RPM) installation.

See Section 4.6 for how to enter your license details.

4.4.4.1 Installing Patches

After completing the main tar installation of LispWorks, ensure you install
the latest patches from the tar archive available for download at www.lisp-
works.com/downloads/patch-selection.html. Patch installation instruc-
tions are in the README file accompanying the patch download.

4.5 LispWorks looks for a license key
If you try to run LispWorks without a valid key, it prints a message reporting
that no valid key was found, and exits.

For instructions on entering your license key, see Section 4.6.1, “Entering the
license data” below.

For more information about license keys, see Section 12.2, “License keys”.

4.6 Running LispWorks
In a RPM installation, assuming the default prefix of /usr, the LispWorks exe-
cutable is located in /usr/lib/LispWorks or /usr/lib64/LispWorks or
/usr/lib/LispWorksPersonal There is also a symbolic link from the
/usr/bin directory.

In a tar installation, assuming the default prefix of /usr/local, the Lisp-
Works executable is located in /usr/local/lib/LispWorks or
/usr/local/lib64/LispWorks or /usr/local/lib/LispWorksPersonal.

In both cases, the LispWorks executable should not be moved without being
resaved, because it needs to be able to locate the corresponding library direc-
tory on startup.

The LispWorks executable is named as shown here:.

http://www.lispworks.com/downloads/patch-selection.html#lwl
http://www.lispworks.com/downloads/patch-selection.html#lwl

4.6 Running LispWorks
When you run LispWorks, the splashscreen should appear, followed by the
LispWorks Podium and a Listener. See “Troubleshooting” on page 111 for
details if this does not happen.

4.6.1 Entering the license data

When you run LispWorks for the first time, you will need to enter your license
details. This should be done as follows (all on one line) using the appropriate
LispWorks executable from the table above (32-bit LispWorks on x86 in this
example):

lispworks-7-1-0-x86-linux --lwlicenseserial SERIALNUMBER
--lwlicensekey LICENSEKEY

where SERIALNUMBER and LICENSEKEY are the strings supplied with Lisp-
Works. A message

LispWorks license installed successfully.

should be printed and thereafter you can run LispWorks without those
command line arguments.

Your license key will be supplied to you in email from Lisp Support or Lisp
Sales.

If you have problems with your LispWorks license key, send it to lisp-
keys@lispworks.com, showing the complete output after you enter it.

Note: the LispWorks Personal Edition does not ask you to enter license data.

lispworks-personal-7-1-0-x86-
linux

Personal Edition

lispworks-7-1-0-x86-linux 32-bit LispWorks on x86

lispworks-7-1-0-amd64-linux 64-bit LispWorks on x86_64

lispworks-7-1-0-arm-linux 32-bit LispWorks on ARM

lispworks-7-1-0-arm64-linux 64-bit LispWorks on ARM64
 33

4 Installation on Linux

34
4.7 Configuring the image
You can now configure your LispWorks image to suit your needs and load
modules as necessary. For instructions, see Chapter 12, “Configuration on
Linux, x86/x64 Solaris, FreeBSD & AIX”.

4.8 Printable LispWorks documentation
In a default installation, the lib/7-1-0-0/manual/offline directory con-
tains PDF format versions of the manuals.

These files are also available from www.lispworks.com/documentation.

PostScript format versions of the manuals are also available for download.

4.9 Uninstalling LispWorks for Linux
A RPM installation of LispWorks can be uninstalled in the usual way, for
example by executing this command, as root:

rpm --erase lispworks-7.1

If patches have been added via RPM, then you will first need to uninstall that
package, which will be named lispworks-patches7.1. The same applies to
additional RPM packages such as lispworks-sql.

If patches have been added from a tar archive, you will need to remove them
by hand.

If you installed LispWorks from the tar archives, simply do

rm -rf /usr/local/lib/LispWorks

4.10 Upgrading the LispWorks Edition
Some LispWorks features such as Delivery, Common SQL and Knowledge-
Works are not available in all Editions. You can add these features by upgrad-
ing.

After purchasing your upgrade from lisp-sales@lispworks.com, select Help >
Register... and enter your new license key.

mailto:lisp-sales@lispworks.com
http://www.lispworks.com/documentation

4.11 Upgrading to 64-bit LispWorks
4.11 Upgrading to 64-bit LispWorks
To upgrade from 32-bit to 64-bit LispWorks, contact

lisp-sales@lispworks.com
 35

mailto:lisp-sales@lispworks.com

4 Installation on Linux

36

5

5 Installation on x86/x64
Solaris
This chapter is an installation guide for LispWorks 7.1 (32-bit) for x86/x64
Solaris and LispWorks 7.1 (64-bit) for x86/x64 Solaris. Chapter 12 discusses
post-installation and configuration in detail, but this chapter presents the
instructions necessary to get LispWorks up and running on your system.

5.1 Software and hardware requirements
An overview of system requirements is provided in Table 5.1. The sections
that follow discuss any relevant details.

Hardware
Requirements

Software Requirements

For 32-bit LispWorks,
130MB of disk space

Solaris 10 (release 5/08 or
later), Solaris 11, or Open-
Solaris (release 2009.06 or
later)

Table 5.1 System requirements on x86/x64 Solaris
37

5 Installation on x86/x64 Solaris

38
5.1.1 GUI libraries

LispWorks 7.1 for x86/x64 Solaris requires that the X11 release 6 (or higher) is
installed. It also requires that either GTK+ or Motif with Imlib are installed.

The remainder of this section contains the details for each of these distinct
GUI options.

5.1.1.1 GTK+

In order for the LispWorks IDE to run “out of the box”, GTK+ must be
installed on the target machine.

GTK+ 2 (version 2.4 or higher) is required.

5.1.1.2 Motif

Motif 2.1 or higher is required to run LispWorks with the Motif GUI.

The Motif libraries are installed as part of the SUNWmfrun package. It is usu-
ally preinstalled on Solaris 10 and is available for download from Sun for
OpenSolaris.

You will also need Imlib (not Imlib2). Imlib version 1.9.13 or later is recom-
mended. Contact Lisp Support if you need this.

For 64-bit LispWorks,
140MB of disk space

GTK+ 2 (version 2.4 or
higher) to run the GTK+
GUI.

Motif 2.1 and Imlib to run
the deprecated Motif GUI

Any modern machine is
likely to have sufficient
RAM to run LispWorks as
distributed.

Firefox or Opera web
browser for viewing on-line
documentation

Hardware
Requirements

Software Requirements

Table 5.1 System requirements on x86/x64 Solaris

5.2 Software delivery and installer format
5.1.2 Disk requirements

32-bit LispWorks requires about 130MB to install.

64-bit LispWorks requires about 140MB to install.

The installation includes about 70MB of documentation.

The documentation includes printable PDF format manuals. You may delete
any of these that you do not need. They are available at www.lisp-
works.com/documentation in any case, and the same manuals are also avail-
able there in PostScript format.

5.2 Software delivery and installer format
LispWorks 7.1 for x86/x64 Solaris is supplied as a standard package file to
download.

There are two variants, 32-bit LispWorks and 64-bit LispWorks, so be sure to
download the one for which you have purchased a license:

5.2.1 Contents of the LispWorks distribution

All of the LispWorks modules are contained in a single package file. Your
license key will control which modules can be used.

The package name for 32-bit LispWorks is LispWorks71-32bit.

The package name for 64-bit LispWorks is LispWorks71-64bit.

5.2.2 Personal Edition distribution

You can install the LispWorks Personal Edition by downloading it from
www.lispworks.com/downloads.

The package for the Personal Edition is LispWorksPersonal71-32bit.
 39

http://www.lispworks.com/documentation
http://www.lispworks.com/documentation
http://www.lispworks.com/downloads

5 Installation on x86/x64 Solaris

40
5.3 Installing LispWorks for x86/x64 Solaris

5.3.1 Main installation and patches

The LispWorks 7.1 installer contains each of the Editions. Additionally, there
may be a patch installer which upgrades LispWorks to version 7.1.x. You need
to complete the main installation before adding patches.

5.3.2 Information for Beta testers

Users of LispWorks 7.1 Beta should completely uninstall it (including any
patches added to the beta installation) before installing LispWorks 7.1.

See “Uninstalling LispWorks for x86/x64 Solaris” on page 43 for instructions.

5.3.3 Installation directories

32-bit LispWorks is installed by default in /opt/LispWorks/lib/LispWorks
and a symbolic link to the executable is placed in
/opt/LispWorks/bin/lispworks-7-1-0-x86-solaris.

64-bit LispWorks is installed by default in
/opt/LispWorks/lib/amd64/LispWorks and a symbolic link to the execut-
able is placed in /opt/LispWorks/bin/lispworks-7-1-0-amd64-solaris.

LispWorks Personal Edition is installed by default in /opt/Lisp-
Works/lib/LispWorksPersonal and a symbolic link to the executable is
placed in /opt/LispWorks/bin/lispworks-personal-7-1-0-x86-
solaris.

Note: LispWorks needs to be able find its library at run time and therefore the
LispWorks installation should not be moved around piecemeal. If you simply
want to run LispWorks from somewhere more convenient, then consider add-
ing a symbolic link.

5.3.4 Selecting the correct software package file

The 32-bit LispWorks software package file is called LispWorks71-32bit.

The 64-bit LispWorks software package file is called LispWorks71-64bit.

5.4 LispWorks looks for a license key
The Personal Edition software package file is called LispWorksPersonal71-
32bit.

Note: the software may be supplied in a compressed format with a .gz exten-
sion. Uncompress it using gunzip.

5.3.5 Installing the package file

To install LispWorks, perform the following steps as root:

1. Locate the software package file.

2. Install or upgrade LispWorks in the standard way, for example:

pkgadd -d LispWorks71-32bit all

for 32-bit LispWorks, or

pkgadd -d LispWorks71-64bit all

for 64-bit LispWorks.

3. The license terms are presented. Enter “yes” if you agree to them.

See Section 5.5 for instructions on entering your license serial number and key.

5.3.6 Installing Patches

After completing the main installation of LispWorks, ensure you install the
latest patches from the package file available for download at www.lisp-
works.com/downloads/patch-selection.html. Patch installation instruc-
tions are in the README file accompanying the patch download.

5.4 LispWorks looks for a license key
If you try to run LispWorks without a valid key, it prints a message reporting
that no valid key was found, and exits.

For instructions on entering your license key, see Section 5.5.1, “Entering the
license data” below.

For more information about license keys, see Section 12.2, “License keys”.
 41

http://www.lispworks.com/downloads/patch-selection.html#lws
http://www.lispworks.com/downloads/patch-selection.html#lws

5 Installation on x86/x64 Solaris

42
5.5 Running LispWorks
Run LispWorks (all variants) from the directory /opt/LispWorks/bin.

The LispWorks executable is named as shown here:.

This executable should not be moved without being resaved because it needs
to be able to locate the corresponding library directory on startup.

When you run LispWorks, the splashscreen should appear, followed by the
LispWorks Podium and a Listener. See “Troubleshooting” on page 111 for
details if this does not happen.

5.5.1 Entering the license data

When you run LispWorks for the first time, you will need to enter your license
details. This should be done as follows (all on one line):

lispworks-7-1-0-x86-solaris --lwlicenseserial SERIALNUMBER
--lwlicensekey LICENSEKEY

where SERIALNUMBER and LICENSEKEY are the strings supplied with Lisp-
Works. A message

LispWorks license installed successfully.

should be printed and thereafter you can run LispWorks without those
command line arguments.

Your license key will be supplied to you in email from Lisp Support or Lisp
Sales.

If you have problems with your LispWorks license key, send it to lisp-
keys@lispworks.com, showing the complete output after you enter it.

Note: the LispWorks Personal Edition does not ask you to enter license data.

lispworks-personal-7-1-0-x86-solaris Personal Edition

lispworks-7-1-0-x86-solaris 32-bit LispWorks

lispworks-7-1-0-amd64-solaris 64-bit LispWorks

5.6 Configuring the image
5.6 Configuring the image
You can now configure your LispWorks image to suit your needs and load
modules as necessary. For instructions, see Chapter 12, “Configuration on
Linux, x86/x64 Solaris, FreeBSD & AIX”.

5.7 Printable LispWorks documentation
In a default installation, the lib/7-1-0-0/manual/offline directory con-
tains PDF format versions of the manuals.

These files are also available at www.lispworks.com/documentation/.

PostScript format versions of the manuals are also available for download.

5.8 Uninstalling LispWorks for x86/x64 Solaris
To uninstall LispWorks, perform the following steps as root:

1. If patches for LispWorks 7.1 have been installed then you will need to
uninstall the patch package, by

pkgrm -n LispWorksPatches71-32bit

or

pkgrm -n LispWorksPatches71-64bit

2. Then uninstall the main software package containing LispWorks 7.1 by
executing:

pkgrm -n LispWorks71-32bit

or

pkgrm -n LispWorks71-64bit

5.9 Upgrading the LispWorks Edition
Some LispWorks features such as Delivery, Common SQL and Knowledge-
Works are not available in all Editions. You can add these features by upgrad-
ing.
 43

http://www.lispworks.com/documentation/

5 Installation on x86/x64 Solaris

44
After purchasing your upgrade from lisp-sales@lispworks.com, select Help >
Register... and enter your new license key.

5.10 Upgrading to 64-bit LispWorks
To upgrade from 32-bit to 64-bit LispWorks, contact

lisp-sales@lispworks.com

mailto:lisp-sales@lispworks.com
mailto:lisp-sales@lispworks.com

6

6 Installation on FreeBSD
This chapter is an installation guide for LispWorks 7.1 (32-bit) for FreeBSD
and LispWorks 7.1 (64-bit) for FreeBSD. Chapter 12 discusses post-installation
and configuration in detail, but this chapter presents the instructions neces-
sary to get LispWorks up and running on your system.

6.1 Software and hardware requirements
An overview of system requirements is provided in Table 6.1. The sections
that follow discuss any relevant details.

Hardware
Requirements

Software Requirements

160MB of disk space for
32-bit LispWorks plus
documentation

FreeBSD 10.x, or later with
compat10x
(if you want to run Lisp-
Works on older versions of
FreeBSD, then please con-
tact Lisp Support)

Table 6.1 System requirements on FreeBSD
45

6 Installation on FreeBSD

46
6.1.1 GUI libraries

LispWorks 7.1 for FreeBSD requires that the X11 release 6 (or higher) is
installed.

LispWorks 7.1 also requires that either GTK+ or Open Motif with Imlib2 are
installed.

The remainder of this section contains the details for each of these distinct
GUI options.

6.1.1.1 GTK+

In order for the LispWorks IDE to run “out of the box”, GTK+ must be
installed on the target machine.

GTK+ 2 (version 2.4 or higher) is required.

6.1.1.2 Motif

Open Motif version 2.3 is required to run LispWorks with the Motif GUI.

Install Open Motif 2.3.x from the FreeBSD distribution or ports tree. Your sys-
tems administrator may be able to help if you do not know how to do this.

180MB of disk space for
64-bit LispWorks plus
documentation

GTK+ 2 (version 2.4 or
higher) to run the GTK+
GUI.

Open Motif 2.3.x and
Imlib2 1.4.9 or later to run
the deprecated Motif GUI

Any modern machine is
likely to have sufficient
RAM to run LispWorks as
distributed.

Firefox or Opera web
browser for viewing on-line
documentation

Hardware
Requirements

Software Requirements

Table 6.1 System requirements on FreeBSD

6.2 License agreement
You will also need Imlib2 version 1.4.9 or later. Install this from the FreeBSD
distribution or ports tree.

6.1.2 Disk requirements

32-bit LispWorks requires about 160MB to install, and 64-bit LispWorks needs
180MB. This includes 110MB of documentation.

The documentation includes printable PDF format manuals. You may delete
any of these that you do not need. They are available at www.lisp-
works.com/documentation in any case, and the same manuals are also avail-
able there in PostScript format.

6.2 License agreement
Before installing, you must read and agree to the license terms.

To do this download the license script from the link we sent to you.

Now run:

sh lwf-license.sh

or, if you are installing the Personal Edition:

sh lwfper-license.sh

Note: You must run this script as the same user that later performs the instal-
lation.

Enter “yes” if you agree to the license terms.

6.3 Software delivery and installer format
LispWorks 7.1 for FreeBSD is supplied as a standard package file (in pkg(8)
format) to download.

6.3.1 Contents of the LispWorks distribution

All of the LispWorks modules are contained in a single package file. Your
license key will control which modules can be used.
 47

http://www.lispworks.com/documentation
http://www.lispworks.com/documentation

6 Installation on FreeBSD

48
The package name for 32-bit LispWorks is lispworks71-32bit.

The package name for 64-bit LispWorks is lispworks71-64bit.

6.3.2 Personal Edition distribution

You can install the LispWorks Personal Edition by downloading it from
www.lispworks.com/downloads.

The package name for the Personal Edition is lispworks71-personal.

6.4 Installing LispWorks for FreeBSD

6.4.1 Main installation and patches

The LispWorks 7.1 installer contains each of the Editions. Additionally, there
may be a patch installer which upgrades LispWorks to version 7.1.x. You need
to complete the main installation before adding patches.

6.4.2 Information for Beta testers

Users of LispWorks 7.1 Beta should completely uninstall it (including any
patches added to the beta installation) before installing LispWorks 7.1.

See “Uninstalling LispWorks for FreeBSD” on page 51 for instructions.

6.4.3 Installation directories

By default LispWorks is installed in /usr/local/lib/LispWorks. A symbolic
link to the 32-bit executable is placed in /usr/local/bin/lispworks-7-1-0-
x86-freebsd. A symbolic link to the 64-bit executable is placed in
/usr/bin/lispworks-7-1-0-amd64-freebsd.

Note: the Personal Edition by default installs in
/usr/local/lib/LispWorksPersonal. Do not attempt to to install different
editions in the same location, since some filenames coincide and uninstalla-
tion may break.

http://www.lispworks.com/downloads

6.4 Installing LispWorks for FreeBSD
6.4.4 Selecting the correct software package file

The 32-bit LispWorks software package file is called

lispworks71-32bit-7.1.txz

The 64-bit LispWorks software package file is called

lispworks71-64bit-7.1.txz

The Personal Edition software package file is called

lispworks71-personal-7.1.txz

6.4.5 Installing LispWorks for FreeBSD

To install LispWorks, perform the following steps as root:

1. Follow the instructions under Section 6.2, “License agreement”.

2. Locate the software package file.

3. Install or upgrade LispWorks in the standard way, for example:

pkg_add lispworks71-32bit-7.1.txz

This command installs LispWorks in /usr/local/lib/LispWorks.

Note: LispWorks needs to be able find its library at run time and therefore the
LispWorks installation should not be moved around piecemeal. If you simply
want to run LispWorks from somewhere more convenient, then consider add-
ing a symbolic link.

See Section 6.6 for instructions on entering your license details.

6.4.6 Installing Patches

After completing the main installation of LispWorks, ensure you install the
latest patches from the package file available for download at www.lisp-
works.com/downloads/patch-selection.html. Patch installation instruc-
tions are in the README file accompanying the patch download.
 49

http://www.lispworks.com/downloads/patch-selection.html#lwf
http://www.lispworks.com/downloads/patch-selection.html#lwf

6 Installation on FreeBSD

50
6.5 LispWorks looks for a license key
If you try to run LispWorks without a valid key, it prints a message reporting
that no valid key was found, and exits.

For instructions on entering your license key, see Section 6.6.1, “Entering the
license data” below.

For more information about license keys, see Section 12.2, “License keys”.

6.6 Running LispWorks
The LispWorks executable is located in the /usr/local/lib/LispWorks or
/usr/local/lib/LispWorksPersonal directory of the installation (assum-
ing the default prefix of /usr/local) and should not be moved without being
resaved because it needs to be able to locate the corresponding library direc-
tory on startup. There is also a symbolic link from the /usr/local/bin direc-
tory.

The LispWorks executable is named as shown here:.

When you run LispWorks, the splashscreen should appear, followed by the
LispWorks Podium and a Listener. See “Troubleshooting” on page 111 for
details if this does not happen.

6.6.1 Entering the license data

When you run LispWorks for the first time, you will need to enter your license
details. This should be done as follows (all on one line):

lispworks-7-1-0-x86-freebsd --lwlicenseserial SERIALNUMBER
--lwlicensekey LICENSEKEY

where SERIALNUMBER and LICENSEKEY are the strings supplied with Lisp-
Works. A message

lispworks-personal-7-1-0-x86-freebsd Personal Edition

lispworks-7-1-0-x86-freebsd 32-bit LispWorks

lispworks-7-1-0-amd64-freebsd 64-bit LispWorks

6.7 Configuring the image
LispWorks license installed successfully.

should be printed and thereafter you can run LispWorks without those
command line arguments.

Your license key will be supplied to you in email from Lisp Support or Lisp
Sales.

If you have problems with your LispWorks license key, send it to lisp-
keys@lispworks.com, showing the complete output after you enter it.

Note: the LispWorks Personal Edition does not ask you to enter license data.

6.7 Configuring the image
You can now configure your LispWorks image to suit your needs and load
modules as necessary. For instructions, see Chapter 12, “Configuration on
Linux, x86/x64 Solaris, FreeBSD & AIX”.

6.8 Printable LispWorks documentation
In a default installation, the lib/7-1-0-0/manual/offline directory con-
tains PDF format versions of the manuals.

These files are also available at www.lispworks.com/documentation/.

PostScript format versions of the manuals are also available for download.

6.9 Uninstalling LispWorks for FreeBSD
To uninstall LispWorks, perform the following steps as root:

1. If patches have been installed, then you will first need to uninstall that
package:

pkg delete lispworks71-patches-32bit

or

pkg delete lispworks71-patches-64bit

2. Then uninstall the main software package containing LispWorks 7.1:

pkg delete lispworks71-32bit
 51

http://www.lispworks.com/documentation/

6 Installation on FreeBSD

52
or

pkg delete lispworks71-64bit

6.10 Upgrading the LispWorks Edition
Some LispWorks features such as Delivery, Common SQL and Knowledge-
Works are not available in all Editions. You can add these features by upgrad-
ing.

After purchasing your upgrade from lisp-sales@lispworks.com, select Help >
Register... and enter your new license key.

6.11 Upgrading to 64-bit LispWorks
To upgrade from 32-bit to 64-bit LispWorks, contact

lisp-sales@lispworks.com

mailto:lisp-sales@lispworks.com
mailto:lisp-sales@lispworks.com

7

7 Installation on AIX
This chapter is an installation guide for LispWorks 7.1 (32-bit) for AIX and
LispWorks 7.1 (64-bit) for AIX. Chapter 12 discusses post-installation and con-
figuration in detail, but this chapter presents the instructions necessary to get
LispWorks up and running on your system.

7.1 Software and hardware requirements
An overview of system requirements is provided in Table 7.1. The sections
that follow discuss any relevant details.

Hardware
Requirements

Software Requirements

160MB (180MB) of disk
space for 32-bit (64-bit)
LispWorks plus documen-
tation

AIX 6.1 or higher.

Table 7.1 System requirements on AIX
53

7 Installation on AIX

54
7.1.1 GUI libraries

LispWorks 7.1 for AIX requires that the X11 release 6 (or higher) is installed.

LispWorks 7.1 also requires that either GTK+ or Open Motif with Imlib2 are
installed.

The remainder of this section contains the details for each of these distinct
GUI options.

7.1.1.1 GTK+

In order for the LispWorks IDE to run “out of the box”, GTK+ must be
installed on the target machine.

GTK+ 2 (version 2.4 or higher) is required.

7.1.1.2 Motif

Open Motif version 2.1.30 or higher is required to run LispWorks with the
Motif GUI.

You will also need Imlib2 version 1.4.9 or later.

Processor: POWER4 or
later.

GTK+ 2 (version 2.4 or
higher) to run the GTK+
GUI.

Open Motif 2.1.30 and
Imlib2 version 1.4.9 or later
to run the deprecated Motif
GUI

Any modern machine is
likely to have sufficient
RAM to run LispWorks as
distributed.

Firefox or Opera web
browser for viewing on-line
documentation

Hardware
Requirements

Software Requirements

Table 7.1 System requirements on AIX

7.2 License agreement
7.1.2 Disk requirements

32-bit LispWorks requires about 160MB to install, and 64-bit LispWorks needs
180MB. This includes 110MB of documentation.

The documentation includes printable PDF format manuals. You may delete
any of these that you do not need. They are available at www.lisp-
works.com/documentation in any case, and the same manuals are also avail-
able there in PostScript format.

7.2 License agreement
Before installing, you must read and agree to the license terms.

To do this download the license script from the link we sent to you.

Now run the following script as root:

sh lwa-license.sh

Enter “yes” if you agree to the license terms.

7.3 Software delivery and installer format
LispWorks 7.1 for AIX is supplied as tar files to download. together with two
shell scripts which you use at install time.

7.3.1 Contents of the LispWorks distribution

The supplied tar file contains all of the relevant modules.

Your license key will control which modules can be used.

7.4 Installing LispWorks for AIX

7.4.1 Main installation and patches

The LispWorks 7.1 installer contains each of the Editions. Additionally, there
may be a patch installer which upgrades LispWorks to version 7.1.x. You need
to complete the main installation before adding patches.
 55

http://www.lispworks.com/documentation
http://www.lispworks.com/documentation

7 Installation on AIX

56
7.4.2 Information for Beta testers

Users of LispWorks 7.1 Beta should completely uninstall it (including any
patches added to the beta installation) before installing LispWorks 7.1.

See “Uninstalling LispWorks for AIX” on page 59 for instructions.

7.4.3 Installation directories

By default LispWorks is installed in /opt/LispWorks. A symbolic link to the
32-bit executable is placed in /opt/LispWorks/bin/lispworks-7-1-0-
rs6k-aix. A symbolic link to the 64-bit executable is placed in /opt/Lisp-
Works/bin/lispworks-7-1-0-rs6k64-aix.

You can alter the default installation location at install time.

7.4.4 Selecting the correct archives

The 32-bit LispWorks archive is called

lw71-rs6k-aix.tar.gz

The 64-bit LispWorks archive is called

lw71-rs6k64-aix.tar.gz

The documentation archive, which contains manuals in HTML and PDF for-
mats, applies to both 32-bit and 64-bit LispWorks:

lwdoc71-x86-linux.tar.gz

7.4.5 Installing the archive

To install LispWorks, perform the following steps as root:

1. Follow the instructions under Section 7.2, “License agreement”.

2. Use cd to change directory to the location of the tar files before running
the installation script.

3. Run the appropriate installation script, eitherlwa-32bit-install.sh or
lwa-64bit-install.sh as root.

This script takes --prefix and --excludedocs arguments to control
the installation location and amount of documentation installed.

7.5 LispWorks looks for a license key
For example, to install 32-bit LispWorks in /usr/lispworks, without
documentation you would use:

sh lwa-32bit-install.sh --excludedocs --prefix /usr/lispworks

Note: LispWorks needs to be able find its library at run time and therefore the
LispWorks installation should not be moved around piecemeal. If you simply
want to run LispWorks from somewhere more convenient, then consider add-
ing a symbolic link.

See Section 7.6 for instructions on entering your license details.

7.4.6 Installing Patches

After completing the main installation, ensure you install the latest patches
from the tar archive available for download at www.lispworks.com/down-
loads/patch-selection.html. Patch installation instructions are in the
README file accompanying the patch download.

7.5 LispWorks looks for a license key
If you try to run LispWorks without a valid key, it prints a message reporting
that no valid key was found, and exits.

For instructions on entering your license key, see Section 7.6.1, “Entering the
license data” below.

For more information about license keys, see Section 12.2, “License keys”.

7.6 Running LispWorks
The LispWorks executable is located in the
/opt/LispWorks/lib/LispWorks-32-bit or /opt/LispWorks/lib/Lisp-
Works-64-bit directory of the installation (assuming the default prefix of
/opt/LispWorks) and should not be moved without being resaved because it
needs to be able to locate the corresponding library directory on startup. There
is also a symbolic link from the /opt/LispWorks/bin directory.

The LispWorks executable is named as shown here:.
 57

http://www.lispworks.com/downloads/patch-selection.html#lwa
http://www.lispworks.com/downloads/patch-selection.html#lwa

7 Installation on AIX

58
When you run LispWorks, the splashscreen should appear, followed by the
LispWorks Podium and a Listener. See “Troubleshooting” on page 111 for
details if this does not happen.

7.6.1 Entering the license data

When you run LispWorks for the first time, you will need to enter your license
details. This should be done as follows (all on one line):

lispworks-7-1-0-rs6k-aix --lwlicenseserial SERIALNUMBER
--lwlicensekey LICENSEKEY

where SERIALNUMBER and LICENSEKEY are the strings supplied with Lisp-
Works. A message

LispWorks license installed successfully.

should be printed and thereafter you can run LispWorks without those
command line arguments.

Your license key will be supplied to you in email from Lisp Support or Lisp
Sales.

If you have problems with your LispWorks license key, send it to lisp-
keys@lispworks.com, showing the complete output after you enter it.

7.7 Configuring the image
You can now configure your LispWorks image to suit your needs and load
modules as necessary. For instructions, see Chapter 12, “Configuration on
Linux, x86/x64 Solaris, FreeBSD & AIX”.

7.8 Printable LispWorks documentation
In a default installation, the lib/7-1-0-0/manual/offline directory con-
tains PDF format versions of the manuals.

lispworks-7-1-0-rs6k-aix 32-bit LispWorks

lispworks-7-1-0-rs6k64-aix 64-bit LispWorks

7.9 Uninstalling LispWorks for AIX
These files are also available at www.lispworks.com/documentation/.

PostScript format versions of the manuals are also available for download.

7.9 Uninstalling LispWorks for AIX
To remove an installation of 32-bit LispWorks in the default location, do this -
carefully - as root:

rm -rf /opt/LispWorks/lib/LispWorks-32-bit
rm /opt/LispWorks/bin/lispworks-7-1-0-rs6k-aix

If you do not also have 64-bit LispWorks installed here, you can also do

rm -rf /opt/LispWorks

To remove an installation of 64-bit LispWorks in the default location, do this -
carefully - as root:

rm -rf /opt/LispWorks/lib/LispWorks-64-bit
rm /opt/LispWorks/bin/lispworks-7-1-0-rs6k64-aix

If you do not also have 32-bit LispWorks installed here, you can also do

rm -rf /opt/LispWorks

7.10 Upgrading the LispWorks Edition
Some LispWorks features such as Delivery, Common SQL and Knowledge-
Works are not available in all Editions. You can add these features by upgrad-
ing.

After purchasing your upgrade from lisp-sales@lispworks.com, select Help >
Register... and enter your new license key.

7.11 Upgrading to 64-bit LispWorks
To upgrade from 32-bit to 64-bit LispWorks, contact

lisp-sales@lispworks.com
 59

mailto:lisp-sales@lispworks.com
mailto:lisp-sales@lispworks.com
http://www.lispworks.com/documentation/

7 Installation on AIX

60

8

8 Installation on SPARC Solaris
8.1 Introduction
This chapter is a brief installation guide for 32-bit LispWorks 7.1 for SPARC
Solaris and 64-bit LispWorks 7.1 for SPARC Solaris. It is not relevant to any
other product. Chapter 13 discusses installation and configuration in detail,
while this chapter presents the minimum instructions necessary to get Lisp-
Works up and running on your system. If you have difficulties installing Lisp-
Works from these instructions, refer to the main guide, starting at Chapter 13,
“Configuration on SPARC Solaris”.

8.2 Extracting software from the CD-ROM
LispWorks 7.1 for SPARC Solaris is supplied on a CD-ROM.

32-bit LispWorks 7.1 for SPARC Solaris is supplied in a tar archive also con-
taining the associated products CLIM 2.0, KnowledgeWorks, and LispWorks
ORB.

64-bit LispWorks 7.1 for SPARC Solaris is supplied in a tar archive containing
each of the Editions.

In both cases, additionally there may be a patch installer which upgrades
LispWorks to version 7.1.x. You need to complete the main installation before
adding patches. You will need root access while installing these products.
61

8 Installation on SPARC Solaris

62
8.2.1 Finding out which CD-ROM files you need

The following table shows the platforms upon which LispWorks is supported:

For Sun Sparc (32-bit) you need the files named lw71-sparc.tar and
lwdoc71-unix.tar.

For Sun Sparc (64-bit) you need the files named lw71-sparc64.tar and
lwdoc71-sparc64.tar.

In each case the first archive contains the LispWorks image, libraries and
examples. The second archive contains the documentation for Common Lisp,
LispWorks and the layered products.

8.2.2 Unpacking the CD-ROM files

To unpack the CD-ROM files:

1. Mount the CD-ROM in your drive.

2. Search the subdirectories of the mount point to find the tar files.

3. Change directory to your installation directory (we recommend
/usr/lib/lispworks/, which you may need to create) and decide
which tar files you need.

4. Use the following command to unpack each tar file:

% tar -xof filename

The LispWorks image file can be found at top level in the installation
directory, named according to the operating system, platform, and LispWorks
version number.

Platform Hardware code OS code

Sun Sparc (32-bit, Solaris
2.8 & later)

sparc sparc-solaris

Sun Sparc (64-bit, Solaris
2.8 & later)

sparc64 sparc64-solaris

Table 8.1 Platforms and associated codes

8.3 Moving the LispWorks image and library
lispworks-7-1-0-sparc-solaris is the 32-bit LispWorks image and lisp-
works-7-1-0-sparc64-solaris is the 64-bit LispWorks image.

8.3 Moving the LispWorks image and library
The LispWorks image must be able to find its library. The default library
location is contained in the Lisp variable *lispworks-directory*, but if that
does not locate the library, LispWorks also can locate its library by a fallback
mechanism which detects a numbered subdirectory lib/7-1-0-0 alongside
the image.

There are three distinct ways to arrange your LispWorks files. Choose 1, 2 or 3,
of which 1 and 2 are the simplest options:

1. Put the LispWorks distribution in /usr/lib/lispworks. You will then
have the LispWorks image at top-level in the /usr/lib/lispworks
directory, and subdirectories /usr/lib/lispworks/lib/7-1-0-0.

You can move the LispWorks image wherever you prefer, because the
value of *lispworks-directory* in the supplied image is the path-
name #P"/usr/lib/lispworks/".

2. Keep the LispWorks installation intact, as unpacked from the archive
supplied. You can move it, but only move the entire installation as a
whole. Then LispWorks will find its library by the fallback mechanism
mentioned above. In this case again you do not need to change *lisp-
works-directory*.

Note: this only works if you do not move the image away from the top-
level of the installation directory.

3. Put the library elsewhere than /usr/lib/lispworks/ (call it
/path/to/lwlibrary/) and move the LispWorks image file away from
the top-level of the installation directory.

In this case you need to take action to allow LispWorks to find its library.
You should either make a symbolic link /usr/lib/lispworks/lib, or
configure the LispWorks image with:
(setf *lispworks-directory* #P"/path/to/lwlibrary/")

See Section 8.5 below for more information about configuring
LispWorks. You will need to install your license key first.
 63

8 Installation on SPARC Solaris

64
8.4 Obtaining and Installing your license keys

8.4.1 Keyfiles and the license server on SPARC

This section applies to 32-bit LispWorks for SPARC Solaris only. For informa-
tion about licensing 64-bit LispWorks for SPARC Solaris, see Section 8.4.2 on
page 65.

LispWorks requires a license key in order to run. To make a key available to
LispWorks, you must use either the keyfile system, or the License Server.

Most customers use a keyfile. The License Server is more suitable for large
sites with many LispWorks users.

8.4.1.1 If you are using the keyfile system

You will need a valid key, placed in a keyfile, for LispWorks to run.

To get a key for your copy of LispWorks, contact Lisp Support. You need to
supply the machine ID. You can find this out by starting the LispWorks image
up—the ID will be printed in the keyfile error message produced.

Send this information by e-mail to the following address:

lisp-keys@lispworks.com

Other queries should be sent to

lisp-support@lispworks.com

although please be sure to check Section 14.10, “Reporting bugs” for instruc-
tions before sending us a bug report. All contact details are in Section 14.10.8,
“Send the bug report”.

Once you have your key, put it in a file in one of the following locations:

• keyfile.hostname in the current working directory, where hostname is
the name of the host machine on which LispWorks is to run

• keyfile in the current working directory

• lib/7-1-0-0/config/keyfile.hostname, where hostname is the name
of the host machine on which LispWorks is to run. The lib directory is

mailto:lisp-keys@lispworks.com
mailto:lisp-support@lispworks.com

8.5 Configuring the LispWorks image
expected by default to be located at /usr/lib/lispworks/lib (see Sec-
tion 8.3 above)

• lib/7-1-0-0/config/keyfile, where the lib directory is as above.

If there is more than one key in the keyfile, make sure each one is on a separate
line in the file and that there is no leading space before it.

For more details, see “How to obtain keys” on page 102.

8.4.1.2 If you are using the License Server

You will need to obtain permission codes from Lisp Support before you can
get LispWorks up and running. Consult the LispWorks Guide to the License
Server.

8.4.2 Installing the license key on Sun Sparc (64-bit)

This section applies to 64-bit LispWorks for SPARC Solaris only. For informa-
tion about licensing 32-bit LispWorks for SPARC Solaris, see Section 8.4.1 on
page 64.

When you run LispWorks for the first time, you will need to enter your license
details. This should be done as follows (all on one line):

lispworks-7-1-0-sparc64-solaris --lwlicenseserial SERIALNUMBER
--lwlicensekey LICENSEKEY

where SERIALNUMBER and LICENSEKEY are the strings supplied with Lisp-
Works.

Your LispWorks license key is supplied on a label on the folder containing the
CD-ROM.

Contact lisp-keys@lispworks.com if you have problems with your Lisp-
Works license key.

8.5 Configuring the LispWorks image
Now you can configure the LispWorks image to your taste. In the distribution
directory config there are two files that have been preloaded into the Lisp-
Works image:

• config/configure.lisp
 65

8 Installation on SPARC Solaris

66
• config/a-dot-lispworks.lisp

Take a look at the settings in configure.lisp to see if there is anything you
want to change. In particular, you must change the value of
lispworks-directory if you have chosen a location for the library which
is different to that in the supplied image and moved the image away from the
top-level of the installation directory.

If you already have a .lispworks personal initialization file in your home
directory, examine the supplied example a-dot-lispworks.lisp file for new
settings which you may wish to add. Otherwise, make a copy of
a-dot-lispworks.lisp in your home directory, naming it .lispworks. This
file is loaded into LispWorks when you start it up, allowing you to make per-
sonal customizations to LispWorks not in the image your fellow users see.

8.5.1 Saving a configured image

Make a copy of config/configure.lisp called
/tmp/my-configuration.lisp. When you have made any desired changes
in my-configuration.lisp you can save a new LispWorks image, creating a
local version.

1. Create a configuration and saving script /tmp/config.lisp, contain-
ing:

(load-all-patches)
(load "/tmp/my-configuration.lisp")
(save-image "/usr/local/bin/lispworks")

2. Change directory to the top-level of the LispWorks installation directory,
for example:

% cd /usr/lib/lispworks

3. Start the supplied image using the configuration script as the build file.
For example:

% lispworks-7-1-0-sparc-solaris -build /tmp/config.lisp

8.6 Using the Documentation
If the image will not run at this stage, it is probably not finding a valid key. See
“Obtaining and Installing your license keys” on page 64

The siteinit.lisp is also suppressed because this will be loaded automati-
cally when you start the configured image. Saving the image takes some time.

You can now use the new image by starting it just as you did the supplied
image. Saving a new image over the old one is not recommended. Use a
unique name.

8.5.2 Testing the newly saved image

The following steps provide a basic test of your installation.

1. Change directory to /tmp.

2. Verify that your DISPLAY environment variable is correctly set and that
your machine has permission to connect to the display.

3. Start up the new image.

4. Test the load-on-demand system:
CL-USER 1 > (inspect 1)

The inspector is a load-on-demand feature, so if the installation is correct
you will see messages reporting that the inspector is being loaded.

5. Test the X interface:
CL-USER 2 > (env:start-environment :display <display>)

where <display> is the name of the machine running the X server, for
example "cantor:0".

8.6 Using the Documentation
Documentation in HTML and PDF formats is provided in a separate archive
on the CD-ROM. If you want to access the documentation, you should unpack
the appropriate archive named “Finding out which CD-ROM files you need”
on page 62.

HTML documentation is installed in the lib/7-1-0-0/manual/online sub-
directory of the LispWorks library, and can be accessed via the Help menu in
the LispWorks IDE.
 67

8 Installation on SPARC Solaris

68
The PDF format manuals are installed in the lib/7-1-0-0/man-
ual/offline/pdf subdirectory of the LispWorks library.

8.7 Using Delivery, LispWorks ORB, CLIM 2.0,
KnowledgeWorks and Common SQL
These products are licensed differently in 32-bit LispWorks for SPARC Solaris
and 64-bit LispWorks for SPARC Solaris.

8.7.1 Using Layered Products in 32-bit LispWorks on SPARC

To use each of Delivery, LispWorks ORB, CLIM 2.0 and KnowledgeWorks you
must obtain the required key and put in your keyfile. See “Keyfiles and the
license server on SPARC” on page 64.

Then you need to load the layered product module. This is done by (require
"delivery") or (require "corba") or (require "clim") or (require
"kw"). You could consider configuring an image with the module pre-loaded,
by using a config.lisp file similar to that in “Saving a configured image” on
page 66.

Note: There is no additional licensing requirement for Common SQL in 32-bit
LispWorks for SPARC Solaris.

8.7.2 Using Layered Products in 64-bit LispWorks on SPARC

To use CLIM 2.0 you need LispWorks Professional or Enterprise Edition.

To use each of LispWorks ORB, KnowledgeWorks and Common SQL you
need LispWorks Enterprise Edition.

In all cases you need to load the appropriate module using require.

Note: There is no additional licensing requirement for Delivery in 64-bit Lisp-
Works for SPARC Solaris.

9

9 Installation of LispWorks for
Mobile Runtime
This chapter describes installation of LispWorks 7.1 for Android Runtime and
LispWorks 7.1 for iOS Runtime.

9.1 Installing LispWorks for Android Runtime
We will send you instructions when you get a license for LispWorks for
Android Runtime.

Note: Normally you would first develop and debug your program using Lisp-
Works on a desktop platform, for example LispWorks for Linux. You will then
build a runtime library using LispWorks for Android Runtime and incorpo-
rate it in an Android project (see "Android interface" in the LispWorks User
Guide and Reference Manual) before testing it on an Android device.

9.2 Installing LispWorks for iOS Runtime
We will send you instructions when you get a license for LispWorks for iOS
Runtime.

Note: Normally you would first develop and debug your program using Lisp-
Works for Macintosh. You will then build a runtime library using LispWorks
for iOS Runtime and incorporate it in an Xcode project (see "iOS interface" in
69

9 Installation of LispWorks for Mobile Runtime

70
the LispWorks User Guide and Reference Manual) before testing it on an iOS
device or the iOS Simulator on Mac OS X.

10

10 Configuration on Mac OS X
10.1 Introduction
This chapter explains how to get LispWorks up and running, having already
installed the files into an appropriate folder. If you have not done this, refer to
Chapter 2, “Installation on Mac OS X”.

It is more useful to have an image customized to suit your particular
environment and work needs. You can do this—setting useful pathnames,
loading libraries, and so on—and then save the image to create another that
will be configured as you require whenever you start it up.

This chapter covers the following topics:

• “License keys”

• “Configuring your LispWorks installation”

• “Saving and testing the configured image”

• “Initializing LispWorks”

• “Loading CLIM 2.0”

• “Loading Common SQL”

• “Common Prolog and KnowledgeWorks”
71

10 Configuration on Mac OS X

72
10.2 License keys
LispWorks is protected against unauthorized copying and use by a simple key
mechanism. LispWorks will not start up until it finds a file containing a valid
key.

The image looks for a file lwlicense in the following places, in order:

• in the current working directory (folder)

• in the directory containing the LispWorks executable

• in the Library/lib/7-1-0-0/config subdirectory of the LispWorks
installation directory

When the file lwlicense is found, it must contain a valid key for the current
machine. If you try to run LispWorks without a valid key, a message will be
printed to the console reporting that no valid key was found, and LispWorks
will exit.

10.3 Configuring your LispWorks installation
Once you have successfully installed and run LispWorks, you can configure it
to suit your local conditions and needs, producing an image that is set up the
way you want it to be every time you start it up.

10.3.1 Levels of configuration

There are two levels of configuration:

• configuring and resaving the image, thereby creating a new image that
is exactly as you want it at startup

• configuring certain aspects of LispWorks as it starts up.

These two levels are available for good reason: while some configuration
details may be of use to all LispWorks users on your machine (for instance,
having a particular library built into the image where before it was only load-
on-demand) others may be a matter of personal preference (for instance how
many editor windows are allowed on-screen, or the colors of tool windows).

In the first case, you use edited copies of files in the config folder to achieve
your aims.

10.3 Configuring your LispWorks installation
In the second case, you make entries in your initialization file. This is a file
read every time LispWorks starts up, and it can contain any valid Common
Lisp code. (Most of the configurable settings in LispWorks can be controlled
from Common Lisp.) By default the file is called .lispworks and is in your
home directory. Your initialization file can be changed via
LispWorks > Preferences... from the LispWorks IDE.

10.3.2 Configuring images for the different GUIs

If you have installed both the LispWorks images, for native Mac OS X and for
GTK+, you will want to configure two images.

If necessary your Lisp configuration and initialization files can run code for
one image or the other by conditionalization on the feature :cocoa. The native
Mac OS X LispWorks image has :cocoa on *features* while the GTK+ Lisp-
Works image does not, and has :gtk.

10.3.3 Configuration files available

There are four sample configuration files in LispWorks library containing set-
tings you can change in order to configure images:

• config/configure.lisp

• config/siteinit.lisp

• private-patches/load.lisp

• config/a-dot-lispworks.lisp

config/configure.lisp is preloaded into the image before it is shipped. It
contains settings governing fundamental issues like where to find the Lisp-
Works run time folder structure, and so on. You can override these settings in
your saved image or in your initialization file. You should read through
configure.lisp .

config/siteinit.lisp contains any forms that are appropriate to the whole
site but which are to be loaded afresh each time the image is started. The sam-
ple siteinit.lisp file distributed with LispWorks contains only the form:

(load-all-patches)
 73

10 Configuration on Mac OS X

74
On startup, the image loads siteinit.lisp and your initialization file, in
that order. The command line options -siteinit and -init can be used to
specify loading of different files or to suppress them altogether. See the exam-
ple in Section 10.4, below, and Section 10.5, “Initializing LispWorks” for fur-
ther details.

private-patches/load.lisp is loaded by load-all-patches, and should
contain forms to load any private (named) patches that Lisp Support might
send you.

config/a-dot-lispworks.lisp is a sample personal initialization file. You
might like to copy this into a file ~/.lispworks in your home directory and
edit it to create your own initialization file.

Both configure.lisp and a-dot-lispworks.lisp are preloaded into the
image before it is shipped, so if you are happy with the settings in these files,
you need not change them. See the example in Section 10.4, below, and
Section 10.5, “Initializing LispWorks” for further details.

10.4 Saving and testing the configured image
It is not usually necessary to save an image merely to preload patches and
your configuration, because these load very quickly on modern machines.

However, if you want to save an image to reduce startup time for a complex
configuration (such as large application code) or to save a non-windowing
image, then proceed as described in this section.

10.4.1 Create a configuration file

Make a copy of config/configure.lisp called
/tmp/my-configuration.lisp. When you have made the desired changes in
my-configuration.lisp you can save a new LispWorks image as described
in “Create and use a save-image script” on page 74.

10.4.2 Create and use a save-image script

1. Create a configuration and saving script /tmp/save-config.lisp con-
taining:

10.4 Saving and testing the configured image
(in-package "CL-USER")
(load-all-patches)
(load "/tmp/my-configuration.lisp")
#+:cocoa
(save-image-with-bundle "/Applications/My LispWorks/LW")
#-:cocoa
(save-image "my-lispworks-gtk")

2. Change directory to the directory containing the LispWorks image to
configure. For the native Mac OS X/Cocoa LispWorks image:

% cd "/Applications/LispWorks 7.1 (32-bit)/LispWorks (32-
bit).app/Contents/MacOS"

or for the X11/GTK+ LispWorks image:

% cd "/Applications/LispWorks 7.1 (32-bit)"

3. Start the supplied image passing the configuration script the build file.
For example enter one of the following commands (on one line of input):

% ./lispworks-7-1-0-x86-darwin -build /tmp/save-config.lisp

or

% ./lispworks-7-1-0-x86-darwin-gtk -build /tmp/save-config.lisp

If the image will not run at this stage, it is probably not finding a valid
key.

Saving the image takes some time.

You can now use the new My LispWorks/LW.app application bundle or the
my-lispworks-gtk image by starting it just as you did the supplied Lisp-
Works. The supplied LispWorks is not required after the configuration process
has been successfully completed.

Do not try to save a new image over an image that is currently running.
Instead, save an image under a unique name, and then, if necessary, replace
the new image with the old one after the call to save-image has returned.

10.4.3 What to do if no image is saved

If no new image is saved, then there is some error while loading the build
script. To see the error message, run the command with output redirected to a
file, for example:
 75

10 Configuration on Mac OS X

76
% ./lispworks-7-1-0-x86-darwin -build /tmp/save-config.lisp >
/tmp/output.txt

Look in the file /tmp/output.txt.

10.4.4 Testing the newly saved image

You should now test the new LispWorks image. To test a configured Lisp-
Works, do the following:

1. If you are using an X11/GTK+ image, change directory to /tmp.

2. When using X11, verify that your DISPLAY environment variable is cor-
rectly set and that your machine has permission to connect to the dis-
play.

3. Start up the new image, by entering the path of the X11/GTK+ execut-
able or by double-clicking on the LispWorks icon in the Mac OS X
Finder.

The window-based environment should now initialize—during initial-
ization a window displaying a copyright notice will appear on the
screen.

You may wish to work through some of the examples in the LispWorks
User Guide and Reference Manual, to further check that the configured
image has been successfully built.

4. Test the load-on-demand system. In the Listener, type:

CL-USER 1 > (inspect 1)

Before information about the fixnum 1 is printed, the system should load
the inspector from the load-on-demand Library directory.

10.4.5 Saving a non-windowing image

For some purposes such as scripting it is convenient to have a LispWorks
image that does not start the graphical programming environment.

To save an image which does not automatically start the GUI, use a script as
described in “Create and use a save-image script” on page 74 but pass the
:environment argument to save-image. For example:

10.5 Initializing LispWorks
(save-image "my-tty-lispworks" :environment nil)

10.5 Initializing LispWorks
When LispWorks starts up, it looks for an initialization file to load. The name
of the file is held in *init-file-name*, and is ~/.lispworks by default. The
’~’ denotes your home directory, indicated as Home in the Finder. The
initialization file may contain any valid Lisp code.

You can load a different initialization file using the option -init in the com-
mand line, for example:

% "/Applications/LispWorks 7.1 (32-bit)/LispWorks (32-
bit).app/Contents/MacOS/lispworks-7-1-0-x86-darwin" -init
my-lisp-init

(where % denotes the Unix shell prompt) would make LispWorks load my-
lisp-init.lisp as the initialization file instead of that named by *init-
file-name*.

The loading of the siteinit file (located by default at config/siteinit.lisp)
is similarly controlled by the -siteinit command line argument or
site-init-file-name.

You can start an image without loading any personal or site initialization file
by passing a hyphen to the -init and -siteinit arguments instead of a file-
name:

% "/Applications/LispWorks 7.1 (32-bit)/LispWorks (32-
bit).app/Contents/MacOS/lispworks-7-1-0-x86-darwin" -init -
-siteinit -

This starts the LispWorks image without loading any initialization file. It is
often useful to start the image in this way when trying to repeat a suspected
bug. You should always start the image without the default initialization files
if you are intending to resave it.

In all cases, if the filename is present, and is not a hyphen, LispWorks tries to
load it as a normal file by calling load. If the load fails, LispWorks prints an
error report.
 77

10 Configuration on Mac OS X

78
10.6 Loading CLIM 2.0
CLIM 2.0 is supported on the X11/Motif GUI.

Load CLIM 2.0 into the "LispWorks for X11 IDE" image with

(require "clim")

and the CLIM demos with

(require "clim-demo")

A configuration file to save an image with CLIM 2.0 preloaded would look
something like this:

(load-all-patches)
(require "clim")
(save-image "/path/to/clim-lispworks")

To run the demo software, enter the following in a listener:

(require "clim-demo")
(clim-demo:start-demo)

Note: CLIM is not supported by the LispWorks native Mac OS X image and
cannot be loaded into it.

Note: CLIM is not supported under GTK+.

Note: Do not attempt to load CLIM via the clim loader files in the clim distri-
bution. This will cause CLIM patches to not be loaded. Use (require
"clim").

10.7 The Common SQL interface
The Common SQL interface requires ODBC or one of the supported database
types listed in section "Supported Databases" of the LispWorks User Guide and
Reference Manual.

10.7.1 Loading Common SQL

To load Common SQL enter, for example:

(require "odbc")

10.7 The Common SQL interface
or

(require "oracle")

Initialize the database type at run time, for example:

(sql:initialize-database-type :database-type :odbc)

or

(sql:initialize-database-type :database-type :oracle)

See the LispWorks User Guide and Reference Manual for further information.

10.7.2 Supported databases

Common SQL on Mac OS X has been tested with DBMS Postgres 7.2.1,
MySQL 5.0.18, Oracle Instant Client 10.2.0.4, ODBC driver PSQLODBC devel-
opment code, and IODBC as supplied with Mac OS X.

10.7.3 Special considerations when using Common SQL

10.7.3.1 Location of .odbc.ini

The current release of Mac OS X comes with an ODBC driver manager from
IODBC, including a GUI interface. IODBC attempts to put the file .odbc.ini
file in a non-standard location. This causes problems at least with the
PSQLODBC driver for PostgreSQL, because PSQLODBC expects to find
.odbc.ini in either the users’s home directory or the current directory. There
may be similar problems with other drivers. Therefore the file .odbc.ini
should be placed in its standard place ~/.odbc.ini. The IODBC driver man-
ager looks there too, so it will work.

10.7.3.2 Errors using PSQLODBC

The PSQLODBC driver, when it does not find any of the Servername,
Database or Username in .odbc.ini, returns the wrong error code. This tells
the calling function that the user cancelled the login dialog.

Therefore, if Common SQL reports that the user cancelled when trying to con-
nect, you need to check that you have got Servername, Database and User-
 79

10 Configuration on Mac OS X

80
name, with the correct case, in the section for the datasource in the .odbc.ini
file.

Note: Username may alternatively be given in the connect string.

10.7.3.3 PSQLODBC version

Common SQL was tested with the development version of psqlodbc (that is
downloaded from CVS, with the version changed to 3. Contact Lisp Support if
you need help using Common SQL with PSQLODBC.

10.7.3.4 Locating the Oracle, MySQL or PostgreSQL client libraries

For database-type :oracle, :mysql and :postgresql, if the client library is not
installed in a standard place, its directory must be added to the environment
variable DYLD_LIBRARY_PATH (see the OS manual entry for dyld).

10.8 Common Prolog and KnowledgeWorks
Common Prolog is bundled with KnowledgeWorks rather than with Lisp-
Works. KnowledgeWorks is loaded by using:

(require "kw")

See the KnowledgeWorks and Prolog User Guide for further instructions.

11

11 Configuration on Windows
11.1 Introduction
This chapter explains how to get LispWorks up and running, having already
installed it If you have not done this, refer to Chapter 3, “Installation on Win-
dows”.

It is more useful to have an image customized to suit your particular
environment and work needs. You can do this—setting useful pathnames,
loading libraries, and so on—and then save the image to create another that
will be configured as you require whenever you start it up.

This chapter covers the following topics:

• “License keys”

• “Configuring your LispWorks installation”

• “Saving and testing the configured image”

• “Initializing LispWorks”

• “Loading CLIM 2.0”

• “The Common SQL interface”

• “Common Prolog and KnowledgeWorks”
81

11 Configuration on Windows

82
11.2 License keys
LispWorks is protected against unauthorized copying and use by a simple key
protection mechanism. LispWorks will not start up until it finds a valid key.

The image looks for a valid license key in the Windows registry.

If you try to run LispWorks without a valid key, it will prompt for a serial
number and key.

11.3 Configuring your LispWorks installation
Once you have successfully installed and run LispWorks, you can configure it
to suit your local conditions and needs, producing an image that is set up the
way you want it to be every time you start it up.

11.3.1 Levels of configuration

There are two levels of configuration: configuring and resaving the image,
thereby creating a new image that is exactly as you want it at startup, and con-
figuring certain aspects of LispWorks as it starts up.

These two levels are available for good reason: while some configuration
details may be of use to all LispWorks users on your site (for instance, having
a particular library built in to the image where before it was only load-on-
demand) others may be a matter of personal preference (for instance how
many editor windows are allowed on-screen, or the colors of tool windows).

In the first case, you use edited copies of files in the config folder to achieve
your aims.

In the second case, you make entries in your initialization file. This is a file
read every time LispWorks starts up, and it can contain any valid Common
Lisp code. (Most of the configurable settings in LispWorks can be controlled
from Common Lisp.) Your initialization file can be changed via Tools >
Preferences... in the LispWorks IDE.

11.3.2 Configuration files available

There are four sample configuration files in LispWorks library containing set-
tings you can change in order to configure images:

11.4 Saving and testing the configured image
• config/configure.lisp

• config/siteinit.lisp

• private-patches/load.lisp

• config/a-dot-lispworks.lisp

config/configure.lisp is preloaded into the image before it is shipped. It
contains settings governing fundamental issues like where to find the Lisp-
Works run time folder structure, and so on. You can override these settings in
your saved image or in your initialization file. You should read through
configure.lisp .

config/siteinit.lisp contains any forms that are appropriate to the whole
site but which are to be loaded afresh each time the image is started. The sam-
ple siteinit.lisp file distributed with LispWorks contains only the form:

(load-all-patches)

On startup, the image loads siteinit.lisp and your initialization file, in
that order. The command line options -siteinit and -init can be used to
specify loading of different files or to suppress them altogether. See the exam-
ple in Section 11.4, below, and Section 11.5, “Initializing LispWorks” for fur-
ther details.

private-patches/load.lisp is loaded by load-all-patches, and should
contain forms to load any private (named) patches that Lisp Support might
send you.

config/a-dot-lispworks.lisp is a sample personal initialization file. You
might like to copy this somewhere convenient and edit it to create your own
initialization file.

Both configure.lisp and a-dot-lispworks.lisp are preloaded into the
image before it is shipped, so if you are happy with the settings in these files,
you need not change them. See the example in Section 11.4, below, and
Section 11.5, “Initializing LispWorks” for further details.

11.4 Saving and testing the configured image
It is not usually necessary to save an image merely to preload patches and
your configuration, because these load very quickly on modern machines.
 83

11 Configuration on Windows

84
However, if you want to save an image to reduce startup time for a complex
configuration (such as large application code) or to save a non-windowing
image, then proceed as described in this section.

11.4.1 Create a configuration file

Make a copy of config\configure.lisp called
C:\temp\my-configuration.lisp. When you have made any desired
changes in my-configuration.lisp you can save a new LispWorks image, as
described in “Create and use a save-image script” on page 84.

11.4.2 Create and use a save-image script

1. Create a configuration and saving script C:\temp\save-config.lisp,
containing:

(load-all-patches)
(load "C:/temp/my-configuration.lisp")
(save-image "my-lispworks")

2. Change directory to the LispWorks installation directory, for example:

C:

cd %PROGRAMFILES%\LispWorks

3. Start the supplied image using the configuration script as the build file.
For example:

C:\Program Files (x86)\LispWorks>lispworks-7-1-0-x86-win32.exe -
build C:\temp\save-config.lisp

If the image will not run at this stage, it is probably not finding a valid key.

Saving the image takes some time.

You can now use the new my-lispworks.exe image from the Windows
Explorer, or you may choose to add a shortcut. The supplied image is not
required after the configuration process has been successfully completed.

Do not try to save a new image over an image that is currently running.
Instead, save an image under a unique name, and then, if necessary, replace
the new image with the old one after the call to save-image has returned.

11.4 Saving and testing the configured image
11.4.3 What to do if no image is saved

If the LispWorks splash screen appears briefly but no image is saved, then
there is some error while loading the build script. To see the error message,
run the command with output redirected to a file, for example:

C:\Program Files (x86)\LispWorks>lispworks-7-1-0-x86-win32.exe -
build C:\temp\save-config.lisp > C:\temp\output.txt

Look in the file c:\temp\output.txt.

11.4.4 Testing the newly saved image

You should now test the new LispWorks image. To test a configured version of
LispWorks, do the following:

1. Start up the new image.

The window-based environment should now initialize—during initial-
ization a window displaying a copyright notice will appear on the
screen.

You may wish to work through some of the examples in the LispWorks
User Guide and Reference Manual, to further check that the configured
image has been successfully built.

2. Test the load-on-demand system. In the Listener, type:

CL-USER 1 > (inspect 1)

Before information about the fixnum 1 is printed, the system should load
the inspector from the load-on-demand directory.

11.4.5 Saving a non-windowing image

For some purposes such as scripting it is convenient to have a LispWorks
image that does not start the graphical programming environment.

To save an image which does not automatically start the GUI, use a script as
described in “Create and use a save-image script” on page 84 but pass the
:environment argument to save-image. For example:

(save-image "my-tty-lispworks" :environment nil)
 85

11 Configuration on Windows

86
11.5 Initializing LispWorks
When LispWorks starts up, it looks for an initialization file to load. The name
of the file is held in *init-file-name*, and is ~/.lispworks by default. You
can use cl:parse-namestring to see the expansion of this path. The file may
contain any valid Lisp code.

You can load a different initialization file using the option -init in the com-
mand line, for example (all on one line):

C:\Program Files\LispWorks>lispworks-7-1-0-x86-win32.exe -init
my-lisp-init

would make LispWorks load my-lisp-init.lisp as the initialization file
instead of that named by *init-file-name*.

The loading of the siteinit file (located by default at config\siteinit.lisp)
is similarly controlled by the -siteinit command line argument or
site-init-file-name.

You can start an image without loading any personal or site initialization file
by passing a hyphen to the -init and -siteinit arguments instead of a file-
name:

C:\Program Files\LispWorks>lispworks-7-1-0-x86-win32.exe -init -
-siteinit -

This starts the LispWorks image without loading any initialization file. It is
often useful to start the image in this way when trying to repeat a suspected
bug. You should always start the image without the default initialization files
if you are intending to resave it.

In all cases, if the filename is present, and is not a hyphen, LispWorks tries to
load it as a normal file by calling load. If the load fails, LispWorks prints an
error report.

11.6 Loading CLIM 2.0
Load CLIM 2.0 into LispWorks 7.1 with

(require "clim")

and the CLIM demos with

11.7 The Common SQL interface
(require "clim-demo")

rather than the clim loader files in the clim distribution (which were the entry
points in LispWorks 3).

A configuration file to save an image with CLIM 2.0 preloaded would look
something like this:

(load-all-patches)
(require "clim")
(save-image "C:\\path\\to\\clim-lispworks")

11.6.1 Running the CLIM demos

To run the demo software, enter the following in a listener:

(require "clim-demo")
(clim-demo:start-demo)

This displays a menu listing all the demos. Choose the demo you wish to see.
More information about the demos is in section "The CLIM demos" of the
Common Lisp Interface Manager 2.0 User’s Guide

11.7 The Common SQL interface
The Common SQL interface requires ODBC or one of the supported database
types listed in section "Supported databases" of the LispWorks User Guide and
Reference Manual.

11.7.1 Loading the Common SQL interface

To load the Common SQL interface to use ODBC enter:

(require "odbc")

and at run time call:

(sql:initialize-database-type :database-type :odbc)

and then you can connect to any installed ODBC datasource.

To load the Common SQL interface to use MySQL, enter:

(require "mysql")
 87

11 Configuration on Windows

88
and at run time call:

(sql:initialize-database-type :database-type :mysql)

See the LispWorks User Guide and Reference Manual for further information.

11.8 Common Prolog and KnowledgeWorks
Common Prolog is bundled with KnowledgeWorks rather than with Lisp-
Works. KnowledgeWorks is loaded by using:

(require "kw")

See the KnowledgeWorks and Prolog User Guide for further instructions.

11.9 Runtime library requirement on Windows
LispWorks for Windows requires the Microsoft Visual Studio runtime library
msvcr80.dll. The LispWorks installer installs this DLL if it is not present.

Applications you build with LispWorks for Windows also require this DLL, so
you must ensure it is available on target machines.

12

12 Configuration on Linux,
x86/x64 Solaris, FreeBSD &
AIX
12.1 Introduction
This chapter explains how to get LispWorks up and running on Linux,
x86/x64 Solaris, FreeBSD or AIX, having already installed it. If you have not
done this, refer to Chapter 4, Installation on Linux, Chapter 5, Installation on
x86/x64 Solaris, Chapter 6, Installation on FreeBSD or Chapter 7, Installation
on AIX.

It is more useful to have an image customized to suit your particular
environment and work needs. You can do this—setting useful pathnames,
loading libraries, and so on—and then save the image to create another that
will be configured as you require whenever you start it up.

This chapter covers the following topics:

• “License keys”

• “Configuring your LispWorks installation”

• “Saving and testing the configured image”

• “Initializing LispWorks”

• “Loading CLIM 2.0”

• “The Common SQL interface”
89

12 Configuration on Linux, x86/x64 Solaris, FreeBSD & AIX

90
• “Common Prolog and KnowledgeWorks”

12.2 License keys
LispWorks is protected against unauthorized copying and use by a simple key
protection mechanism. LispWorks will not start up until it finds a file contain-
ing a valid key.

The image looks for a file lwlicense in the following places, in order:

• in the current working directory

• in the directory containing the LispWorks executable

• in the lib/7-1-0-0/config subdirectory of the LispWorks installation
directory

When the file lwlicense is found, it must contain a valid key for the current
machine. If you try to run LispWorks without a valid key, a message will be
printed reporting that no valid key was found, and LispWorks will exit.

12.3 Configuring your LispWorks installation
Once you have successfully installed and run LispWorks, you can configure it
to suit your local conditions and needs, producing an image that is set up the
way you want it to be every time you start it up.

12.3.1 Levels of configuration

There are two levels of configuration: configuring and resaving the image,
thereby creating a new image that is exactly as you want it at startup, and con-
figuring certain aspects of LispWorks as it starts up.

These two levels are available for good reason: while some configuration
details may be of use to all LispWorks users on your site (for instance, having
a particular library built in to the image where before it was only load-on-
demand) others may be a matter of personal preference (for instance how
many editor windows are allowed on-screen, or the colors of tool windows).

In the first case, you use edited copies of files in the config directory to
achieve your aims.

12.3 Configuring your LispWorks installation
In the second case, you make entries in your initialization file. This is a file
read every time LispWorks starts up, and it can contain any valid Common
Lisp code. (Most of the configurable settings in LispWorks can be controlled
from Common Lisp.) By default the file is called .lispworks and is in your
home directory. Your initialization file can be changed via Tools > Prefer-
ences... in the LispWorks IDE.

12.3.2 Configuration files available

There are four sample configuration files in LispWorks library containing set-
tings you can change in order to configure images:

• config/configure.lisp

• config/siteinit.lisp

• private-patches/load.lisp

• config/a-dot-lispworks.lisp

config/configure.lisp is preloaded into the image before it is shipped. It
contains settings governing fundamental issues like where to find the Lisp-
Works run time folder structure, and so on. You can override these settings in
your saved image or in your initialization file. You should read through con-
figure.lisp .

config/siteinit.lisp contains any forms that are appropriate to the whole
site but which are to be loaded afresh each time the image is started. The sam-
ple siteinit.lisp file distributed with LispWorks contains only the form:

(load-all-patches)

On startup, the image loads siteinit.lisp and your initialization file, in
that order. The command line options -siteinit and -init can be used to
specify loading of different files or to suppress them altogether. See the exam-
ple in Section 12.4, below, and Section 12.5, “Initializing LispWorks” for fur-
ther details.

private-patches/load.lisp is loaded by load-all-patches, and should
contain forms to load any private (named) patches that Lisp Support might
send you.
 91

12 Configuration on Linux, x86/x64 Solaris, FreeBSD & AIX

92
config/a-dot-lispworks.lisp is a sample personal initialization file. You
might like to copy this into a file ~/.lispworks in your home directory and
edit it to create your own initialization file.

Both configure.lisp and a-dot-lispworks.lisp are preloaded into the
image before it is shipped, so if you are happy with the settings in these files,
you need not change them. See the example in Section 12.4, below, and
Section 12.5, “Initializing LispWorks” for further details.

12.4 Saving and testing the configured image
It is not usually necessary to save an image merely to preload patches and
your configuration, because these load very quickly on modern machines.

However, if you want to save an image to reduce startup time for a complex
configuration (such as large application code) or to save a non-windowing
image, then proceed as described in this section.

12.4.1 Create a configuration file

Make a copy of config/configure.lisp called
/tmp/my-configuration.lisp. When you have made any desired changes
in my-configuration.lisp you can save a new LispWorks image, as
described in “Create and use a save-image script” on page 92.

12.4.2 Create and use a save-image script

1. Create a configuration and saving script /tmp/save-config.lisp, con-
taining:

(load-all-patches)
(load "/tmp/my-configuration.lisp")
(save-image "my-lispworks")

2. Change directory to the LispWorks installation directory, for example:

% cd /usr/local/lib/LispWorks

3. Start the supplied image using the configuration script as the build file.
For example:

% lispworks-7-1-0-x86-linux -build /tmp/save-config.lisp

12.4 Saving and testing the configured image
If the image will not run at this stage, it is probably not finding a valid key.

Saving the image takes some time.

You can now use the new my-lispworks image by starting it just as you did
the supplied image. The supplied image is not required after the configuration
process has been successfully completed.

Do not try to save a new image over an image that is currently running.
Instead, save an image under a unique name, and then, if necessary, replace
the new image with the old one after the call to save-image has returned.

12.4.3 Testing the newly saved image

You should now test the new LispWorks image. To test a configured version of
LispWorks, do the following:

1. Change directory to /tmp.

2. Verify that your DISPLAY environment variable is correctly set and that
your machine has permission to connect to the display.

3. Start up the new image.

The window-based environment should now initialize—during initial-
ization a window displaying a copyright notice will appear on the
screen.

You may wish to work through some of the examples in the LispWorks
User Guide and Reference Manual, to further check that the configured
image has been successfully built.

4. Test the load-on-demand system. In the Listener, type:

CL-USER 1 > (inspect 1)

Before information about the fixnum 1 is printed, the system should load
the inspector from the load-on-demand directory.

12.4.4 Saving a non-windowing image

For some purposes such as scripting it is convenient to have a LispWorks
image that does not start the graphical programming environment.
 93

12 Configuration on Linux, x86/x64 Solaris, FreeBSD & AIX

94
To save an image which does not automatically start the GUI, use a script as
described in “Create and use a save-image script” on page 92 but pass the
:environment argument to save-image. For example:

(save-image "my-tty-lispworks" :environment nil)

12.5 Initializing LispWorks
When LispWorks starts up, it looks for an initialization file to load. The name
of the file is held in *init-file-name*, and is ~/.lispworks by default. ~
denotes your home directory. The file may contain any valid Lisp code.

You can load a different initialization file using the option -init in the com-
mand line, for example:

% lispworks-7-1-0-x86-linux -init my-lisp-init

would make LispWorks load my-lisp-init.lisp as the initialization file
instead of that named by *init-file-name*.

The loading of the siteinit file (located by default at config/siteinit.lisp)
is similarly controlled by the -siteinit command line argument or
site-init-file-name.

You can start an image without loading any personal or site initialization file
by passing a hyphen to the -init and -siteinit arguments instead of a file-
name:

% lispworks-7-1-0-x86-linux -init - -siteinit -

This starts the LispWorks image without loading any initialization file. It is
often useful to start the image in this way when trying to repeat a suspected
bug. You should always start the image without the default initialization files
if you are intending to resave it.

In all cases, if the filename is present, and is not a hyphen, LispWorks tries to
load it as a normal file by calling load. If the load fails, LispWorks prints an
error report.

12.6 Loading CLIM 2.0
Load CLIM 2.0 into LispWorks 7.1 with

12.7 The Common SQL interface
(require "clim")

and the CLIM demos with

(require "clim-demo")

rather than the clim loader files in the clim distribution (which were the entry
points in LispWorks 3).

A configuration file to save an image with CLIM 2.0 preloaded would look
something like this:

(load-all-patches)
(require "clim")
(save-image "/path/to/clim-lispworks")

12.6.1 Running the CLIM demos

To run the demo software, enter the following in a listener:

(require "clim-demo")
(clim-demo:start-demo)

This displays a menu listing all the demos. Choose the demo you wish to see.
More information about the demos is in section "The CLIM demos" of the
Common Lisp Interface Manager 2.0 User’s Guide

12.7 The Common SQL interface
The Common SQL interface requires ODBC or one of the supported database
types listed in section "Supported databases" of the LispWorks User Guide and
Reference Manual.

12.7.1 Loading the Common SQL interface

To load the Common SQL interface to use ODBC enter:

(require "odbc")

and at run time call:

(sql:initialize-database-type :database-type :odbc)

and then you can connect to any installed ODBC datasource.
 95

12 Configuration on Linux, x86/x64 Solaris, FreeBSD & AIX

96
To load the Common SQL interface to use MySQL, enter:

(require "mysql")

and at run time call:

(sql:initialize-database-type :database-type :mysql)

See the LispWorks User Guide and Reference Manual for further information.

12.8 Common Prolog and KnowledgeWorks
Common Prolog is bundled with KnowledgeWorks rather than with Lisp-
Works. KnowledgeWorks is loaded by using:

(require "kw")

See the KnowledgeWorks and Prolog User Guide for further instructions.

12.9 Documentation on x86/x64 Solaris, FreeBSD and AIX
Except where explicitly mentioned, information stated as specific to Lisp-
Works for Linux also applies to LispWorks for x86/x64 Solaris, LispWorks for
FreeBSD and LispWorks for AIX.

13

13 Configuration on SPARC
Solaris
13.1 Disk requirements
The LispWorks software requires up to 53MB of disk space, depending on the
platform.

Installing the documentation adds up to 66MB to this. You can delete some of
these files if you wish, for example you might not need the PDF manuals in
lib/7-1-0-0/manual/offline/pdf (28Mb). You can download these PDF
format manuals from www.lispworks.com/documentation, and the same
manuals are also available there in PostScript format. However, note that the
Help menu commands will not work if you corrupt the lib/7-1-0-0/man-
ual/online directory of the LispWorks library.

13.2 Software Requirements
The LispWorks 7.1 for SPARC Solaris GUI requires X11 release 5 or above,
Motif version 2 and Imlib.

Imlib version 1.9.13 or later is recommended. Lisp Support can supply a suit-
able Imlib library.
97

http://www.lispworks.com/documentation

13 Configuration on SPARC Solaris

98
13.3 The CD-ROM
This section explains the organization of the LispWorks 7.1 CD-ROM which
contains the LispWorks products you have bought, and how to mount it.

13.3.1 The LispWorks 7.1 CD-ROM

The CD-ROM contains images for LispWorks 7.1 and associated products on
your platform or platforms.

13.3.1.1 CD-ROM format

The files on the CD-ROM were created with the UNIX tar command.

13.3.2 Unpacking LispWorks products

There are two basic steps in unpacking a LispWorks product from the CD-
ROM:

1. Mount the CD-ROM so that it can be accessed as part of your UNIX file-
system. This is described in “Mounting the CD-ROM” on page 98.

2. Extract the product files from the tar file containing them. This is
described in “Installing LispWorks” on page 99.

13.3.3 Mounting the CD-ROM

Before you can access the files on the CD-ROM, it has to be mounted onto
your UNIX filesystem. You may need root access on your machine to do this.

Solaris provides an automounting daemon. Place the CD-ROM in the drive
and it will be automatically mounted to:

/cdrom/lw_71/

To unmount:

umount /cdrom/lw_71/

When you can see the tar files on your UNIX filesystem, you are ready to
unpack them. Once you are finished with the tar files on the CD-ROM, you

13.4 Installing LispWorks
can remove it from your drive, but only after you have performed an
“unmount” operation.

When unmounting it is necessary that no process has the CD-ROM mount
point as the current directory, and again, root access is necessary. Pushing the
eject button on the drive may not do anything until the volume has been
unmounted.

13.4 Installing LispWorks
This section explains how to install LispWorks, having already mounted the
CD-ROM. If you have not done this, refer to Section 13.3, “The CD-ROM”. It
also describes how you obtain keys to run LispWorks 7.1.

13.4.1 Unpacking the archive

Once the CD-ROM is mounted, you can begin to unpack the tar files for the
products you have purchased. You will need root access to do this.

There are subsections below explaining the process for each supported plat-
form.

13.4.1.1 Considerations to be made before extracting product files

When you extract files made with the tar command, they are written into the
current directory, and if there are any directories packed up in the tar file, they
will be written to the current directory too. For this reason it is best to cd to the
correct directory before extracting anything.

Consider who is going to use LispWorks before you decide where to put the
extracted files. Once installed and configured, the executable Lisp image
should be somewhere in the UNIX file system likely to be on its users’ search
path. A suitable place might be /usr/local/bin/lispworks.

The run time directory structure (basically, everything except the image file)
should be somewhere publicly readable: /usr/lib/lispworks, by default. If
there is not enough room in any of the normal publicly accessible locations,
you could put a symbolic link there pointing to an installation directory in a
partition with more disk space.
 99

13 Configuration on SPARC Solaris

100
13.4.1.2 How to extract the product files from the tar container files

To extract the product files from the tar container files, the basic form of the
call to tar is:

tar -xof /mount-point/filename

The flag x means extract files from tar-formatted data, and f specifies that the
source of the data will be a file.

mount-point is the point in the UNIX filesystem at which the CD-ROM is
mounted, while filename is the name of the tar file containing the product
files.

For example, to extract the files for LispWorks (32-bit) on SPARC Solaris, with
the CD-ROM mounted at /cdrom/lw_71/, you would type

tar -xof /cdrom/lw_71/lw71-sparc.tar

13.4.1.3 SPARC Solaris (LispWorks 32-bit)

The files you need to unpack for LispWorks (32-bit) on Solaris are lw71-
sparc.tar and lwdoc71-sparc.tar.

The LispWorks image is:

./lispworks-7-1-0-sparc-solaris

13.4.1.4 SPARC Solaris (LispWorks 64-bit)

The files you need to unpack for LispWorks (64-bit) on Solaris are lw71-
sparc64.tar and lwdoc71-sparc64.tar.

The LispWorks image is:

./lispworks-7-1-0-sparc64-solaris

13.4.2 Keyfiles and how to obtain them

This section applies only to 32-bit LispWorks for SPARC Solaris.

LispWorks is protected against unauthorized copying and use by a simple key
protection mechanism. LispWorks will not start up until it finds a file contain-
ing a valid key.

13.4 Installing LispWorks
13.4.2.1 Where LispWorks looks for keyfiles

The image looks for a valid keyfile in the following places, in order:

• keyfile.hostname in the current working directory, where hostname is the
name of the host.

• keyfile in the current working directory, where hostname is the name of
the host.

• config/keyfile.hostname, where hostname is the name of the host on
which the image is to execute. The config directory is expected by
default to be located at /usr/lib/lispworks/lib/7-1-0-0/config
(see “If you are using the keyfile system” on page 64.

• config/keyfile, where the config directory is as above.

The directory config is an indirect subdirectory of the directory specified by
the LispWorks variable *lispworks-directory*. Note that until you have
configured and saved your image, as described later in this section, this vari-
able is set to /usr/lib/lispworks. When starting the generic image, you
must therefore ensure that the keyfile is either in your current directory or in /
usr/lib/lispworks/lib/7-1-0-0/config.

If you try to run LispWorks without a valid key, a message will be printed
reporting that no valid key was found, and LispWorks will exit.

13.4.2.2 The contents of a keyfile

Keyfiles contain one or more keys. A key is a sequence of 28 ASCII upper case
letters and digits between 2 and 9, inclusive.

Each key should be placed on a separate line in the file. There should be no
leading white space on a line before the start of a key. Characters after the key
but on the same line as it are ignored, so may be used for comments. Indeed it
is helpful to comment each line with the name of the product that key enables.

Key files for more than one host can exist in the same keyfile.

A single key allows you to use a particular major version of LispWorks (in this
case 5), on one host machine, until the expiry date of one license, where rele-
vant. To run LispWorks on a different machine you will need another key.
 101

13 Configuration on SPARC Solaris

102
Delivery, KnowledgeWorks, LispWorks ORB and CLIM 2.0 each need their
own keys.

13.4.2.3 How to obtain keys

To obtain your keys, contact Lisp Support.

You can get your key by phone, fax or email. Every key is unique: in order to
generate keys, we need to know the unique ID of the machine on which you
intend to run LispWorks.

To find out your machine’s ID, try to start up the LispWorks image. LispWorks
spots that there is no valid key available, and prints a message saying so,
along with the ID you need to let us know. In any case, Lisp Support will be
able to provide assistance in determining the identifier of a specific machine.
We will also retain a copy of the key supplied.

Send email containing the message printed to lisp-keys@lispworks.com.
Or contact Lisp Support as described in “Reporting bugs” on page 124.

Once you have the key, write it into a file in one of the places listed in Section
13.4.2.1, and start up the LispWorks image.

13.4.3 The License Server

This section applies only to LispWorks (32-bit) for SPARC Solaris. There is no
license server for LispWorks (64-bit) for SPARC Solaris.

If you prefer, you can run LispWorks using the License Server instead of the
keyfile system. This system will control license allocation across your LAN,
and you may find it more convenient.

See the LispWorks Guide to the License Server for full details.

As with the keyfile system, you will need to contact Lisp Support to obtain the
necessary permissions.

mailto:lisp-keys@lispworks.com

13.5 Components of the LispWorks distribution
13.5 Components of the LispWorks distribution
For the purposes of installation the LispWorks system can be thought of as
two discrete components: the basic executable Lisp image and the directories
holding files consulted at run time.

13.5.1 The LispWorks image

The supplied LispWorks image is named according to the operating system
and platform for which it is built, and the LispWorks version number. The for-
mat is:

lispworks-<version number>-<OS code>

Thus, an image named lispworks-7-1-0-sparc-solaris is the 32-bit Lisp-
Works 7.1 image for use on Sun Sparc Solaris machines.

As noted in Section 13.4.1.1 on page 99, once installed, the basic executable
Lisp image can be placed somewhere in the UNIX file system likely to be on
its users’ search path. A suitable place might be /usr/local/bin/lispworks.

13.5.2 The LispWorks library

The run time directory structure (basically, everything except the image file)
should be somewhere publicly readable: /usr/lib/lispworks, by default. If
there is not enough room in any of the normal publicly accessible locations,
you could put a symbolic link there pointing to the installation directory in a
partition with more disk space. The installation directory must contain a sub-
directory called lib/7-1-0-0/.

Among the directories on this subdirectory are the following:

• config — various files that can be adjusted in order to customize the
image (see Section 13.7 on page 104).

• app-defaults — X/Motif resources for LispWorks and the Lisp Moni-
tor.

• postscript — printer descriptions for the CAPI printing interface.

• etc — the executable for the Lisp Monitor.
 103

13 Configuration on SPARC Solaris

104
• load-on-demand — Lisp library code that is loaded into a running
LispWorks system as and when required.

• patches — numbered patches to LispWorks and layered products.

• private-patches — the location to place private (named) patches that
Lisp support may send to you.

• examples — directories containing various code examples, including
most of the code printed in the user documentation.

• translations — the place for logical pathname translations settings

• src — source code supplied with LispWorks

The following directory also resides here, but comes from the documentation
archive:

• manual — has two subdirectories: online and offline. The directory
online contains the online documentation. The directory offline/pdf
contains the complete LispWorks manual set in PDF format.

By default, all these directories are assumed to reside beneath /usr/lib/
lispworks/lib/7-1-0-0/, although you may place the lib directory some-
where else.

For products which support the License Server, there is also a subdirectory of
the installation directory called hqn_ls.

13.6 Printing copies of the LispWorks documentation
LispWorks documentation is not supplied in printed form. If you own a Lisp-
Works license, you may print extra copies of the manuals found in the Lisp-
Works distribution, provided that each copy includes the complete copyright
notice.

The offline/pdf directory contains each manual in PDF format.

13.7 Configuring your LispWorks installation
Once you have successfully installed and run LispWorks, you can configure it
to suit your local conditions and needs, producing an image that is set up the
way you want it to be every time you start it up.

13.7 Configuring your LispWorks installation
There are two levels of configuration: configuring and resaving the image,
thereby creating a new image that is exactly as you want it at startup, and con-
figuring certain aspects of LispWorks as it starts up.

These two levels are available for good reason: while some configuration
details may be of use to all LispWorks users on your site (for instance, having
a particular library built in to the image where before it was only load-on-
demand) others may be a matter of personal preference (for instance how
many editor windows are allowed on-screen, or the colors of tool windows).

In the first case, you alter the global LispWorks image and global settings files
in the config directory to achieve your aims.

In the second case, you make entries in a file in your home directory called
.lispworks. This is a file read every time LispWorks starts up, and it can con-
tain any valid Common Lisp code. (Most of the configurable settings in
LispWorks can be controlled from Common Lisp.)

13.7.1 Multiple-platform installations

You can install copies of LispWorks for more than one platform in the same
directory hierarchy. All platform-specific files are supplied with platform-spe-
cific names.

13.7.2 Configuration files available

There are four files in the LispWorks library containing settings you can
change in order to configure images:

• config/configure.lisp

• config/siteinit.lisp

• private-patches/load.lisp

• config/a-dot-lispworks.lisp

config/configure.lisp contains settings governing fundamental issues
like where to find the LispWorks run time directory structure, and so on. You
should read through configure.lisp and check that you are happy with all
the settings therein. The most common change required is to
lispworks-directory, which points to the root of the installation hierar-
chy.
 105

13 Configuration on SPARC Solaris

106
config/siteinit.lisp contains any forms that are appropriate to the whole
site but which are to be loaded afresh each time the image is started. The sam-
ple siteinit file distributed with LispWorks contains only the form:

(load-all-patches)

private-patches/load.lisp is loaded by load-all-patches, and should
contain forms to load any private (named) patches that Lisp Support might
send you.

config/a-dot-lispworks.lisp is a sample .lispworks file. You might like
to copy this into your home directory and use it as a basis for your own
.lispworks file.

Both configure.lisp and a-dot-lispworks.lisp are preloaded into the
image before it is shipped, so if you are happy with the settings in these files,
you need not change them.

On startup, the image loads siteinit.lisp and your .lispworks file, in that
order. The command line options -siteinit and -init can be used to specify
loading of different files or to suppress them altogether. See the example in
Section 13.7.3 below, and see also Section 13.8, “LispWorks initialization argu-
ments” for further details.

13.7.3 Saving and testing the configured image

It is not usually necessary to save an image merely to preload patches and
your configuration, because these load very quickly on modern machines.

However, if you want to save an image to reduce startup time for a complex
configuration (such as large application code) or to save a windowing image,
then proceed as described in this section.

13.7.4 Create a configuration file

Make a copy of config/configure.lisp called /tmp/my-configura-
tion.lisp. When you have made any desired changes in my-configura-
tion.lisp you can save a new LispWorks image, as described in “Create and
use a save-image script” on page 107.

13.7 Configuring your LispWorks installation
13.7.5 Create and use a save-image script

1. Change directory to the installation directory, for example:

unix% cd /usr/lib/lispworks

2. Start the supplied image, without loading any initialization files. For
example:

unix% lispworks-7-1-0-sparc-solaris -init - -siteinit -

If the image will not run at this stage, it is probably not finding a valid
key. See “Keyfiles and how to obtain them” on page 100.

3. Wait for the prompt. Load your local configuration file:

CL-USER 1 > (load "/tmp/my-configuration.lisp")

Now load all current patches:

CL-USER 2 > (load-all-patches)

4. Save the new version of the image. For example:

CL-USER 3 > (save-image "/usr/local/bin/lispworks")

Saving the image takes some time.

You can now use the new image by starting it just as you did the generic
image. The generic image will not be required after the installation process
has been completed successfully.

Do not try to save a new image over an image that is currently running.
Instead, save an image under a unique name, and then, if necessary, replace
the new image with the old one after the call to save-image has returned.

13.7.5.1 Testing the newly saved image

You should now test the new LispWorks image. To test a configured version of
LispWorks, do the following:

1. Change directory out of the installation directory.

2. Run the new image.

3. Test the load-on-demand system. Type:
 107

13 Configuration on SPARC Solaris

108
CL-USER 1 > (inspect 1)

Before information about the fixnum 1 is printed, the system should load
the inspector from the load-on-demand directory.

4. Next, test the ability of the system to interface to a local X server. If nec-
essary, start an X server either on the local machine or on a machine net-
worked to it. Type:

CL-USER 2 > (env:start-environment :display "serverhostname")

Where serverhostname is the name of the machine running the X server. The
window-based environment should now initialize—during initialization an X
window displaying a copyright notice will appear on the screen.

You can work through some of the examples in the LispWorks User Guide and
Reference Manual to check further that the configured image has successfully
built.

13.8 LispWorks initialization arguments
When LispWorks starts up, it looks for an initialization file to load. The name
of the file is held in *init-file-name*, and is "~/.lispworks" by default.
The file may contain any valid Lisp code.

You can load a different initialization file using the option -init in the com-
mand line, for example:

unix% lispworks -init my-lisp-init

would make LispWorks load my-lisp-init.lisp as the initialization file instead
of that named by *init-file-name*.

Alternatively, an initialization file may be specified by setting the UNIX envi-
ronment variable LW_INIT. If set, the specified file will be used instead of that
named by *init-file-name*.

The loading of the siteinit file (located by default at config/siteinit.lisp)
may similarly be controlled either by the -siteinit command line argument,
or the LW_SITE_INIT variable and *site-init-file-name*.

13.8 LispWorks initialization arguments
You can start an image without loading any personal or site initialization file
by passing a hyphen to the -init and -siteinit arguments instead of a file-
name:

unix% lispworks -init - -siteinit -

This starts the LispWorks image without loading any initialization file. It is
often useful to start the image in this way when trying to repeat a suspected
bug. You should always start the image without initialization if you are
intending to resave it.

In all cases, if the filename is non-nil, and is not a hyphen, LispWorks tries to
load it as a normal file by calling load. If the load fails, LispWorks prints an
error report.
 109

13 Configuration on SPARC Solaris

110

14

14 Troubleshooting, Patches and
Reporting Bugs
This chapter discusses other issues that arise when installing and configuring
LispWorks. It provides solutions for possible problems you may encounter,
and it discusses the patch mechanism and the procedure for reporting bugs.

14.1 Troubleshooting
This section describes some of the most common problems that can occur on
any platform during installation or configuration.

14.1.1 License key errors

LispWorks looks for a valid license key when it is started up. If a problem
occurs at this point, LispWorks exits.

These are the possible problems:

• LispWorks cannot find or read the key.

• The key is incorrect.

• Your license has expired, making the key no longer valid.

On Linux, x86/x64 Solaris, FreeBSD and AIX, this is also a possible cause of
the problem:
111

14 Troubleshooting, Patches and Reporting Bugs

112
• The machine name has changed since LispWorks was installed.

On Mac OS X, Linux, x86/x64 Solaris, FreeBSD and AIX, the key is expected to
be stored in a keyfile, and an appropriate error message is printed at the termi-
nal for each case. If this message does not help you to resolve the problem,
report it to Lisp Support and include the terminal output.

On Windows, the key is expected to be stored in the Windows registry. If you
cannot resolve the problem, export your HKEY_LOCAL_MACHINE\SOFT-
WARE\LispWorks registry tree and include this with your report to Lisp Sup-
port.

14.1.2 Failure of the load-on-demand system

Module files are in the modules directory lib/7-1-0-0/load-on-demand
under *lispworks-directory*.

If loading files on demand fails to work correctly, check that the modules
directory is present. If it is not, perhaps your LispWorks installation is cor-
rupted.

Do not remove any files from the modules directory unless you are really cer-
tain they will never be required.

The supplied image contains a trigger which causes *lispworks-directory*
to be set on startup and hence you should not need to change its value.
Subsequently saved images do not have this trigger.

14.1.3 Build phase (delivery-time) errors

A common cause of errors seen while building (delivering) an application is
running part of the application’s run time initialization, or something else that
assumes the application is already running.

One error sometimes seen is "Not yet multiprocessing." and other likely
build phase errors include those arising from code that assumes something
about the run time environment.

Such initializations should be done at the start of the run time phase, as
described in “Separate run time initializations from the build phase” in the
LispWorks Delivery User Guide.

14.1 Troubleshooting
14.1.4 Memory requirements

To run the full LispWorks system, with its GUI, you will need around 30MB of
swap space for the image and whatever else is necessary to accommodate
your application.

We recommend that you routinely check the size of your image using
cl:room, whether you see warning messages or not.

When running a large image, you may occasionally see

<**> Failed to enlarge memory

printed to the standard output.

The message means that the LispWorks image is close to the limit: it
attempted to expand one of the GC generations, but there was not enough
swap space to accommodate the resulting growth in image size. When this
happens, the garbage collector is invoked. It will usually manage to free the
required space, but if it cannot then crashes may result. Therefore you should
take action to reduce allocation or increase available memory when you see
this message.

Check the size of the image, both by cl:room and by OS facilities (such as ps
or top on *nix, Task Manager on Windows) to see if all the sizes are as
expected. If there are large discrepancies, check them.

Occasionally, however, continued demand for additional memory will end up
exhausting resources. You will then see the message above repeatedly, and
there will be little or no other activity apparent in the image. At this point you
should restart the image, or increase swap space. In cases where external
libraries are mapped above LispWorks and inhibit its growth, you may be able
to relocate LispWorks, as described under "Startup relocation" in the Lisp-
Works User Guide and Reference Manual.

14.1.5 Corrupted LispWorks executable

Programs which attempt to clean up your machine by automatically removing
data they identify as unnecessary may accidentally corrupt your LispWorks
executable, because they do not understand its format. This will prevent Lisp-
Works from starting.
 113

14 Troubleshooting, Patches and Reporting Bugs

114
Examples are the prelink cron job on Linux and CleanMyMac on Macintosh.
These particular programs should no longer affect LispWorks, but there may
be similar utilities in use.

If corruption occurs check if it has been caused by a clean-up utility. If this is
the case, firstly configure your clean-up utility to ignore LispWorks, and then
reinstall LispWorks.

14.2 Troubleshooting on Windows
This section describes some of the most common problems that can occur dur-
ing installation or configuration of LispWorks for Windows.

14.2.1 Private patches not loaded on Windows 7, 8 & 10

Modify private-patches\load.lisp only via the menu command Help >
Install Private Patches...

If your LispWorks installation is in the %ProgramFiles% folder and you edit
private-patches\load.lisp directly, then Windows starts to use a redi-
rected private copy of load.lisp. Help > Install Private Patches... will not
update this copy, and thus your new patches will not be loaded.

If this occurs, the solution is to delete the redirected copy of load.lisp from
your user profile space. On Windows 8 the location is like this:

C:\Users\lw\AppData\Local\VirtualStore\Program Files
(x86)\LispWorks\lib\7-1-0-0\private-patches\

14.3 Troubleshooting on Mac OS X
This section describes some of the most common problems that can occur dur-
ing installation or configuration of LispWorks for Macintosh.

If you’re using the LispWorks image with the X11/Motif GUI, see also
Section 14.8, “Troubleshooting on X11/Motif” below for issues specific to
X11/Motif.

14.4 Troubleshooting on Linux
14.3.1 Uninstall requires administrator on Mac OS X

You must be logged on an as administrator in order to run uninstall.com-
mand to uninstall LispWorks. This is because it uses the sudo command.

14.4 Troubleshooting on Linux
This section describes some of the most common problems that can occur dur-
ing installation or configuration of LispWorks for Linux.

See also “Troubleshooting on X11/Motif” on page 118 below for issues specific
to X11/Motif.

14.4.1 Processes hanging

Some versions of Linux have a broken pthreads library. To workaround this
set the environment variable LD_ASSUME_KERNEL=2.4.19 before running
LispWorks. LD_ASSUME_KERNEL allows using older versions of pthreads,
some of which do not work.

LispWorks 7.1 supports any Linux distribution with glibc 2.6 or later.

14.4.2 RPM_INSTALL_PREFIX not set

On Linux, during installation of CLIM, Common SQL, LispWorks ORB or
KnowledgeWorks from a secondary rpm file you may see a message similar to
this:

rpm --install tmp/lispworks-clim-7.1-1.i386.rpm
Environment variable RPM_INSTALL_PREFIX not set, setting it to
/usr
LispWorks installation not found in /usr.
error: %pre(lispworks-clim-7.1-1) scriptlet failed, exit status 1
error: install: %pre scriptlet failed (2), skipping lispworks-
clim-7.1-1
#

This is only a problem when LispWorks itself was installed in a non-default
location (that is, using the --prefix RPM option). You would then want to
supply that same --prefix value when installing the secondary rpm. A bug
in RPM means that a required environment variable RPM_INSTALL_PREFIX is
 115

14 Troubleshooting, Patches and Reporting Bugs

116
not set automatically to the supplied value. We have seen this bug in RPM
version 4.2, as distributed with Red Hat 8 and 9.

The workaround is to set this environment variable explicitly before installing
the secondary rpm. For example, if LispWorks was installed like this:

rpm --install --prefix /usr/lisp lispworks-7.1-1.i386.rpm

then you would add CLIM like this (in C shell):

setenv RPM_INSTALL_PREFIX /usr/lisp
rpm --install --prefix /usr/lisp lispworks-clim-7.1-1.i386.rpm

14.4.3 Using multiple versions of Motif on Linux

The version of Open Motif required by LispWorks 7.1 with the Motif GUI may
not be compatible with other applications (including LispWorks 4.2). It is
however compatible with LispWorks 7.0, LispWorks 6.x, LispWorks 5.x, Lisp-
Works 4.4 and 4.3, so you for example you should be able to run LispWorks
7.1 and LispWorks 7.0 simultaneously with either Open Motif installed.

While it is not supported for LispWorks 5.1 and later versions, you can still
use Lesstif for LispWorks 5.0 and earlier - see the Installation Guide for that
version for details.

You may wish to maintain multiple versions of the Motif/Lesstif libraries in
order to run various applications simultaneously. However, because the
filenames of the libraries can conflict, this can only be done by installing
libraries in non-standard locations.

When a library has been installed in a non-standard location, you can set the
environment variable LD_LIBRARY_PATH to allow an application to find that
library. Specifically, if <motiflibdir> denotes the directory containing the Motif
2.2 or 2.3 file libXm.so then set LD_LIBRARY_PATH to include <motiflibdir>.

Note: to find out which version of libXm your LispWorks 7.1 image is actually
using, look in the bug form. See “Generate a bug report template” on page 125
for instructions on generating the bug form.

14.5 Troubleshooting on x86/x64 Solaris
14.5 Troubleshooting on x86/x64 Solaris
This section describes some of the most common problems that can occur dur-
ing installation or configuration of LispWorks for x86/x64 Solaris.

See also “Problems with CAPI on GTK+” on page 160 and “Troubleshooting
on X11/Motif” on page 118.

14.5.1 GTK+ version

GTK+ 2 (version 2.4 or higher) is required to run the LispWorks image as dis-
tributed.

14.6 Troubleshooting on FreeBSD
This section describes some of the most common problems that can occur dur-
ing installation or configuration of LispWorks for FreeBSD.

See also “Troubleshooting on X11/Motif” on page 118 below for issues specific
to X11/Motif.

14.7 Troubleshooting on SPARC Solaris
This section describes some of the most common problems that can occur dur-
ing installation or configuration of LispWorks for SPARC Solaris.

See also “Troubleshooting on X11/Motif” on page 118 for issues specific to
X11/Motif.

14.7.1 Problems with CD-ROM file system

Some operating systems provide tools which can mount a CD-ROM incor-
rectly. If your LispWorks CD-ROM appears to contain files named like this:

lwdoc71-unix.tar;1

then check the mount command used (“Mounting the CD-ROM” on page 98).
 117

14 Troubleshooting, Patches and Reporting Bugs

118
14.7.2 License key errors

LispWorks looks for a keyfile containing a valid license key when it is started
up. If a problem occurs at this point, LispWorks exits, after first printing a
keyfile error message.

There are three possible problems:

• LispWorks cannot find or read the key file.

• The key in the keyfile is incorrect.

• Your license has expired, making the key no longer valid.

An appropriate error message will appear for each case.

An unconfigured image must either be installed in the default location
(library hierarchy under /usr/lib/lispworks/lib/7-1-0-0) or be executed
in the same directory as the keyfile. If the image has been configured, check
that the keyfile is in the right place and that the value of
lispworks-directory is correct.

If the key is incorrect, check it against the one Lisp Support supplied. It should
consist only of numerals and upper case letters (A–Z). If the key has expired,
contact Lisp Support—you may be allowed to extend the key.

14.8 Troubleshooting on X11/Motif
This section describes some of the most common problems that can occur
using the LispWorks X11/Motif GUI, which is available on Linux, FreeBSD,
Mac OS X and UNIX.

14.8.1 Problems with the X server

Running under X11/Motif, LispWorks may print a message saying that it is
unable to connect to the X server. Check that the server is running, and that
the machine the image is running on is authorized to connect to it. (See the
manual entry for command xhost(1).)

On Mac OS X, if you attempt to start the LispWorks X11/Motif GUI in Termi-
nal.app, an error message Failed to open display NIL is printed. Instead,
run LispWorks in X11.app.

14.8 Troubleshooting on X11/Motif
14.8.2 Problems with fonts on Motif

LispWorks may print a message saying that it is unable to open a font and is
using a default instead. The environment will still run but it may not always
use the right font.

LispWorks comes configured with the fonts most commonly found with the
target machine type. However the fonts supplied vary between implementa-
tions and installations. The fonts available on a particular server can be deter-
mined by using the xlsfonts(1) command. Fonts are chosen based on the
X11 resources. See “X11/Motif resources” on page 120 for more information.

It may be necessary to change the fonts used by LispWorks.

14.8.3 Problems with colors

Running under X11, on starting up the environment, or any tool within it,
LispWorks may print a message saying that a particular color could not be
allocated.

This problem can occur if your X color map is full. If this is the case,
LispWorks cannot allocate all the colors that are specified in the X11 resources.

This may happen if you have many different colors on your screen, for
instance when displaying a picture in the root window of your display.

Colors are chosen based on the X11 resources. See “X11/Motif resources” on
page 120 for more information.

To remove the problem, you can then change the resources (for example, by
editing the file mentioned in “X11/Motif resources” on page 120) to reduce
the number of colors LispWorks allocates.

14.8.4 Motif mnemonics and Alt

Mnemonic processing on Motif always uses mod1, so we disable mnemonics if
that is Lisp's Meta modifier to allow the Emacs-style editor to work. (The
accelerator code uses the same keyboard mapping check as the mnemonics so
Alt accelerators would also get disabled if you had them.)
 119

14 Troubleshooting, Patches and Reporting Bugs

120
14.8.5 Non-standard X11/Motif key bindings

On X11/Motif, if you want Emacs-style keys Ctrl-n, Ctrl-p in LispWorks
list panels such as the Editor’s buffers view, add the following to the X11
resources (see Section 14.8.6):

!
! Enable Ctrl-n, Ctrl-p in list panels
Lispworks*XmList.translations: #override\n\

Ctrl<Key>p : ListPrevItem()\n\
Ctrl<Key>n : ListNextItem()

!

14.8.6 X11/Motif resources

When using X11/Motif, LispWorks reads X11 resources in the normal way,
using the application class Lispworks. The file app-defaults/Lispworks is
used to supply fallback resources. You can copy parts of this file to ~/Lisp-
works or some other configuration-specific location if you wish to change
these defaults, and similarly for app-defaults/GcMonitor.

14.8.7 Motif installation on Mac OS X

When attempting to starting the LispWorks X11/Motif GUI when the required
version of Motif is not installed, LispWorks prints the error message:

Error: Could not register handle for external module X-
UTILITIES::CAPIX11:
dyld: /Applications/LispWorks 7.1/lispworks-7-1-0-x86-darwin-gtk
can’t open library: /usr/local/lib/libXm.4.dylib (No such file or
directory, errno = 2)
.

Ensure you install Motif as described in Section 2.4.8.2, “The X11 GTK+ and
Motif GUIs”. Restart X11.app and LispWorks after installation of Motif.

14.9 Updating with patches
We sometimes issue patches for LispWorks by email or download.

14.9 Updating with patches
14.9.1 Extracting simple patches

Save the email attachment to your disk.

See Section 14.9.3.2, “Private patches” below about location of your private
patches.

14.9.2 If you cannot receive email

If your site has neither email nor ftp access, and you want to receive patches,
you should contact Lisp Support to discuss a suitable medium for their trans-
mission.

14.9.3 Different types of patch

There are two types of patch sent out by Lisp Support, and they must be dealt
with in different ways.

14.9.3.1 Public patches

Public patches are general patches made available to all LispWorks customers.
These are typically released in bundles of multiple different patch files; each
file has a number as its name. For example,
 121

14 Troubleshooting, Patches and Reporting Bugs

122
patches\system\0001\0001.ofasl (for x86 Windows)
patches/system/0001/0001.ufasl (for x86 Linux)
patches/system/0001/0001.sfasl (for x86 Solaris)
patches/system/0001/0001.ffasl (for x86 FreeBSD)
patches/system/0001/0001.ifasl (for AIX 32-bit)
patches/system/0001/0001.rfasl (for 32-bit ARM Linux, Android and
iOS)
patches/system/0001/0001.xcfasl (for 32-bit iOS Simulator)
patches/system\0001\0001.64ofasl (for x64 Windows)
patches/system/0001/0001.64ufasl (for amd64 Linux)
patches/system/0001/0001.64sfasl (for amd64 Solaris)
patches/system/0001/0001.64ffasl (for amd64 FreeBSD)
patches/system/0001/0001.64ifasl (for AIX 64-bit)
patches/system/0001/0001.64rfasl (for 64-bit ARM Linux and iOS)
patches/system/0001/0001.64xcfasl (for 64-bit iOS Simulator)
patches/system/0001/0001.wfasl (for SPARC 32-bit)
patches/system/0001/0001.64wfasl (for SPARC 64 bit)

On receipt of a new patch bundle your system manager should update each
local installation according to the installation instructions supplied with the
patch bundle. This will add files to the patches subdirectory and increment
the version number displayed by LispWorks.

You should consider saving a new image with the latest patches pre-loaded, as
described in Section 10.4, “Saving and testing the configured image” (Mac OS
X), Section 11.4, “Saving and testing the configured image” (Windows) or
Section 12.4, “Saving and testing the configured image” (Linux, x86/x64
Solaris or FreeBSD), or Section 13.7.3, “Saving and testing the configured
image” (other UNIX).

14.9.3.2 Private patches

LispWorks patches are generally released in cumulative bundles. Occasionally
Lisp Support may send you individual patch binaries named for example
my-patch to address a problem or implement a new feature in advance of
bundled ('public') patch releases. Such patches have real names, rather than
numbers, and must be loaded once they have been saved to disk. You will
need to ensure that LispWorks will load your private patches on startup, after
public patches have been loaded.

Private patch loading is controlled by the file:

lib/7-1-0-0/private-patches/load.lisp

14.9 Updating with patches
private-patches/ is the default location for private patches, and patch load-
ing instructions sent to you will assume this location. Therefore, on receipt of
a private patch my-patch.ufasl, the simplest approach is to place it here. For
example, on Mac OS X:

<install>/LispWorks 7.1 (32-bit)/Library/lib/7-1-0-0/private-
patches/my-patch.xfasl

On Windows (but see note below about the Install Private Patches... command):

<install>\lib\7-1-0-0\private-patches\my-patch.ofasl

On Linux:

<install>/lib/7-1-0-0/private-patches/my-patch.ufasl

On SPARC:

<install>/lib/7-1-0-0/private-patches/my-patch.64wfasl (for 64-bit
LispWorks)
<install>/lib/7-1-0-0/private-patches/my-patch.wfasl (for 32-bit
LispWorks)

You will receive a Lisp form needed to load such a patch, such as

 (LOAD-ONE-PRIVATE-PATCH "my-patch" :SYSTEM)

This form should be added to the flet form in the file:

private-patches/load.lisp

immediately after the commented example there. load-all-patches loads
this file, and hence all the private patches listed therein.

You may choose to save a reconfigured image with the new patch loaded - for
details see the instructions in Section 10.4, “Saving and testing the configured
image” (Mac OS X), Section 11.4, “Saving and testing the configured image”
(Windows), Section 12.4, “Saving and testing the configured image” (Linux,
x86/x64 Solaris or FreeBSD), or Section 13.7.3, “Saving and testing the config-
ured image” (other UNIX). You can alternatively choose to load the patch file
on startup. The option you choose will depend on how many people at your
site will need access to the new patch, and how many will need access to an
image without the patch loaded.

Note: On Windows, the correct way to install private patches is using the
menu item Help > Install Private Patches.... Select the private patch file with the
 123

14 Troubleshooting, Patches and Reporting Bugs

124
Add button and edit the private-patches/load.lisp in the lower pane to
include the loading form supplied by Lisp Support immediately after the
commented example there. Then click Save Changes, which will run a helper
application that interacts with the Windows User Access Control mechanism
to allow you to write the files into the protected Program Files folder.

14.10 Reporting bugs
If you discover a bug, in either the software or the documentation, you can
submit a bug report by any of the following routes.

• email

• fax

• paper mail (post)

• telephone

The addresses are listed in Section 14.10.8. Please note that we much prefer
email.

14.10.1 Check for existing fixes

Before reporting a bug, please ensure that you have the latest patches installed
and loaded. Visit www.lispworks.com/downloads/patch-selection.html
for the latest patch release.

If the bug persists, check the Lisp Knowledgebase at
www.lispworks.com/support/ for information about the problem - we may
already have fixed it or found workarounds.

If you need informal advice or tips, try joining the LispWorks users’ mailing
list. Details are at www.lispworks.com/support/lisp-hug.html.

14.10.2 Performance Issues

If the problem is poor performance, you should use room, extended-time and
profile to check what actually happens. See the LispWorks User Guide and Ref-
erence Manual for details of these diagnostic functions and macros.

http://www.lispworks.com/downloads/patch-selection.html
http://www.lispworks.com/support/
http://www.lispworks.com/support/lisp-hug.html

14.10 Reporting bugs
If this does not help you to resolve the problem, submit a report to Lisp Sup-
port (see next section) and attach the output of the diagnostics.

14.10.3 Generate a bug report template

Whatever method you want to use to contact us, choose Help > Report Bug
from any tool, or use the command Meta+X Report Bug, or at a Lisp prompt,
use :bug-form, for example:

:bug-form "foo is broken" :filename "bug-report-about-foo.txt"

All three methods produce a report template you can fill in. In the GUI envi-
ronment we prefer you use the Report Bug command - do this from within
the debugger if an error has been signalled.

The bug report template captures details of the Operating System and Lisp
you are running, as well as a stack backtrace if your Lisp is in the debugger.
There may be delays if you do not provide this essential information.

If the issue you are reporting does not signal an error, or for some other reason
you are not able to supply a backtrace, we still want to see the bug report
template generated from the relevant LispWorks image.

14.10.4 Add details to your bug report

Under 'Urgency' tell us how urgent the issue is for you. We classify reports as
follows:

ASAP A bug or missing feature that is stopping progress.
Probably needs a private patch, possibly under a sup-
port contract, unless a workaround can be found.

Current Release Either a fix in the next patch bundle or as a private
patch, possibly under a support contract.

Next Release A fix would be nice in the next minor release.

Future Release An item for our wishlist.

None Probably not a bug or feature request.

Tell us if the bug is repeatable. Add instructions on how to reproduce it to the
'Description' field of the bug report form.
 125

14 Troubleshooting, Patches and Reporting Bugs

126
Include any other information you think might be relevant. This might be
your code which triggers the bug. In this case, please send us a self-contained
piece of code which demonstrates the problem (this is much more useful than
code fragments).

Include the output of the Lisp image. In general it is not useful to edit the out-
put, so please send it as-is. Where output files are very large (> 2MB) and
repetitive, the first and last 200 lines might be adequate.

If the problem depends on a source or resource file, please include that file
with the bug report.

If the bug report falls into one of the categories below, please also include the
results of a backtrace after carrying out the extra steps requested:

• If the problem seems to be compiler-related, set
compiler-break-on-error to t, and try again.

• If the problem seems to be related to error or conditions or related
functionality, trace error and conditions:coerce-to-condition, and
try again.

• If the problem is in the LispWorks IDE, and you are receiving too many
notifiers, set dbg:*full-windowing-debugging* to nil and try again.
This will cause the console version of debugger to be used instead.

• If the problem occurs when compiling or loading a large system, call
(toggle-source-debugging nil) and try again.

• If you ever receive any unexpected terminal output starting with the
characters <**>, please send all of the output—however much there is
of it.

Note: terminal output is that written to *terminal-io*. Normally this
is not visible when running the Mac OS X native GUI or the Windows
GUI, though it is displayed in a Terminal.app or MS-DOS window if
necessary.

14.10.5 Reporting crashes

Very occasionally, there are circumstances where it is not possible to generate
a bug report form from the running Lisp which has the bug. For example, a

14.10 Reporting bugs
delivered image may lack the debugger, or the bug may cause lisp to crash
completely. In such circumstances:

1. It is still useful for us to see a bug report form from your lisp image so
that we can see your system details. Generate the form before your code
is loaded or a broken call is made, and attach it to your report.

2. Create a file init.lisp which loads your code that leads to the crash.

3. Run LispWorks with init.lisp as the initialization file and with output
redirected to a file. For example, on Mac OS X:

% "/Applications/LispWorks 7.1 (32-bit)/LispWorks (32-
bit).app/Contents/MacOS/lispworks-7-1-0-x86-darwin" -init
init.lisp > lw.out

where % denotes a Unix shell prompt.

On Windows:

C:\> "Program Files\LispWorks\lispworks-7-1-0-x86-
win32.exe" -init init.lisp > lw.out

where C:\> denotes the prompt in a MS-DOS command window.

On Linux:

% /usr/bin/lispworks-7-1-0-x86-linux -init init.lisp > lw.out

where % denotes a Unix shell prompt.

On UNIX (SPARC in this example):

% /usr/lib/lispworks/lib/7-1-0-0/config/lispworks-7-1-0-sparc-
solaris -init init.lisp > lw.out

4. Attach the lw.out file to your report. In general it is not useful to edit the
output of your Lisp image, so please send it as-is. Where output files are
very large (> 2MB) and repetitive, the first and last 200 lines might be
adequate.

14.10.6 Log Files

If your application writes a log file, add this to your report. If your application
does not write a log file, consider adding it, since a log is always useful. The
 127

14 Troubleshooting, Patches and Reporting Bugs

128
log should record what the program is doing, and include the output of
(room) periodically, say every five minutes.

You can make the application write a bug form to a log file automatically by
making your error handlers call dbg:log-bug-form.

14.10.7 Reporting bugs in delivered images

Some delivered executables lack the debugger. It is still useful for us to see a
bug report template from your Lisp image that was used to build the deliv-
ered executable. If possible, load your code and call (require "delivery")
then generate the template.

For bugs in delivered LispWorks images, the best approach is to start with a
very simple call to deliver, at level 0 and with the minimum of delivery key-
words (:interface :capi and :multiprocessing t at most). Then deliver
at increasingly severe levels. Add delivery keywords to address specific prob-
lems you find (see the LispWorks Delivery User Guide.for details. However,
please note that you are not expected to need to add more than 6 or so deliv-
ery keywords: do contact us if you are adding more than this.)

14.10.8 Send the bug report

Email is usually the best way. Send your report to

lisp-support@lispworks.com

When we receive a bug report, we will send an automated acknowledgment,
and the bug will be entered into the LispWorks bug management system. The
automated reply has a subject line containing for example

(Lisp Support Call #12345)

Please be sure to include that cookie in the subject line of all subsequent mes-
sages concerning your report, to allow Lisp Support to track it.

If you cannot use email, please either:

• Fax to +44 870 2206189

• Post to Lisp Support, LispWorks Ltd, St John's Innovation Centre, Cow-
ley Road, Cambridge, CB4 0WS, England

14.11 Transferring LispWorks to a different machine
• Telephone: +44 1223 421860

Note: It is very important that you include a stack backtrace in your bug report
wherever applicable. See “Generate a bug report template” on page 125 for
details. You can always get a backtrace from within the debugger by entering
:bb at the debugger prompt

14.10.9 Sending large files

Note: Please check with Lisp Support in advance if you are intending to send
very large (> 2MB) files via email.

14.10.10 Information for Personal Edition users

We appreciate feedback from users of LispWorks Personal Edition, and often
we are able to provide advice or workarounds if you run into problems. How-
ever please bear in mind that this free product is unsupported. For informal
advice and tips, try joining the LispWorks users mailing list. Details are at
www.lispworks.com/support/lisp-hug.html.

14.11 Transferring LispWorks to a different machine
This section lists the steps necessary to transfer LispWorks license to another
machine.

1. Install LispWorks on your new machine.

2. Add latest patch bundle.

3. If you received private patches (named patch files, in the lib/7-1-0-
0/private-patches directory) for this version of LispWorks, move
them and your private-patches/load.lisp file to the corresponding
location in the new installation.

4. Test the new installation by running LispWorks and check the patch ban-
ner in the output of Help > Report Bug. It should be identical to the origi-
nal installation. If it differs, check that the public patches have been
installed and that you private patches have been moved to the new pri-
vate-patches folder along with the load.lisp file.
 129

http://www.lispworks.com/support/lisp-hug.html

14 Troubleshooting, Patches and Reporting Bugs

130
Please note that the LispWorks EULA restricts multiple installations so you
may need to remove the original installation. Check your license agreement if
you are unsure: the text of the shrinkwrap agreement is in the file lib/7-1-0-
0/license.txt.

Instructions for uninstalling LispWorks are in the per-platform chapters of this
manual:

• “Uninstalling LispWorks for Macintosh” on page 15

• “Uninstalling LispWorks for Windows” on page 20

• “Uninstalling LispWorks for Linux” on page 34

• “Uninstalling LispWorks for x86/x64 Solaris” on page 43

• “Uninstalling LispWorks for FreeBSD” on page 51

Some operating systems provide ways to copy software to another machine. A
copied LispWorks installation will not run. Please contact Lisp Support if you
want to install your license to a copied installation of LispWorks.

15

15 Release Notes
15.1 Keeping your old LispWorks installation
You can install LispWorks 7.1 in the same directory as previous versions such
as LispWorks 7.0. This is because most of the 7.1 files are stored in a
subdirectory called lib/7-1-0-0.

Binaries produced by cl:compile-file in previous versions of LispWorks
do not load into a LispWorks 7.1 image. You must recompile all your code
with the LispWorks 7.1 compiler.

15.2 Updating your code for LispWorks 7.1
Check through these release notes for things you need to update in code that
already works in LispWorks 7.0.

If you are updating code that works only in versions earlier than LispWorks
7.0, then you should also consult earlier release notes, which are available at
www.lispworks.com/documentation.

15.2.1 Conditionalizing code for different versions of LispWorks

When conditionalizing code for different versions of LispWorks, make your
code work in the latest version and then conditionalize with feature
131

http://www.lispworks.com/documentation

15 Release Notes

132
expressions if necessary, depending on which previous versions of LispWorks
you want to support.

For example, use #-lispworks6 rather than #+lispworks7. This makes it
more likely that the code will work without changes when LispWorks 8 is
released in future.

Use only documented features. For an example see "Conditionalization for
LispWorks versions" in the entry for cl:*features* in the LispWorks User
Guide and Reference Manual.

15.3 Platform support

15.3.1 Runtimes iOS

LispWorks for iOS Runtime supports 64-bit devices now, using a new garbage
collector (the Mobile GC).

The example script run-lw-ios.sh now builds 4 images: 32-bit and 64-bit for
each of iOS and the iOS simulator.

15.3.2 AIX/PowerPC implementation supports SMP

LispWorks for AIX/PowerPC now supports Symmetric Multiprocessing
(SMP), on both 32-bit and 64-bit.

15.3.3 ARM64 Linux implementation

LispWorks (64-bit) for ARM64 Linux (also known as aarch64) is now
available.

15.3.4 FreeBSD 10.x support

LispWorks 7.1 supports FreeBSD 10.x and later and is supplied as a standard
package file, in pkg(8) format. Older versions of FreeBSD are not supported.

15.4 Multiprocessing
15.3.5 Running on 64-bit machines

As far as we know each of the 32-bit LispWorks implementations runs
correctly in the 32-bit subsystem of the corresponding 64-bit platform.

15.3.6 Code signing LispWorks images

15.3.6.1 Signing of the distributed executable

On Mac OS X, the LispWorks Personal Edition application bundle is signed in
the name of LispWorks Ltd.

On Microsoft Windows, the LispWorks Personal Edition executable is signed
in the name of LispWorks Ltd.

Other LispWorks editions are not signed, because of the complications around
image saving and delivery that this would lead to.

15.3.6.2 Signing your development image

On Microsoft Windows and Mac OS X you can sign a development image
saved using save-image with the :split argument. On Mac OS X, the
:split argument should have value :resources.

15.3.6.3 Signing your runtime application

On Microsoft Windows and Mac OS X you can sign a runtime executable or
dynamic library which was saved using deliver with the :split argument.

15.4 Multiprocessing
LispWorks supports Symmetric Multiprocessing (SMP) on Microsoft
Windows, Mac OS X, Linux, FreeBSD, x86/x64 Solaris, AIX, iOS and Android
platforms. Where functionality differs from other platforms, the
documentation refers to "SMP LispWorks" or "Non-SMP LispWorks", as
appropriate.

This section describes changes made in the multiprocessing interface since
version 7.0, which are documented in the LispWorks User Guide and Reference
Manual.
 133

15 Release Notes

134
15.4.1 Additional functions for use with mailboxes

The new function mp:mailbox-send-limited sends an object to a mailbox as
long as the mailbox has not reached a specified maximum size.

The new functions mp:mailbox-size and mp:mailbox-full-p allow the
current size and fullness of a mailbox to be queried.

15.4.2 Additional arguments to mp:process-send

The function mp:process-send now has extra keyword arguments :limit
and :timeout, to allow the maximum size of the process's mailbox to be
controlled.

In addition, a new keyword argument :error-if-dead-p controls what
happens if the process is dead and the return value is now a boolean.

15.4.3 Additional functions for use with unlocked queues

The new functions mp:unlocked-queue-count, mp:unlocked-queue-size
allow the current number of objects and maximum size of an unlocked queues
to be queried.

The new function mp:unlocked-queue-peek allows the first object in an
unlocked queue to be retrieved without removing it.

15.4.4 Evaluation environment for initial bindings in foreign threads

The initial value forms in mp:*process-initial-bindings* are now
evaluated in the dynamic environment of the new process when a foreign
thread calls into Lisp. In previous releases, the evaluation occurred in a "no-
process" scope, and an error would have entered the debugger in the console
without an option to abort.

15.4.5 Newly exported system classes for synchronization objects

The system classes mp:barrier, mp:condition-variable, mp:lock,
mp:mailbox and mp:semaphore are now exported and documented.

15.5 GTK+ window system
15.4.6 Safely using globally accessible data

Documentation has be added to describe how to safely make an object's
contents accessible to other threads ("globally accessible").

The new macro system:globally-accessible allows synchronization to be
performed when accessing a globally accessible slot in cases where it is not
done by some other means.

See "Making an object's contents accessible to other threads" in the LispWorks
User Guide and Reference Manual for more details.

15.4.7 Timers can cause themselves to be stopped

If a timer function returns the keyword :stop, then timer is unscheduled,
allowing you to schedule a repeating timer that unschedules itself when some
condition is true.

15.5 GTK+ window system
LispWorks uses GTK+ as the default window system for CAPI and the
LispWorks IDE on Linux, FreeBSD, AIX and x86/x64 Solaris. GTK+ is also
supported on Mac OS X as an alternative to Cocoa. LispWorks requires GTK+
2 (version 2.4 or higher).

Note: LispWorks on SPARC Solaris does not support GTK+.

A few known problems are documented on “Problems with CAPI on GTK+”
on page 160.

15.5.1 Using Motif instead of GTK+

Use of Motif with LispWorks on Linux, FreeBSD, x86/x64 Solaris, Mac OS X
and AIX is deprecated, but it is available by:

(require "capi-motif")

To use LispWorks 7.1 with Motif you also need Imlib2 (on Linux, FreeBSD,
Mac OS X and AIX) or Imlib (on Solaris) installed, as described earlier in this
manual.
 135

15 Release Notes

136
15.5.2 X11/Motif requires Imlib2 instead of Imlib

LispWorks 7.1 requires Imlib2 1.4.3 or later to use the Motif GUI on Linux,
FreeBSD, Mac OS X and AIX. Previous versions of LispWorks required Imlib,
which is a different library and is still required on Solaris.

15.6 New CAPI features
See the CAPI User Guide and Reference Manual for more details of these, unless
directed otherwise. This section is not relevant to LispWorks for Mobile
Runtime.

15.6.1 capi:stacked-tree class added

The new class capi:stacked-tree displays a tree where each node has an
associated value, with child nodes that represent a fraction of that value. Each
node is displayed as a rectangle whose width corresponds to the value. Child
nodes are displayed below the node to make a stack of rectangles.

15.6.2 Customizing graph-pane edge objects

The class capi:graph-pane now has an initarg :edge-pane-function,
which is a function that is called to create an element for each edge. All
previous versions of LispWorks have this initarg too, but it has not been
documented until now.

15.6.3 Waiting for a function call to return in a pane's process

The new functions capi:apply-in-pane-process-wait-single and
capi:apply-in-pane-process-wait-multiple call a function in the
process associated with a pane and wait for the values to be returned.

15.6.4 Displaying HTML from a string

The new function capi:browser-pane-set-content sets the contents of a
capi:browser-pane to a string. This is supported on Windows and Mac OS
X.

15.7 New graphics ports features
15.6.5 Set the appearance of panes inside interfaces of a specific type

The new functions capi:set-interface-pane-name-appearance and
capi:set-interface-pane-type-appearance set the appearance
(foreground, background, font) of panes inside interfaces of a specific type.
This allows customization of an application's fonts and colors without
changing every occurrence of the pane in the source code.

15.6.6 Simplified way to update internal scroll parameters

The new function capi:update-internal-scroll-parameters updates the
internal scroll parameters. It is intended to be used in your scroll-callback when
using internal scrolling (see simple-pane and "output-pane scrolling").

15.6.7 Optional new directory prompter on Windows

The function capi:prompt-for-directory now displays a more modern-
looking directory prompter when the "shell-objs" module has been loaded
(not the default).

15.6.8 Allowing a layout to change its background color

The background of an instance of capi:layout (inherited from capi:simple-
pane) can now be set to :background initially, to make the layout without a
background initially but allow it to be changed later.

15.7 New graphics ports features
Unless otherwise stated, for details see the Graphics Ports chapters in the
CAPI User Guide and Reference Manual. This section is not relevant to
LispWorks for Mobile Runtime.

15.7.1 Writing an image to a stream using externalize-and-write-image

The function gp:externalize-and-write-image can now be passed an
output stream.
 137

15 Release Notes

138
15.7.2 Controlling the type of image in externalize-image

The function gp:externalize-image now has :type and other image
formatting keyword arguments (such as :quality) which are used to specify
the type of external image returned (as in gp:externalize-and-write-
image).

15.7.3 New function to make a scaled image from part of another image

The new function gp:make-scaled-sub-image makes a new image from a
scaled part of an existing image.

15.7.4 New functions to draw and measure glyphs on Cocoa

The new functions gp:draw-glyphs, gp:draw-glyph, gp:get-glyphs-
extent and gp:get-glyph-extent draw and measure glyphs. In general,
you should use the functions that work with characters such as gp:draw-
string instead of these glyph functions.

15.8 Other CAPI and Graphics Ports changes
This section is not relevant to LispWorks for Mobile Runtime.

15.8.1 capi:set-text-input-pane-selection works before capi:display

The function capi:set-text-input-pane-selection now works before
capi:display has been called. In previous releases, the earliest it could be
called was from a :after on capi:interface-display.

15.8.2 Extra options for capi:start-drawing-with-cached-display

The :automatic-cancel keyword argument to the function capi:start-
drawing-with-cached-display can now be a function, which is called after
the cached display is canceled.

A additional keyword argument :resize-automatic-cancel has been
added, which has the same effect as as :automatic-cancel but controls what
happens when the window is resized rather than when it loses the focus.

15.8 Other CAPI and Graphics Ports changes
15.8.3 capi:interface-customize-toolbar is now implemented on Cocoa

The function capi:interface-customize-toolbar now raises the standard
customization panel on Cocoa. In previous releases, it did nothing on Cocoa.

15.8.4 pane-can-scroll has been replaced by coordinate-origin

The new initarg :coordinate-origin replaces the :pane-can-scroll
initarg in the class capi:output-pane.

:coordinate-origin :scrolled is the same as :pane-can-scroll nil.
:coordinate-origin :fixed-graphics is the same as :pane-can-scroll
t. There is a new value :coordinate-origin :fixed which causes all
coordinates to be relative to the visible area.

:pane-can-scroll can still be used, but it is deprecated.

See "output-pane scrolling" in the CAPI User Guide and Reference Manual for
more details.

15.8.5 Korean input methods

Korean input methods now work correctly.

15.8.6 Graphics Ports drawing functions with scale-thickness

The scale-thickness option to the Graphics Ports drawing functions now
defaults to t, as the documentation has always said. This changed in
LispWorks 7.0 but was not documented in the Release Notes.

15.8.7 Clearing graphics port works as documented on Windows

On Windows, the functions gp:clear-graphics-port and gp:clear-
rectangle now to work with transparent colors and ignore the mask as
documented. They have always worked correctly on other platforms.

15.8.8 Pixels no longer copied from outside the source port

The functions gp:copy-pixels and gp:copy-area no longer try to copy
pixels from outside the source port's rectangle.
 139

15 Release Notes

140
15.8.9 Drawing metafiles to pixmap graphics ports on Cocoa

CAPI metafiles can now be drawn to pixmap graphics ports on Cocoa.
Previously, this only worked on other platforms.

15.8.10 scaled-image-set now works with extended-selection-tree-view

Scaled image sets created with capi:make-scaled-general-image-set can
now be used in the image-list of an capi:extended-selection-tree-view.

15.9 More new features
For details of these, see the documentation in the LispWorks User Guide and
Reference Manual, unless a manual is referenced explicitly.

15.9.1 Support for remote debugging

Support for remote debugging has been added, which allows you to debug a
LispWorks process that is running on one machine using a LispWorks IDE
that is running on another machine. It is intended to make it easier to debug
applications running on machines that do not have the LispWorks IDE,
mainly mobile device applications on iOS and Android, but also applications
running on servers where you cannot run the LispWorks IDE.

15.9.2 Support for using Asynchronous I/O with SSL

The Asynchronous I/O API has been extended to support connections using
SSL. The existing functions comm:create-async-io-state-and-
connected-tcp-socket and comm:accept-tcp-connections-creating-
async-io-states now have keyword arguments such as :ssl-ctx and new
functions comm:async-io-state-attach-ssl and comm:async-io-state-
detach-ssl have been added.

New functions comm:async-io-state-ssl-side, comm:async-io-state-
ssl and comm:async-io-state-ctx allow access to details of the SSL objects
from an comm:async-io-state object.

15.9 More new features
15.9.3 Support for OpenSSL 1.1

LispWorks 7.1 supports OpenSSL 1.1 as well as older versions of OpenSSL.

Previous versions of LispWorks will not work with OpenSSL 1.1 because the
API has changed.

Note: On Windows, you will need to call comm:set-ssl-library-path to set
the path when using OpenSSL 1.1. See "How LispWorks locates the OpenSSL
libraries" in the LispWorks User Guide and Reference Manual.

15.9.4 Support for SNI in socket streams

A new keyword argument :tlsext-host-name has been added to various
functions in the socket stream API such as comm:open-tcp-stream, to allow
the SNI extension to be set when making an SSL connection.

15.9.5 Control over handshake time in SSL

Functions that create SSL connections (for example comm:open-tcp-stream)
can now control when to perform the SSL handshake and how long to wait for
it using the new keyword argument :handshake-timeout. See "Keyword
arguments for use with SSL" in the LispWorks User Guide and Reference Manual.

In addition, the new functions comm:socket-stream-handshake and
comm:async-io-state-handshake perform a SSL handshake.

15.9.6 User-defined declaration handlers

The new macro hcl:define-declaration defines a declaration handler for
code walkers. The implementation of is based on the specification in Common
Lisp the Language, 2nd Edition.

The new function hcl:undefine-declaration removes declaration
handlers.

15.9.7 Tracing and advising subfunctions

It is now possible to trace and "advise" subfunctions that are created by flet,
labels or lambda. See cl:trace, lw:defadvice and "Subfunction dspecs" in
the LispWorks User Guide and Reference Manual.
 141

15 Release Notes

142
15.9.8 Specifying function names using a declaration

The hcl:lambda-name declaration can be used to change the name of the
surrounding lambda, which is useful for debugging purposes and does not
affect the behavior of the program. See "Description of hcl:lambda-name" in
the documentation of cl:declare in the LispWorks User Guide and Reference
Manual.

15.9.9 Additional function for use with code coverage

The new function hcl:map-code-coverage-data calls a function on each of
the files in a hcl:code-coverage-data object.

15.9.10 Rotating bits within an integer

The new function lw:rotate-byte rotates specified bits within an integer.

15.9.11 reduce-memory implemented for 64-bit LispWorks

The function hcl:reduce-memory is now also implemented for 64-bit
LispWorks.

15.9.12 New function to return the current function name

The new function hcl:current-function-name returns the name of the
current function, which is useful for debugging.

15.9.13 New function to close a pipe stream

The new function system:pipe-close-connection can be used to close the
connection underlying the pipe-stream without closing the stream itself,
which allows the exit status of the pipe to be read.

15.9.14 New function to return a date/time string

The new function hcl:date-string returns a string representing the date
and time (including seconds) from a universal time.

15.9 More new features
15.9.15 Saving profiler results to a file

The new function hcl:save-current-profiler-tree saves the current
profiler output to a file. This can be used later by the Profiler tool or can be
opened in a text editor.

15.9.16 New arguments to set-up-profiler

hcl:set-up-profiler now has kw-contexts and subfunctions arguments to
control profiling KnowledgeWorks contexts and subfunctions.

15.9.17 New keyword to print timing information when profiling

The function hcl:start-profiling now takes a :time keyword argument,
which causes timing information to be printed by hcl:stop-profiling.

15.9.18 New output stream variable in the Java interface

The new variables lw-ji:*to-java-host-stream* and lw-ji:*to-java-
host-stream-no-scroll* are bound to output streams that send anything
that is written to them to Java (by calling lw-ji:send-message-to-java-
host). They can be used anywhere an output stream is needed to make the
output go to the Java host.

15.9.19 lw-ji:send-message-to-java-host can add text without a newline

The where-keyword argument to the function lw-ji:send-message-to-java-
host now has addition values :add-no-scroll and :add, which add text
without a newline.

This keyword might also be passed to the send-message-to-java-host argument
to lw-ji:init-java-interface.

The Java method com.lispworks.Manager.addMessage also allows the
where argument to be ADDMESSAGE_ADD or ADDMESSAGE_ADD_NO_SCROLL.

15.9.20 Change to meaning of append in
 143

15 Release Notes

144
com.lispworks.Manager.addMessage

The values of ADDMESSAGE_APPEND and ADDMESSAGE_APPEND_NO_SCROLL for
the where argument to the Java method
com.lispworks.Manager.addMessage now insert a newline after the
message. In LispWorks 7.0, the newline was inserted before the message so
you may have to modify your code if you rely on that.

This also changes the effect of calling lw-ji:send-message-to-java-host
on Android with :append and :append-no-scroll.

15.9.21 Changing the Java interface callbacks

The new function lw-ji:setup-java-interface-callbacks can be called
after lw-ji:init-java-interface was called to change the values of class-
finder, java-to-lisp-debugger-hook, report-error-to-java-host or send-message-to-java-
host. This is useful in the situations where LispWorks performs the call to lw-
ji:init-java-interface, which happens in Android and in a dynamic
library delivered with lw-ji:setup-deliver-dynamic-library-for-java.

15.9.22 New Java method to wait for Lisp initialization

The method waitForInitialization has been added to the Java class
com.lispworks.LispCalls to wait for Lisp to become initialized.

15.9.23 New constant to represents Java null values

The new constant lw-ji:*java-null* represents a Java null pointer, when
this needs to be passed from Lisp to Java.

15.9.24 New length and predicate for simple-int32-vector and simple-int64-
vector

The new functions system:simple-int32-vector-length and
system:simple-int64-vector-length return the lengths of
system:simple-int32-vector and system:simple-int64-vector objects.

The new functions system:simple-int32-vector-p and system:simple-
int64-vector-p act as predicates.

15.9 More new features
15.9.25 Counting occurrences of a regular expression in a string

The new function lw:count-regexp-occurrences counts the occurrences of
a regular expression in a string.

15.9.26 Trimming whitespace from a string

The new function hcl:string-trim-whitespace trims whitespace
characters from the beginning and end of a string.

15.9.27 Using color and menus in text output

The new function hcl:write-string-with-properties is like cl:write-
string, but when it writes to an Editor buffer it can add properties to the text
it has written. This is especially useful for writing in different colors, bold,
italic or underlined.

15.9.28 Pushing an element on the end of a list

The new macros lw:push-end and lw:push-end-new push an element on the
end of a list. These macros were available in all previous versions of
LispWorks too, but have not been documented until now.

15.9.29 Serial Port API implemented on non-Windows platforms

The Serial Port API, as described in chapter "The SERIAL-PORT Package" in
the LispWorks User Guide and Reference Manual has been implemented for non-
Windows platforms as well.

15.9.30 Obtaining a dspec for an object

The new function dspec:object-dspec returns the dspec for an object that
represents some definition, such as a function, method or class.

15.9.31 The debugger now shows unused variables at debug level 3

The debugger now shows unused variables in code that is compiled at debug
level 3. In LispWorks 7.0 and earlier versions, these variables were eliminated.
 145

15 Release Notes

146
15.9.32 Automatic detection of valid file encodings

The new function system:specific-valid-file-encoding can be included
in the list system:*file-encoding-detection-algorithm* to allow
detection of the character encoding in a file, according to a configurable list of
encodings in system:*specific-valid-file-encodings*.

15.9.33 New functions to handle errors while printing

The new functions hcl:safe-format-to-string, hcl:safe-prin1-to-
string and hcl:safe-princ-to-string format and print to a string
without signaling any errors. These functions are intended to be used in code
that handles and reports errors, where it is important to avoid recursive
errors.

15.9.34 Creating a volatile registry key

The function win32:create-registry-key has a new keyword :volatile,
which allows a volatile registry key to be created.

15.9.35 Accessing android.os.Build on Android

The new function hcl:android-build-value returns the value of a field in
the android.os.Build Java class on Android.

15.10 IDE changes
This section describes new features and other changes in the LispWorks
Integrated Development Environment (IDE).

See the LispWorks IDE User Guide for details of the features mentioned. This
section is not relevant to LispWorks for Mobile Runtime.

15.10.1 Support for remote debugging

Support for remote debugging has been added, which allows you to debug a
LispWorks process that is running on one machine using a LispWorks IDE
that is running on another machine. It is intended to make it easier to debug
applications running on machines that do not have the LispWorks IDE,

15.10 IDE changes
mainly mobile device applications on iOS and Android, but also applications
running on servers where you cannot run the LispWorks IDE.

15.10.2 Profiler layout changes

The Code To Profile panel has been redesigned, to increase the area that is
dedicated to displaying the results.

Its text pane has been moved to a separate tab.

Its Symbols... and Packages... buttons have been moved to the profiling
parameters, opened using the Profiler > Set Profiling Parameters menu item.

Its Profile button has been moved to the toolbar and is also available from the
Profiler > Profile the 'Code To Profile' menu item.

15.10.3 New way to display the Profiler results

There is a new Stacked Tree tab in the Profiler, which displays the profiler call
tree using a rectangle per function call The width of the rectangle corresponds
to the time spent in that call.

15.10.4 New ways to filter the Profiler results

Two new context menu items have been added to Profiler result panels.

Set Function As Root displays a combined tree for all of the calls to the
specified function. This is useful when the function is called in many places
but you need to know now it behaves in aggregate.

Show Calls to Function [inverted] displays an inverted tree with function at its
root, and the children being all of the callers of the function. This is a useful
way for exploring why a function seems to be on the stack more than
expected.

15.10.5 Storing the Profiler results in a file

The Profiler results can now be saved in a file and can be read from a file.
 147

15 Release Notes

148
15.10.6 Importing Profiler results

The Profiler results can now be imported from the last use of hcl:stop-
profiling or hcl:profile.

15.10.7 Profiling background processes

The Profiler can now collect and display results from background processes
(as well as those running within the Code To Profile panel) using the Start
Profiling and Stop Profiling and Import toolbar buttons and Profiler menu items.
You can choose which processes to include.

15.10.8 Improved setting of profiling parameters

A dialog is now used to set profiling parameters, including packages, symbols
and the interval. It also controls whether profile the GC, add call counters,
show unknown call frames and include KnowledgeWorks forward chaining
contexts.

The profiler now defaults to profiling all packages.

15.10.9 Syntax coloring in the Listener

The Listener now supports syntax coloring for input.

15.10.10 Protection from deletion of prompts

Text editing commands in the Listener and Echo Area now perform additional
checks to try to prevent accidental deletion of the text in the prompt.

15.10.11 Position of the point after double-click in the Editor

Double-clicking in the Editor now leaves the point at the end of the region
rather than the start. This is for compatibility with GNU Emacs.

15.10.12 Customizing text and background colors

The text and background colors of various types of text editing pane can now
be changed using the Main Colors section of the Styles tab in the Environment

15.11 Editor changes
page of the Preference dialog. You can also apply more detailed customization
using the new functions capi:set-interface-pane-name-appearance and
capi:set-interface-pane-type-appearance.

15.10.13 New multiple-click-drag behavior in the Editor

Double-clicking in the Editor and then dragging without releasing the mouse
button now increases the selection by forms, either forward or backward. It
stops when it reaches the start or end of an enclosing form.

Likewise, triple-clicking in the Editor (on GTK+ and Cocoa) and then
dragging without releasing the mouse button now increases the selection by
lines.

15.10.14 Chrome, Opera and newer versions of Firefox supported

The Chrome and Opera browsers are now supported to display
documentation on Linux, FreeBSD, Solaris and AIX. In addition, newer
version of Firefox are now supported correctly.

15.11 Editor changes
This section describes new features and other changes in the LispWorks
editor, which is used in the Editor tool of the LispWorks IDE.

See the LispWorks Editor User Guide for details of these changes. This section is
not relevant to LispWorks for Mobile Runtime.

15.11.1 Improved editor handling of byte order mark in Unicode

The Editor now handles the byte order mark (BOM) in UTF-8, UTF-16 and
UTF-32 formatted files better. The byte order mark is removed when opening
a file in these external-formats and added back when writing a file in UTF-16
and UTF-32 formats. It is not added back when writing in UTF-8 format
because that can cause problems for some other programs.
 149

15 Release Notes

150
15.11.2 Face objects documented

The system class editor:face and the function editor:make-face are now
documented.

15.12 Foreign Language interface changes
See the LispWorks Foreign Language Interface User Guide and Reference Manual
for details of these changes.

15.12.1 Support for vector types

FLI vector types have been added, with names such as fli:vector-char2.
These correspond to the C/Objective-C vector types that are defined by
Clang, which is used on Mac OS X, iOS and FreeBSD and is optionally
available on other operating systems.

15.12.2 The fastcall calling convention

The :calling-convention keyword argument for fli:define-foreign-
function and fli:define-foreign-funcallable can now have value
:fastcall, to support the __fastcall qualifier in the Visual C and GNU C
compilers.

15.12.3 Support for calling variadic functions

fli:define-foreign-function and fli:define-foreign-funcallable
have a new keyword argument, :variadic-num-of-fixed, which needs to
be used when calling variadic foreign functions.

15.12.4 Foreign blocks supported on iOS

The foreign block API (see "Block objects in C (foreign blocks)" in the
LispWorks Foreign Language Interface User Guide and Reference Manual) is now
supported on iOS.

15.13 COM/Automation changes
15.12.5 Aligning fields in a structure

The :aligned option now works in fli:define-c-struct. This was
documented in LispWorks 7.0 but not implemented.

15.13 COM/Automation changes
This section applies only to Microsoft Windows platforms. See the LispWorks
COM/Automation User Guide and Reference Manual for details.

15.13.1 Support for methods with the vararg attribute

Methods that are declared with the vararg attribute in the IDL or type library
are now supported in a way that is compatible with the standard COM
runtime. You should pass separate arguments in the an Automation call, but
expect to receive them as an array in both COM and Automation method
implementations.

15.14 Objective-C changes
This section applies only to Macintosh and iOS platforms. See the LispWorks
Objective-C and Cocoa Interface User Guide and Reference Manual for details.

15.14.1 Support for specifying method argument types for objc:invoke

The types of the method arguments and result can now be specified in a call to
objc:invoke. This is primarily intended for invoking methods using vector
types, which are not compatible with the Objective-C Runtime type encoding
API. See "Invoking a method that uses vector types" in the LispWorks Objective-
C and Cocoa Interface User Guide and Reference Manual for more details.

15.14.2 Accessing Objective-C instance variables

The accessor objc:objc-object-var-value now works with variables of all
types.
 151

15 Release Notes

152
15.15 Common SQL changes

15.15.1 Common SQL support for SQLite

Common SQL now supports SQLite databases.

15.15.2 Using non-ASCII strings on Microsoft SQL Server

Common SQL can now correctly represent all characters when passing a SQL
expression containing string literals to Microsoft SQL Server via ODBC. See
"Using non-ASCII strings on Microsoft SQL Server" in the LispWorks User
Guide and Reference Manual.

15.15.3 Added support for fetching Oracle LOBs directly

The :binary type can be used to fetch Oracle LOBs directly in Common SQL.
See "Fetching the contents of the LOBs directly" in the LispWorks User Guide
and Reference Manual.

15.15.4 varbinary(max)

Fetching data from a column with type varbinary(max) now works on
Microsoft SQL Server.

15.16 KnowledgeWorks changes
This section applies only when you have a license to run KnowledgeWorks.
See the KnowledgeWorks and Prolog User Guide for details, unless a manual is
referenced explicitly.

15.16.1 Profiling KnowledgeWorks forward rules

hcl:set-up-profiler now has a kw-contexts argument for profiling the rules
in KnowledgeWorks contexts. The Profiler tool in the LispWorks IDE also has
an option to do this.

15.17 Application delivery changes
15.16.2 Improved performance of forward chaining in KnowledgeWorks

The performance of forward chaining rules in KnowledgeWorks has been
improved in some cases.

15.17 Application delivery changes
See the LispWorks Delivery User Guide for more details of the changes
mentioned in this section.

15.17.1 New default for the :keep-modules deliver keyword argument

The :keep-modules keyword argument to lw:deliver now defaults to nil,
rather than (< *delivery-level* 1). We recommend using require to load
all modules before delivery.

15.17.2 Saving a split dynamic library on non-Windows platforms

The :split keyword argument to hcl:save-image and lw:deliver now
works for a Lisp dynamic library on all platforms (previously it only worked
on Microsoft Windows). Using :split :resources for a dynamic library on
Mac OS X create a Resources directory adjacent to the dynamic library, as in a
framework bundle.

15.17.3 Passing extra linker arguments when making a dynamic library

The functions hcl:save-image and lw:deliver now take a keyword
argument :dll-extra-link-options, which allows extra arguments to be
passed to the linker when making a dynamic library. This option has existed
since LispWorks 6.0 but has not been documented until now.

15.17.4 LispWorks dlls on Linux now require specific versions of the C
library symbols

During delivery of a dynamic library on Linux, LispWorks now links to
specific versions of symbols in the C library. This makes it more likely that the
library will work on older versions of Linux. Libraries created with previous
 153

15 Release Notes

154
versions of LispWorks would depend on the version of Linux used to deliver
them.

15.17.5 Simplified use of LispWorks as a dynamic library in Java

Delivering LispWorks as a dynamic library to be loaded by Java is made
simpler by the new function lw-ji:setup-deliver-dynamic-library-
for-java. Normally all you need to do is add a call lw-ji:setup-deliver-
dynamic-library-for-java without arguments before calling deliver.

There is an example of this in:

(example-edit-file "java/lisp-as-dll/deliv-script")

The new function lw-ji:get-host-java-virtual-machine returns the host
Java virtual machine when it is called in a dynamic library that was delivered
with a call setup-deliver-dynamic-library-for-java, and the dynamic
library was loaded by Java.

15.17.6 Macintosh computers with non-ASCII names

Applications using temporary files will now run on Macintosh computers
with non-ASCII names.

15.18 CLIM changes
This section is not relevant to LispWorks for Mobile Runtime.

15.18.1 Evaluation within the process of a sheet

The new function clim:apply-in-sheet-process calls a function in the
process that is displaying a specified sheet.

15.18.2 API for Drawing with Graphics Ports

The API for drawing with Graphics Ports is deprecated. The functions
clim:draw-gp-image-to-sheet and clim:draw-gp-pixmap-to-sheet
have been removed.

15.19 Other changes
15.18.3 Making device font text styles

The function clim:make-device-font-text-style has been improved.

15.19 Other changes

15.19.1 ensure-process-cleanup in foreign threads

If the function mp:ensure-process-cleanup is called on a foreign thread, the
cleanups are now executed after the outermost foreign-callable returns and
before return to the foreign code that called it (that is when no Lisp frames
remain on the stack).

In LispWorks 7.0 and earlier versions, such a cleanup would never be
executed.

15.19.2 Configuration files now explicitly qualify LW and HCL symbols.

The files config/configure.lisp, config/siteinit.lisp, private-
patches/load.lisp and config/a-dot-lispworks.lisp now explicitly
qualify LW and HCL symbols to allows these files to load even if you change
the package use list of CL-USER or copy the forms into other files.

15.19.3 Improved performance of sequence functions with :from-end

The Common Lisp sequence functions are now faster when used with a long
list and the :from-end keyword argument is true.

15.19.4 defparser combined rules

The parsergen:defparser macro now allows "combined" rules as a way to
group multiple clauses for the same non-terminal.

15.19.5 async-io-state-read-with-checking now resets the old length to 0

The function comm:async-io-state-read-with-checking now resets the
old length to 0, so the function comm:async-io-state-old-length returns 0
in the first invocation of callback.
 155

15 Release Notes

156
15.19.6 Profiling new processes

The profiler can now be configured to profile processes that start after the call
to hcl:start-profiling by using the :new value for the :processes
keyword argument.

15.19.7 The profiler now defaults to monitoring all packages

The function hcl:set-up-profiler now defaults to monitoring all packages
if the :packages and :symbols keywords are not supplied.

In addition, if the profiler is invoked before any call to hcl:set-up-
profiler, it calls hcl:set-up-profiler implicitly without any arguments,
so will monitor all packages.

15.19.8 Deprecated profiler symbols

The variable hcl:*profile-symbol-list* is deprecated.

The functions hcl:add-symbol-profiler and hcl:remove-symbol-
profiler are deprecated. Use hcl:set-up-profiler instead.

15.19.9 Naming of flet subfunctions

flet subfunctions now have names like (flet name) rather than name. This
is consistent with labels subfunctions.

15.19.10 Saving a split dynamic library on non-Windows platforms

The :split keyword argument to hcl:save-image and lw:deliver now
works for a Lisp dynamic library on all platforms (previously it only worked
on Microsoft Windows). Using :split :resources for a dynamic library on
Mac OS X create a Resources directory adjacent to the dynamic library, as in a
framework bundle.

15.19.11 Passing extra linker arguments when making a dynamic library

The functions hcl:save-image and lw:deliver now have a keyword
argument :dll-extra-link-options, which allows extra arguments to be

15.19 Other changes
passed to the linker when making a dynamic library. This option has existed
since LispWorks 6.0 but has not been documented until now.

15.19.12 find-regexp-in-string with :case-sensitive :default

The :case-sensitive keyword argument to lw:find-regexp-in-string
now defaults to nil and is treated purely as a generalized boolean. In
previous releases, the value :default was documented as depending on the
Editor variable DEFAULT-SEARCH-KIND, but this was incorrect.

15.19.13 Reduced memory allocation on Unix platforms with large
RLIMIT_NOFILE

LispWorks now uses less memory when waiting for I/O on Unix platforms
when the RLIMIT_NOFILE resource limit is large (for example 65536 on Linux
Debian 8.3).

15.19.14 lw-ji:get-java-virtual-machine can return an existing JVM

The function lw-ji:get-java-virtual-machine now returns an existing
Java virtual machine if LispWorks already knows about it.

15.19.15 The default JVM library on Windows

On Windows, calling the function lw-ji:init-java-interface with :jvm-
library-path t now checks the registry for the location of the JVM library,
using the keys that Oracle document in Java 2 Runtime Environment for
Microsoft Windows.

15.19.16 cl:software-version now detects Windows 10

The string returned by cl:software-version now includes the text
"Windows 10" when running on Microsoft Windows 10. Prior to LispWorks
7.1, the description begins with "Windows 8" when running on Windows 10.
 157

http://www.oracle.com/technetwork/java/javase/overview/runtime-win32-139627.html
http://www.oracle.com/technetwork/java/javase/overview/runtime-win32-139627.html

15 Release Notes

158
15.19.17 Running 32-bit ARM Linux LispWorks on 64-bit ARM Linux

LispWorks (32-bit) for ARM Linux will now run on multiarch 64-bit ARM
(AArch64) installations.

15.19.18 LispWorks for Linux on some Intel CPUs

A segmentation violation in libpthread.so has been fixed when running
LispWorks for Linux on certain newer Intel CPUs (those that support the TSX
extensions such as Broadwell-EP) and running newer versions of Linux that
use them (such as Debian Jessie).

15.19.19 Hibernation on Macintosh computers

Problems have been fixed with timers and event loop errors when hibernating
and waking Macintosh computers while running LispWorks.

15.19.20 dbg:log-bug-form message-stream has a different default

The :message-stream keyword argument to the function dbg:log-bug-form
now defaults to the value of cl:*error-output*. In LispWorks 7.0 and
earlier, it defaulted to the value of cl:*debug-io*, but this was not
documented.

15.19.21 Various Code Coverage bug fixes

Various bugs have been fixed in Code Coverage interface.

15.19.22 Changes in *features*

:lispworks7.1 is present, :lispworks7.0 is not.

For a full description including information about the features used to
distinguish new LispWorks implementations and platforms, see the entry for
cl:*features* in the LispWorks User Guide and Reference Manual.

15.19.23 ASDF version

The supplied ASDF is now version 3.3.0.

15.20 Changes in the installers
15.19.24 Loading old data files

Binary files created with hcl:dump-forms-to-file or hcl:with-output-
to-fasl-file in LispWorks 7.0, LispWorks 6.1, LispWorks 6.0, LispWorks
5.x, LispWorks 4.4 or LispWorks 4.3 can be loaded into LispWorks 7.1 using
sys:load-data-file.

15.20 Changes in the installers

15.20.1 Package format on Mac OS X

LispWorks 7.1 is now supplied as a .pkg file, to be installed using
Installer.app.

15.20.2 Package format on FreeBSD

LispWorks 7.1 supports FreeBSD 10.x and later and is supplied as a standard
package file, in pkg(8) format. Older versions of FreeBSD are not supported.

15.21 Documentation changes

15.21.1 Documentation improved

15.21.2 New self-contained examples

These examples are entirely new:

(example-edit-file "capi/applications/price-charting-gt")
(example-edit-file "capi/graphics/graph-color-edges")
(example-edit-file "capi/output-panes/coordinate-origin-fixed")
(example-edit-file "capi/output-panes/fixed-origin-scrolling")
(example-edit-file "java/lisp-as-dll/README.txt")
(example-edit-file "java/lisp-as-dll/LispWorksCaller.java")
(example-edit-file "java/lisp-as-dll/deliv-script")
(example-edit-file "kw/hanoi/hanoi-rules-in-common-prolog")
(example-edit-file "ssl/async-io-client")
(example-edit-file "async-io/udp")

Also, the size of the dh_param file used by the ssl examples has been
increased from 512 to 1024 bits to support newer servers.
 159

15 Release Notes

160
15.21.3 Removed self-contained examples

The pane-can-scroll example has been replaced by:

(example-edit-file "capi/output-panes/coordinate-origin-fixed")

15.21.4 Corrections

The :startup-bitmap-file keyword argument to lw:deliver is now
correctly documented as defaulting to :internal. This changed in LispWorks
7.0 but was not documented. See the LispWorks Delivery User Guide for more
details.

15.22 Known Problems

15.22.1 Problems with CAPI on GTK+

The capi:interface-override-cursor is ignored by capi:text-input-
pane which always displays its usual I-beam cursor. This is due to a limitation
in the way that text-input-pane is implemented by GTK.

The normal navigation gesture (Tab) is treated as an editor command in
capi:editor-pane and IDE tools based on this. Instead, use Ctrl+Tab to
navigate from an editor pane in GTK+.

In GTK+ versions older than 2.12, the value of capi:option-pane enabled-
positions has no effect on the visible representation of the items. In later
versions of GTK+, the disabled items are grayed out.

In GTK+ versions older than 2.12, capi:display-tooltip does not work. In
version 2.12 and later, the :x and :y keyword arguments of capi:display-
tooltip might not be handled.

15.22.2 Problems with LispWorks for Macintosh

The Motif GUI does not work "out of the box" with Fink because LispWorks
does not look for libXm etc in /sw/lib/.

15.22 Known Problems
15.22.3 Problems with the LispWorks IDE on Cocoa

Multithreading in the CAPI is different from other platforms. In particular, all
windows run in a single thread, whereas on other platforms there is a thread
per window.

The debugger currently does not work for errors in Cocoa Event Loop or
Editor Command Loop threads. However, there is a Get Backtrace button so
you can obtain a backtrace and also a Debug Snapshot button which aborts
from the error but displays a debugger with a copy (snapshot) of the stack
where the error occurred.

The online documentation interface currently starts a new browser window
each time.

Setting *enter-debugger-directly* to t can allow the undebuggable
processes to enter the debugger, resulting in the UI freezing.

Inspecting a long list (for example, 1000 items) via the Listener's Inspect
Star editor command prompts you about truncation in a random window. If
you cancel, the Inspector is still displayed.

The Definitions > Compile and Definitions > Evaluate menu options cause
multiple "Press space to continue" messages to be displayed and happen
interleaved rather than sequentially.

The Buffers > Compile and Buffers > Evaluate menu options cause multiple
"Press space to continue" messages to be displayed and happen interleaved
rather than sequentially.

15.22.4 Problems with CAPI and Graphics Ports on Cocoa

The capi:interface-override-cursor is ignored.

Some graphics state parameters are ignored, in particular operation, stipple,
pattern and fill-style.

LispWorks ignores the System Preferences setting for the smallest font size to
smooth.

There is no support for state images or checkboxes in capi:tree-view.

capi:with-page does not work, because Cocoa tries to control page printing.
 161

15 Release Notes

162
The :help-callback initarg is only implemented for the :tooltip value of
the type argument.

The :visible-border initarg only works for scrolling panes.

Caret movement and selection setting in capi:text-input-pane is
implemented, but note that it works only for the focussed pane.

capi:docking-layout does not support (un)docking.

There is no meta key in the input-model of capi:output-pane. Note that, in
the editor when using Emacs emulation, the Escape key can be used as a
prefix.

There has been no testing with 256 color displays.

Some pinboard code uses :operation boole-xor which is not implemented.

The default menu bar is visible when the current window has no menu bar.

capi:tree-view is slow for a large number (thousands) of items.

The editor displays decomposed characters as separate glyphs.

The :gap option is not supported for the columns of capi:multi-column-
list-panel.

capi:display-dialog ignores the specified :x and :y coordinates of the
dialog (for drop-down sheets the coordinates are not relevant, and for dialogs
which are separate windows Cocoa forces the window to be in the top-center
of the screen).

15.23 Binary Incompatibility
If you have binaries (fasl files) which were compiled using LispWorks 7.0 or
previous versions, please note that these are not compatible with this release.
Please recompile all your code with LispWorks 7.1.

Index
A
accept-tcp-connections-cre-

ating-async-io-states
function 140

accessor functions
interface-override-

cursor 160, 161
accessors
objc-object-var-value 151

add-symbol-profiler function 156
android-build-value function 146
apply-in-pane-process-wait-

multiple function 136
apply-in-pane-process-wait-

single function 136
apply-in-sheet-process

function 154
async-io-state-attach-ssl

function 140
async-io-state-ctx function 140
async-io-state-detach-ssl

function 140
async-io-state-handshake

function 141
async-io-state-old-length

function 155
async-io-state-read-with-

checking function 155
async-io-state-ssl function 140
async-io-state-ssl-side

function 140

B
barrier system class 134
browser-pane class 136

browser-pane-set-content
function 136

C
classes
browser-pane 136
docking-layout 162
extended-selection-tree-

view 140
graph-pane 136
layout 137
multi-column-list-panel 162
output-pane 139, 162
simple-pane 137
stacked-tree 136
text-input-pane 160, 162
tree-view 161, 162

clear-graphics-port function 139
clear-rectangle function 139
com.lispworks.LispCalls Java

class 144
com.lispworks.Man-

ager.addMessage Java
method 143, 144

command line arguments
-init 127
-init on Linux 91, 94
-init on Mac OS X 74, 77
-init on Unix 106, 107, 108
-init on Windows 83, 86
-siteinit on Linux 91
-siteinit on Mac OS X 74
-siteinit on Unix 106, 107
-siteinit on Windows 83

condition-variable system
163

Index

164
class 134
constants
java-null 144

copy-area function 139
copy-pixels function 139
corrupted executable 113
count-regexp-occurrences

function 145
create-async-io-state-and-

connected-tcp-socket
function 140

create-registry-key function 146
current-function-name

function 142

D
date-string function 142
defadvice macro 141
define-c-struct macro 151
define-declaration macro 141
define-foreign-funcallable

macro 150
define-foreign-function

macro 150
defparser macro 155
deliver function 153, 156, 160
display-dialog function 162
display-tooltip function 160
docking-layout class 162
draw-glyph function 138
draw-glyphs function 138
draw-gp-image-to-sheet

function 154
draw-gp-pixmap-to-sheet

function 154
draw-string function 138
dump-forms-to-file function 159

E
editor-pane class 160
ensure-process-cleanup

function 155
enter-debugger-directly

variable 161
errors while building application 112
errors while delivering application 112
extended-selection-tree-view

class 140
extended-time macro 124
externalize-and-write-image

function 137
externalize-image function 138

F
face system class 150
Failed to enlarge memory 113
features variable 132, 158
*file-encoding-detection-

algorithm* variable 146
fill-style graphics state parameter 161
find-regexp-in-string

function 157
FLI types
vector-char2 150

functions
accept-tcp-connections-cre-

ating-async-io-states 140
add-symbol-profiler 156
android-build-value 146
apply-in-pane-process-wait-

multiple 136
apply-in-pane-process-wait-

single 136
apply-in-sheet-process 154
async-io-state-attach-

ssl 140
async-io-state-ctx 140
async-io-state-detach-

ssl 140
async-io-state-handshake 141
async-io-state-old-

length 155
async-io-state-read-with-

checking 155
async-io-state-ssl 140
async-io-state-ssl-side 140
browser-pane-set-content 136
clear-graphics-port 139
clear-rectangle 139
copy-area 139
copy-pixels 139
count-regexp-occurrences 145
create-async-io-state-and-

connected-tcp-socket 140
create-registry-key 146
current-function-name 142
date-string 142
deliver 153, 156, 160
display-dialog 162
display-tooltip 160
draw-glyph 138
draw-glyphs 138
draw-gp-image-to-sheet 154

Index
draw-gp-pixmap-to-sheet 154
draw-string 138
dump-forms-to-file 159
ensure-process-cleanup 155
externalize-and-write-

image 137
externalize-image 138
find-regexp-in-string 157
get-glyph-extent 138
get-glyphs-extent 138
get-host-java-virtual-

machine 154
get-java-virtual-machine 157
init-java-interface 143, 144,

157
interface-customize-

toolbar 139
invoke 151
load-data-file 159
log-bug-form 128, 158
mailbox-full-p 134
mailbox-send-limited 134
mailbox-size 134
make-device-font-text-

style 155
make-face 150
make-scaled-general-image-

set 140
make-scaled-sub-image 138
map-code-coverage-data 142
object-dspec 145
open-tcp-stream 141
pipe-close-connection 142
process-send 134
prompt-for-directory 137
reduce-memory 142
remove-symbol-profiler 156
room 124
rotate-byte 142
safe-format-to-string 146
safe-prin1-to-string 146
safe-princ-to-string 146
save-current-profiler-

tree 143
save-image 153, 156
send-message-to-java-

host 143, 144
set-interface-pane-name-

appearance 137, 149
set-interface-pane-type-

appearance 137, 149
set-ssl-library-path 141

set-text-input-pane-
selection 138

setup-deliver-dynamic-
library-for-java 154

setup-java-interface-
callbacks 144

set-up-profiler 143, 152, 156
simple-int32-vector-

length 144
simple-int32-vector-p 144
simple-int64-vector-

length 144
simple-int64-vector-p 144
socket-stream-handshake 141
software-version 157
specific-valid-file-

encoding 146
start-drawing-with-cached-

display 138
start-environment 15, 108
start-profiling 143, 156
stop-profiling 148
string-trim-whitespace 145
undefine-declaration 141
unlocked-queue-count 134
unlocked-queue-peek 134
unlocked-queue-size 134
update-internal-scroll-

parameters 137

G
Garbage Collector message 113
Garbage Collector output 113
GC message 113
GC output 113
get-glyph-extent function 138
get-glyphs-extent function 138
get-host-java-virtual-

machine function 154
get-java-virtual-machine

function 157
globally-accessible macro 135
graph-pane class 136
GTK 135
GTK+ 135

H
:help-callback initarg 162

I
IDE 146
 165

Index

166
init-java-interface function 143,
144, 157

Install Private Patches... menu
command 114, 123

Integrated Development Environment 146
interface-customize-toolbar

function 139
interface-override-cursor

accessor function 160, 161
invoke function 151

J
Java Classes
com.lispworks.LispCalls 144

Java methods
com.lispworks.Manager.addMe

ssage 143, 144
java-null constant 144

L
layout class 137
LispWorks fails to start 113
LispWorks for Android Runtime 69
LispWorks for iOS Runtime 69
LispWorks for Mobile Runtime 69
LispWorks IDE tools

Editor 149
Profiler 147

load-data-file function 159
lock system class 134
log-bug-form function 128, 158

M
macros
defadvice 141
define-c-struct 151
define-declaration 141
define-foreign-

funcallable 150
define-foreign-function 150
defparser 155
extended-time 124
globally-accessible 135
profile 124, 148
push-end 145
push-end-new 145
trace 141
with-output-to-fasl-file 159
with-page 161

mailbox system class 134
mailbox-full-p function 134
mailbox-send-limited
function 134

mailbox-size function 134
make-device-font-text-style

function 155
make-face function 150
make-scaled-general-image-

set function 140
make-scaled-sub-image

function 138
map-code-coverage-data

function 142
Motif 135
move LispWorks to another computer 129
moving LispWorks to another

computer 129
multi-column-list-panel

class 162

N
"Not yet multiprocessing." error 112

O
objc-object-var-value

accessor 151
object-dspec function 145
open-tcp-stream function 141
operation graphics state parameter 161
option-pane class 160
output-pane class 139, 162

P
pattern graphics state parameter 161
pipe-close-connection

function 142
poor performance 124
private patches

not loaded on Windows 114
process-initial-bindings

variable 134
process-send function 134
profile macro 124, 148
profile-symbol-list

variable 156
prompt-for-directory

function 137
push-end macro 145
push-end-new macro 145

R
reduce-memory function 142

Index
Register... menu command 15, 20, 34, 44,
52, 59

remove-symbol-profiler
function 156

room function 124
rotate-byte function 142

S
safe-format-to-string

function 146
safe-prin1-to-string

function 146
safe-princ-to-string

function 146
save-current-profiler-tree

function 143
save-image function 153, 156
semaphore system class 134
send-message-to-java-host

function 143, 144
set-interface-pane-name-

appearance function 137, 149
set-interface-pane-type-

appearance function 137, 149
set-ssl-library-path

function 141
set-text-input-pane-selec-

tion function 138
setup-deliver-dynamic-

library-for-java
function 154

setup-java-interface-call-
backs function 144

set-up-profiler function 143, 152,
156

simple-int32-vector type 144
simple-int32-vector-length

function 144
simple-int32-vector-p

function 144
simple-int64-vector type 144
simple-int64-vector-length

function 144
simple-int64-vector-p

function 144
simple-pane class 137
socket-stream-handshake

function 141
software-version function 157
specific-valid-file-encoding

function 146
*specific-valid-file-encod-

ings* variable 146
stacked-tree class 136
start-drawing-with-cached-

display function 138
start-environment function 15, 108
start-profiling function 143, 156
stipple graphics state parameter 161
stop-profiling function 148
string-trim-whitespace

function 145
system classes
barrier 134
condition-variable 134
face 150
lock 134
mailbox 134
semaphore 134

T
text-input-pane class 160, 162
to-java-host-stream

variable 143
*to-java-host-stream-no-

scroll* variable 143
trace macro 141
transfer LispWorks to another

computer 129
transferring LispWorks to another

computer 129
tree-view class 161, 162
types
simple-int32-vector 144
simple-int64-vector 144

U
undefine-declaration

function 141
uninstalling LispWorks

on AIX 59
on FreeBSD 51
on Linux 34
on Macintosh 15
on Windows 20
on x86/x64 Solaris 43

unlocked-queue-count
function 134

unlocked-queue-peek function 134
unlocked-queue-size function 134
update-internal-scroll-

parameters function 137
 167

Index

168
V
variables
*enter-debugger-

directly* 161
features 132, 158
*file-encoding-detection-

algorithm* 146
*process-initial-

bindings* 134
profile-symbol-list 156
*specific-valid-file-

encodings* 146
to-java-host-stream 143
*to-java-host-stream-no-

scroll* 143
vector-char2 FLI type 150
:visible-border initarg 162

W
window system 135
with-output-to-fasl-file

macro 159
with-page macro 161

	LispWorks® Release Notes and Installation Guide
	Copyright and Trademarks
	Contents
	1 Introduction
	1.1 LispWorks Editions
	1.1.1 Personal Edition
	1.1.2 Hobbyist Edition
	1.1.3 HobbyistDV Edition
	1.1.4 Professional Edition
	1.1.5 Enterprise Edition
	1.1.6 32-bit LispWorks for SPARC Solaris

	1.2 LispWorks for Mobile Runtime
	1.3 Evaluation quick guide
	1.4 Further details
	1.5 About this Guide
	1.5.1 Installation and Configuration
	1.5.2 Troubleshooting
	1.5.3 Release Notes

	2 Installation on Mac OS X
	2.1 Choosing the Graphical User Interface
	2.2 Documentation
	2.3 Software and hardware requirements
	2.4 Installing LispWorks for Macintosh
	2.4.1 Main installation and patches
	2.4.2 Information for Beta testers
	2.4.3 Information for users of previous versions
	2.4.4 Launch the LispWorks installer
	2.4.5 The Read Me
	2.4.6 The License Agreement
	2.4.7 Install Location
	2.4.8 Choose your installation type
	2.4.8.1 The native Mac OS X GUI
	2.4.8.2 The X11 GTK+ and Motif GUIs
	2.4.8.3 The Documentation

	2.4.9 Installing and entering license data
	2.4.10 LispWorks is added to the Dock
	2.4.11 Finishing up
	2.4.12 Installing Patches
	2.4.13 Obtaining X11 GTK+
	2.4.14 Obtaining Open Motif and Imlib2

	2.5 Starting LispWorks for Macintosh
	2.5.1 Start the native Mac OS X LispWorks GUI
	2.5.2 Start the GTK+ LispWorks GUI
	2.5.3 Start the Motif LispWorks GUI

	2.6 Uninstalling LispWorks for Macintosh
	2.7 Upgrading the LispWorks Edition
	2.8 Upgrading to 64-bit LispWorks

	3 Installation on Windows
	3.1 Documentation
	3.2 Installing LispWorks for Windows
	3.2.1 Main installation and patches
	3.2.2 Visual Studio runtime components and Windows Installer
	3.2.3 Installing over previous versions
	3.2.4 Information for Beta testers
	3.2.5 To install LispWorks
	3.2.5.1 Entering the License Data
	3.2.5.2 Installation location
	3.2.5.3 Installing the Documentation
	3.2.5.4 Installing Patches
	3.2.5.5 Starting LispWorks

	3.3 Uninstalling LispWorks for Windows
	3.4 Upgrading the LispWorks Edition
	3.5 Upgrading to 64-bit LispWorks

	4 Installation on Linux
	4.1 Software and hardware requirements
	4.1.1 GUI libraries
	4.1.1.1 GTK+
	4.1.1.2 Motif

	4.1.2 Disk requirements

	4.2 License agreement
	4.3 Software delivery and installer formats
	4.3.1 Contents of the LispWorks distribution

	4.4 Installing LispWorks for Linux
	4.4.1 Main installation and patches
	4.4.2 Information for Beta testers
	4.4.3 Installation from the binary RPM file (x86 and x86_64 only)
	4.4.3.1 Installation directories
	4.4.3.2 Selecting the correct RPM files
	4.4.3.3 Installing or upgrading LispWorks for Linux
	4.4.3.4 Installing CLIM 2.0
	4.4.3.5 Installing loadable Enterprise Edition modules
	4.4.3.6 Documentation and saving space
	4.4.3.7 Installing Patches

	4.4.4 Installation from the tar files
	4.4.4.1 Installing Patches

	4.5 LispWorks looks for a license key
	4.6 Running LispWorks
	4.6.1 Entering the license data

	4.7 Configuring the image
	4.8 Printable LispWorks documentation
	4.9 Uninstalling LispWorks for Linux
	4.10 Upgrading the LispWorks Edition
	4.11 Upgrading to 64-bit LispWorks

	5 Installation on x86/x64 Solaris
	5.1 Software and hardware requirements
	5.1.1 GUI libraries
	5.1.1.1 GTK+
	5.1.1.2 Motif

	5.1.2 Disk requirements

	5.2 Software delivery and installer format
	5.2.1 Contents of the LispWorks distribution
	5.2.2 Personal Edition distribution

	5.3 Installing LispWorks for x86/x64 Solaris
	5.3.1 Main installation and patches
	5.3.2 Information for Beta testers
	5.3.3 Installation directories
	5.3.4 Selecting the correct software package file
	5.3.5 Installing the package file
	5.3.6 Installing Patches

	5.4 LispWorks looks for a license key
	5.5 Running LispWorks
	5.5.1 Entering the license data

	5.6 Configuring the image
	5.7 Printable LispWorks documentation
	5.8 Uninstalling LispWorks for x86/x64 Solaris
	5.9 Upgrading the LispWorks Edition
	5.10 Upgrading to 64-bit LispWorks

	6 Installation on FreeBSD
	6.1 Software and hardware requirements
	6.1.1 GUI libraries
	6.1.1.1 GTK+
	6.1.1.2 Motif

	6.1.2 Disk requirements

	6.2 License agreement
	6.3 Software delivery and installer format
	6.3.1 Contents of the LispWorks distribution
	6.3.2 Personal Edition distribution

	6.4 Installing LispWorks for FreeBSD
	6.4.1 Main installation and patches
	6.4.2 Information for Beta testers
	6.4.3 Installation directories
	6.4.4 Selecting the correct software package file
	6.4.5 Installing LispWorks for FreeBSD
	6.4.6 Installing Patches

	6.5 LispWorks looks for a license key
	6.6 Running LispWorks
	6.6.1 Entering the license data

	6.7 Configuring the image
	6.8 Printable LispWorks documentation
	6.9 Uninstalling LispWorks for FreeBSD
	6.10 Upgrading the LispWorks Edition
	6.11 Upgrading to 64-bit LispWorks

	7 Installation on AIX
	7.1 Software and hardware requirements
	7.1.1 GUI libraries
	7.1.1.1 GTK+
	7.1.1.2 Motif

	7.1.2 Disk requirements

	7.2 License agreement
	7.3 Software delivery and installer format
	7.3.1 Contents of the LispWorks distribution

	7.4 Installing LispWorks for AIX
	7.4.1 Main installation and patches
	7.4.2 Information for Beta testers
	7.4.3 Installation directories
	7.4.4 Selecting the correct archives
	7.4.5 Installing the archive
	7.4.6 Installing Patches

	7.5 LispWorks looks for a license key
	7.6 Running LispWorks
	7.6.1 Entering the license data

	7.7 Configuring the image
	7.8 Printable LispWorks documentation
	7.9 Uninstalling LispWorks for AIX
	7.10 Upgrading the LispWorks Edition
	7.11 Upgrading to 64-bit LispWorks

	8 Installation on SPARC Solaris
	8.1 Introduction
	8.2 Extracting software from the CD-ROM
	8.2.1 Finding out which CD-ROM files you need
	8.2.2 Unpacking the CD-ROM files

	8.3 Moving the LispWorks image and library
	8.4 Obtaining and Installing your license keys
	8.4.1 Keyfiles and the license server on SPARC
	8.4.1.1 If you are using the keyfile system
	8.4.1.2 If you are using the License Server

	8.4.2 Installing the license key on Sun Sparc (64-bit)

	8.5 Configuring the LispWorks image
	8.5.1 Saving a configured image
	8.5.2 Testing the newly saved image

	8.6 Using the Documentation
	8.7 Using Delivery, LispWorks ORB, CLIM 2.0, KnowledgeWorks and Common SQL
	8.7.1 Using Layered Products in 32-bit LispWorks on SPARC
	8.7.2 Using Layered Products in 64-bit LispWorks on SPARC

	9 Installation of LispWorks for Mobile Runtime
	9.1 Installing LispWorks for Android Runtime
	9.2 Installing LispWorks for iOS Runtime

	10 Configuration on Mac OS X
	10.1 Introduction
	10.2 License keys
	10.3 Configuring your LispWorks installation
	10.3.1 Levels of configuration
	10.3.2 Configuring images for the different GUIs
	10.3.3 Configuration files available

	10.4 Saving and testing the configured image
	10.4.1 Create a configuration file
	10.4.2 Create and use a save-image script
	10.4.3 What to do if no image is saved
	10.4.4 Testing the newly saved image
	10.4.5 Saving a non-windowing image

	10.5 Initializing LispWorks
	10.6 Loading CLIM 2.0
	10.7 The Common SQL interface
	10.7.1 Loading Common SQL
	10.7.2 Supported databases
	10.7.3 Special considerations when using Common SQL
	10.7.3.1 Location of .odbc.ini
	10.7.3.2 Errors using PSQLODBC
	10.7.3.3 PSQLODBC version
	10.7.3.4 Locating the Oracle, MySQL or PostgreSQL client libraries

	10.8 Common Prolog and KnowledgeWorks

	11 Configuration on Windows
	11.1 Introduction
	11.2 License keys
	11.3 Configuring your LispWorks installation
	11.3.1 Levels of configuration
	11.3.2 Configuration files available

	11.4 Saving and testing the configured image
	11.4.1 Create a configuration file
	11.4.2 Create and use a save-image script
	11.4.3 What to do if no image is saved
	11.4.4 Testing the newly saved image
	11.4.5 Saving a non-windowing image

	11.5 Initializing LispWorks
	11.6 Loading CLIM 2.0
	11.6.1 Running the CLIM demos

	11.7 The Common SQL interface
	11.7.1 Loading the Common SQL interface

	11.8 Common Prolog and KnowledgeWorks
	11.9 Runtime library requirement on Windows

	12 Configuration on Linux, x86/x64 Solaris, FreeBSD & AIX
	12.1 Introduction
	12.2 License keys
	12.3 Configuring your LispWorks installation
	12.3.1 Levels of configuration
	12.3.2 Configuration files available

	12.4 Saving and testing the configured image
	12.4.1 Create a configuration file
	12.4.2 Create and use a save-image script
	12.4.3 Testing the newly saved image
	12.4.4 Saving a non-windowing image

	12.5 Initializing LispWorks
	12.6 Loading CLIM 2.0
	12.6.1 Running the CLIM demos

	12.7 The Common SQL interface
	12.7.1 Loading the Common SQL interface

	12.8 Common Prolog and KnowledgeWorks
	12.9 Documentation on x86/x64 Solaris, FreeBSD and AIX

	13 Configuration on SPARC Solaris
	13.1 Disk requirements
	13.2 Software Requirements
	13.3 The CD-ROM
	13.3.1 The LispWorks 7.1 CD-ROM
	13.3.1.1 CD-ROM format

	13.3.2 Unpacking LispWorks products
	13.3.3 Mounting the CD-ROM

	13.4 Installing LispWorks
	13.4.1 Unpacking the archive
	13.4.1.1 Considerations to be made before extracting product files
	13.4.1.2 How to extract the product files from the tar container files
	13.4.1.3 SPARC Solaris (LispWorks 32-bit)
	13.4.1.4 SPARC Solaris (LispWorks 64-bit)

	13.4.2 Keyfiles and how to obtain them
	13.4.2.1 Where LispWorks looks for keyfiles
	13.4.2.2 The contents of a keyfile
	13.4.2.3 How to obtain keys

	13.4.3 The License Server

	13.5 Components of the LispWorks distribution
	13.5.1 The LispWorks image
	13.5.2 The LispWorks library

	13.6 Printing copies of the LispWorks documentation
	13.7 Configuring your LispWorks installation
	13.7.1 Multiple-platform installations
	13.7.2 Configuration files available
	13.7.3 Saving and testing the configured image
	13.7.4 Create a configuration file
	13.7.5 Create and use a save-image script
	13.7.5.1 Testing the newly saved image

	13.8 LispWorks initialization arguments

	14 Troubleshooting, Patches and Reporting Bugs
	14.1 Troubleshooting
	14.1.1 License key errors
	14.1.2 Failure of the load-on-demand system
	14.1.3 Build phase (delivery-time) errors
	14.1.4 Memory requirements
	14.1.5 Corrupted LispWorks executable

	14.2 Troubleshooting on Windows
	14.2.1 Private patches not loaded on Windows 7, 8 & 10

	14.3 Troubleshooting on Mac OS X
	14.3.1 Uninstall requires administrator on Mac OS X

	14.4 Troubleshooting on Linux
	14.4.1 Processes hanging
	14.4.2 RPM_INSTALL_PREFIX not set
	14.4.3 Using multiple versions of Motif on Linux

	14.5 Troubleshooting on x86/x64 Solaris
	14.5.1 GTK+ version

	14.6 Troubleshooting on FreeBSD
	14.7 Troubleshooting on SPARC Solaris
	14.7.1 Problems with CD-ROM file system
	14.7.2 License key errors

	14.8 Troubleshooting on X11/Motif
	14.8.1 Problems with the X server
	14.8.2 Problems with fonts on Motif
	14.8.3 Problems with colors
	14.8.4 Motif mnemonics and Alt
	14.8.5 Non-standard X11/Motif key bindings
	14.8.6 X11/Motif resources
	14.8.7 Motif installation on Mac OS X

	14.9 Updating with patches
	14.9.1 Extracting simple patches
	14.9.2 If you cannot receive email
	14.9.3 Different types of patch
	14.9.3.1 Public patches
	14.9.3.2 Private patches

	14.10 Reporting bugs
	14.10.1 Check for existing fixes
	14.10.2 Performance Issues
	14.10.3 Generate a bug report template
	14.10.4 Add details to your bug report
	14.10.5 Reporting crashes
	14.10.6 Log Files
	14.10.7 Reporting bugs in delivered images
	14.10.8 Send the bug report
	14.10.9 Sending large files
	14.10.10 Information for Personal Edition users

	14.11 Transferring LispWorks to a different machine

	15 Release Notes
	15.1 Keeping your old LispWorks installation
	15.2 Updating your code for LispWorks 7.1
	15.2.1 Conditionalizing code for different versions of LispWorks

	15.3 Platform support
	15.3.1 Runtimes iOS
	15.3.2 AIX/PowerPC implementation supports SMP
	15.3.3 ARM64 Linux implementation
	15.3.4 FreeBSD 10.x support
	15.3.5 Running on 64-bit machines
	15.3.6 Code signing LispWorks images
	15.3.6.1 Signing of the distributed executable
	15.3.6.2 Signing your development image
	15.3.6.3 Signing your runtime application

	15.4 Multiprocessing
	15.4.1 Additional functions for use with mailboxes
	15.4.2 Additional arguments to mp:process-send
	15.4.3 Additional functions for use with unlocked queues
	15.4.4 Evaluation environment for initial bindings in foreign threads
	15.4.5 Newly exported system classes for synchronization objects
	15.4.6 Safely using globally accessible data
	15.4.7 Timers can cause themselves to be stopped

	15.5 GTK+ window system
	15.5.1 Using Motif instead of GTK+
	15.5.2 X11/Motif requires Imlib2 instead of Imlib

	15.6 New CAPI features
	15.6.1 capi:stacked-tree class added
	15.6.2 Customizing graph-pane edge objects
	15.6.3 Waiting for a function call to return in a pane's process
	15.6.4 Displaying HTML from a string
	15.6.5 Set the appearance of panes inside interfaces of a specific type
	15.6.6 Simplified way to update internal scroll parameters
	15.6.7 Optional new directory prompter on Windows
	15.6.8 Allowing a layout to change its background color

	15.7 New graphics ports features
	15.7.1 Writing an image to a stream using externalize-and-write-image
	15.7.2 Controlling the type of image in externalize-image
	15.7.3 New function to make a scaled image from part of another image
	15.7.4 New functions to draw and measure glyphs on Cocoa

	15.8 Other CAPI and Graphics Ports changes
	15.8.1 capi:set-text-input-pane-selection works before capi:display
	15.8.2 Extra options for capi:start-drawing-with-cached-display
	15.8.3 capi:interface-customize-toolbar is now implemented on Cocoa
	15.8.4 pane-can-scroll has been replaced by coordinate-origin
	15.8.5 Korean input methods
	15.8.6 Graphics Ports drawing functions with scale-thickness
	15.8.7 Clearing graphics port works as documented on Windows
	15.8.8 Pixels no longer copied from outside the source port
	15.8.9 Drawing metafiles to pixmap graphics ports on Cocoa
	15.8.10 scaled-image-set now works with extended-selection-tree-view

	15.9 More new features
	15.9.1 Support for remote debugging
	15.9.2 Support for using Asynchronous I/O with SSL
	15.9.3 Support for OpenSSL 1.1
	15.9.4 Support for SNI in socket streams
	15.9.5 Control over handshake time in SSL
	15.9.6 User-defined declaration handlers
	15.9.7 Tracing and advising subfunctions
	15.9.8 Specifying function names using a declaration
	15.9.9 Additional function for use with code coverage
	15.9.10 Rotating bits within an integer
	15.9.11 reduce-memory implemented for 64-bit LispWorks
	15.9.12 New function to return the current function name
	15.9.13 New function to close a pipe stream
	15.9.14 New function to return a date/time string
	15.9.15 Saving profiler results to a file
	15.9.16 New arguments to set-up-profiler
	15.9.17 New keyword to print timing information when profiling
	15.9.18 New output stream variable in the Java interface
	15.9.19 lw-ji:send-message-to-java-host can add text without a newline
	15.9.20 Change to meaning of append in com.lispworks.Manager.addMessage
	15.9.21 Changing the Java interface callbacks
	15.9.22 New Java method to wait for Lisp initialization
	15.9.23 New constant to represents Java null values
	15.9.24 New length and predicate for simple-int32-vector and simple-int64- vector
	15.9.25 Counting occurrences of a regular expression in a string
	15.9.26 Trimming whitespace from a string
	15.9.27 Using color and menus in text output
	15.9.28 Pushing an element on the end of a list
	15.9.29 Serial Port API implemented on non-Windows platforms
	15.9.30 Obtaining a dspec for an object
	15.9.31 The debugger now shows unused variables at debug level 3
	15.9.32 Automatic detection of valid file encodings
	15.9.33 New functions to handle errors while printing
	15.9.34 Creating a volatile registry key
	15.9.35 Accessing android.os.Build on Android

	15.10 IDE changes
	15.10.1 Support for remote debugging
	15.10.2 Profiler layout changes
	15.10.3 New way to display the Profiler results
	15.10.4 New ways to filter the Profiler results
	15.10.5 Storing the Profiler results in a file
	15.10.6 Importing Profiler results
	15.10.7 Profiling background processes
	15.10.8 Improved setting of profiling parameters
	15.10.9 Syntax coloring in the Listener
	15.10.10 Protection from deletion of prompts
	15.10.11 Position of the point after double-click in the Editor
	15.10.12 Customizing text and background colors
	15.10.13 New multiple-click-drag behavior in the Editor
	15.10.14 Chrome, Opera and newer versions of Firefox supported

	15.11 Editor changes
	15.11.1 Improved editor handling of byte order mark in Unicode
	15.11.2 Face objects documented

	15.12 Foreign Language interface changes
	15.12.1 Support for vector types
	15.12.2 The fastcall calling convention
	15.12.3 Support for calling variadic functions
	15.12.4 Foreign blocks supported on iOS
	15.12.5 Aligning fields in a structure

	15.13 COM/Automation changes
	15.13.1 Support for methods with the vararg attribute

	15.14 Objective-C changes
	15.14.1 Support for specifying method argument types for objc:invoke
	15.14.2 Accessing Objective-C instance variables

	15.15 Common SQL changes
	15.15.1 Common SQL support for SQLite
	15.15.2 Using non-ASCII strings on Microsoft SQL Server
	15.15.3 Added support for fetching Oracle LOBs directly
	15.15.4 varbinary(max)

	15.16 KnowledgeWorks changes
	15.16.1 Profiling KnowledgeWorks forward rules
	15.16.2 Improved performance of forward chaining in KnowledgeWorks

	15.17 Application delivery changes
	15.17.1 New default for the :keep-modules deliver keyword argument
	15.17.2 Saving a split dynamic library on non-Windows platforms
	15.17.3 Passing extra linker arguments when making a dynamic library
	15.17.4 LispWorks dlls on Linux now require specific versions of the C library symbols
	15.17.5 Simplified use of LispWorks as a dynamic library in Java
	15.17.6 Macintosh computers with non-ASCII names

	15.18 CLIM changes
	15.18.1 Evaluation within the process of a sheet
	15.18.2 API for Drawing with Graphics Ports
	15.18.3 Making device font text styles

	15.19 Other changes
	15.19.1 ensure-process-cleanup in foreign threads
	15.19.2 Configuration files now explicitly qualify LW and HCL symbols.
	15.19.3 Improved performance of sequence functions with :from-end
	15.19.4 defparser combined rules
	15.19.5 async-io-state-read-with-checking now resets the old length to 0
	15.19.6 Profiling new processes
	15.19.7 The profiler now defaults to monitoring all packages
	15.19.8 Deprecated profiler symbols
	15.19.9 Naming of flet subfunctions
	15.19.10 Saving a split dynamic library on non-Windows platforms
	15.19.11 Passing extra linker arguments when making a dynamic library
	15.19.12 find-regexp-in-string with :case-sensitive :default
	15.19.13 Reduced memory allocation on Unix platforms with large RLIMIT_NOFILE
	15.19.14 lw-ji:get-java-virtual-machine can return an existing JVM
	15.19.15 The default JVM library on Windows
	15.19.16 cl:software-version now detects Windows 10
	15.19.17 Running 32-bit ARM Linux LispWorks on 64-bit ARM Linux
	15.19.18 LispWorks for Linux on some Intel CPUs
	15.19.19 Hibernation on Macintosh computers
	15.19.20 dbg:log-bug-form message-stream has a different default
	15.19.21 Various Code Coverage bug fixes
	15.19.22 Changes in *features*
	15.19.23 ASDF version
	15.19.24 Loading old data files

	15.20 Changes in the installers
	15.20.1 Package format on Mac OS X
	15.20.2 Package format on FreeBSD

	15.21 Documentation changes
	15.21.1 Documentation improved
	15.21.2 New self-contained examples
	15.21.3 Removed self-contained examples
	15.21.4 Corrections

	15.22 Known Problems
	15.22.1 Problems with CAPI on GTK+
	15.22.2 Problems with LispWorks for Macintosh
	15.22.3 Problems with the LispWorks IDE on Cocoa
	15.22.4 Problems with CAPI and Graphics Ports on Cocoa

	15.23 Binary Incompatibility

	Index

