
Delivery User Guide
Version 7.1

Copyright and Trademarks
LispWorks Delivery User Guide

Version 7.1

August 2017

Copyright © 2017 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be construed as a
commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or inaccuracies that may appear in this
publication. The software described in this book is furnished under license and may only be used or copied in accordance with the terms of
that license.

LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the registered trade-
marks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986, 1987, 1988 Xerox
Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, pro-
vided that this copyright and permission notice appear in all copies and supporting documentation, and that the name of M.I.T. not be used
in advertising or publicity pertaining to distribution of the software without specific, written prior permission. M.I.T. makes no representa-
tion about the suitability of this software for any purpose. It is provided “as is” without express or implied warranty. M.I.T. disclaims all war-
ranties with regard to this software, including all implied warranties of merchantability and fitness. In no event shall M.I.T. be liable for any
special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of con-
tract, negligence or other tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of ICU software obtained from http://source.icu-project.org and which bears the following copyright and permis-
sion notice:
ICU License - ICU 1.8.1 and later
COPYRIGHT AND PERMISSION NOTICE
Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Soft-
ware"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright
notice(s) and this permission notice appear in all copies of the Software and that both the above copyright notice(s) and this permission
notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIM-
ITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF
THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or
other dealings in this Software without prior written authorization of the copyright holder. All trademarks and registered trademarks men-
tioned herein are the property of their respective owners.

US Government Restricted Rights
The LispWorks Software is a commercial computer software program developed at private expense and is provided with restricted rights.
The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth in the accompanying End User
License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR 12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14
Alt III, as applicable. Rights reserved under the copyright laws of the United States.

Address

LispWorks Ltd
St. John’s Innovation Centre
Cowley Road
Cambridge
CB4 0WS
England

Telephone

From North America: 877 759 8839
(toll-free)

From elsewhere: +44 1223 421860

Fax
From North America: 617 812 8283
From elsewhere: +44 870 2206189

www.lispworks.com

http://www.lispworks.com

Contents
1 Introduction 1

What does Delivery do? 1
What do you get with Delivery? 2
Conventions and terminology used in this manual 3
A breakdown of the delivery process 4
Examples 7

2 A Short Delivery Example 9

Developing the program 9
Delivering the program 10

3 Writing Code Suitable for Delivery 13

Separate run time initializations from the build phase 13
Error handling in delivered applications 14
Efficiency considerations 15

4 Delivering your Application 17

The delivery function: deliver 17
Using the delivery tools effectively 19
Delivering a standalone application executable 19
Delivering a dynamic library 21
How to deliver a smaller and faster application 26
How Delivery makes an image smaller 27

iii

Contents

iv
5 Keywords to the Delivery Function 31

Topic-based list of deliver keywords 32
Alphabetical list of deliver keywords 37

6 Delivery on Mac OS X 79

Application bundles 79
Bad interaction with clean-up utilities 79
Cocoa and GTK+ images 80
Terminal windows and message logs 80
File associations for a Macintosh application 81
Editor emulation 81
Standard Edit keyboard gestures 81
Quitting a CAPI/Cocoa application 82
Retaining Objective-C classes 82
X11/Motif considerations 82
 Examples of delivering Cocoa applications 83

7 Delivery on Microsoft Windows 85

Run time library requirement 85
Application Manifests 86
DOS windows and message logs 87
File associations for a Windows application 87
Editor emulation 87
ActiveX controls 88
Example of delivering a Service 88

8 Delivery on Linux, FreeBSD, AIX, x86/x64 Solaris and
Unix 89

GTK+ considerations 89
X11/Motif considerations 90
LispWorks executable corrupted 91
Logging debugging messages 92
Editor emulation 92
Products supporting dynamic library delivery 93
Run time licensing on SPARC Solaris 93

9 Delivering for mobile platforms 97

Contents
Delivery of iOS runtimes 97
Delivery of Android runtimes 98

10 Delivery and Internal Systems 99

Delivery and CLOS 99
Delivery and the Lisp reader 103
Editors for delivered applications 104
Delivery and CAPI 106
Error handling in delivered applications 106
Delivery and the FLI 110
Modules 111
Symbol, SYMBOL-NAME and package issues during delivery 112
Throwing symbols and packages out of the application 113
Keeping packages and symbols in the application 115
Coping with intern and find-symbol at run time 117
Symbol-name comparison 118

11 Troubleshooting 119

Debugging errors in the delivery image 119
Problems with undefined functions or variables 120
Problems with READ 121
Failure to find a class 121
REQUIRE was called after delivery time with module ... 122
Failed to reserve... error in compacted image 122
Memory clashes with other software 122
Possible explanations for a frozen image 123
Errors when finalizing classes 123
Warnings about combinations and templates 123
Valid type specifier errors 124
Stack frames with the name NIL in simple backtraces 124
Blank or obscure lines in simple backtraces 124
Nil is not of type hash-table errors 124
FLI template needs to be compiled 125
Failure to lookup X resources 125
Reducing the size of the delivered application 125
Symbol names changed to "Dummy Symbol Name" 126
Debugging with :no-symbol-function-usage 126

 v

Contents

vi
Interrogate-Symbols 126

12 Interface to the Delivery Process 129

Interface to the delivery process 129

13 Example: Delivering CAPI Othello 131

Preparing for delivery 131
Delivering a standalone image 133
Creating a Mac OS X application bundle 133
Command line applications 136
Making a smaller delivered image 136

14 Efficiency considerations when coding for delivery 139

Use of modules 139
Loading code at run time 139
General strategy for reducing the image size 140
Use of symbols, functions, and classes 140
Making references to packages 141
Declaring the types of variables used in function calls 141
Avoid referencing type names 141
Use of the INTERN and FIND-SYMBOL functions 142
Use of the EVAL function and the invocation of uncompiled
functions 143
User-defined and built-in packages 143

15 Self-contained examples 145

Delivering a Cocoa CAPI application examples 146
Delivering a CAPI application examples 146
Delivering a dynamic library examples 146
Delivering a Windows service examples 147

16 Delivery Reference Entries 149

deliver 149
delivery-value 151
deliver-keep-symbol-names 152
deliver-keep-symbols 153
deliver-keywords 154
delivery-shaker-cleanup 155

Contents
delivery-shaker-weak-pointer 157

Index 163

 vii

Contents

viii

1

1 Introduction
1.1 What does Delivery do?
Delivery does three distinct things:

• It creates standalone software.

• It removes Lisp development functionality, including the LispWorks
IDE.

• Optionally, it tries to make the image smaller.

Most of the discussion in this manual concerns the technical issues arising
from this last point. Note that you can deliver such that the system does not
try to make the image smaller, and most of the technical issues are irrelevant
in this case.

The process of creating standalone executables or dynamic libraries is called
delivery.

1.1.1 Making the image smaller

The principle behind application delivery is quite simple: an application does
not use everything in the LispWorks development environment when it is
running, so there is no need for those unused parts of LispWorks to be in the
1

1 Introduction

2

image. Delivery can discard the unnecessary code and create a single image
file that contains just what is needed to run the application.

Because the delivered application (sometimes called a runtime) is smaller, it
can reduce virtual memory paging and thereby run faster than it did under
LispWorks. Delivery can also actively speed code up by, for example, convert-
ing single-method generic functions into ordinary functions. Packing it all into
a single file means it is simple to start up and can be run independently of
LispWorks.

1.2 What do you get with Delivery?
Delivery consists of an extended routine that is called once all the code that
your application needs has been loaded in to LispWorks.

To deliver your application, you use the Application Builder tool in the Lisp-
Works IDE, or run LispWorks on the command line with your build file which
does all the necessary preparations (normally just loading patches and the
application code) and then calls the function deliver.

1.2.1 Programming libraries and facility support code

LispWorks also provides sets of programming libraries and code supporting
various other facilities that you may want to use in your application. Some of
these facilities are available in the basic LispWorks image, while others are
provided as modules and need to be loaded explicitly using require.

See the LispWorks User Guide and Reference Manual for further details.

1.2.2 Functionality removed by delivery

The following general Lisp development functionality is forcibly removed by
delivery:

• compile-file

• save-image

• deliver

• The graphical LispWorks IDE

1.3 Conventions and terminology used in this manual
Contact Lisp Sales if you want to build an application which uses these fea-
tures.

1.3 Conventions and terminology used in this manual
This section discusses the conventions and terminology that are used through-
out this manual.

1.3.1 Common Lisp reference text

The Common Lisp reference text for Delivery and LispWorks is the ANSI
Common Lisp standard. A HTML version of this standard is installed with
LispWorks and can be viewed by choosing Help > Manuals from the LispWorks
podium and selecting “ANSI Common Lisp Standard”. This is referred to as
“the ANSI standard” throughout.

1.3.2 Platform-specific keywords

Some of the delivery parameters do not apply to all platforms. This is indi-
cated where applicable:

Windows means all supported Microsoft Windows operating sys-
tems.

Linux means all supported Linux and FreeBSD operating sys-
tems.

x86/x64 Solaris means all supported Solaris operating systems running
on x86 or x64 hardware. It does not include SPARC
hardware.

DLL means a Microsoft Windows dynamic link library.

Dynamic librarymeans a loadable dynamic shared library on any plat-
form, including Windows DLLs.

1.3.3 Example files
This manual often refers to example files in the LispWorks library, like this:

(example-edit-file "delivery/hello/deliver")
 3

1 Introduction

4

These examples are Lisp source files in your LispWorks installation under
lib/7-1-0-0/examples/. You can simply evaluate the given form to view the
example source file.

Example files contain instructions about how to use them at the start of the
file.

The examples files are in a read-only directory and therefore you should com-
pile them inside the IDE (by the Editor command Compile Buffer or the
toolbar button or by choosing Buffer > Compile from the context menu), so it
does not try to write a fasl file.

If you want to manipulate an example file or compile it on the disk rather than
in the IDE, then you need first to copy the file elsewhere (most easily by using
the Editor command Write File or by choosing File > Save As from the con-
text menu).

1.4 A breakdown of the delivery process
The process of developing and delivering a LispWorks application can typi-
cally be broken down as follows:

1. Develop and fully compile your application.

2. Load the application into the LispWorks image and deliver a standalone
image.

3. If the delivered version of the image is broken, go back to step 2 and
adjust the delivery parameters.

4. If performance problems remain, go back to step 1 and refine your code.

1.4.1 Developing your application

Develop your application using LispWorks. In addition to the code that you
write, you can use third-party libraries and all the functionality of LispWorks
apart from that listed in “Functionality removed by delivery” on page 2.

Application development is covered in detail in Chapter 3, “Writing Code
Suitable for Delivery” and you should also read Chapter 14, “Efficiency con-
siderations when coding for delivery”.

1.4 A breakdown of the delivery process
Read Chapter 6, “Delivery on Mac OS X”, Chapter 7, “Delivery on Microsoft
Windows” or Chapter 8, “Delivery on Linux, FreeBSD, AIX, x86/x64 Solaris
and Unix”, as appropriate according to your target platform(s).

If you use CLOS, the FLI or the LispWorks editor in your application, you
should also read Chapter 10, “Delivery and Internal Systems”.

1.4.2 Managing and compiling your application

You can use any defsystem facility to organize your sources. For example:

• the built-in lw:defsystem macro, or

• ASDF

You can then use functions lw:load-system and lw:compile-system, or the
ASDF equivalents, to work with your source files as a whole.

1.4.3 Debugging, profiling and tuning facilities

You may discover performance bottlenecks in your application, before or after
delivery. LispWorks provides tools to help eliminate these sorts of problems.
A profiler is available in LispWorks, in order to help you make critical code
more efficient.

You can also tune the behavior of the garbage collector. See the LispWorks User
Guide and Reference Manual for details.

There is a TTY-based debugger available to help debug applications broken by
severe delivery parameters. You can deliver this debugger in the application
so that you can debug it on-line if something goes wrong.

See the LispWorks User Guide and Reference Manual for more information about
these facilities.

1.4.4 Delivering your compiled application

Once your application is ready, you can deliver it by loading it and then call-
ing deliver. Note that this has to be done in a script, as described in “Deliver-
ing the program” on page 10.
 5

http://common-lisp.net/project/asdf/

1 Introduction

6

deliver takes many keyword arguments for fine-tuning, but it is intended to
work well with a minimal number of keywords. You should start by deliver-
ing with no more than the following keywords if required: :interface
:capi, or :multiprocessing t. Only add other keywords when you find
that they are needed.

You can also make LispWorks discard unused code, in order to reduce the
delivered image size and thereby improve performance. You should not do
this until your delivered application is working, though, because discarding
certain code impedes debugging.

If you deliver at level 0 the system does not try to get rid of any code and
delivery should be straightforward. Delivery at higher levels tries to remove
code, which may cause some problems, and in this case you will need to add
the appropriate delivery keywords to fix these problems. However, you
should not need to use many keywords. If you use 6 or more delivery key-
words, please contact Lisp Support with the details to check that you are
doing the right thing.

Delivery is covered in Chapter 4, “Delivering your Application”.

Chapter 5, “Keywords to the Delivery Function”, describes the keywords you
can pass to the delivery function, deliver, that permit fine control over the
delivery process.

1.4.5 Licensing issues

Executables and dynamic libraries that are created using Delivery with Lisp-
Works on most platforms do not require a run time license key.

However, executables and libraries generated by LispWorks (32-bit) for
SPARC Solaris do require a LispWorks run time license key. See “Run time
licensing on SPARC Solaris” on page 93 for more information.

1.4.6 Modules

You should load all the Lisp modules that your application needs into the
LispWorks image before attempting to deliver your application. Do this by
calling require with each module name in your delivery script.

1.5 Examples
1.4.7 Error handling

Delivered applications can deal with errors using the Common Lisp and Lisp-
Works-specific Condition System and error handling facilities if so desired.
But if you cannot keep the full Common Lisp Condition System because it is
too large, you can still use some basic facilities provided for handling errors.

See Section 10.5 on page 106 for more details.

You should also consider adding a logging mechanism to your application,
which logs any error (as well as other useful information). That is needed both
because the delivered application does not have the LispWorks IDE debug-
ging tools, and because end-users generally cannot be expected to debug Lisp
code.

1.4.8 Troubleshooting

Chapter 11, “Troubleshooting”, presents a number of explanations and
workarounds for problems you might have when delivering your application.

1.5 Examples
There are a number of examples in the manual which help to illustrate the
delivery process.

Chapter 2, “A Short Delivery Example”, shows how to deliver a very small
application.

Chapter 13, “Example: Delivering CAPI Othello”, shows how a CAPI pro-
gram can be delivered.

Chapter 15, “Self-contained examples” lists further examples with complete
code for delivering small applications which are supplied in the LispWorks
library.
 7

1 Introduction

8

2

2 A Short Delivery Example
This chapter presents a simple example of Delivery in use. It shows a small,
pre-written program being delivered.

There are usually four stages to application delivery: coding, compiling, deliv-
ering, and debugging. The example is broken up into these stages and the dis-
cussion in each case points to more detailed material later in the manual.

If you would like to try this example delivery out while following the text,
you can find the program in the LispWorks distribution at:

lib/7-1-0-0/examples/delivery/hello/hello.lisp

2.1 Developing the program
The program we use in the example is essentially this:

(in-package "CL-USER")

(defun hello-world ()
 (capi:display-message "Hello World!"))

with a couple of small modifications which are not important here.

Perform these steps to "develop" the program:
9

2 A Short Delivery Example

10
1. Open the source file in the LispWorks Editor tool by evaluating this
form:
(example-edit-file "delivery/hello/hello")

2. Compile the program in the LispWorks Editor by the menu command
Buffers > Compile.

3. Test the program by calling (hello-world).

2.2 Delivering the program
Having developed and tested the program, the next step is to attempt deliv-
ery. You will compile the file containing the program source code, and load
the fasl and call deliver in a fresh LispWorks session.

Programs are delivered with the function deliver. This function takes three
mandatory arguments. There are also many optional keyword arguments to
help Delivery make the smallest image possible, and also control some aspects
of the behavior of the runtime that is created.

You can read more about the deliver function in Chapter 4, “Delivering your
Application”.

Chapter 5, “Keywords to the Delivery Function” describes all the optional
keyword arguments available.

In this example, we use just one of the optional keyword arguments, and of
course we provide the mandatory arguments. These are:

• The name of a startup function. This is the first function called when the
application is run.

• A pathname specifying where to write the delivered image.

• A delivery level. This is an integer in the range 0 to 5. It controls how
much work is done to make the image smaller during delivery. At level
0, little effort is put into making a smaller image, while at level 5 a vari-
ety of strategies are employed.

You can deliver and run the application in two ways: either use the LispWorks
IDE, or use a command shell. This means a DOS command window (on
Microsoft Windows), Terminal.app (Mac OS X) or a shell (Unix/Linux etc).

2.2 Delivering the program
2.2.1 Delivering the program using the LispWorks IDE

You can use the Application Builder tool in the LispWorks IDE to deliver your
application. This performs the same steps as described in “Delivering the pro-
gram using a command shell” on page 11, but provides a windowing interface
which is easier to use.

To start, you will need a script which loads your compiled application code.
This can be as simple as

(in-package "CL-USER")
(example-compile-file "delivery/hello/hello" :load t)

but you can also start with a complete delivery script such as that shown in
“Delivering the program using a command shell” on page 11.

For full instructions on using the Application Builder tool, see the LispWorks
IDE User Guide.

2.2.2 Delivering the program using a command shell

Continuing with the example:

1. Write a delivery script file (deliver.lisp) that compiles and loads the
program, and then calls deliver:

(in-package "CL-USER")
(load-all-patches)
(example-compile-file "delivery/hello/hello" :load t)
(deliver 'hello-world
 #+:cocoa
 (create-macos-application-bundle
 "~/Desktop/Hello.app"
 ;; Do not copy file associations...
 :document-types nil
 ;; ...or CFBundleIdentifier from the LispWorks bundle
 :identifier "com.example.Hello"
)
 #-:cocoa "~/hello"
 0
 :interface :capi)

2. Run the LispWorks image passing your file as the build script. For exam-
ple, on Microsoft Windows open a DOS window. Ensure you are in the
folder containing the LispWorks image and type:
 11

2 A Short Delivery Example

12
MS-DOS> lispworks-7-1-0-x86-win32.exe -build deliver.lisp

On Linux and other Unix-like platforms type the following into a shell:

% lispworks-7-1-0-x86-linux -build deliver.lisp

Note: the image name varies between the supported platforms.

On Mac OS X, use Terminal.app. Ensure you’re in the directory of the
image first:

% cd "/Applications/LispWorks 7.1 (32-bit)/LispWorks (32-
bit).app/Contents/MacOS"
% ./lispworks-7-1-0-x86-darwin -build deliver.lisp

If you want to see the output, you can redirect the output with > to a file
or use |, if it works on your system.

3. Run the application, which is saved in hello.exe on Microsoft Win-
dows, Hello.app on Mac OS X, and hello on Linux and other Unix-like
platforms.

4. Now generate a smaller executable by discarding unused code while
delivering. Do this by editing your file deliver.lisp to specify a higher
level argument in the call to deliver. Try changing it to 5 for the largest
effect.

Note: On Mac OS X, if hcl:create-macos-application-bundle does not
do what you need, please see “Alternative application bundle creation code”
on page 135 for an alternative, but also please inform Lisp Support.

2.2.3 Further examples

There is another more detailed example later in this manual. This is in Chapter
13, and shows how to deliver a small CAPI application. The application is an
implementation of the board game Othello.

Further examples with complete code for delivering small applications are
supplied in the LispWorks library. See Chapter 15, “Self-contained examples”.

3

3 Writing Code Suitable for
Delivery
How successfully you can deliver your application depends to a large extent
upon how you wrote it in the first place. Delivery reduces the size of some
symbols and constructs more than others, so a knowledge of what sort of code
leads to the best delivered images is useful.

This chapter explains what sorts of considerations you might make when cod-
ing your application.

3.1 Separate run time initializations from the build phase
To deliver a runtime application correctly, you need two distinct phases: the
build phase, and the run time phase.

In the build phase the delivery script loads the application code including the
definition of its start-up function, but should not actually do any run time ini-
tialization. It then saves the executable or dynamic library to disk. An execut-
able is primed with the start-up function as its entry point.

In the run time phase the end-user runs the executable which calls its start-up
function. This function must perform any required run time initializations,
and not attempt to load any more application code.

You may have developed or inherited a program with a control file which
loads your application, initializes and starts it successfully in the LispWorks
13

3 Writing Code Suitable for Delivery

14
IDE, but which fails when used as a delivery script. For example it might run
code which relies on multiprocessing.

To correctly deliver this program as a LispWorks runtime application you will
need to remove those forms from the control file which do run time initializa-
tion, and cause them to occur at run time by adding them to the start-up func-
tion. Take care to preserve the order of initializations when you do this.

3.2 Error handling in delivered applications
Normally you do not expect an application user to debug it, so you never
want your delivered application to call the debugger. Obviously you try to
achieve that by making the application error-free, but it is difficult to guaran-
tee that the application never calls error. You therefore handle errors in the
application, such that even if an error occurs it does not enter the debugger.

Error handling can be dynamically-scoped or global.

Dynamically-scoped error handling is done by wrapping cl:handler-bind
or cl:handler-case around a body of code. This has the advantage that it
allows you to tailor the response to errors in specific pieces of code and for
specific types of error. It has the disadvantage that it is not global. If you put it
in the process function (the function argument to mp:process-run-func-
tion) it will apply only to the code that is executed in that process, but you
still need it in each process.

The global error handling is done by setting cl:*debugger-hook*. This
applies to anything that tries to enter the debugger, in particular any
cl:error call that was not handled otherwise. It has the advantage that it
really is global, but the disadvantage that it cannot be tailored locally.

Since the cl:*debugger-hook* is applied only if the error was not handled,
the two mechanisms can be used at the same time and typically they are. The
dynamically-scoped ones are used to give the accurate response, while the
global one used to catch any error that is not handled for some reason.

In either case, the handling means that some of your code is being executed.
Either it is the function is bound to the error type in cl:handler-bind or set
to cl:*debugger-hook*, or the body in the clause in cl:handler-case. This
code should the "right thing" to deal with the situation. For unexpected errors,

3.3 Efficiency considerations
that normally would mean generating some log of the problem, telling the
end-user that something went wrong, maybe giving the user some options of
actions, and aborting (note that cl:handler-case already aborted when the
code is executed).

The log of the problem would normally be a bug form, which you can generate
by

(dbg:output-backtrace :bug-form ...)

If you can obtain the bug form, it will give you (the programmer) a chance to
identify the reason for the error. There is also dbg:log-bug-form which
writes it to a file. You would not normally show the bug form to the end-user.
Instead, in a GUI application you will probably want to display a dialog
informing the user that something went wrong and maybe giving them some
options. In a console application you probably want to just print a short mes-
sage.

There is a simple example of using cl:*debugger-hook* in

(example-edit-file "delivery/debugger-hook/application-with-
errors")

3.3 Efficiency considerations
There are numerous efficiency considerations when coding for delivery. They
are detailed in “Efficiency considerations when coding for delivery” on page
139.
 15

3 Writing Code Suitable for Delivery

16

4

4 Delivering your Application
This chapter describes the process of delivering a completed application.

The first part of the delivery process is to make a standalone version of your
application, that runs without assistance from LispWorks. After that, you may
want to look into making your program smaller and more efficient.

Delivering a standalone application, and much of the work in making it
smaller and faster, is very simple and is accomplished by running a simple
script. However, fine-tuning the delivery process to make the application as
small and as fast as possible is a more involved process that may require trial-
and-error work.

A call to the function deliver starts the delivery process. A variety of argu-
ments control the effects of delivery. A few of the keywords are introduced
below in “The delivery function: deliver” and all are documented fully in
Chapter 5, “Keywords to the Delivery Function”.

4.1 The delivery function: deliver
The function deliver is the main interface to the delivery tools. Its basic syn-
tax is shown below:
17

4 Delivering your Application

18
deliver Function

Signature: deliver function file level &rest keywords

The following three arguments are required:

function The name of the function that starts an executable
application.

file A string or pathname naming the file in which the
delivered image should be saved.

On Mac OS X, you may wish to create an application
bundle containing your delivered image. For an exam-
ple showing how to do this, see “Creating a Mac OS X
application bundle” on page 133.

level An integer specifying the delivery level.

This is a measure of how much work Delivery does to
reduce the size of the image. It must be an integer in the
range 0 to 5. Level 5 is the most severe, while the least
work on image reduction is done at level 0.

For the complete syntax and description, see the reference entry for deliver.

The most important keywords arguments are :interface and :multipro-
cessing. If your application uses the CAPI, you must pass :interface
:capi. If your application does not use the CAPI, but does use multiprocess-
ing, then you must pass :multiprocessing t. Your first attempt to deliver
your application should use no more than these keywords.

In addition, a variety of other keywords can be passed to deliver. These are
for fine-tuning by controlling aspects of delivery explicitly. Add more key-
words only when you find that you need them.

All the deliver keywords are documented in Chapter 5, “Keywords to the
Delivery Function”. Additionally, they can been seen in the LispWorks image
by calling:

(require "delivery")
(deliver-keywords)

4.2 Using the delivery tools effectively
4.2 Using the delivery tools effectively
This section gives some useful tips that should speed the delivery process up
and make mistakes less likely.

4.2.1 Saving the image before attempting delivery

If starting LispWorks and loading your application takes a significant amount
of time, you can cut down on this startup time by saving a copy of the image
when the compiled application and library code has been loaded. Use save-
image (see the LispWorks User Guide and Reference Manual) to do this. You then
have an image that is “ready to go” for delivery as soon as it is started up.

Note: Before and after saving the image, it is a good idea to check that the
application still works exactly as it did running on top of the LispWorks devel-
opment environment.

4.2.2 Delivering the application in memory

You can save time when experimenting with delivery parameters by deliver-
ing the application in memory rather than saving it to disk.

If the deliver keyword :in-memory-delivery is non-nil, the delivered
image is not saved to disk, but instead starts up automatically after the deliv-
ery operations are complete.

For example, a good early test is

(deliver 'run
 "the-application"
 0
 :in-memory-delivery t)

Note: The image exits as soon as the application terminates.

4.3 Delivering a standalone application executable
There are usually two considerations when delivering an application.

1. Making the application run standalone. That is, turn the application into
a single file that needs no assistance from LispWorks in order to run.
 19

4 Delivering your Application

20
2. Make the application smaller. That is, make the application smaller than
the development environment plus application code.

We recommend delivering a standalone executable application first, with no
attempt to make the image smaller. Do this by delivering at delivery level 0,
which removes very little from the image. You can then look into making the
image smaller if you need to.

If you try to do both of these in the first attempt and the delivered application
does not work, it is not clear whether the wrong thing was removed from the
image, or the application would not have delivered properly even if no image
reduction work was done.

Once you have developed and compiled your application, you are ready to
deliver it as a standalone application. Delivering a standalone version is done
by calling deliver with level 0, which does not try to make the image smaller,
but does remove the LispWorks development tools as described in “Function-
ality removed by delivery” on page 2. To do this modify your deliver.lisp
script from “Delivering the program” on page 10 as appropriate to your appli-
cation:

(load-all-patches)
(load-my-application)
;;; unless you have it already loaded as suggested in
;;;“Saving the image before attempting delivery” on page 19
(deliver 'my-function "my-program" 0 :interface :capi)

This is assuming your application uses CAPI. If it does not, you can eliminate
:interface :capi. In this case, if your application requires multiprocessing,
you to need to pass :multiprocessing t:

(deliver ‘my-function "my-program" 0 :multiprocessing t)

Then run LispWorks with deliver.lisp as a build script. You can do this
using the graphical Application Builder tool (see “Delivering the program
using the LispWorks IDE” on page 11) or in a command window, like this:

• On Microsoft Windows, open a DOS window and enter:

MS-DOS> lispworks-7-1-0-x86-win32.exe -build deliver.lisp

• On Linux and other Unix-like platforms, enter a command line like this
in a shell:

4.4 Delivering a dynamic library
% lispworks-7-1-0-x86-linux -build deliver.lisp

Note: the image name varies between the supported platforms.

• On Mac OS X, use Terminal.app:

% ./lispworks-7-1-0-x86-darwin -build deliver.lisp

This creates an executable in my-program.exe on Microsoft Windows, or my-
program on Mac OS X, Linux and other Unix-like platforms. When this exe-
cutable starts, it calls my-function without arguments.

4.4 Delivering a dynamic library
Depending on how your application needs to interoperate with other soft-
ware, you may want to build it as a DLL (also referred to as a dynamic library)
rather than an executable.

4.4.1 Simple delivery of a dynamic library

Supply the names of your library’s exports in a list value for the deliver key-
word :dll-exports. Each name in dll-exports should be a string naming a
Lisp function defined by fli:define-foreign-callable.

The deliver function argument should be nil, because a dynamic library
does not have a startup function.

Supply the file type of the delivered image in the deliver file argument if nec-
essary.

As when delivering a LispWorks executable, start at deliver level 0. Increase
the delivery level, if desired, after you have debugged your library. Whenever
possible, debug your code running in the LispWorks development image. If
the problem only occurs when your code runs inside a dynamic library, you
may be able to debug it on your development machine in a dynamic library
created by save-image rather than deliver.
 21

4 Delivering your Application

22
4.4.2 Using the dynamic library

A Microsoft Windows application should use LoadLibrary to load the DLL
and GetProcAddress to find the address of the exported names. On other
platforms the application should use dlopen and dlsym.

On some platforms there are special requirements for a program that loads a
LispWorks dynamic library, as follows:

Linux The program should be linked with libpthread.so.

FreeBSD The program should be linked with libpthread.so.

x86/x64 Solaris The program should be compiled and linked multi-
threaded, for example using the -mt option to Oracle's
cc.

Mac OS X No special requirements.

A dynamic library can be loaded into LispWorks using fli:register-mod-
ule, and this is a convenient way of testing it. See “Further example” on page
24 for an example.

For more information about the behavior of LispWorks dynamic libraries see
the chapter "LispWorks as a dynamic library" in the LispWorks User Guide and
Reference Manual.

4.4.3 Simple Windows example

The script below creates hello.dll.

4.4 Delivering a dynamic library
-------------------- hello.lisp -------------------------
(in-package "CL-USER")
(load-all-patches)
;; The signature of this function is suitable for use with
;; rundll32.exe.
(fli:define-foreign-callable ("Hello"
 :calling-convention :stdcall)
 ((hwnd w:hwnd)
 (hinst w:hinstance)
 (string :pointer)
 (cmd-show :int))
 (capi:display-message "Hello world")
 ;; quit when library's job is done
 (dll-quit))

(deliver nil "hello" 0 :dll-exports '("Hello") :interface :capi)

You can build the DLL with this command line:

MS-DOS> lispworks-7-1-0-x86-win32.exe -build hello.lisp

and you can test it with this command line:

rundll32 hello.dll,Hello

4.4.3.1 Using the Application Builder

The Application Builder tool provides another way to build and test
hello.dll:

1. In the LispWorks for Windows IDE do Works > Tools > Application Builder

2. Set the Build script to be your file hello.lisp and do Works > Build >
Build to build the DLL.

3. Do Works > Build > Run With Arguments. Enter rundll32 in the Execute
pane, enter hello.dll,Hello in the Arguments pane, and press OK to
test the library.

4.4.4 Simple non-Windows example

See the example in the LispWorks library at

examples/delivery/dynamic-library/
 23

4 Delivering your Application

24
This example creates a LispWorks dynamic library and also a test program for
loading it on non-Windows platforms.

To build and run the example, follow the instructions in README.txt.

4.4.5 Further example

This example builds a dynamic library which in principle could be loaded by
any application and called to calculate square numbers.

For illustrative purposes, we show how to load the dynamic library into the
LispWorks development image. This illustrates some platform-specific initial-
ization. Then we use the library, ensure it exits cleanly, and finally delete the
dynamic library file.

Note that on non-Windows platforms, to deliver a dynamic library, the build
machine must have a C compiler installed.

For convenience the code is presented without external files. To run it, copy
each form in turn and enter it at the Listener prompt.

1. Define a path for the dynamic library:

(defvar *dynamic-library-path*
 (merge-pathnames (make-pathname :name "CalculateSquareExample"
 :type scm::*object-file-suffix*)
 (get-temp-directory)))

2. Define a function to create the dynamic library:

(defun save-dynamic-library ()
 (let* ((file (open-temp-file :file-type "lisp"))
 (ns (namestring file)))
 (format file
 "
 (fli:define-foreign-callable (calculate-square :result-
type :int)
 ((arg :int))
 (* arg arg))
 (deliver nil ~s 5 :dll-exports '(\"calculate_square\"))"
 (namestring *dynamic-library-path*))
 (close file)
 (sys:call-system-showing-output (list (lisp-image-name)
 "-build"
 ns))
 (delete-file file nil)))

4.4 Delivering a dynamic library
3. Create the dynamic library:

(save-dynamic-library)

4. Define functions to use the dynamic library:

(fli:define-foreign-function (my-quit-lispworks "QuitLispWorks")
 ((force :int)
 (milli-timeout :int))
 :result-type :int
 ;; specifying :module ensures the foreign function finds
 ;; the function in our module
 :module 'my-dynamic-library)
(fli:define-foreign-function (my-init-lispworks "InitLispWorks")
 ((milli-timeout :int)
 (base-address (:pointer-integer :int))
 (reserve-size (:pointer-integer :int)) ; really size_t
)
 :result-type :int
 :module 'my-dynamic-library)
(fli:define-foreign-function calculate-square
 ((arg :int))
 :result-type :int
 :module 'my-dynamic-library)

5. Define a function to load the dynamic library, use it, and then unload it:

(defun run-the-dynamic-library ()
 (fli:register-module 'my-dynamic-library
 :connection-style :immediate
 :file-name *dynamic-library-path*)
;; Windows and Mac OS X can detect and resolve memory clashes.
 ;; On other platforms, tell the library to load at different
 ;; address (that is, relocate) because otherwise it will use
 ;; the same address as the running LispWorks development image.
 ;; Relocation may be needed when loading a LispWorks dynamic
 ;; library in other applications.
 #-(or mswindows darwin)
 (my-init-lispworks 0
 #+lispworks-64bit #x5000000000
 #+lispworks-32bit #x50000000
 0)
 (dotimes (x 4)
 (format t "square of ~d = ~d~%" x
 (calculate-square x)))
 (my-quit-lispworks 0 1000)
 (fli:disconnect-module 'my-dynamic-library))
 25

4 Delivering your Application

26
6. Use the dynamic library:

(run-the-dynamic-library)

Check the output to see that it computed square numbers.

7. (optional) Delete the dynamic library file:

(delete-file *dynamic-library-path* nil)

4.4.6 More about building dynamic libraries

On non-Windows platforms, you can supply files to be included in the library
via the deliver keyword argument :dll-added-files. This is useful if you
need to write wrappers around calls into the library.

You can specify whether your LispWorks dynamic library initializes itself
automatically on loading with the deliver keyword argument :automatic-
init. For more information see "Initialization of the dynamic library" in the
LispWorks User Guide and Reference Manual.

4.5 How to deliver a smaller and faster application
Once you have delivered your application at level 0 and tested that it works,
you may want to try to make it smaller.

An entire Common Lisp system, and other supporting code, remains in a stan-
dalone image delivered at delivery level 0. A good deal of this can usually be
removed.

What can be removed depends on the needs of the application. Few applica-
tions use all the facilities in the basic image. For instance, if the application
does not use any complex numbers, all the code in the image for working with
complex numbers can be deleted.

4.5.1 Making the image smaller

You can specify that the image be made smaller in two complementary ways:

1. By increasing the delivery level.

4.6 How Delivery makes an image smaller
This is the simplest way to make the image smaller. As you increase the
delivery level, delivery employs different and increasingly severe strate-
gies.

2. By specifying what to remove and what to keep, using keyword argu-
ments to deliver.

This is a more complicated way to control image size, and should only
be resorted to if there are problems or not enough savings can be
achieved by simply increasing the delivery level. These keywords are
documented in Chapter 5, “Keywords to the Delivery Function”.

These two approaches are based upon the same mechanism: delivery levels
are in fact nothing more than different combinations of keyword parameters.
But when you specify a delivery level and at the same time pass keyword val-
ues, the values you pass override any settings forced by the delivery level.

As an example of how explicit directions to Delivery can be necessary for
effective delivery, consider the general addition function, +. The internal rep-
resentation of the function contains references to functions that carry out com-
plex number arithmetic, since + has to use them if it is given complex
arguments. If you know your application does not ever pass complex argu-
ments to +, you should probably remove those functions from the delivered
image.

Delivery cannot decide for itself that you do not pass + any complex argu-
ments, and so does not delete the complex number functions. You can tell
Delivery to do so explicitly, by passing :keep-complex-numbers nil to
deliver. (See page :keep-complex-numbers for a discussion of this key-
word.)

4.6 How Delivery makes an image smaller
Delivery makes an image smaller in two ways.

1. By garbage collecting the image.

This is done automatically.

2. By “shaking” the image with the treeshaker.

This is done automatically from delivery level 2 upward.
 27

4 Delivering your Application

28
4.6.1 Garbage collecting the image

The image is garbage collected during delivery. The garbage collector locates
any unreferenced objects and frees the space they occupy. Then Delivery com-
pacts the remaining memory so that the saved image is smaller.

Garbage collection is a generally good method of trimming the image size at
delivery time. However, it is generally too conservative, and so it has no effect
on a significant portion of the Common Lisp system and your application:
Interned symbols, class definitions, and methods discriminating on classes.
Such objects must be dealt with by the treeshaker.

4.6.2 Shaking the image

From delivery level 2 upward, the image is “shaken” by default during deliv-
ery with the treeshaker. You can also invoke the treeshaker directly with the
deliver keyword :shake-shake-shake.

As discussed above, the garbage collector does not delete any interned sym-
bols, class definitions, or methods discriminating on classes from the image,
even when they are unused. This is because it is designed to keep any object
for which a reference exists.

There are always references to interned symbols, class definitions, and meth-
ods discriminating on classes. Interned symbols, naturally, are referred to by
their package. Class definitions are always pointed to by their superclasses
(the root class, t, has no superclass but is protected from garbage collection),
and a method discriminating on a class is always pointed to by the class.

Thus we have a special class of objects that cannot be removed under the nor-
mal garbage collection scheme. Using the treeshaker, however, we can do so.
The treeshaker does the following to overcome the default links between these
objects:

1. Record the default links.

2. Break the links.

3. Garbage collect the image.

4. Reinstate the links.

4.6 How Delivery makes an image smaller
Step 2 renders the objects the same as all others in the image. They are now
only protected from garbage collection if there are links to them elsewhere in
the image — that is, if they are actually used in the application.

The term “treeshaker” is derived from the notion that the routine picks up, by
its root, a tree comprising the objects in the image and the links between them,
and then shakes it until everything that is not somehow connected to the root
falls off, and only the important objects remain. (An image would usually be
better characterized as a directed graph than a tree, but the metaphor has per-
sisted in the Lisp community.)
 29

4 Delivering your Application

30

5

5 Keywords to the Delivery
Function
This chapter describes the keywords to the delivery function, deliver.

The keyword descriptions are given in alphabetical order. Before the alphabet-
ical section, there is a topic-based list of keyword names which should be of
value if you are looking for a keyword to perform a particular task for you,
but do not know what it is called or do not know if it exists.

The list of keywords can be printed by calling deliver-keywords.

Note: Delivery is designed to work well with a small number of delivery key-
words only. Start attempting delivery by passing no keywords, or :inter-
face :capi, or :multiprocessing t, as required. Only add other keywords
when you find that you need them. If you are passing more than 6 delivery
keywords, please contact Lisp Support with details.

Caution: Many keywords interact with one another, causing apparent values
to change. It is a good idea to check how keywords interact and also what
happens to their defaults at the different delivery levels. In the descriptions of
the default values of deliver keywords in “Alphabetical list of deliver key-
words” on page 37, the level appears as the symbol *delivery-level*.
31

5 Keywords to the Delivery Function

32
5.1 Topic-based list of deliver keywords
This section provides a topic-based index to the descriptions of deliver key-
words. Use the topic headings to find a keyword related to a particular kind of
delivery task, then look it up on the page given to see how to use it.

5.1.1 Controlling the behavior of the delivered application

The following keywords control aspects of the delivered application’s behav-
ior. There are keywords for specifying startup banners, application icons,
image security, and so on.

• :action-on-failure-to-open-display

• :clean-for-dump-type

• :console

• :dll-exports

• :editor-style

• :icon-file

• :image-type

• :interface

• :interrupt-function

• :keep-gc-cursor

• :license-info

• :multiprocessing

• :old-cpu-compatible

• :product-code

• :product-name

• :quit-when-no-windows

• :redefine-compiler-p

• :registry-path

• :split

• :startup-bitmap-file

• :versioninfo

5.1 Topic-based list of deliver keywords
5.1.2 Testing and debugging during delivery

The following keywords can be used to help test and debug the application
either during delivery or at run time. There are keywords for encoding test
routines into the delivered application, for ensuring that features such as the
debugger and the read-eval-print loop are kept in the image, for performing
delivery without writing the image out to disk, and so on.

• :analyse

• :call-count

• :clos-info

• :diagnostics-file

• :error-on-interpreted-functions

• :post-delivery-function

• :in-memory-delivery

• :interrogate-symbols

• :keep-conditions

• :keep-debug-mode

• :keep-modules

• :keep-stub-functions

• :keep-symbol-names

• :keep-top-level

• :kill-dspec-table

• :run-it

• :symbol-names-action

• :warn-on-missing-templates

5.1.3 Behavior of the delivery process

The following keywords control the behavior of the delivery process itself.
They do not affect the delivered application’s behavior or the debugging
information generated.

• :display-progress-bar
 33

5 Keywords to the Delivery Function

34
5.1.4 Retaining or removing functionality

The keywords listed in this section control the main part of the delivery pro-
cess, involved in keeping things in and deleting things from the image. Most
of the deliver keywords are in this general category, so it has been split up
into a number of subcategories.

5.1.4.1 Directing the behavior of the treeshaker and garbage collector

The following keywords control the invocation of the treeshaker and garbage
collector during delivery:

• :compact

• :shake-shake-shake

• :clean-down

• :redefine-compiler-p

5.1.4.2 Classes and structures

The following keywords are for examining, for keeping and for removing data
information in the image about structured data: structures, classes and so on.

• :classes-to-keep-effective-slots

• :generic-function-collapse

• :gf-collapse-output-file

• :gf-collapse-tty-output

• :keep-clos

• :keep-clos-object-printing

• :keep-structure-info

• :metaclasses-to-keep-effective-slots

• :shake-class-accessors

• :shake-class-direct-methods

• :structure-packages-to-keep

5.1 Topic-based list of deliver keywords
5.1.4.3 Symbols, SYMBOL-NAME, functions, and packages

The following keywords are for examining, for keeping and for removing
symbols, functions, and entire packages from the image.

• :delete-packages

• :exports

• :functions-to-remove

• :keep-documentation

• :keep-foreign-symbols

• :keep-function-name

• :keep-load-function

• :keep-package-manipulation

• :keep-symbols

• :macro-packages-to-keep

• :never-shake-packages

• :no-symbol-function-usage

• :packages-to-keep

• :packages-to-keep-symbol-names

• :redefine-compiler-p

• :remove-setf-function-name

• :shake-externals

• :smash-packages

• :smash-packages-symbols

• :symbol-names-action

5.1.4.4 Editor functionality

Keywords for keeping and for removing editor commands and LispWorks
environment tools:

• :editor-commands-to-delete

• :editor-commands-to-keep

• :keep-editor

• :keep-walker
 35

5 Keywords to the Delivery Function

36
5.1.4.5 CLOS metaclass compression
• :classes-to-keep-effective-slots

• :metaclasses-to-keep-effective-slots

5.1.4.6 Input and output

The following keywords are for keeping and for removing code loading facili-
ties, fasl dumping facilities, special printing code, and so on, from the image.

• :format

• :keep-fasl-dump

• :keep-lisp-reader

• :keep-load-function

• :print-circle

5.1.4.7 Dynamic code

The following keywords are for keeping and for removing code facilitating
dynamic run time activities, such as macroexpansion, evaluation, use of the
Common Lisp reader and the lexer, and so on, from the image.

• :keep-eval

• :keep-macros

• :macro-packages-to-keep

• :remove-setf-function-name

5.1.4.8 Numbers

The following keywords are for keeping and for removing code from the
image that can handle certain numerical types:

• :keep-complex-numbers

• :numeric

5.1.4.9 Conditions deletion

The following keywords are for controlling the preservation or deletion of
conditions.

5.2 Alphabetical list of deliver keywords
• :condition-deletion-action

• :keep-conditions

• :packages-to-remove-conditions

5.2 Alphabetical list of deliver keywords
This section describes each of the deliver keywords. They are presented in
alphabetical order.

:action-on-failure-to-open-display Keyword

Default value: nil

GTK and Motif applications only: if the application uses the X11 code or
CAPI, it may fail to run if it cannot open the X display.

In this case, if the value is a function it calls this function with one argu-
ment, the display name. The default value of nil means that a message
is printed and Lisp quits.

:analyse Keyword

Default: nil

When non-nil, the delivery code arranges to generate an analysis of
what there is in the image before running the application. If the value of
:analyse is a string or a pathname, it writes the analysis to this file,
otherwise it writes to *standard-output*.

:automatic-init Keyword

Default value: t on Microsoft Windows, nil on other platforms

automatic-init specifies whether a LispWorks dynamic library should
initialize automatically on loading. Automatic initialization is useful
when the dynamic library does not communicate by function calls but
prevents you from relocating the library if necessary or doing other
initialization.
 37

5 Keywords to the Delivery Function

38
To deliver a dynamic library on non-Windows platforms, the build
machine must have a C compiler installed. This is typically gcc (which is
available on the Macintosh by installing Xcode).

deliver uses automatic-init just like save-image. See save-image in the
LispWorks User Guide and Reference Manual for more details.

For more information about the behavior of LispWorks DLLs (dynamic
libraries) and in particular a discussion of automatic and explicit initial-
ization, see the chapter "LispWorks as a dynamic library" in the Lisp-
Works User Guide and Reference Manual.

:call-count Keyword

Default value: nil

This keyword can be used to produce reports about what is left in the
image when delivery is over. It is useful when determining which
remaining parts of the system are not needed. When nil, no reports are
generated.

Possible values of :call-count are:

:size After running the application, the image is scanned,
and the size of each object, in bytes, is printed out. This
produces a lot of output, comparable in size to the
delivered image itself, so make sure you have plenty of
disk space first.

:all After running the application, the image is scanned,
and the name of each symbol found is printed out. A +
sign is printed next to the symbol if it is non-nil. If the
symbol is fboundp, the call count (that is, the number of
times it was called while the application ran) is printed
too.

Delivery sets the call counter for all symbols to 0 before
the saving the delivered image.

Interpreted functions do not maintain a call counter.

t This has the same effect as :all, but only symbols with
function definitions that were not called are printed.

5.2 Alphabetical list of deliver keywords
The output is written to a file or the standard output. You can specify its
name with :diagnostics-file.

:classes-to-keep-effective-slots Keyword

Default value: nil

Classes on this list retain their effective-slot-definitions.

:classes-to-remove Keyword

Default value: nil

This keyword accepts a list naming the classes to be deleted from image
during delivery.

Note: Their subclasses are also deleted, because they have lost their con-
nection to the root class.

:clean-down Keyword

Default value: t

If true, call clean-down before saving the image.

:clean-for-dump-type Keyword

Default value: :user

Related to the :type argument of save-image. This is for expert use
only - please consult Lisp Support before using.

:clos-info Keyword

Default value: nil

With this keyword you can make the delivered image print a list of the
remaining classes, methods, or both, after execution terminates.

Possible values of :clos-info are:

:classes print remaining classes only

:methods print remaining methods only
 39

5 Keywords to the Delivery Function

40
:classes-and-methods

print remaining classes and methods

The output is written to the file given by :diagnostics-file.

:clos-initarg-checking Keyword

Default value: (if (delivery-value :keep-debug-mode) :default
nil)

The value of the :clos-initarg-checking keyword controls whether
CLOS checks initialization arguments. Initializations checked can
include:

• Calls to make-instance.

• Calls to reinitialize-instance.

• Calls to change-class.

• call-next-method to update-instance-for-redefined-class
with extra keywords.

If the value is t and :keep-clos is t, :full-dynamic-definition or
:method-dynamic-definition then all of these checks are switched on.

If the value is t and :keep-clos is nil, :no-dynamic-definition or
:meta-object-slots then only the make-instance checking is
switched on, and the other checks are switched off.

If the value is :default, the checks are not affected by the delivery pro-
cess. See the function clos:set-clos-initarg-checking for instruc-
tions on controlling the checks in this situation.

If the value is nil, then all of these checks are switched off.

Note: :clos-initarg-checking always affects the behavior of the
delivered application, regardless of :keep-clos.

Note: :keep-debug-mode retains the current setting of CLOS initializa-
tion checks (as set by :clos-initarg-checking or clos:set-clos-
initarg-checking), rather than forcing the checks to be switched on.

Affected by: :keep-debug-mode, :keep-clos

5.2 Alphabetical list of deliver keywords
:compact Keyword

Default value:

(and (not (delivery-value :keep-debug-mode))
 (not (delivery-value :interrogate-symbols))
 (eq (delivery-value :dll-exports) :no))

x86 platforms only: If this is non-nil, the heap is compacted just before
the delivered image is saved, with all functions being made static. This
usually gives the greatest size reduction in delivery. You may want to
leave this until the final delivery if you are using a slow machine on
which this operation takes some time.

:condition-deletion-action Keyword

Default value: (when (> *delivery-level* 0) :delete)

The value is one of:

nil Do not delete any condition class. This is the default at
delivery level 0.

:delete Delete unwanted conditions. If an error for a deleted
condition is signaled, it is signalled as a simple error
condition, with the arguments in the format-argu-
ments slot. This is the default at delivery level > 0.

:redirect Redirect unwanted conditions to the first parent in their
hierarchy which is not deleted.

See “Deleting of condition classes” on page 109.

:console Keyword

Default value: :default

Windows and Macintosh only. This is the same as the :console key-
word argument to hcl:save-image. See the LispWorks User Guide and
Reference Manual for details.
 41

5 Keywords to the Delivery Function

42
:delete-packages Keyword

Default value: nil

This keyword takes a list of packages, in addition to those in the variable
delete-packages, that should be deleted during delivery. The Com-
mon Lisp function delete-package is used to do this.

When a package is deleted, all of its symbols are uninterned, and the
package’s name and nicknames cease to be recognized as package
names.

After the package is deleted, its symbols continue to exist, but because
they are no longer interned in a package they become eligible for
removal at the next garbage collection. They survive only if there are ref-
erences to them elsewhere in the application.

Note: Invoking the treeshaker has much the same effect on packages as
deleting them. However, by deleting a package you regain some extra
space taken up by hash tables.

Affected by: :packages-to-keep

:diagnostics-file Keyword

Default value: nil

The string passed with this keyword specifies a file to which output gen-
erated by :call-count and :clos-info is written (in that order). The
value nil means write to *standard-output*.

Compatibility Note: In LispWorks 4.4 and previous on Windows and
Linux platforms, the default value of :diagnostics-file was
"dvout.txt". The default value is now nil on all platforms.

:display-progress-bar Keyword

Default value: t

Windows only: by default a progress bar is displayed during the deliv-
ery process. If the value of the :display-progress-bar keyword is
false, it does not display a progress bar.

5.2 Alphabetical list of deliver keywords
Compatibility Note: In LispWorks for Windows 4.4 and previous, there
was no way to prevent the display of the progress bar.

:dll-added-files Keyword

Default value: nil

non-Windows platforms only: A list value means that the saved image is
a dynamic library file rather than an executable. The build machine must
have a C compiler installed.

If non-nil, dll-added-files should be a list of filenames and then a dynamic
library containing each named file is saved. Each file must be of a format
that the default C compiler can incorporate into a shared library and
must not contain exports that clash with predefined exports in the Lisp-
Works shared library. The added files are useful to write wrappers
around calls into the LispWorks dynamic library.

deliver uses dll-added-files just like save-image. See save-image in the
LispWorks User Guide and Reference Manual for more details.

For more information about the behavior of LispWorks DLLs (dynamic
libraries) see the chapter "LispWorks as a dynamic library" in the Lisp-
Works User Guide and Reference Manual.

:dll-exports Keyword

Default value: :default

dll-exports is implemented only on Windows, Linux, x86/x64 Solaris,
Macintosh and FreeBSD. It controls whether the image saved is an exe-
cutable or a dynamic library (DLL), just as for save-image.

If dll-exports is :default, the delivered image is an executable. The value
:com is supported on Microsoft Windows only (see below). Otherwise
dll-exports should be list (potentially nil). In this case a dynamic library
is saved, and each string in dll-exports names a function which
becomes an export of the dynamic library and should be defined as a
Lisp function using fli:define-foreign-callable. Each exported
name can be found by GetProcAddress (on Windows) or dlsym (on
other platforms). The exported symbol is actually a stub which ensures
 43

5 Keywords to the Delivery Function

44
that the LispWorks dynamic library has finished initializing, and then
enters the Lisp code.

On Microsoft Windows dll-exports can also contain the keyword :com, or
dll-exports can simply be the keyword :com, both of which mean that the
DLL is intended to be used as a COM server. See the LispWorks COM/
Automation User Guide and Reference Manual for details.

To deliver a dynamic library on non-Windows platforms, the build
machine must have a C compiler installed. This is typically gcc (which is
available on the Macintosh by installing Xcode).

On Mac OS X the default behavior is to generate an object of type "Mach-
O dynamically linked shared library" with file type dylib. See image-type
below for information about creating another type of library on Mac OS
X.

On Microsoft Windows you can use LoadLibrary from the main appli-
cation to load the DLL and GetProcAddress to find the address of the
external names.

There is an example DLL delivery script in “Delivering a dynamic
library” on page 21.

For more information about the behavior of LispWorks DLLs (dynamic
libraries) see the chapter "LispWorks as a dynamic library" in the Lisp-
Works User Guide and Reference Manual.

:dll-extra-link-options Keyword

Default value: nil

Unix/Linux/FreeBSD and Macintosh only: A list of strings passed as
arguments to the linker when creating a dynamic library file.

dll-extra-link-options is used just like save-image. See save-image in the
LispWorks User Guide and Reference Manual for more details.

For more information about the behavior of LispWorks DLLs (dynamic
libraries) see the chapter "LispWorks as a dynamic library" in the Lisp-
Works User Guide and Reference Manual.

5.2 Alphabetical list of deliver keywords
:editor-commands-to-delete Keyword

Default value: :all-groups

When the Editor is loaded, you can delete some of its commands by
passing a list of them with this keyword. Note that, by default, most Edi-
tor commands are retained. See “Editors for delivered applications” on
page 104 for more details.

Affected by: :keep-debug-mode.

:editor-commands-to-keep Keyword

Default value: nil

When the Editor is loaded, you can keep some of its commands by pass-
ing a list of them with this keyword. Note that, by default, most Editor
commands are retained. See “Editors for delivered applications” on
page 104 for more details.

:editor-style Keyword

Default value :default

This controls the editor emulation style used in capi:editor-pane (and
subclasses) in the delivered image.

The value should be one of:

:emacs Use Emacs emulation.

:pc Use Microsoft Windows emulation on Windows, and
KDE/Gnome style keys on GTK and Motif.

:mac Use Mac OS X editor emulation.

:default Use the default emulation style for the current
platform. That is, use :pc on Microsoft Windows, :mac
on Mac OS X/Cocoa and :emacs on GTK and Motif.

nil Use the default setting on the current machine.
 45

5 Keywords to the Delivery Function

46
Note that not all emulation styles are supported on all platforms. See the
the "Emulation" chapter of the LispWorks Editor User Guide for details
about the different emulation styles.

:error-handler Keyword

Default value: nil

The value :btrace changes error handling, so that a simple backtrace is
generated whenever error is called.

:error-on-interpreted-functions Keyword

Default value: nil

If this is non-nil, an error is signalled during delivery if the interpreter is
removed (with :keep-eval nil) while interpreted functions remain in
the image.

:exe-file Keyword

On Microsoft Windows, used as the basis for the new executable. This is
for expert use only - please consult Lisp Support before using.

:exports Keyword

Default value: nil

This keyword takes a list of symbols that should be exported from their
home packages before any delivery work takes place.

:format Keyword

Default value: t

If this is nil, part of the functionality of format is removed. The format
directives deleted are:

 ~ | R P O G E C B ? < / W $

5.2 Alphabetical list of deliver keywords
The value can also be a list of directives to keep. The elements of the list
should be Lisp characters corresponding to (some of) the format direc-
tives above.

:functions-to-remove Keyword

Default value: nil

This keyword takes a list of symbols to be fmakunbound during delivery.

:generic-function-collapse Keyword

Default value:

(and (>= *delivery-level* 3)
 (not (member (delivery-value :keep-clos)
 ’(t
 :full-dynamic-definition
 :method-dynamic-definition))))

If this is non-nil, generic functions with single methods and simple argu-
ments are collapsed — that is, replaced by ordinary functions.

Note: Methods cannot be added to collapsed generic functions, since
after their collapse to ordinary functions the generic functions defini-
tions are deleted.

:gf-collapse-output-file Keyword

Default value: nil

If the value is a string, it is the name of the file in which a formatted
report detailing the actions performed during the generic function col-
lapse is written. If the value is nil, no report is written.

:gf-collapse-tty-output Keyword

Default value: nil

If true, send the report of generic function collapsing to the console.
 47

5 Keywords to the Delivery Function

48
:icon-file Keyword

Default value:(if (eq (delivery-value :console) t) nil
:default)

Windows only: The name of a file containing the icon to use, in Win-
dows .ico format, or nil (meaning no icon -- not recommended except
for console applications) or :default (which uses the icon from the
LispWorks image).

Note: to achieve the same effect on Mac OS X, do not pass :icon-file,
but put your delivered image in a suitable application bundle which
contains the application icon. See “Delivering a Cocoa CAPI application
examples” on page 146.

:image-type Keyword

Default: (if (eq (delivery-value :dll-exports) :no) :exe
:dll)

image-type defines whether the image is to be an executable or a dynamic
library, , just as for save-image.

The value can be :exe, :dll or :bundle. It defaults to :exe or :dll accord-
ing to the value of dll-exports and therefore you do not normally need to supply
image-type.

image-type :bundle is used only when saving a dynamic library. On Mac
OS X it generates an object of type "Mach-O bundle" and is used for
creating shared libraries that will be used by applications that cannot
load dylibs (FileMaker for example). It also does not force the filename
extension to be dylib. On other Unix-like systems image-type merely has
the effect of not forcing the filename extension of the delivered image,
and the format of the delivered image is the same as the default. On
Microsoft Windows image-type :bundle is ignored.

On non-Windows platforms, image-type :bundle requires that the build
machine has a C compiler installed. This is typically gcc (available by
installing Xcode on the Macintosh).

Note: image-type :bundle is completely unrelated to the Mac OS X
notion of an application bundle.

5.2 Alphabetical list of deliver keywords
:in-memory-delivery Keyword

Default value: nil

If this is non-nil, the delivered application is not saved, but run in mem-
ory instead.

This can be useful while still deciding on the best delivery parameters
for your application. Writing the delivered image to disk takes a lot of
time, and is not really necessary until you have finished work on deliv-
ering it.

Note: When using this keyword, the deliver function still demands
that you pass it a filename. However, the filename you give is ignored.
You can use nil.

:interface Keyword

Default value: nil

Set this to :capi for applications that use the CAPI and/or Graphics
Ports.

Because the CAPI uses multiprocessing, :interface :capi also sets the
deliver keyword :multiprocessing to t.

:interrogate-symbols Keyword

Default value: nil

When non-nil this does two things:

First it loads the reverse-pointers-code module. This can be used to
check what things to keep in the image. If you need documentation for
reverse-pointers-code, please contact Lisp Support.

Secondly it sets the image up such that calling the application with com-
mand line argument -interrogate-symbols, before starting the appli-
cation, allows you to interrogate-symbols. See “Interrogate-Symbols”
on page 126.
 49

5 Keywords to the Delivery Function

50
:interrupt-function Keyword

Default value: t

A function to call when an interrupt occurs. When it is t, it is calling
quit.

:keep-clos Keyword

Default value:

(if (= *delivery-level* 0)
 :full-dynamic-definition
 (if (= *delivery-level* 1)
 :method-dynamic-definition
 :no-dynamic-definition))

If this is :no-dynamic-definition, then the functions for dynamic
class and method definition are deleted -- defmethod , defclass and so
on and the direct slots and direct methods slots all classes are set to nil.

If the value of the :keep-clos keyword is nil, then it is treated as :no-
dynamic-definition.

If it is :meta-object-slots, then the direct slots and direct methods of
all classes are retained, and the dynamic definition functionality is
deleted.

If it is :method-dynamic-definition, nothing is smashed or deleted,
though the direct slots and direct methods of all classes are emptied.
With this setting, methods can be defined dynamically but not classes.

If it is :full-dynamic-definition or t, then all dynamic class and
method definition is allowed.

Compatibility Note: In LispWorks 4.3 and previous versions the values
:no-empty and :no-empty-no-dd were documented for the :keep-
clos keyword. These values are still accepted in LispWorks 7.1, but you
should not rely on this. Change to one of the new values described
above.

Note: CLOS initarg checking in the delivered application by make-
instance and other initializations may be controlled by :clos-ini-
targ-checking.

5.2 Alphabetical list of deliver keywords
:keep-clos-object-printing Keyword

Default value:

(or (delivery-value :keep-debug-mode)
 (<= *delivery-level* 2))

If nil, the generic function print-object is redefined to be the ordi-
nary function x-print-object:

(defun x-print-object (object stream)
 (t-print-object object stream))

(defun t-print-object (object stream)
 (print-unreadable-object (object stream :identity t)
 (if (and (fboundp 'find-class)
 (find-class 'undefined-function nil)
 (ignore-errors
 (typep object 'undefined-function)))
 (progn
 (write-string "Undefined function " stream)
 (prin1 (cell-error-name object) stream))
 (progn
 (princ (or (ignore-errors (type-of object))
 "<Unknown type>")
 stream)
 (ignore-errors
 (when-let (namer (find-symbol "NAME" "CLOS"))
 (when-let (name (and (slot-exists-p object namer)
 (slot-boundp object namer)
 (slot-value object namer)))
 (format stream " ~a" name))))))))

You may redefine x-print-object.

Affected by: :keep-debug-mode

:keep-complex-numbers Keyword

Default value: (delivery-value :numeric)

If this is non-nil, all numeric functions that can handle complex numbers
are retained.

Compatibility Note: This keyword has an effect on all platforms in Lisp-
Works 5.0 and later. It has no effect in LispWorks 4.4 and previous on
Windows and Linux platforms.
 51

5 Keywords to the Delivery Function

52
Affected by: :numeric

:keep-conditions Keyword

Default value: nil

The value should be one of:

 :none Eliminate all conditions.

:minimal Keep only the conditions that are in the class-prece-
dence-list of simple-error. (simple-error, simple-
condition error, and serious-condition condi-
tion). This is useful for applications that use only
ignore-errors. It is equivalent to

:keep-conditions '(simple-error) :packages-

to-remove-conditions '("common-lisp")

:all Keep all conditions.

A list A list of conditions to keep. For each condition, all the
precedence list is kept.

See “Deleting of condition classes” on page 109.

:keep-debug-mode Keyword

Default value: (> 5 *delivery-level*)

If this is non-nil, by default delivery retains the full TTY debugger, so it
can be used when debugging delivered applications.

On Unix, if the value is :all, all debug information is kept

On all platforms, if :keep-debug-mode is set to :keep-packages, all
packages are retained as well as the debugger, so that they can be used
for debugging purposes.

The value of :keep-debug-mode affects the default value of the follow-
ing keywords to:

:compact

:keep-clos-object-printing

:keep-eval

5.2 Alphabetical list of deliver keywords
:keep-function-name

:keep-lisp-reader

:keep-load-function

:keep-structure-info

:keep-top-level

:make-instance-keyword-check

:no-symbol-function-usage

:packages-to-keep-symbol-names

:keep-documentation Keyword

Default value: (= *delivery-level* 0)

If non-nil, documentation strings in the image are preserved.

:keep-editor Keyword

Default: nil

Keep the editor intact. By default some parts of the editor (mainly those
that deal with Lisp definitions) are explicitly eliminated. When this key-
word is true, nothing is removed.

:keep-eval Keyword

Default value:

(or (delivery-value :keep-debug-mode)
 (< *delivery-level* 4))

If this is non-nil, the evaluator is preserved.

:keep-fasl-dump Keyword

Default value: nil

If this is non-nil, the internal functions needed to dump fasl files are pre-
served.
 53

5 Keywords to the Delivery Function

54
:keep-foreign-symbols Keyword

Default value: nil

SPARC Solaris only: If this is nil, the code and information that is
required for dynamic loading of foreign code is eliminated from the
image.

The value can be a list of strings which are the foreign symbols to keep.
The value can also be t, meaning keep all foreign symbols.

:keep-function-name Keyword

Default value:

(if (delivery-value :shake-shake-shake)
 (if (delivery-value :keep-debug-mode) t nil)
 :all)

This keyword controls the retention of names for functions. The follow-
ing values are accepted:

nil Do not keep names

:minimal Keep names as strings, but keep no other debug infor-
mation

t Keep names as strings and retain argument informa-
tion.

:all Do not modify function names

On x86 platforms, if :call-count is either t or :all, then :keep-func-
tion-name is set to t automatically.

When :keep-debug-mode is non-nil, :keep-function-name is set to t
automatically.

Affected by: :keep-debug-mode, :shake-shake-shake

Compatibility Note: In LispWorks 4.4 and previous on Windows and
Linux platforms, if the keyword :compact is non-nil, function names are
eliminated. This is not true in LispWorks 5.0 and later versions.

5.2 Alphabetical list of deliver keywords
:keep-gc-cursor Keyword

Default value: nil

Windows only: If this is non-nil, the mouse pointer turns into a distinc-
tive ‘GC’ cursor during the garbage collection of generations 1 and
above. (Even if the cursor is kept, generation 0 collections are never indi-
cated, because they occur frequently and do not cause a noticeable delay
in operation.)

:keep-keyword-names Keyword

Default: t

If non-nil, keep symbol names of keywords.

:keep-lisp-reader Keyword

Default value:

(or (delivery-value :keep-debug-mode)
 (< *delivery-level* 5))

If the value is nil, the functions and values used to read Lisp expres-
sions are deleted. This means that the listener no longer works. On non-
Windows platforms it also prevents lw:user-preference and
capi:top-level-interface-geometry-key from working.

The :keep-lisp-reader keyword is set to t automatically if :keep-
debug-mode is t.

:keep-load-function Keyword

Default value:

(when (or (delivery-value :keep-debug-mode)
 (delivery-value :keep-modules)
 (<= *delivery-level* 2))
 :full)

If this is nil, the load function is deleted. Run time loading is no longer
possible when this is done, whether or not require is being used.

It can take two non-nil values:
 55

5 Keywords to the Delivery Function

56
t Keeps the loading code required to load data files.

:full Keeps the code as for t, plus those internal functions
that are required for loading Lisp code. Note that if the
Lisp code uses functions that are shaken, these func-
tions must be explicitly kept.

Note: In most cases you need to keep the COMMON-LISP (CL) package if
files might be loaded into your application, and probably some other
packages too. (See :packages-to-keep.)

:keep-macros Keyword

Default value: (< *delivery-level* 2)

If this is nil, the functions macroexpand, macroexpand-1 and macro-
function are deleted, and all macro functions and special forms are
undefined.

Note: This has no effect on compiled code, unless it explicitly calls mac-
roexpand.

:keep-modules Keyword

Default value: nil

If non-nil, the mechanism for loading modules supplied by LispWorks is
preserved. We recommend using require to load all modules before
delivery (see “Modules” on page 111).

Compatibility note: In LispWorks 7.0 and previous versions, this
defaulted to (< *delivery-level* 1).

:keep-package-manipulation Keyword

Default value: (< *delivery-level* 2)

If this is non-nil, the following package manipulation functions are pre-
served: shadowing-import, shadow, unexport, unuse-package,
delete-package, rename-package, import, export, make-package,
use-package, unintern.

5.2 Alphabetical list of deliver keywords
:keep-pretty-printer Keyword

Default value: nil

If nil the pprint functionality is eliminated.

:keep-structure-info Keyword

Default value:

(or (delivery-value :keep-debug-mode)
 (case *delivery-level*
 ((0 1) t)
 (2 :print)
 (otherwise nil)))

This keyword controls the extent to which structure internals are shaken
out of the image.

If nil, all references from structure-objects to their conc-names, (BOA)
constructors, copiers, slot names, printers and documentation are
removed. See also :structure-packages-to-keep.

To retain slot name information (necessary if either the #S() reader syn-
tax or CLOS slot-value are to be used for structure-objects) set :keep-
structure-info to :slots.

To retain slot names and the default structure printer, set :keep-struc-
ture-info to :print.

Note: Any functions (constructors, copiers or printers) referenced in the
application are retained, just as any other code would be. It is therefore
not normally necessary to set this keyword.

Affected-by: :keep-debug-mode

:keep-stub-functions Keyword

Default value: t

When this is non-nil, all functions deleted by the treeshaker are replaced
by small stub functions. When a deleted function is called by the appli-
cation, its stub prints a message telling you that the function has been
deleted and how it can be reinstated. These stubs can take up a lot of
 57

5 Keywords to the Delivery Function

58
space if you smash large packages, but are invaluable while refining
delivery parameters.

For instance, if your application calls complexp after delivery with
:keep-complex-numbers set to nil, a message like the following is
printed:

Attempt to invoke function COMPLEXP on arguments (10).
 COMPLEXP was removed by Delivery keyword :KEEP-COMPLEX-NUMBERS
 NIL.
 Try :KEEP-COMPLEX-NUMBERS T.

:keep-symbol-names Keyword

Default: nil

A list of symbols that must retain their symbol names.

:keep-symbols Keyword

Default value: nil

This keyword takes a list of symbols that are retained in the delivered
image. A pointer to this list is kept throughout the delivery process, pro-
tecting them from garbage collection.

:keep-top-level Keyword

Default value:

 (or (< *delivery-level* 5) (delivery-value :keep-debug-
mode))

If this is nil, functions for handling the top level read-eval-print loop
are deleted. Note that this means that if the line based debugger is
invoked, there is no way to communicate with it

Note: the top level history is cleared, regardless of the value of the
:keep-top-level argument.

Affected by: :keep-debug-mode

5.2 Alphabetical list of deliver keywords
:keep-trans-numbers Keyword

Default value: (delivery-value :numeric)

If this is nil, eliminate transcendental functions (for example sin).

Compatibility Note: This keyword has an effect on all platforms in Lisp-
Works 5.0 and later. It has no effect in LispWorks 4.4 and previous on
Windows and Linux platforms.

Affected by: :numeric

:keep-walker Keyword

Default value: nil

If this is nil, the walker is deleted.

:keep-xref-info

Default value: nil

If non-nil, keep cross-reference information that is used by functions like
hcl:who-calls and hcl:calls-who.

Compatibility note: In LispWorks 6.1 and earlier versions cross-refer-
ence information is kept if any of the functions that use it is kept. Now
the cross-reference information is cleared even if any of these functions
is kept, unless this keyword is non-nil.

:kill-dspec-table Keyword

Default value: (> *delivery-level* 0)

The dspec table is an internal table used for tracking redefinitions by
defadvice, trace and so on. If this keyword is non-nil it does an
implicit call to untrace, and previous uses of trace and defadvice are
discarded.

:license-info Keyword

Default value: nil
 59

5 Keywords to the Delivery Function

60
This keyword is obsolete. Was previously used to pass license informa-
tion for products on certain platforms.

:macro-packages-to-keep Keyword

Default value: nil

A list of package names. Symbols in these packages that have a macro
definition are not fmakunbound when the delivery process deletes mac-
ros from the image (when :keep-macros is nil). Note that if these sym-
bols are not referenced, they may be shaken anyway. When ::keep-
macros is nil, this keyword has no effect.

:make-instance-keyword-check Keyword

Default value: (if (delivery-value :keep-debug-mode) :default
nil)

This keyword is deprecated in favor of :clos-initarg-checking.

The value of the :make-instance-keyword-check keyword controls
whether make-instance checks its initargs in the delivered application,
and in LispWorks 6.1 this was extended to include checking in the other
CLOS initializations.

Note: :make-instance-argument-checking now does the same com-
prehensive checking as :clos-initarg-checking but is deprecated as
its name is no longer accurate. Please use :clos-initarg-checking
instead.

Affected by: :keep-debug-mode

:manifest-file Keyword

Default value: nil

Windows only. Overrides the default application manifest, which can
affect whether an executable application is themed.

If the value is a string it must name a file that is a legal application man-
ifest containing the "dependency" element for Microsoft.VC80.CRT. If
the value is the keyword :no-common-controls-6 a manifest without

5.2 Alphabetical list of deliver keywords
the element for common controls is used. If the value is nil, then the
LispWorks manifest is used.

See “Application Manifests” on page 86 for more information about
Windows application manifests in LispWorks applications.

:metaclasses-to-keep-effective-slots Keyword

Default value:

(when (member (delivery-value :keep-clos)
 ’(t :full-dynamic-definition))
 :all)

If the value is a list, the elements are metaclasses whose classes retain
their effective-slot-definitions. Value :all means all metaclasses.

:multiprocessing Keyword

Default value: nil

If set to t, starts multiprocessing with the delivery function (that is, the
first argument to deliver) running in a process created specially for it.

If set to :manual, allows multiprocessing to be started by the delivery
function, which should call mp:initialize-multiprocessing.

If set to nil, multiprocessing cannot be used in the delivered applica-
tion.

The value of this keyword argument is automatically t when :inter-
face is :capi, so you only need to supply it if CAPI is not being used.

:never-shake-packages Keyword

Default value: delivery::*never-shake-packages*

A list of package names that will not be shaken. These packages and all
their symbols are preserved.

:no-symbol-function-usage Keyword

Default value: (not (delivery-value :keep-debug-mode))
 61

5 Keywords to the Delivery Function

62
x86 platforms only: eliminates symbols that are used only for function
calls.

See “Debugging with :no-symbol-function-usage” on page 126 for infor-
mation about debugging an image where these symbols have been elim-
inated.

:numeric Keyword

Default value: t

Keep all numeric operations, unless overridden by :keep-complex-
numbers.

Compatibility Note: This keyword has an effect on all platforms in Lisp-
Works 5.0 and later. It has no effect in LispWorks 4.4 and previous on
Windows and Linux platforms.

:old-cpu-compatible Keyword

Default value: t

This keyword has an effect on x86 32-bit platforms only. It allows the
delivered image to run on old Pentium-compatible CPUs that do not
support SSE2 instructions.

LispWorks 6.0 and later on x86 platforms uses instructions that are part
of SSE2. All new CPUs have SSE2, but it may be required to run Lisp-
Works runtimes (that is, delivered images) on old machines without
SSE2. On these machines the SSE2 instructions are not implemented, and
cause exceptions.

When :old-cpu-compatible is non-nil, deliver creates a runtime with
a mechanism that checks for SSE2 on startup. If the run time machine
does not have SSE2, this mechanism then eliminates the SSE2 instruc-
tions. This mechanism allows the runtime to run on any Pentium-
compatible CPU.

The cost associated with this mechanism is negligible, so normally there
is no reason to change the default value of :old-cpu-compatible.

5.2 Alphabetical list of deliver keywords
:packages-to-keep Keyword

Default value: nil

This keyword takes a list of packages to be retained. All packages in the
list are kept in the delivered image, regardless of the values of the
:smash-packages and :delete-packages keywords.

If :packages-to-keep is :all, then the two variables above are set to
nil. See also “Coping with intern and find-symbol at run time” on page
117.

Note: Other keywords push packages onto the :packages-to-keep list.

Note: When you keep a package by :packages-to-keep, this does not
cause that package’s symbols to be kept. To retain symbols, see “Ensur-
ing that symbols are kept” on page 116.

:packages-to-keep-externals Keyword

Default value: nil

A list of packages that should retain their external symbols, even when
:shake-externals is t (the default). When :shake-externals is nil,
this keyword has no effect.

The externals of the setf package are always retained, regardless of the
value of :packages-to-keep-externals.

:packages-to-keep-symbol-names Keyword

Default value:

(if (or
 (delivery-value :keep-debug-mode)
 (< *delivery-level* 5))
 :all
 nil)

A list of packages that should keep their symbol names. The names of
symbols in these packages are not modified, irrespective of the value of
:symbol-names-action.

The value can also be :all, meaning all packages.
 63

5 Keywords to the Delivery Function

64
:packages-to-remove-conditions Keyword

Default value: nil

A list of packages whose conditions are removed (that is where the sym-
bol-package of the name of the condition is one of the packages). The
system automatically adds the internal packages to this list. Conditions
that are in these packages but are also in the :keep-conditions list or
its precedence list are kept. The defaults cause all the conditions that are
defined by the system and are not standard to be deleted. To keep all the
conditions, you should pass :keep-conditions :all (or :condition-
deletion-action nil). To eliminate all conditions, you should pass
:keep-conditions :none.

See “Deleting of condition classes” on page 109.

:packages-to-shake-externals Keyword

Default value: nil

A list of package names for which their external symbols should be
shaken when the value of :shake-externals is nil. When the value of
:shake-externals is t (the default), this keyword has no effect.

The externals of the keyword package are always shaken, regardless of
the value of :packages-to-shake-externals.

:post-delivery-function Keyword

Default value: nil

When non-nil, the value post-delivery-function should be a function
designator for a function of one argument:

post-delivery-function successp

The system calls post-delivery-function after delivery. successp is true if
delivery was successful and false otherwise.

Note: during the delivery process, the Lisp system can be in an unstable
state, so it is not always possible to recover when delivery is not success-
ful.

5.2 Alphabetical list of deliver keywords
:print-circle Keyword

Default value:

(or (= *delivery-level* 0)
 (delivery-value :interrogate-symbols))

When this is nil, the mechanism for printing circular structures is elimi-
nated.

:product-code Keyword

Default value: nil

SPARC Solaris only. Used to re-target the licensing requirements of the
delivery image to those of the delivered application. :product-code is a
fixnum supplied by Lisp Support. If the :product-code is :none, the
application will have no keyfile protection. You should not use the prod-
uct code :none without a prior arrangement with Lisp Support. If
:product-code is not supplied then the image is not re-targeted and
will require a “LispWorks Delivery” key to restart. Note that this should
not be a problem while developing an application.

:product-name Keyword

Default value: nil

In 32-bit LispWorks for SPARC Solaris only the value product-name is
used in keyfile error messages to identify a product whose key is incor-
rect. If it is not supplied then product-name defaults to "Anonymous
Application".

On Microsoft Windows only product-name has an entirely different inter-
pretation: it provides the name that is used in CAPI dialogs which have
no specific title or owner.

On other platforms, product-name is ignored.

:quit-when-no-windows Keyword

Default value: t
 65

5 Keywords to the Delivery Function

66
If t, then after the application has opened at least one CAPI window,
whenever the application is waiting for input, a routine is run to check
whether any of its CAPI windows are still open. If there are no open
windows, the application exits.

On Microsoft Windows, if the application is an automation server, the
checking routine also checks the server. If the application uses
com:automation-server-top-loop (maybe indirectly via com:auto-
mation-server-main), the checking routine does not cause exit until
com:automation-server-top-loop exits. Otherwise the checking rou-
tine does not cause exit as long as the server is used. After the server is
not used, the exit is further delayed by the exit-delay (default 5 second,
see documentation for com:automation-server-exit-delay).

The function set-quit-when-no-windows can be used to turn checking
on and off dynamically at run time regardless of the value of the :quit-
when-no-windows keyword.

Note: a multiprocessing LispWorks executable will stop multiprocessing
when there is no process other than the Idle Process. So if your applica-
tion simply displays a window, which is closed, then multiprocessing
will stop. This is independent of quit-when-no-windows.

:redefine-compiler-p Keyword

Default value: (>= *delivery-level* 1)

When this is true, the function compile is eliminated from the image.

Note: the function compile-file is always removed by delivery,
regardless of :redefine-compiler-p.

:registry-path Keyword

Path for storing user preferences.

On Microsoft Windows this is relative to HKEY_CURRENT_USER.

On Mac OS X, Linux and other Unix-like platforms this is relative to the
user’s home directory.

5.2 Alphabetical list of deliver keywords
Note: see “Delivery and CAPI” on page 106 for information on a possi-
ble problem with delivered applications that record window geometries
in the registry.

:remove-plist-indicators Keyword

Default value: nil

This keyword takes a list of plist indicators to be deleted.

:remove-setf-function-name Keyword

Default value: (not (delivery-value :keep-macros)

When t, the direct pointer from a symbol to its setf expansion is
removed. That means that macroexpansion of setf is not reliable any-
more. Normally, that is not a problem for the application.

:run-it Keyword

Default value: t

If this is t, the function argument to deliver is used as the application
startup function.

If this is nil, no application startup function is called when the deliv-
ered image is started up.

The image exits immediately upon startup when :run-it is nil. Any
:call-count report requested is still generated on exit.

This keyword can be useful if you want to look at the symbols in the
image (with the keyword :call-count) but cannot you actually run the
application — for example because the application links up to a data-
base, but the database has not been started up. In such cases, set it to
nil.

:shake-class-accessors Keyword

Default value:
 67

5 Keywords to the Delivery Function

68
(cond ((>= *delivery-level* 4) :remove)
 ((>= *delivery-level* 3) t)
 (t nil)))

This keyword controls whether class accessor functions are kept in their
slot-definition objects. Removing them allows unreferenced functions to
be deleted.

If it is nil it ensures all accessors are kept.

If it is non-nil, class accessors which are never referenced are deleted.

If it is :remove, all class accessor functions are removed from their slot
descriptions.

In general, accessors may be safely removed. However, if your applica-
tion needs to examine the slots of class instances, you need to retain
them.

:shake-class-direct-methods Keyword

Default value: (>= *delivery-level* 3)

This keyword controls whether class-direct methods are deleted.

Note: A method is not deleted if it specializes on a class that remains in
the delivered image.

:shake-classes Keyword

Default value: (>= *delivery-level* 2)

This keyword controls whether classes are shaken.

:shake-externals Keyword

Default value: t

If this is nil, all external symbols are preserved.

If this is non-nil, external symbols are also made eligible for garbage col-
lection when the treeshaker is invoked. See also :packages-to-shake-
externals.

5.2 Alphabetical list of deliver keywords
:shake-shake-shake Keyword

Default value: (>= *delivery-level* 2)

If this is non-nil, the treeshaker is invoked during delivery. The tree-
shaker attempts to get rid of unreferenced symbols from the delivered
image.

It uninterns every package’s internal symbols. (In the special case of the
KEYWORD package, it uninterns the external symbols.) A garbage collec-
tion is then carried out, after which any remaining symbols are re-
interned in the package from which they came. A similar procedure for
class definitions and methods discriminating on classes is also per-
formed.

If you require that certain internal symbols be kept, and know they will
not be kept because they are not referenced in the image, you can export
them explicitly. See :exports. Doing so prevents them from being
deleted.

External symbols are shaken by default.. See :shake-externals.

:smash-packages Keyword

Default value: nil

This keyword takes a list of packages that should be smashed during
delivery.

When a package is smashed, all of its symbols are uninterned, and the
package structure is deleted. Also, its function definitions, property lists,
classes, values, and structure definitions are deleted or set to nil.

See “Smashing packages” on page 114 for more details.

CAUTION: Smashing destroys a whole package and all information
within its symbols. You are advised to avoid using it if possible. A better
alternative, if you cannot deal individually with symbols, is :smash-
packages-symbols.

Affected by: :keep-clos, :packages-to-keep, :keep-debug-mode
 69

5 Keywords to the Delivery Function

70
:smash-packages-symbols Keyword

Default value: nil

Takes a list of packages as for :smash-packages but only the symbols in
each specified package are smashed. The package is left, making it easier
to see which symbols in the specified packages are pointed to by other
packages.

:split Keyword

Default value: nil

When true, causes the Lisp heap and the executable or dynamic library
to be saved in two separate files.

If split is nil (the default), then the saved image is written as a single file
containing the Lisp heap. If split is t, then the saved Lisp heap is split
into a separate file, named by adding .lwheap to the name (as specified
by the argument file). When the executable or dynamic library runs, it
reloads the Lisp heap from the .lwheap file automatically.

In addition, when saving LispWorks on the Macintosh as an application
bundle (for example by using create-macos-application-bundle) or
as a framework bundle, split can be the symbol :resources. This places
the Lisp heap file in the Resources directory of the bundle, which
allows the heap to be included in the bundle’s signature. For an applica-
tion bundle, the Resources directory is in the Contents directory along-
side the MacOS directory. For a framework bundle, the Resources
directory is alongside the shared library. The executable and Lisp heap
file must be in these directories within the bundle at run time.

The main use of split is to allow third-party code signing to be applied to
the executable or dynamic library, which is often not possible when sav-
ing an image with the Lisp heap included in a single file.

:startup-bitmap-file Keyword

Default value: nil

5.2 Alphabetical list of deliver keywords
A string naming a file containing an image to be displayed when the
application starts.

On Microsoft Windows, the image needs to be in Windows Bitmap for-
mat and must be Indexed Color rather than RGB color.

On Cocoa, GTK and Motif, the image can be in any format supported by
Graphics Ports, and the file will be read as if by gp:read-external-
image. See the "Working with images" section in the CAPI User Guide and
Reference Manual for details.

On Windows the user can dismiss the startup screen by clicking on it. It
can be dismissed programmatically by calling win32:dismiss-splash-
screen - see the LispWorks User Guide and Reference Manual for details.

The value nil means no bitmap is displayed.

:structure-packages-to-keep Keyword

Default value: nil

A list of packages. For symbols in these packages that have a structure
definition, delivery keeps all the information in this structure definition,
regardless of the value of :keep-structure-info.

:symbol-names-action Keyword

Default value: (>= *delivery-level* 5)

Defines what to with symbol names. When it is nil, or when :pack-
ages-to-keep-symbol-names is :all, all symbol names are kept.
When symbol-names-action is t, symbol names (except those which are
kept by :keep-symbol-names, :keep-keyword-names or :packages-
to-keep-symbol-names) are changed to the same string "Dummy Sym-
bol Name".

symbol-names-action is treated as nil unless the treeshaker is invoked
during delivery (see :shake-shake-shake).

Compatibility Note: in LispWorks 4.4 and previous on Windows and
Linux platforms, :symbol-names-action t shortens symbol names to a
 71

5 Keywords to the Delivery Function

72
three-character unique code. This has changed, as described above, in
LispWorks 5.0 and later.

Removing symbol names makes it very difficult to debug the applica-
tion, and it is assumed that it is done after the application is essentially
error free. However, some applications may make use of symbol names
as strings, which may cause errors to appear only when the symbol
names are removed. In some cases the easiest solution is to retain sym-
bol names. This will result in a larger executable, though the size
increase is usually small.

If you do want to remove symbol names and need to debug your appli-
cation, symbol-names-action takes these other values :spell-error,
:reverse, :invert and :plist. Note that these other values are only
useful when debugging an application which works with symbol-names-
action nil but not with symbol-names-action t. In other cases they simply
make debugging difficult to no advantage.

In the case of :spell-error (which is probably the most useful), the last
alphabetic characters in the first 6 characters of the symbol name are
rotated by one, that is, A becomes B, g becomes h, and Z becomes A.
This leaves the symbol names quite readable, but any function that relies
on symbol names fails. A more drastic effect is achieved by the value
:reverse, which reverses the symbol name. The value :invert just
changes the case of every alphabetic character to the other case. This is
more readable than :spell-error, but if the application relies on sym-
bol names but does not care about case, the errors do not appear. The
value :plist causes the symbol names to be set to the dummy name,
but the old string is being put on the plist of the symbol (get symbol
‘sys::real-symbol-name). A simple backtrace (obtained after
:error-handler :btrace) uses this property when it exists to get the
symbol name to display.

If the debugging shows that some symbols must retain their symbol
name for the application to work, this must be flagged to deliver by
either :keep-symbol-names or :packages-to-keep-symbol-names.

After debugging your delivered application using :spell-error,
:reverse, :invert or :plist, you may want the production build to be

5.2 Alphabetical list of deliver keywords
done with symbol-names-action t to remove symbol names and achieve a
small reduction in size.

Compatibility Note: in LispWorks 4.4 and previous on Windows and
Linux platforms, :symbol-names-action allows the value :dump. This
is no longer supported.

:symbols-to-keep-structure-info Keyword

Default value: nil

A list of symbols of which the structure information should be kept, in
addition to the symbols in the packages in :structure-packages-to-
keep.

:versioninfo Keyword

Default value: nil

Windows only. The keyword :default or a plist containing containing
version information to be placed in the delivered file.

If :versioninfo is nil, no version information is supplied. If :ver-
sioninfo is :default, then the version information in the :exe-file is
retained (by default, there is no version info). Otherwise :versioninfo
should be a plist of the following keywords. All strings should be in a
form suitable for presentation to the user. Some of the keywords dis-
cussed below are mandatory, and some are optional.

Mandatory keywords:

:binary-version :binary-file-version :binary-product-ver-

sion

You must specify either :binary-version or both
:binary-file-version and :binary-product-ver-
sion.

The file version relates to this file only; the product ver-
sion relates to the product of which this file forms a
part.
 73

5 Keywords to the Delivery Function

74
If :binary-version is specified, it is used as both the
file and product version.

The binary version numbers are 64-bit integers; conven-
tionally, this quantity is split into 16-bit subfields,
denoting, for example, major version, minor version
and build number. For example, version 1.10 build 15
might be denoted #x0001000A0000000F.

Note: There is no requirement to follow this conven-
tion; the only requirement is that later versions have
larger binary version values.

:version-string :file-version-string :product-version-

string

You must specify either :version-string or both
:file-version-string and :product-version-
string.

The file version relates to this file only; the product ver-
sion relates to the product of which this file forms a
part.

If :version-string is specified, it is used as both the
file and product version.

The version strings specify the file and product versions
as strings, suitable for presentation to the user. There
are no restrictions on the format.

:company-name The name of the company producing the product.

:product-name The name of the product of which this file forms a part.

:file-description

A (brief) description of this file.

Optional keywords:

:private-build

Indicates that this is a private build. The value should
be a string identifying the private build (for example,
who the build was produced for).

5.2 Alphabetical list of deliver keywords
:special-build

Indicates that this is a special build, and the file is a
variation of the normal build with the same version
number. The value should be a string identifying how
this build differs from the standard build.

:debugp A non-nil value indicates that this is a debugging ver-
sion.

:patchedp A non-nil value indicates that this file has been patched;
that is, it is not identical to the original version with the
same version number. It should normally be nil for
original files.

:prereleasep A non-nil value indicates that this is a prerelease ver-
sion.

:comments A string value, which allows additional comments to be
specified, in a form suitable to presentation to the user.

:original-filename

This specifies the filename (excluding drive and direc-
tory) of this file. Normally it is defaulted based on the
filename argument to deliver.

:internal-name

This the internal name of this file. Normally it is
defaulted to the value of :original-filename, with
the extension stripped.

:legal-copyright

A string containing copyright messages.

:legal-trademarks

A string containing trademark information.

:language The language for which this version of the file is
intended.
 75

5 Keywords to the Delivery Function

76
This can be either a numeric Windows language identi-
fier, or one of the keywords listed below. The default is
:us-english.

:arabic :bulgarian :catalan :traditional-chinese :czech :danish
:german :greek :us-english :castilian-spanish :finish :french
:hebrew :hungarian :icelandic :italian :japanese :korean :dutch
:norwegian-bokmal :polish :brazilian-portuguese :rhaeto-romanic
:romanian :russian :croatio-serbian-latin :slovak :albanian
:swedish :thai :turkish :urdu :bahasa :simplified-chinese :swiss-
german :uk-english :mexican-spanish :belgian-french :swiss-
italian :belgian-dutch :norwegian-nynorsk :portuguese :serbo-
croatian-cyrillic :canadian-french :swiss-french

:character-set

Specifies the character set to use. Acceptable values are
either the numeric ID of a character set, or one of key-
words listed below

:ascii :windows-japan :windows-korea :windows-taiwan :unicode
:windows-latin-2 :windows-cyrillic :windows-multilingual
:windows-greek :windows-turkish :windows-hebrew :windows-arabic

:additional-pairs

Allows adding arbitrary string-name/value pairs to the
main StringTable (Block in the resource definition) in
the StringFileInfo structure (StringFileInfo in the
resource definition).

The argument is a plist whose elements are all strings.
Each two strings constitute a string-name/value pair,
which are added to the main StringTable.

The string-name in a pair can be also one of the recog-
nized keywords.

Example:
:additional-pairs '("MIMEType"

 "application/basic-plugin")

:string-file-info

Adds a StringTable (block in the resource definition)
to the StringFileInfo structure.

5.2 Alphabetical list of deliver keywords
The argument has to be a plist. Each two items in the
list constitute a pair of string-name/value, which are
added to the block. The special keywords :language
and :character-set are exceptions: they specify the
"lang-charset" value of the block. They have the same
syntax as these keywords when they appear in the top
list.

To be useful, the plist must include either:character-
set or :language, because applications that read the
version info will normally expect one block for the lang-
charset combination.

:warn-on-missing-templates Keyword

 Default value: nil

Controls whether to warn about missing CLOS templates, which should
be pre-compiled. See “Finding the necessary templates” on page 100 for
details.
 77

5 Keywords to the Delivery Function

78

6

6 Delivery on Mac OS X
This chapter describes several issues relevant to delivery with LispWorks for
Macintosh.

6.1 Application bundles
deliver creates a single executable file. However graphical Macintosh appli-
cations consist of an application bundle, which is a folder Foo.app with sev-
eral subfolders containing the main executable and other resources.

LispWorks for Macintosh contains a function that constructs an application
bundle. You can use this such that your executable is delivered ready to run in
its application bundle in the usual Mac OS X way. See “Creating a Mac OS X
application bundle” on page 133 for an illustration of this.

6.2 Bad interaction with clean-up utilities
Utilities which attempt to "clean up" your Mac by removing unused parts of
an image can damage LispWorks itself and also LispWorks applications.

If you use such a utility on your LispWorks development machines, configure
it to ignore LispWorks.
79

6 Delivery on Mac OS X

80
If you distribute a LispWorks application, document that it may be damaged
by utilities which attempt to clean up a Mac by removing unused parts of an
image. To prevent this, such utilities should be configured to ignore the Lisp-
Works application.

As an example, CleanMyMac has an Ignore List which includes LispWorks by
default, but will not include your LispWorks runtime application until you
add it.

6.3 Cocoa and GTK+ images
LispWorks for Macintosh is supplied with two images. One supports the
Cocoa GUI, the other supports the GTK+ GUI (and can load the Motif GUI).
You cannot build a Cocoa application using the GTK+ LispWorks image, and
vice versa.

You should use the appropriate image to deliver your application.

For GTK+ and Motif applications delivered with LispWorks for Macintosh,
the issues described in Chapter 8, Delivery on Linux, FreeBSD, AIX, x86/x64
Solaris and Unix will be relevant.

6.4 Terminal windows and message logs

6.4.1 Controlling use of a terminal window

A graphical Macintosh application does not usually have a console/terminal
window.

You can achieve this by supplying the keyword argument console :input
when delivering your application.

6.4.2 Logging debugging messages

Output to *terminal-io* from an application without a console/terminal
window will not ordinarily be visible to the user, so debugging messages
should be written to a log file.

Log files are recommended for any complex application as they make it easier
for you to get information back from your users.

6.5 File associations for a Macintosh application
You can use dbg:log-bug-form for logging errors. See the LispWorks User
Guide and Reference Manual for details.

6.5 File associations for a Macintosh application
To create an association between your LispWorks for Macintosh application
and files with a specified type (file extension):

1. Create the appropriate entries for the file type in the
CFBundleDocumentTypes array within the Info.plist file of the delivered
application.

2. Define a subclass of capi:cocoa-default-application-interface
with a message-callback.

3. Implement the :open-file message in the message-callback function.

4. Set the application interface on startup.

Also see the examples mentioned in “Delivering a Cocoa CAPI application
examples” on page 146.

6.6 Editor emulation
If your application uses capi:editor-pane or its subclasses, your should
consider the input style. The editor in the delivered application can emulate
Emacs or Mac OS X style editing. The deliver keyword :editor-style con-
trols which emulation is used.

6.7 Standard Edit keyboard gestures
To implement the standard gestures Command+X, Command+C and Command+V
in your CAPI/Cocoa runtime application, you must include an Edit menu
explicitly in your capi:interface definition.

Note: The LispWorks IDE adds a minimal Edit menu to all CAPI interfaces
automatically, in order to make these standard gestures work in the Lisp-
Works IDE, but this does not persist after delivery.
 81

6 Delivery on Mac OS X

82
6.8 Quitting a CAPI/Cocoa application
The application menu’s quit callback (that is, the callback normally invoked
by Command+Q) should simply call capi:destroy with the application inter-
face and should not call lw:quit directly.

For an example see the Quit Multiple Window CAPI Application menu item in

(example-edit-file "capi/applications/cocoa-application")

6.9 Retaining Objective-C classes
If you implement an Objective-C class in Lisp but its name is not referenced at
run time, then you need to arrange for this symbol to be retained during deliv-
ery.

This can be achieved with :keep-symbols, but a more modular approach is to
keep the name on the plist of some other symbol. For example the internal
CAPI class lw-slider is defined like this:

(objc:define-objc-class lw-slider ()
 ()
 (:objc-class-name "LWSlider")
 (:objc-superclass-name "NSSlider"))

and lw-slider is retained like this:

(setf (get 'slider-representation 'owner-class)
 'lw-slider)

In this case, the code for slider-representation is the only thing that
makes the LWSlider object, so it is the best place to retain it (that is, only if
slider-representation is retained).

6.10 X11/Motif considerations
The default double-click (and triple-click) speed for X11 applications is 200ms,
whereas the default for Macintosh applications is typically 500ms.

To match this in your configuration, add a line

*.multiClickTime: 500

in the Xresources file.

6.11 Examples of delivering Cocoa applications
6.11 Examples of delivering Cocoa applications
Several self-contained examples in the LispWorks library illustrate delivering
a CAPI/Cocoa application, listed in Chapter 15, “Self-contained examples”:
 83

6 Delivery on Mac OS X

84

7

7 Delivery on Microsoft
Windows
This chapter describes several issues relevant to delivery with LispWorks for
Windows.

7.1 Run time library requirement
Applications that you build with LispWorks for Windows require the
Microsoft Visual Studio run time library msvcr80.dll, so you must ensure it
is available on target machines. It is part of Windows Vista and later version,
but for earlier Windows operating systems you should use the Microsoft
redistributable mentioned below.

At the time of writing, the redistributable vcredist_x86.exe for use with for
LispWorks (32-bit) applications is freely available at

http://www.microsoft.com/downloads/
details.aspx?familyid=32BC1BEE-A3F9-4C13-9C99-
220B62A191EE&displaylang=en

The redistributable vcredist_x64.exe for use with LispWorks (64-bit) appli-
cations is freely available at

http://www.microsoft.com/downloads/
details.aspx?FamilyID=90548130-4468-4bbc-9673-
d6acabd5d13b&DisplayLang=en
85

http://www.microsoft.com/downloads/details.aspx?familyid=32BC1BEE-A3F9-4C13-9C99-220B62A191EE&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=90548130-4468-4bbc-9673-d6acabd5d13b&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=90548130-4468-4bbc-9673-d6acabd5d13b&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=90548130-4468-4bbc-9673-d6acabd5d13b&DisplayLang=en

7 Delivery on Microsoft Windows

86
Run the redistributable from your application’s installer, or tell your users to
run it directly themselves before running your application.

7.2 Application Manifests
LispWorks for Windows is supplied with an embedded application manifest.
This default manifest tells the Operating System:

• which msvcr80.dll to use, and

• to use Common Controls 6

You can change the manifest in your delivered image by passing the keyword
argument :manifest-file to deliver. The value must be the name of a file
that is a legal application manifest, which is is used as the manifest. The mani-
fest must contain at least the "dependency" element for Microsoft.VC80.CRT
(without it, your application will fail to start with error messages "Failed to
find msvcr80.dll" or "The application configuration is incorrect"). If the mani-
fest does not contain the "dependency" element for Microsoft.Win-
dows.common-controls your application will use Common Controls 5, and
therefore will not be a "Themed" application.

The value of :manifest-file can also be the special value :no-common-con-
trols-6, in which case a default manifest without the element for Common
Controls is used.

The default manifests that LispWorks uses are provided by way of documen-
tation in the lib/7-1-0-0/config directory. If desired, you can base your
application manifests as supplied via :manifest-file on these files:

Note: the above only applies when LispWorks is an executable. If LispWorks
is a DLL, then it will be themed if the executable that loads it contains the
Common Controls 6 manifest

32-bit LispWorks 64-bit LispWorks

With Common Controls 6 winlisp32.manifest winlisp64.manifest

Without Common Controls 6 lisp32.manifest lisp64.manifest

Table 7.1 The default manifests used by LispWorks

7.3 DOS windows and message logs
7.3 DOS windows and message logs

7.3.1 Controlling use of a DOS window

A graphical Windows application does not usually have a console (or "DOS
window").

You can achieve this by supplying the keyword argument console :input
when delivering your application.

7.3.2 Logging debugging messages

Output to *terminal-io* from an application without a console will not
ordinarily be visible to the user, so debugging messages should be written to a
log file.

Log files are recommended for any complex application as they make it easier
for you to get information back from your users.

You can use dbg:log-bug-form for logging errors. See the LispWorks User
Guide and Reference Manual for details.

7.4 File associations for a Windows application
To create an association between your LispWorks for Windows application
and files with a specified type (file extension), create a DDE server in Lisp and
register the file types in Windows.

There is an example of this (for the LispWorks IDE) in

(example-edit-file "dde/lispworks-ide")

but the technique is the same for any file extension.

7.5 Editor emulation
If your application uses capi:editor-pane or its subclasses, your should
consider the input style. The editor in the delivered application can emulate
Emacs or Microsoft Windows style editing. The deliver keyword :editor-
style controls which emulation is used.
 87

7 Delivery on Microsoft Windows

88
7.6 ActiveX controls
If your library foo is a Windows ActiveX control (that is, it uses capi:ole-
control-component and capi:define-ole-control-component) you may
choose to specify file "foo.ocx" as the file argument to deliver. The file type
defaults to "dll".

The file extension does not alter functionality - the system simply loads the file
referenced in the Windows registry

7.7 Example of delivering a Service
This example in the LispWorks library illustrates delivering an application
that can be run as a Windows Service:

(example-edit-file "delivery/ntservice/README.txt")

8

8 Delivery on Linux, FreeBSD,
AIX, x86/x64 Solaris and
Unix
This chapter describes issues relevant to delivery with LispWorks for Linux,
LispWorks for FreeBSD, LispWorks for AIX, LispWorks for x86/x64 Solaris,
and LispWorks for Unix.

8.1 GTK+ considerations
The section describes issues relevant to delivery of CAPI applications running
on GTK+.

8.1.1 GTK+ libraries on the target machine

A suitable version of the GTK+ libraries must be installed on the target
machine for your CAPI/GTK application to run. The version requirements are
as for LispWorks itself, as mentioned in the LispWorks Release Notes and Instal-
lation Guide.

8.1.2 Fallback resources

If your CAPI/GTK application needs fallback resources then it should pass
the :application-class and :fallback-resources arguments when call-
ing capi:display and/or capi:convert-to-screen.
89

8 Delivery on Linux, FreeBSD, AIX, x86/x64 Solaris and Unix

90
See capi:convert-to-screen in the CAPI User Guide and Reference Manual
for a full description of these arguments.

You could use the LispWorks resources as a starting point when constructing
your application’s resources. You can see the LispWorks fallback resources
(these are for application class Lispworks) as described under "Using X
resources" in the CAPI User Guide and Reference Manual.

You can override the default resource name using the capi:element initarg
:widget-name or the accessor (setf capi:element-widget-name). There is
an example in

(example-edit-file "capi/elements/gtk-resources")

8.2 X11/Motif considerations
The section describes issues relevant to delivery of CAPI applications running
on X11/Motif.

Note that the X11/Motif GUI is deprecated on Linux, FreeBSD, x86/x64
Solaris, AIX and Mac OS X, because the alternative GTK+ GUI library is now
supported.

8.2.1 Loading Motif

On LispWorks platforms supporting pthreads, the supplied image contains
the GTK GUI only, and therefore GTK is the default graphical library for
applications. To build a Motif application on these platforms you need to
include

(require "capi-motif")

in your delivery script.

You may wish to consider building a GTK version of your application too.

8.2.2 Motif on the target machine

A suitable version of the OpenMotif library must be installed on the target
machine for your CAPI/Motif application to run. The version requirements

8.3 LispWorks executable corrupted
are as for LispWorks itself, as mentioned in the LispWorks Release Notes and
Installation Guide.

8.2.3 Fallback resources

If your CAPI/Motif application needs fallback resources then it should pass
the :application-class and :fallback-resources arguments when call-
ing capi:display and/or capi:convert-to-screen.

See capi:convert-to-screen in the CAPI User Guide and Reference Manual
for a full description of these arguments.

You could use the LispWorks resources as a starting point when constructing
your application’s resources. You can see the LispWorks fallback resources
(these are for application class Lispworks) as described under "Using X
resources" in the CAPI User Guide and Reference Manual.

You can override the default resource name using the capi:element initarg
:widget-name or the accessor (setf capi:element-widget-name).

8.2.4 X resource names use Lisp symbol names

The default color and other attributes for each CAPI pane on X11/Motif is
computed as an X resource using the symbol name of the pane's class.
Therefore obtaining the correct X resources depends on the application
containing these symbol names.

Symbol names are removed at delivery level 5, but you can retain specific
names in the delivered image by passing a list of the class names to deliver
as the value of the keyword argument :keep-symbol-names.

8.3 LispWorks executable corrupted
After an initially successful installation of LispWorks for Linux, the LispWorks
executable may appear to be corrupted:

$ lispworks-7-1-0-amd64-linux
Lisp executable apparently corrupted. (Truncated?) Cannot
restart.
 91

8 Delivery on Linux, FreeBSD, AIX, x86/x64 Solaris and Unix

92
The executable is reduced in size, typically to a few 10Kb. This problem,
which has been seen on various Linux machines, is caused by the prelink
cron job, which does not understand Lisp executables.

Another error message seen attempting to run a saved LispWorks executable
on Fedora 14 was

Reading LispWorks file lw-6-0-1: failed to find trailer, error -
101

To prevent this happening, add descriptions of your LispWorks executables to
the end of the file /etc/prelink.conf. For example, this will match the
default names:

-b lispworks-*-linux

Then the truncated LispWorks executables need to be reinstalled.

The LispWorks for Linux rpm installer writes a line in /etc/prelink.conf
which protects the released image. However this does not protect LispWorks
images or runtime executables that you have saved, because the name will dif-
fer. If you distribute LispWorks for Linux runtimes you should consider pro-
tecting them adding a suitable line in /etc/prelink.conf at installation
time.

8.4 Logging debugging messages
Log files are recommended for any complex application as they make it easier
for you to get information back from your users. The log should contain any
debugging messages, and can also contain information from your program.

You can use dbg:log-bug-form for logging errors. See the LispWorks User
Guide and Reference Manual for details.

8.5 Editor emulation
If your application uses capi:editor-pane or its subclasses, your should
consider the input style. The editor in the delivered application can emulate
Emacs or KDE/Gnome style editing. The deliver keyword :editor-style
controls which emulation is used.

8.6 Products supporting dynamic library delivery
8.6 Products supporting dynamic library delivery
You can deliver a dynamic library using LispWorks on Linux, FreeBSD and
x86/x64 Solaris.

However you cannot deliver a dynamic library using LispWorks (32-bit) for
SPARC Solaris.

During delivery of a dynamic library, LispWorks links a small C executable
that loads Lisp and also defines the exported foreign symbols. As a result,
when this is loaded it may have some dependency on the system libraries that
you have on the machine where you delivered it. That means that the deliv-
ered image may not work on older versions of the operating system. It is
therefore recommended that you deliver on the oldest version of the operating
system that you need to support.

On Linux, LispWorks requires specific versions of symbols in the C library
which reduces the chance of problems like this.

8.7 Run time licensing on SPARC Solaris
This section applies only to 32-bit LispWorks for SPARC Solaris.

8.7.1 Protection of the delivery product on SPARC Solaris

This section applies only to 32-bit LispWorks for SPARC Solaris.

When you start up LispWorks and call (require "delivery"), a check is
made that you are licensed to run LispWorks Delivery. If this check fails, the
require does not succeed.

8.7.2 Protection of the delivered image on SPARC Solaris

This section applies only to 32-bit LispWorks for SPARC Solaris.

In general, the delivered application is also protected by the keyfile and net-
work licensing mechanism. Unless action is taken to retarget the image, the
end-users of your application will require a LispWorks Delivery key (but no
other key).
 93

8 Delivery on Linux, FreeBSD, AIX, x86/x64 Solaris and Unix

94
To retarget the image means: substituting the image’s requirement for a Deliv-
ery key with the requirement for a run time key. This substitution is controlled
by the product code which Lisp Support will supply to your organization.
(See Reporting bugs in the LispWorks Release Notes and Installation Guide for
information on contacting Lisp Support.) You should use the same code to
retarget all of your products. You may wish to make your own security
arrangements in additions to those required by Lisp Support.

Unless you have made arrangements to the contrary, run time licenses will be
generated by the Lisp Support desk. Run time licenses will be issued only to
you (the application developer) and not to the end-user. We will need to know
the machine identifier of the host target machine in the usual way. Note that
undated run time keys are only transferable from one machine to another
upon payment of an administration charge.

All keys are specific to the major version of LispWorks for which they are
issued. The current release is LispWorks 7.1. If you re-issue your application to
your end-users and base it on a different major version of LispWorks, then all
existing keys will need replacement. This re-issue of keys for existing plat-
forms will not attract the above administration fee.

While you are working on the delivery of your application there is no need to
retarget it as you can run trial versions with your Delivery keys.

8.7.3 Unprotected runtime applications on SPARC Solaris

This section applies only to 32-bit LispWorks for SPARC Solaris.

It is possible to remove all keyfile protection from the delivered application by
specifying :product-code :none. If you do this, a check is made during the
delivery process to ensure that you have in addition to a LispWorks Delivery
key, a key for LispWorks Delivery PLUS. If you do not have this key then your
image will exit immediately when the check fails. Therefore you should only
specify :none as your product code if you have made a prior arrangement
with Lisp Support to do so.

You may wish to make your own security arrangements or you may choose to
leave the runtime image totally unprotected. Although an unprotected runt-
ime application will not require any keys (even for any layered products

8.7 Run time licensing on SPARC Solaris
which were loaded into it before delivery), it may still be subject to time-expi-
ration.

8.7.4 Expiration of unprotected runtime applications on SPARC Solaris

This section applies only to 32-bit LispWorks for SPARC Solaris.

Dated license keys used at delivery time when delivering an unprotected
runtime affect the expiration date of that delivered runtime image.

Specifically, if any of

• the license key used by the delivery image upon startup, or

• the keys used when loading layered products

are dated, then the earliest expiration date of all such keys will be hard-wired
into the runtime image. However, the LispWorks Delivery PLUS key itself
does not affect the expiration date.

When you obtain undated keys for LispWorks or any layered product, it is
therefore advisable to either delete or comment out any corresponding dated
keys from that keyfile.
 95

8 Delivery on Linux, FreeBSD, AIX, x86/x64 Solaris and Unix

96

9

9 Delivering for mobile
platforms
This chapter describes issues relevant to delivery with LispWorks for iOS
Runtime and LispWorks for Android Runtime.

Your app can include your own Lisp code, LispWorks modules such as
KnowledgeWorks, and third party Common Lisp libraries. However note that
CAPI is not supported on iOS or Android, therefore any GUI part of your app
will need to be written using the native API.

9.1 Delivery of iOS runtimes
To create an iOS app that uses LispWorks, you need a license for LispWorks
for iOS Runtime.

This section describes issues relevant to delivery of the LispWorks component
of an iOS app.

9.1.1 Compiler not available in iOS runtimes

LispWorks for iOS Runtime supports all of ANSI Common Lisp except for the
compiler. This is because it is not possible to create executable code on-the-fly
on iOS.
97

9 Delivering for mobile platforms

98
9.1.2 How to deliver an iOS runtime

You will need an Xcode project which includes any GUI part and links with a
iOS object file (a .o file) created with LispWorks. You create this LispWorks
runtime with a special LispWorks image which runs in the QEMU emulator on
Mac OS X, calling the function deliver. You can also build a runtime for the
iOS Simulator running on Mac OS X.

Follow the full instructions in the Chapter "iOS interface" in the LispWorks
User Guide and Reference Manual.

9.2 Delivery of Android runtimes
To create an Android app that uses LispWorks, you need a license for Lisp-
Works for Android Runtime.

This section describes issues relevant to delivery of the LispWorks component
of an Android app.

9.2.1 How to deliver an Android runtime

You will need an Android project written in Java, which includes any GUI
part and loads a LispWorks dynamic library runtime. You create the Lisp-
Works runtime with a special LispWorks image which runs on ARM architec-
ture, calling the function hcl:deliver-to-android-project (not
lw:deliver).

Follow the full instructions in the Chapter "Android interface" in the Lisp-
Works User Guide and Reference Manual.

10

10 Delivery and Internal
Systems
10.1 Delivery and CLOS
Most applications using CLOS can be delivered without difficulty. However,
there are a few potential exceptions to this rule. Code dynamically redefining
classes and methods, and with certain method combinations, needs some
extra work.

However, at delivery level 0 it is unlikely that you will need to do anything.

10.1.1 Applications defining classes or methods dynamically

Set the deliver keyword :keep-clos to t or :full-dynamic-definition to
keep the code needed for dynamic definition in the image.

At delivery level 0 the default value of :keep-clos is :full-dynamic-defi-
nition, so you will not need to do anything special.

10.1.2 Special dispatch functions and templates for them

The LispWorks CLOS implementation achieves fast method dispatch by pro-
ducing special functions to perform discrimination and method dispatch.
Since the required operation can often only be determined by seeing what
99

10 Delivery and Internal Systems

100
arguments a generic function is called with, these functions can often end up
being generated and compiled at run time.

If the compiler has been removed in a delivered application, then these special
run time-generated functions cannot be compiled on the fly.

There are two ways in which the delivery system deals with this problem.

The first is to have a set of pre-compiled "template" constructors which can
construct an appropriate function. LispWorks comes with extensive set of
such constructors, which should cover most of cases. The programmer can
add her own, as explained below.

The other mechanism is to construct generic closures to do the work. The code
that generates the closures can cope with:

1. A simple method combination, with the operator naming a function (or
generic function) -- not a macro or special form.

2. A more complicated method combination, constructing a form which
should effectively be a tree of progn , multiple-value-prog1 and
call-method forms.

In most cases the effect on method dispatch time of using the generic tech-
nique is negligible. Pathological cases might, however, cause a slowdown of
10-20% over compiled special functions. In this case, as well as for cases of
user-defined complex method combinations which the generic mechanism
cannot cope with, the delivered image must have precompiled "template" con-
structors, and if they are not already there the user needs to add them, as
described next.

10.1.2.1 Finding the necessary templates

Even though it cannot compile the functions at run time, delivery can generate
the forms for them. The necessary method combination templates can be
found by using the keyword :warn-on-missing-templates. This defaults to
nil. If this keyword is non-nil, a warning is issued whenever a missing tem-
plate is detected. The value of this keyword can be either a string or a path-
name, in which case it is a file to put the warning in, or t, in which case the
warning goes to *terminal-io*. The warning takes this form:

10.1 Delivery and CLOS
;*****

;>>> Add this combination to the template file <<<

(CLOS::PRE-COMPILE-COMBINED-METHODS

 ((1 COMMON-LISP:NIL) COMMON-LISP:NIL (CLOS::_CALL-METHOD_)))

; *****

You can take this template, place it in an ordinary lisp file, return to Lisp-
Works, and compile it. This compiled file should be loaded into the image
before delivery. See “Incorporating the templates into the application” on
page 101.

Most missing templates can be found statically, and if :warn-on-missing-
templates has been set, they are output at the time of saving the delivery
image. An attempt is made to find all missing templates. However, because
method combinations are dependent on the actual arguments to generic func-
tions, it is not always possible to find every missing template. The application
must be run to be sure of finding all the missing templates.

Note: Valid combinations may be generated or seen in warnings even if they
are never used. Delivery can only tell you what combinations the application
could potentially use.

10.1.2.2 Incorporating the templates into the application

A typical measure is to put all the templates generated into a file. You can add
new ones to it as you work through the delivery process. The templates must
be compiled and loaded into the application before delivery. To do this:

1. Collect into one template file all the method combination template forms
that have been output, so that it looks something like this:
 101

10 Delivery and Internal Systems

102
(CLOS::PRE-COMPILE-COMBINED-METHODS ((1 COMMON-LISP:NIL) COMMON-
LISP:NIL

 (COMMON-LISP:MULTIPLE-VALUE-PROG1 (CLOS::_CALL-METHOD_)

 (CLOS::_CALL-METHOD_)

 (CLOS::_CALL-METHOD_))))

(CLOS::DEFINE-PRE-TEMPLATES

 CLOS::DEMAND-CACHING-DCODE-MISS-FUNCTION (5 COMMON-LISP:NIL
(4)))

(CLOS::DEFINE-PRE-TEMPLATES

 CLOS::DEMAND-CACHING-DCODE-MISS-FUNCTION (6 COMMON-LISP:NIL
(4)))
...

No matter how many times the template form is printed, it only needs to
be included in the template file once.

2. In the LispWorks image, compile the template file.

3. Load the compiled template file into the image (along with the applica-
tion and library files) before delivery.

10.1.3 Delivery and the MOP

MOP programmers should note that, by default, the direct slots and direct
methods of all classes are emptied at delivery level 1 and above. To prevent
this, set the deliver keyword :keep-clos to t, :full-dynamic-defini-
tion or :meta-object-slots as required.

10.1.4 Compression of CLOS metaobjects

To reduce the size of the delivered image, the delivery process compresses the
representation of CLOS metaobjects (classes, generic functions and methods).
This includes:

1. nullifying the class direct slots of the class.

10.2 Delivery and the Lisp reader
2. Changing the effective slots to a function that is used in the initialization
of the instance. This is controlled by :metaclasses-to-keep-effec-
tive-slots and :classes-to-keep-effective-slots.

3. Compressing the representation of method objects. This is controlled by
:keep-clos. If :keep-clos is t, the representation of method objects is
not compressed. There is also no compression if you add a method to
method-qualifiers, method-specializers or method-function.

4. Compressing the representation of generic functions. This is not done if
:keep-clos is t, or if you add methods to any of the accessors of
generic functions.

10.1.5 Classes, methods, and delivery

See “Shaking the image” on page 28 for a discussion of how unused class def-
initions and methods are treated by delivery process.

10.1.6 Delivery and make-instance initarg checking

By default make-instance checks for valid initargs in LispWorks, signalling
an error on an invalid call. However, in a delivered application this behavior
may not be useful.

Initarg checking in the delivered application is controlled by the deliver key-
word :make-instance-keyword-check.

For more information about make-instance initarg checking, see the Lisp-
Works User Guide and Reference Manual.

10.2 Delivery and the Lisp reader
On non-Windows platforms, the API for accessing persistent settings and the
CAPI functionality for recording and retrieving window position and size val-
ues rely on the Lisp reader, which delivery can remove. Therefore if your
application uses lw:user-preference or capi:top-level-interface-
geometry-key you should ensure that the reader is retained, by supplying
:keep-lisp-reader t. See :keep-lisp-reader for more details.
 103

10 Delivery and Internal Systems

104
10.3 Editors for delivered applications
This section contains information on how to include the LispWorks editor in
your delivered applications and how to control its behavior.

10.3.1 Form parsing and delivery

If the delivered image is used to edit LISP code, the parsing of forms will still
not work properly. The deliver keyword :keep-editor can be used to keep
the code for parsing forms in the editor.

10.3.2 Emulation and delivery

The editor in the delivered application can emulate Emacs style, and
Microsoft Windows or Mac OS X style editing (depending on the platform).
The deliver keyword :editor-style controls which emulation is used.

10.3.3 Editor command groups

If any part of the editor is present in the image, every editor command that
has been loaded will be kept in the delivered image. Two deliver keywords
allow you to specify which commands to keep and which commands to
delete:

:editor-commands-to-keep (default nil)

:editor-commands-to-delete (default :all-groups)

The effect of these default values is that all the commands are deleted. If a
command is both these lists, it is kept.

To get rid of editor commands, use the keyword argument :editor-com-
mands-to-delete.

Deleting a command does not automatically delete the associated function.
For example, the function editor:do-something-command could be called by
the application even if the command "Do Something" has been deleted.

The function itself is only deleted if it is not referenced elsewhere in the appli-
cation or if it is removed explicitly. Therefore, an application which uses the
editor in a non-interactive or limited interactive manner can delete all or most

10.3 Editors for delivered applications
of the editor commands. Note also that key bindings associate key sequences
with commands and not functions, so if a command is deleted any sequences
bound to it will no longer work. For consistency, the delivery process removes
the bindings too.

The keyword :editor-commands-to-delete is processed in different ways
depending on the sort of value passed:

List value Process each element of the list. (Thus the list is tra-
versed recursively.)

String value The corresponding editor command is deleted.

Symbol value Taken to specify a Command Group.

The available Command Groups are:

:simple-editorThe simple editor contains basic mechanisms for edit-
ing text files, including regions, buffers and windows,
movement, insertion and removal commands, key
bindings, the echo area and extended commands (such
as Alt+X), file handling commands, filling and indent-
ing, and undo.

:full-editor The full editor has all the facilities of the simple editor,
and adds handling for Lisp forms, auto-save help and
other documentation commands searching, including
the system based search commands, tags support, and
support for interactive modes.

:extended-editor

The extended editor adds Lisp introspection to those
features: argument lists, evaluate, trace, walk-form,
symbol completion, dspecs, callers and callees, buffer
changes, and hooks into the inspector and class, generic
function, and system browsers.

:demand-loadedCommands present in the standard LispWorks image
only if they are demand loaded.

:tools Commands supporting tools which must be explicitly
loaded on top of the editor, for example the listener.
 105

10 Delivery and Internal Systems

106
:exclude Commands always deleted by the delivery process, for
example, compilation commands.

10.4 Delivery and CAPI
This section describes platform-independent issues in delivered applications
which use CAPI. See also Chapter 6, “Delivery on Mac OS X”, Chapter 7,
“Delivery on Microsoft Windows”, and Chapter 8, “Delivery on Linux,
FreeBSD, AIX, x86/x64 Solaris and Unix” for issues specific to each supported
windowing system.

See the CAPI User Guide and Reference Manual for details of the CAPI symbols
mentioned.

10.4.1 Interface geometry depends on Lisp symbol names

The function capi:top-level-interface-geometry-key depends on sym-
bol names and hence will break at delivery level 5 unless the relevant symbol
names are retained. Use the deliver keyword :keep-symbols to keep the
class name of your top level interface.

10.5 Error handling in delivered applications
The error handling facilities provided by the Common Lisp and LispWorks-
specific Condition System are available in runtimes delivered at level 0.

If you deliver at higher levels, then be aware that the full Condition System
will not be present by default in your application. If you choose not to retain
the full Condition System, you can make use of the more limited, but smaller,
error systems available with Delivery. It is useful to make the application han-
dle errors appropriately, because it is generally used by non-Lisp program-
mers, and it does not have the IDE so it is less easy to debug.

Simplified error handling is still possible in applications without the Condi-
tion System. They can only trap “conditions” of type ERROR or WARNING. If an
application signals any condition other than WARNING or SIMPLE-WARNING, the
condition is categorized as one of type ERROR, and therefore can be trapped.

10.5 Error handling in delivered applications
10.5.1 Making the application handle errors

There are two classes of error an application is likely to need to handle: errors
generated by the application, and errors generated by the Lisp system.

10.5.1.1 Handling errors generated by the application

Error conditions that can occur in your application domain can be handled
easily enough if you define your own error handling or validation functions to
trap them. For instance, you might ordinarily have the following code, which
manages an error condition and makes a call to error:

 (let ((res (call-something)))
 (when res
 (generate-error res))

(defun generate-error(res)
 (error 'application-error
 :error-number res))

You can easily define a version of generate-error that does all the work:

(defun generate-error (res)
 (let ((action
 (capi:prompt-with-list
 '(("Abort Operation" . abort)
 ("Retry Operation" . retry)
 ("Ignore Error")
 ("Quit" . stop-application)
 ("Do Something Else" . do-something-else))
 (find-error-string res)
 :print-function 'first
 :value-function 'rest)))
 (case action
 ((abort retry) (invoke-restart action))
 ((nil))
 (t (funcall action)))))

10.5.1.2 Handling errors generated by the Lisp system

Errors generated by the Lisp system, rather than the application domain, are a
little harder to deal with.
 107

10 Delivery and Internal Systems

108
Suppose your application performs an operation upon a file. The application
calls a system function to complete this operation, so when there is no error
system, any errors it generates must be caught by the application itself.

The best solution to this problem is to wrap an abort restart around the oper-
ation. For example:

(defun load-knowledge-base (name pathname)
 (restart-case
 (internal-load-knowledge-base name pathname)
 (abort ()
 (capi:display-message
 "Failed to load knowledge base ~a from file ~a"
 name (namestring pathname))
 nil)))

Another solution would be to use a handler, as in the example below:

(defun my-handler (type &rest args)
 (if (symbolp type)
 (apply 'capi:display-message
 "An error of type ~A occurred, args ~A"
 type args)
 (apply 'capi:display-message args)))

The disadvantage of this approach is that the message is unclear.

In general, the application should not cause Lisp errors. Because it is difficult
to ensure that these never happen, it is a good idea for the application to wrap
an error handler around all its code. For example:

(handler-bind ((error 'application-handler-error))
 (loop
 (catch 'application-error
 (setup-various-things)
 (do-various-things))))

 (defun application-handler-error (condition)
 (when *application-catch-errors*
 (progn (give-some-indication-of-error)
 (do-some-cleanup)
 (throw 'application-error nil))))

(when *application-catch-errors* is nil, this just returns and then the
debugger is invoked).

10.5 Error handling in delivered applications
In addition, the areas that are more prone to errors should be dealt with spe-
cifically. For example, file access is prone to error, so it should wrapped with
error handling.

10.5.1.3 Providing a fallback handler for uncaught errors

The variable cl:*debugger-hook* can be used to handle errors that are not
caught by other handlers.

See “Error handling in delivered applications” on page 14 for more informa-
tion about using this in a delivered application.

10.5.2 Deleting of condition classes

Condition types are classes like any other class, so may be shaken out. How-
ever the code may contain many references to condition types through error
calls that are never going to happen in the application. Therefore, there is a
special deletion action for conditions, which is controlled by the deliver key-
words :condition-deletion-action, :keep-conditions and :packages-
to-remove-conditions.

When a condition is deleted (that is when :condition-deletion-action is
:delete), trying to signal it returns a simple-error, which means that it got
the wrong type. On the other hand, it has all the information in the format-
arguments slot. If the conditions are redirected (that is, when :condition-
deletion-action is :redirect), a stricter type is returned, but some of the
information may be lost, because the condition that it redirects to has fewer
slots.

User defined conditions are kept, unless:

1. You add packages to :packages-to-remove-conditions

2. You set :keep-conditions to :none, in which case all the conditions are
eliminated, or :minimal, in which case all the user conditions are
deleted.
 109

10 Delivery and Internal Systems

110
10.6 Delivery and the FLI
This section describes particular issues relevant to a delivered image contain-
ing Foreign Language Interface (FLI) code.

10.6.1 Foreign Language Interface templates

The Foreign Language Interface requires compiled code (known as FLI tem-
plates) to convert between foreign objects and Lisp objects. Most of these FLI
templates are already available in the image, and most applications do not
need extra templates.

However it is difficult to know in advance exactly which FLI templates will be
needed. When a new template is actually required, it is compiled. In a deliv-
ered image where the compiler has been removed, this causes an error like
this:

FLI template needs to be compiled
(see 'Foreign Language Interface templates' in the LispWorks
Delivery User Guide):
 (FLI::DEFINE-PRECOMPILED-FOREIGN-OBJECT-SETTER-FUNCTIONS
((:FLOAT :SIZE 4)))

To solve this you need to find which templates your application uses that are
not already available, compile them, and load them before delivering.

To find which templates your application needs, do the following:

1. Start the undelivered application image (that is, LispWorks with your
application code loaded).

2. Call

 (FLI:START-COLLECTING-TEMPLATE-INFO)

3. Fully exercise the application. You must test thoroughly all the function-
ality of the application to ensure that any code that needs templates gets
run.

4. Call

 (FLI:PRINT-COLLECTED-TEMPLATE-INFO)

10.7 Modules
This prints all the templates that were generated while exercising your appli-
cation. These FLI template forms should be put in a file which is compiled and
loaded as part of your application. FLI:PRINT-COLLECTED-TEMPLATE-INFO
takes a keyword :OUTPUT-STREAM to make this easier, for example:

(with-open-file (stream "fli-templates.lisp" :direction :output)
(FLI:PRINT-COLLECTED-TEMPLATE-INFO

:OUTPUT-STREAM stream))

Once you have compiled the file containing the templates, it should be loaded
as part of your application.

10.6.2 Foreign callable names

In most cases foreign callable names are passed to deliver in the value of the
:dll-exports keyword argument, and each of these foreign callables will be
retained automatically in the delivered image.

However other foreign callables defined with a string foreign-name are liable to
be shaken from the delivered image. The best approach is to use a symbol to
name such foreign callables, as described under fli:define-foreign-call-
able in the LispWorks Foreign Language Interface User Guide and Reference Man-
ual.

10.7 Modules
Part of the system is implemented using load on demand modules that are
loaded automatically when a function is called. Most of these modules are
only useful during development, so are not needed in the application. How-
ever, in some cases the application may need some module.

You can obtain the list of loaded modules by entering

 :bug-form nil

in a Listener. This prints the list of loaded modules, along with much other
information.

To obtain a minimal list of modules, follow these steps:
 111

10 Delivery and Internal Systems

112
1. Start a fresh LispWorks image, making sure it does not load any irrele-
vant code (for example in your .lispworks init file):

C:\Program Files\LispWorks> lispworks-7-1-0-x86-win32.exe

-init -

2. Load the application and run it.

3. Exercise the application, to ensure that any entry points for load on
demand modules are called.

4. Enter :bug-form nil in a Listener. The list of loaded modules should
include only modules that your application needs.

Once you know a module is required in your application, you need to load it
before delivering, by calling require:

(require module-name)

Add the call to require to your delivery script.

Note: require is case-sensitive, and generally module-name is lowercase for
LispWorks modules.

10.8 Symbol, SYMBOL-NAME and package issues during
delivery
Symbols and packages usually have the most significant effect on the size of a
delivered application, so it is worth paying attention to them during delivery.

The basic principle of delivery is to garbage collect the image, freeing any-
thing the application does not refer to in order to make the image smaller. This
strategy works well enough for most objects, but not for symbols within pack-
ages: since all such symbols are referred to by their package, none of them can
be deleted.

You can overcome this problem in the following ways:

1. By shaking the image.

2. By deleting packages.

3. By smashing packages.

10.9 Throwing symbols and packages out of the appli-
cation
Deleting and smashing packages are not recommended. Deleting and smash-
ing are explained in the next section. They are both ways of removing symbols
from the application, one being more extreme than the other. You should note,
however, that it is possible to handle specific symbols individually. This is pre-
ferred.

By default, Delivery deletes all of the system’s packages, and smashes some of
them. This following section also explains how to prevent this when neces-
sary.

Delivery can remove symbol names. At level 5 by default it changes all sym-
bol names that are not explicitly retained to the same string "Dummy Symbol
Name". This makes it difficult to debug the application - for the recommended
approach see :symbol-names-action.

10.9 Throwing symbols and packages out of the application
This section discusses the circumstances in which you might want to throw
symbols and packages out of the application, by deleting or smashing them.

10.9.1 Deleting packages

When you delete a package, the following happens:

1. All the package’s symbols are uninterned.

2. The package name is deleted.

After the package is deleted, its symbols continue to exist, but because they
are no longer interned in a package they become eligible for collection at the
next garbage collection. They survive only if there are useful references to
them elsewhere in the application.

Note: Invoking the treeshaker has much the same effect on packages as delet-
ing them. However, by deleting a package you regain some extra space taken
up by hash tables.

10.9.2 How to delete packages

You can pass deliver a list of packages to delete with the keyword :delete-
packages.
 113

10 Delivery and Internal Systems

114
10.9.3 Smashing packages

When you smash a package, the following happens:

1. All the package’s symbols are uninterned.

2. The package structure is deleted.

3. Its symbols’ function definitions, property lists, classes, values, and
structure definitions are deleted or set to nil.

After the package is smashed, the symbols continue to exist, but all the infor-
mation they contained is gone. By being uninterned they become eligible for
garbage collection. Also, the chances of any objects they referred to being col-
lected are increased.

CAUTION: Smashing destroys a whole package and all information within
its symbols. Use it carefully.

Note: Any symbol whose home package is to be smashed can be retained by
being uninterned before delivery commences.

10.9.4 How to smash packages

You can pass deliver a list of packages to smash with the keyword :smash-
packages or :smash-packages-symbols.

10.9.5 When to delete and smash packages

Note: In general, you are advised against deleting or smashing packages
unless it is absolutely necessary. Always try to reduce the image size as much
as possible by treeshaking first.

If an application does one of the following things, packages are involved and
you must consider keeping them in the application:

1. Makes an explicit reference to a package by some of the package func-
tions, for example, intern, find-symbol and so on.

2. Uses the reader, with read or any of the other reader functions.

These functions make reference to a package (either *package* or one
given explicitly) whenever they read a symbol.

10.10 Keeping packages and symbols in the application
3. Printing a symbol with the format directive ~S.

The format function prints the symbol with a package prefix if the sym-
bol is part of a package.

4. Loading a file, whether compiled or interpreted.

5. Using the function symbol-package.

Fortunately, most applications are unlikely to do these things to more than a
small number of packages. You should, therefore, be able to delete most pack-
ages without breaking the application. When you know that none of the sym-
bols belonging to a package are used, you can go one step further and smash
it.

Smashing a package guarantees space savings where deleting it would not.
Even in a case where a symbol is referenced but unused, because it has been
smashed you still regain space taken up by objects hanging from slots for
function definition, value, property list and so on.

You do not usually gain much by smashing your own packages that you
would not gain by just deleting them — you are after all unlikely to have
included an entire package of symbols in your final application if you know it
is not going to use them. The real benefits of smashing can be seen when it is
performed on the system’s packages, some of which may be entirely irrelevant
to your application. In addition, you are unlikely to gain very much by delet-
ing a package that you would not gain by treeshaking. In general, you should
try to avoid either deleting or smashing packages explicitly.

However, if symbols in your packages are referenced through complex data
structures, making it difficult to track references down, smashing may still
prove useful.

10.10 Keeping packages and symbols in the application
This section explains how to keep packages and symbols in the application
when Delivery would otherwise remove them.
 115

10 Delivery and Internal Systems

116
10.10.1 Ensuring that packages are kept

Your application may rely upon certain system packages that Delivery deletes
or smashes by default.

You can protect these packages with :packages-to-keep. All packages in the
list passed with this keyword are kept in the delivered image, regardless of
the state of the :smash-packages and :delete-packages keywords. If you
pass :packages-to-keep :all, then the two variables are set to nil.

Note: COMMON-LISP is the package your application is most likely to rely on,
and it is also very large. Keeping it has a very noticeable effect on the size of
the application. However, if your application uses read or load, it invites the
possibility of reading arbitrary code, and so COMMON-LISP must be kept.

See also “Coping with intern and find-symbol at run time” on page 117.

10.10.2 Ensuring that symbols are kept

Internal symbols in packages you have kept may still be shaken out. If any
such symbol must be kept in the application, retain it by force in one of the fol-
lowing five ways:

1. With the :keep-symbols keyword.

This is the recommended solution in most circumstances. See :keep-
symbols.

2. With the :never-shake-packages keyword.

This solution is suitable when all the symbols to keep are in one
package, FOO-PKG say. Pass :never-shake-packages (list "FOO-
PKG"). See :never-shake-packages.

3. Use deliver-keep-symbols.

This is useful for symbols that are not explicitly referenced by Lisp (and
hence may be shaken out) but are still needed, for example symbols that
are called directly from Java.

4. Export the symbol from the package.

External symbols are always shaken during delivery.

10.11 Coping with intern and find-symbol at run time
You can override this behavior by passing :shake-externals nil to
deliver. See :shake-externals.

You can also specify :packages-to-shake-externals and :packages-
to-keep-externals.

5. Make explicit reference to the symbol with another object that you know
will not be deleted.

A reference from the object to the symbol ensures that the garbage col-
lector passes over it during delivery.

See also “Coping with intern and find-symbol at run time” on page 117.

Note: If you need to retain the names of the symbols if the symbols themselves
are not shaken out, use deliver-keep-symbol-names. This is useful when
the symbol name is used as long the symbol is used.

10.11 Coping with intern and find-symbol at run time
If you want to delete or smash a package, but discover that a symbol is created
in it at run time with intern, or found in it with intern or find-symbol, you
have two choices: either change the source to create or manipulate the symbol
in another package, or keep the package after all.

If you cannot or do not want to change the source, and the package is large,
you face the annoying prospect of having to keep a lot of code in the image for
the sake of one symbol created or manipulated at run time. Fortunately, there
are ways to get around this.

The method is to migrate the symbols by hand into new or smaller, “dummy”
packages. This is the only working method if at compile time you do not
know the names of the symbols to be saved.

Create a special package or packages for the symbols mentioned in these calls,
and delete the original packages. When this package is created (with
make-package or defpackage), it should use as few of the other packages in
the application as possible. Typically, :use nil suffices. For example:

(rename-package "XYZ" "XXX")
(push "XXX" *delete-packages*) ; discard pkg
(make-package "XYZ" :use nil) ; new pkg to reference
 117

10 Delivery and Internal Systems

118
This allows the real package XYZ to be deleted without breaking a call to
intern such as the following:

(intern "FISH" "XYZ")

10.12 Symbol-name comparison
In a non-delivered LispWorks image, the form

(eq (symbol-name 'foo) (symbol-name 'foo))

evaluates to t. This behavior is due to the way symbol names are cached.
There is no requirement or guarantee that the results of successive calls to
symbol-name be the same (eq) object.

After delivery, LispWorks symbol names are implemented differently such
that the eq test above fails. Take care that your application does not rely on
identity of symbol names.

Note: eq is not a reliable comparison of strings in general. Use equal for reli-
able string comparison.

11

11 Troubleshooting
This chapter provides solutions to common delivery problems.

11.1 Debugging errors in the delivery image
In general, it is worth avoiding debugging an image that has been delivered at
a high delivery level if possible. If you discover a bug:

1. First check if the same error occurs in the original (undelivered)
development image. If it does, debug the problem in this image.

2. If the error is not reproducible in the development image, check if it is
reproducible in an image delivered at a lower delivery level (try 0, then 1
etc). If it is, read the error message and backtrace carefully. In most cases,
this is enough to debug the problem.

3. Make sure you can see messages printed by the application (the run time
output), which may contain useful information. In the case of a graphical
application on Microsoft Windows or Macintosh these messages may
not normally be visible but can be captured by redirecting the run time
output to a file.
119

11 Troubleshooting

120
To redirect the run time output, run the application in a command shell.
This means a DOS command window (on Microsoft Windows), Termi-
nal.app (Mac OS X) or a shell (Unix/Linux etc). Enter the application
executable filename followed by > followed by the output filename, for
example,

on Windows:

C:\Program Files\MyApp> myapp.exe > C:\temp\myapp-output

on Macintosh:

mymac:/Applications/MyApp/MyApp.app/Contents/MacOS 2 % ./myapp >
/tmp/myapp-output

4. Consider the possibility that you are trying to use functionality that was
removed by delivery. You may need to keep the functionality explicitly,
by using one of the deliver keywords described in “Retaining or
removing functionality” on page 34.

5. If the problem occurs only in the delivered image and not in the original
image, and it is still not clear what the problem is, please contact Lisp
Support immediately. Send us your deliver script, all the output of the
delivery process and the run time output of the application itself. This
situation is regarded by Lisp Support as a bug that should be fixed.

11.2 Problems with undefined functions or variables
A function or variable can be undefined for any of the following reasons:

1. It was never defined.

Check the image to see if it was defined before calling deliver again.

2. It belongs to a package that was smashed.

Check whether its package is in the list of smashed packages printed by
deliver. Use symbol-package identify its home package.

3. It was interned in the wrong package.

This would probably be because its real package was deleted. Check if
the symbol that was called is one that was interned after delivering the
image — that is, while the application was running.

11.3 Problems with READ
4. It has been deleted explicitly.

For example, load, complex number functions, and so on. Check in
Chapter 5 that there is no Delivery keyword with a default setting that
throws it out.

5. It is an internal symbol and was shaken out.

If a symbol that is printed is uninterned and you cannot work out its
home package from its name, try using find-all-symbols or apropos
in the image after loading the application, but before the call to deliver,
to find the possible symbols.

6. It belongs to a load-on-demand module. See Section 10.7 on page 111.

See “Symbol, SYMBOL-NAME and package issues during delivery” on page
112 for the explanation and suggestions in cases 2, 3 and 5 above.

11.3 Problems with READ
A run time error:

Error: Attempt to invoke function READ on arguments...

occurs when the application uses the Lisp reader but delivery has removed
that functionality.

The solution is to retain the Lisp reader, by the delivery keyword :keep-
lisp-reader.

If your application does not use the reader directly, the error may be due to a
LispWorks function using it. Please see “Delivery and the Lisp reader” on
page 103 for more information.

11.4 Failure to find a class
This situation can be resolved by much the same procedure as that described
in “Problems with undefined functions or variables” on page 120.
 121

11 Troubleshooting

122
11.5 REQUIRE was called after delivery time with module ...
This error message means that a loadable module was omitted from the
application build, and the program now tries and fails to load that module.
The solution is described in “Modules” on page 111.

11.6 Failed to reserve... error in compacted image
Loading a compacted LispWorks (32-bit) for Windows DLL might result in an
error message like this:

Failed to reserve 14024705 bytes of memory (preferred address
0x20000000)
Error 487: Attempt to access invalid address.

LispWorks normally relocates its heap if the default address 0x20000000 is
already in use (for example, by another DLL) but this is not possible if the
DLL is compacted.

The solution is to build a non-compacted DLL:

(deliver nil "foo" 5 :dll-exports '("Foo") :compact nil)

11.7 Memory clashes with other software
LispWorks executables and dynamic libraries have a default startup location
which may clash with other software already mapped at that location. Also, a
LispWorks image may grow up to an address where other software is already
mapped. Where possible LispWorks attempts to avoid such clashes automati-
cally.

If LispWorks fails to use other memory as it grows, the effect will be to limit
the size of the Lisp heap, possibly leading to messages

failed to enlarge memory

at the console. On some platforms LispWorks can fail to detect a clash safely,
which will lead to unpredictable behavior if it overwrites other code.

The behavior is specific to the particular platform and LispWorks implemen-
tation. There is a discussion of these issues (with the platform-specific details)

11.8 Possible explanations for a frozen image
and a description of how you can avoid memory clashes under "Startup relo-
cation" in the LispWorks User Guide and Reference Manual.

11.8 Possible explanations for a frozen image
The image may die or hang up without issuing any useful message, either at
run time or possibly during delivery. Some possible remedies follow:

• Deliver the application at a lower delivery level.

If things work after this, try the same level, but override the changed
keywords one by one.

• Retain more packages, with the keyword :packages-to-keep

For example:

(deliver 'application-entry
 "application"
 5
 :packages-to-keep '("LISPWORKS"))

The COMMON-LISP package normally should not be deleted or smashed,
so it is unlikely to cause problems , but LISPWORKS and the packages
defined in the application itself are worth investigating.

If this gets the image working again, try to discover why the package is
required and see if you can eliminate this requirement. See “Symbol,
SYMBOL-NAME and package issues during delivery” on page 112 for
more information on keeping and throwing away packages.

11.9 Errors when finalizing classes
If an error occurs when finalizing a class, it usually means that a superclass is
missing.

11.10 Warnings about combinations and templates
Warning messages such as the following:
 123

11 Troubleshooting

124
;*****
;>>> Add this combination to the template file <<<
(PRE-COMPILE-COMBINED-METHODS
 ((1 NIL) NIL (_CALL-METHOD_))) ;

occur when a method combination required by a particular function call is not
available. You can eliminate these warnings either by compiling the method
combination template forms output in the message and loading them into the
image before delivery, or by using the keyword :warn-on-missing-tem-
plates. See “Finding the necessary templates” on page 100 and “Incorporat-
ing the templates into the application” on page 101.

11.11 Valid type specifier errors
You may occasionally see an error of the form “symbol is not a valid type spec-
ifier”. This usually means that a class named symbol is missing.

11.12 Stack frames with the name NIL in simple backtraces
Such frames probably correspond to methods. Use the deliver keyword
:keep-function-name to get the names back.

11.13 Blank or obscure lines in simple backtraces
These are usually stack frames named by the empty string. The keyword
:packages-to-keep-symbol-names, page 63 may fix this. This technique
can also be used on any symbol which prints as #:||.

11.14 Nil is not of type hash-table errors
This error is typically caused by evaluating special forms when the deliver
keyword :keep-macros has been set to nil.

Beware of this when interacting with the debugger at delivery levels 2 and
higher. The absence of the special forms quote and function can cause diffi-
culty. You may find the functions find-symbol, symbol-function and
funcall useful here. It may also help to keep the COMMON-LISP package (and

11.15 FLI template needs to be compiled
perhaps also the SYSTEM package), or specific symbols (with the :keep-
symbols keyword).

11.15 FLI template needs to be compiled
An error starting with

"FLI template needs to be compiled"

is probably a result of missing Foreign Language Interface templates. See
“Foreign Language Interface templates” on page 110 for instructions.

11.16 Failure to lookup X resources
X resource names use Lisp symbol names in CAPI/Motif, which might be
removed from the delivered image. This issue and the solution is described on
page 91.

11.17 Reducing the size of the delivered application
If your application does not contain very large data structures, the greatest
factor in its size when delivered is usually the number of symbols left in it.

This is because function definitions (which are large) are usually associated
with symbols. Only when these symbols are deleted can the associated func-
tion definitions be deleted. Until that happens, the garbage collector passes
over them during delivery.

You should look for symbols that are left in the image, which do not need to
be there. You can do this by starting the delivered image in level 4 (or with
:keep-debug-mode) with the argument -listener. The image starts by inter-
acting with the user. You can then check which packages and symbols are left.

list-all-packages is one function you can use. Using the :call-count
keyword is another possibility.
 125

11 Troubleshooting

126
11.18 Symbol names changed to "Dummy Symbol Name"
Delivery can remove symbol names, changing them to the same string "Dummy
Symbol Name". This makes it difficult to debug the application - for the rec-
ommended approach see :symbol-names-action.

11.19 Debugging with :no-symbol-function-usage
When no-symbol-function-usage is true while delivering an image "foo" on x86
platforms, delivery writes a file named "foo.zaps" (the "zaps file") contain-
ing debug information about the symbols that were eliminated.

If an error occurs in the delivered image, the backtrace will contain a line of
the form.

("SYMBOL-FUNCTION-VECTOR" nnn)

where nnn is an integer. The actual function name can be recovered from the
zaps file by doing this in the LispWorks development image:

(require "delivery")
(dv::recover-zapped-symbol-from-file "foo.zaps" nnn)

The numbers are unique to each image, so take care to use the zaps file that
was produced at the same time as the delivered image.

11.20 Interrogate-Symbols
interrogate-symbols is designed to find why symbols are left in the image
even though they should not be. Since keeping information in the image
would itself keep symbols, the facility has as little functionality as possible.
The result is a non-intuitive interface, and you should be ready for this. You
are encouraged to try other methods first. In particular, you might consider
contacting Lisp Support first.

To use interrogate-symbols pass :interrogate-symbols t to deliver.
This loads the interrogate symbol facility. and causes the delivered image to
check for the command line argument -interrogate-symbols on startup. If
this command line argument appears, the image first does symbol interroga-
tion, and then proceeds to run the application as normal.

11.20 Interrogate-Symbols
Symbol interrogation starts by building an internal table of reverse pointers,
during which the image prints some messages about its progress. When it fin-
ishes, it prompts:

Enter Symbol >

The input is read one line at a time. Each line is interpreted as a single string,
where SYMBOLNAME and PACKAGENAME contain no colons and the line does not
begin with a plus sign unless specified. The string can take one of five formats.
If the string is of the format:

1. SYMBOLNAME

then it is a symbol name. The string is used as the argument to find-
symbol (in the current package).

Note the string is used as-is, so it must not contain escape characters or
leading or trailing spaces, and must be in the right case. For example, the
symbol that is printed

SETF::\"USER\"\ \"WHATEVER\"

must be entered:

SETF::"USER" "WHATEVER"

[omitting the escape characters #\\] and to find the symbol CAR, you
must enter CAR, and not car. #\: characters after the first one (or the
first pair) are taken as part of the symbol.

If the symbol is found, the image prints a list, when the first element is
the symbol, the second element is a list of interesting symbols that point
to that symbol (possibly through uninteresting symbols), and the third
element is a list of symbols that point to the symbol directly. A symbol B
points to symbol B directly when there is a chain of pointers from A to B
which does not go via another symbol.

An interesting symbol is a symbol in another package, or a symbol from
the same package which is pointed to by a symbol from another pack-
age. The idea is that the interesting symbols are the symbols that are
most likely to be worth further investigation.

Both the second and the third element may be the symbol :MANY rather
than a list, if there are more the sys::*maximum-interrogate-return*
(default value 30) of them.
 127

11 Troubleshooting

128
2. PACKAGENAME:SYMBOLNAME or
PACKAGENAME::SYMBOLNAME

then it is a package name followed by a symbol name. The characters up
to the first colon are used to search for the package. The characters after
the last colon comprise a symbol name. Like in 1. above, both the pack-
age name and the symbol name must exactly match the actual package
and symbol name. The output is the same as in 1.

3. +SYMBOLNAME or
+PACKAGENAME:SYMBOLNAME or
+PACKAGENAME::SYMBOLNAME

then the package and/or symbol is determined from the rest of the
string as in 1. or 2. However, instead of looking for symbols that point to
it, the image builds a tree of reversed pointers starting from the symbol,
going to depth sys::*check-symbol-depth*. In the tree, the car is an
object and the cdr is a list of pointers to it. Each pointer may be a single
object (if it has reached the depth limit, or found an object that is already
in the tree), or a recursive tree. The tree may be quite extensive.

4. PACKAGENAME:

than the line specifies a package name. If the string does not start with a
#\+, the image prints each symbol from other packages that point (as
defined in 1.) to symbols in the package, followed by a list of the sym-
bols in the package that it points to. To construct this list it has to check
the reverse pointers from all the symbols in the package, which may take
a long time if the package contains many symbols.

This option is especially useful in conjunction with the :smash-pack-
ages-symbols keyword to deliver, to find why a package that should
have gone remains in the image.

5. +PACKAGENAME:

then the rest of the string is treated as a package name as in 4., but the
image prints the same information that 1. prints, but for each symbol in
the package.

12

12 Interface to the Delivery
Process
12.1 Interface to the delivery process
For details of the functions delivery-value, deliver-keywords, delivery-
shaker-cleanup and delivery-shaker-weak-pointer which allow you
fine-grained control during the delivery process, if required, see Chapter 16,
“Delivery Reference Entries”.

The function hcl:delivered-image-p is the predicate for whether the running
image is a delivered image, that is an image saved by a call to deliver.

The action list "Delivery actions" is executed when the delivery process starts,
before any system action. For example, if *my-hash-table* contains entries
that are not required in the delivered application, then you may write:

(defun clear-my-hash-table()
 (maphash #'(lambda (x y)
 (unless (required-in-the-application-p x y)
 (remhash x *my-hash-table*)))
 my-hash-table))

(define-action "delivery actions" "Clear my hash table"
 'clear-my-hash-table)

Using the action list has two advantages (over the crude method of removing
code by fmakunbound and so on):
129

12 Interface to the Delivery Process

130
1. It does not have to be part of the deliver script, so it can be written near
the code that uses *my-hash-table*. This makes it easier to maintain
that code.

2. It can access the user interface of the delivery process via the accessor
delivery-value.

13

13 Example: Delivering CAPI
Othello
This short example demonstrates how to deliver a small graphical application:
an implementation of the board game Othello, with the graphical portion of it
written using the CAPI library.

You can see the code for this application by evaluating the following form:

(example-edit-file "capi/applications/othello")

13.1 Preparing for delivery
With our ready-written application we can move straight to delivery. But first,
try the application out in an ordinary image so that you can see what it does.

To do this:

1. Create a directory called othello and copy the example file into it.

2. Start up LispWorks and its environment.

3. Compile and load the example file.

CL-USER 1 > (compile-file "othello.lisp" :load t)
[compilation messages elided]

4. Start up the application with the following form:

CL-USER 2 > (play-othello)
131

13 Example: Delivering CAPI Othello

132
5. Play Othello!

Once you are familiar with this implementation of Othello, you can move on
to delivery preparations.

13.1.1 Writing a delivery script

The next task is to create a delivery script. This is a Lisp file that, when loaded
into the image, loads your compiled application code into the image, then
calls the delivery function deliver to produce a standalone image.

The first delivery should be at delivery level 0. A successful delivery at this
level proves that the code is suitable for delivery as a standalone application.
After assuring yourself of this, you can look into removing code from the
image to make it smaller.

If the delivered image is small enough for your purposes, there is no need to
pursue a smaller image. An application delivered at level 0 contains a lot more
in the way of debugging information and aids, and so is in some ways prefer-
able to a leaner image.

The startup function in the Othello game is cl-user::play-othello. The ini-
tial delivery script therefore looks like this:

(in-package "CL-USER")
(load-all-patches)
;; Load the compiled file othello. Should be in the same
;; directory as this script.
(load (current-pathname "othello" nil))
;; Now deliver the application itself to create the image othello
(deliver 'play-othello "othello" 0 :interface :capi)

Save this script in the newly created othello directory as script.lisp.

Note: Alternatively you can create a delivery script using the Application
Builder tool in the LispWorks IDE. The Application Builder is a windowing
interface offering another way to performs the steps described the following
sections. For full instructions on using the Application Builder tool, see the
LispWorks IDE User Guide.

The remainder of this section shows you how to complete delivery of the oth-
ello application using a command shell.

13.2 Delivering a standalone image
13.2 Delivering a standalone image
We now have a delivery script, enabling us to deliver the application as conve-
niently as possible. We can now try to deliver a simple, standalone image
(with the delivery script having been set up to deliver at delivery level 0) to
verify that the application can function standalone, before trying to make it
smaller.

1. Run the image with the script like this:

lispworks-7-1-0 -build script.lisp

See “Delivering the program” on page 10 for details of how to run the
image with a script on your platform. The LispWorks image name will
differ from the above according to the platform.

The script runs for a while, and as delivery proceeds a number of mes-
sages are printed. When it is finished, the image exits and there is an exe-
cutable file called othello.exe in your current working folder on
Microsoft Windows, and othello in your working directory on Mac OS
X, Linux and other Unix-like platforms.

2. Execute the othello file.

This should be a working, standalone Othello game.

Note: On Mac OS X/Cocoa you will also need to create an application
bundle to run GUI applications properly. See “Creating a Mac OS X
application bundle” on page 133 for details.

See “Delivering a standalone application executable” on page 19 for a more
detailed discussion of this part of the delivery process.

13.3 Creating a Mac OS X application bundle
The section applies only to LispWorks for Macintosh with the native Cocoa
GUI.

You should not simply run a Mac OS X/Cocoa GUI application from the com-
mand line in Terminal.app. Instead you should put the image in a suitable
Application Bundle and run it using the Finder. The example delivery scripts
in this manual create the Application Bundle before writing the executable.
 133

13 Example: Delivering CAPI Othello

134
The function hcl:create-macos-application-bundle does several things
to construct a suitable Mac OS X application bundle for your delivered image.
It:

• creates the folders comprising an Application Bundle

• adds the resources from a supplied template bundle (or LispWorks
(32-bit).app or LispWorks (64-bit).app) to the Application Bun-
dle

• writes a suitable Info.plist file in the Application Bundle

• returns the path of the executable within the Application Bundle

Note: You must supply identifier to provide CFBundleIdentifier when creating
a bundle for your own application.

13.3.1 Example application bundle delivery script

Note how this script calls deliver with the executable path returned by
hcl:create-macos-application-bundle:

(in-package "CL-USER")
(load-all-patches)
;; Compile and load othello example code
(compile-file (example-file "capi/applications/othello")
 :output-file :temp
 :load t)
;; Create Othello.app and deliver the executable inside it
(deliver 'play-othello
 #+:cocoa
 (create-macos-application-bundle
 "~/Desktop/Othello.app"
 ;; Do not copy file associations...
 :document-types nil
 ;; ...or CFBundleIdentifier from the LispWorks bundle
 :identifier "com.example.Othello"
)
 #-:cocoa "~/othello" 0 :interface :capi)

In the session below script.lisp is in the user’s home directory. Here is the
start and end of the session output in Terminal.app:

13.3 Creating a Mac OS X application bundle
mymac:/Applications/LispWorks 7.1 (32-bit)/LispWorks (32-
bit).app/Contents/MacOS % ./lispworks-7-1-0-x86-darwin -build ~/
script.lisp
; Loading text file /Applications/LispWorks 7.1 (32-bit)/Library/
lib/7-1-0-0/private-patches/load.lisp
LispWorks(R): The Common Lisp Programming Environment
Copyright (C) 1987-2017 LispWorks Ltd. All rights reserved.
Version 7.1.0
Saved by LispWorks as lispworks-7-1-0-x86-darwin, at 28 Jun 2014
15:05
User dubya on mymac.cam.lispworks.com
; Loading text file /Users/dubya/script.lisp
; Loading text file /Applications/LispWorks 7.1 (32-bit)/
Library/lib/7-1-0-0/private-patches/load.lisp
;;; Compiling file /Applications/LispWorks 7.1 (32-bit)/Library/
lib/7-1-0-0/examples/capi/applications/othello ...
;;; Safety = 3, Speed = 1, Space = 1, Float = 1, Interruptible = 1

[... full compilation and delivery output not shown...]

Shaking stage : Saving image
Build saving image: /Users/dubya/Desktop/Othello.app/Contents/
MacOS/Othello
Build saved image: /Users/dubya/Desktop/Othello.app/Contents/
MacOS/Othello

Delivery successful - /Users/dubya/Desktop/Othello.app/Contents/
MacOS/Othello

The last line of the deliver output shows the full path to the executable, but
you should run the application bundle Othello.app via the Finder.

13.3.2 Alternative application bundle creation code

Your LispWorks Library contains example code which constructs a Mac OS X
application bundle. It defines write-macos-application-bundle which is
similar to hcl:create-macos-application-bundle.

LispWorks 5.1 and earlier versions relied on this example code to create Mac
OS X application bundles and you may still wish to use it, or a modified ver-
sion of it, if hcl:create-macos-application-bundle does not meet your
needs. Load the example file in your delivery script, before calling deliver,
like this:
 135

13 Example: Delivering CAPI Othello

136
#+:cocoa
(compile-file
 (example-file "configuration/macos-application-bundle")
 :output-file :temp
 :load t)

There is another example, which is actually a save-image script (rather than
deliver), in

(example-file "configuration/save-macos-application.lisp")

13.3.3 Further Mac OS X delivery examples

These can be found in your LispWorks library directory:

(example-edit-file "delivery/macos/")

13.4 Command line applications
If you need to deliver a non-GUI application for Mac OS X, change the deliv-
ery script to remove the code (conditionalized in the examples under
#+cocoa) that constructs the Application Bundle.

On all platforms, delivering a non-GUI application will not need the :inter-
face :capi keyword argument.

Your delivery script to build a command line application will look something
like this:

(in-package "CL-USER")
(load-all-patches)
(load "non-gui-code")
(deliver 'dont-start-the-gui
 "non-gui-app"
 5
 :comsole t)

13.5 Making a smaller delivered image
Having delivered a standalone image successfully, we can look into delivering
a smaller one. To do this we adjust the parameters passed to deliver in the
delivery script. The typical approach is to experiment with parameters until

13.5 Making a smaller delivered image
you find a set that produces the smallest possible working image from your
application.

There are many ways to make the image smaller, but the simplest is to
increase the delivery level specified to the deliver function. See “How to
deliver a smaller and faster application” on page 26 for more details.

13.5.1 Increasing the delivery level

Applications that do not use any of Common Lisp’s more dynamic features
(creating classes at run time, evaluating arbitrary code) can usually be deliv-
ered all the way up to the maximum level of 5 without breaking. Our Othello
game is one such application.

Try re-delivering the Othello game at different levels. Do this by editing your
delivery script, changing the third argument to deliver to a number between
0 and 5 inclusive.
 137

13 Example: Delivering CAPI Othello

138

14

14 Efficiency considerations
when coding for delivery
This chapter explains some efficiency considerations you might make when
coding your application.

14.1 Use of modules
Can you avoid using a large module and still get the functionality you need?
Modules are saved in the image, and even after Delivery has gone through
them to throw things out, they may still have a noticeable effect on the size of
the delivered image. The fewer modules you use, the smaller the delivered
size of your application.

Note: Some modules are built on top of others. If you load such a module into
the image the others are loaded too. Pay close attention to these “hidden” con-
tributions to image size by following the loader messages in the Listener.

14.2 Loading code at run time
You may retain the loader in a delivered application, and use it to load com-
piled code or any of the supplied modules at run time. This is useful if your
application’s users need to load their own code into it.

However, we do not recommend using this as a means of deferring the addi-
tion of module code to your image. It is far better to deliver your application
139

14 Efficiency considerations when coding for delivery

140
with all the modules it needs. The first benefit is that the module itself is deliv-
ered — if you load it at run time you cannot do this. Second, you avoid slow-
ing your application to a halt while it loads the module. Finally, if you leave
the option open of loading arbitrary code into the image, you may need to
keep the entire COMMON-LISP package, which adds greatly to the size of the
delivered image.

14.3 General strategy for reducing the image size
In many cases, the size of the image can be reduced if part of the user code or
data is eliminated, for example, when this code or data is present only for
debugging purposes. The system, however, cannot tell which part of the code
or data can be eliminated, so you have to do it yourself.

That can be done in either of two ways:

1. You can eliminate the code or data explicitly before calling deliver, by
using fmakunbound, makunbound, remhash and so on. The advantage of
this approach is that it does not require you to know anything about
Delivery. The disadvantage of this is that these calls must be put explic-
itly in the delivery script.

2. The LispWorks image contains an action list called "Delivery actions",
which you can add actions to. For details of how to use this, see Chapter
12, “Interface to the Delivery Process”.

See the LispWorks User Guide and Reference Manual for information about
action lists in general.

14.4 Use of symbols, functions, and classes
Bear in mind that symbols, functions, and classes contribute significantly to
the size of a delivered application. While it is not worth letting this interfere
greatly with good design and maintainability, efforts to minimize their use in
your application may pay off.

Note: Symbols, functions and classes interact. If a symbol is retained, any
function or class bound to it is also retained in the delivered application, even
if it is never funcalled or instantiated. Delivery cannot be sure that the symbol

14.5 Making references to packages
is not ever used to do these things, and so errs on the side of safety, at the
expense of image size.

14.5 Making references to packages
Certain Common Lisp functions and macros make explicit reference to pack-
ages. If you use any of these on particular packages, you may need to keep
those packages in the application. This can contribute greatly to the size of the
delivered application image. For more details, see Section 10.9.5 on page 114.

14.6 Declaring the types of variables used in function calls
You can minimize, or even eliminate, run time decisions about the types of
function arguments by making them instances of a known type. This gives the
compiler a chance to inline appropriate code or perform other optimizations.

14.7 Avoid referencing type names
Referencing the name of a type (that is, a symbol) in code means that delivery
cannot remove that type even if it is not used anywhere else. This is often seen
in code using typep, typecase or subtypep to discriminate between types.

For example, if you have code like this:

(defun foo (x)
 (cond ((typep x 'class1) ...)
 ((typep x 'class2) ...)
 ...
 ((subtypep x 'class1000) ...)))

then delivery would keep all of the classes class1,...,class1000 even if
nothing else references these classes.

Possible solutions are described in “Referencing types via methods” on page
141 and “Referencing types via predicates” on page 142.

14.7.1 Referencing types via methods

Code can reference type names either directly as shown in “Avoid referencing
type names” on page 141 or via type-of in code like this:
 141

14 Efficiency considerations when coding for delivery

142
(defun foo (x)
 (let ((type (type-of x)))
 (cond ((eq type 'class1) ...)
 ((eq type 'class2) ...)
 ...
 ((eq type 'class1000) ...))))

Instead, you could express the conditional clauses as methods specialized for
each class:

(defmethod foo ((x class1)) ...)
(defmethod foo ((x class2)) ...)
...
(defmethod foo ((x class1000)) ...)

This would allow any unused classes to be removed by delivery, because each
method is a separate function.

14.7.2 Referencing types via predicates

If you do not wish to retain CLOS, and are referencing types that have built-in
predicates, or structure types, you could use these predicates instead of the
type names to allow delivery to remove unused types. For example this code:

(typecase x
 (integer (process-an-integer x))
 (string (process-a-string x))
 (a-struct (process-a-struct x)))

could be rewritten as:

(cond ((integerp x) (process-an-integer x))
 ((stringp x) (process-a-string x))
 ((a-struct-p x) (process-a-struct x)))

14.8 Use of the INTERN and FIND-SYMBOL functions
These functions allow a running program to locate arbitrary symbols. If your
application uses them you may need to keep many symbols in the image,
along with any associated definitions. See “Coping with intern and find-sym-
bol at run time” on page 117.

Note: The read function typically calls intern, thus causing the same prob-
lems.

14.9 Use of the EVAL function and the invocation of
uncompiled functions
14.9 Use of the EVAL function and the invocation of
uncompiled functions
Applications using eval or invoking uncompiled functions in other ways
need the entire Common Lisp interpreter available to them. Delivery therefore
keeps it in the delivered image, adding significantly to its size.

14.10 User-defined and built-in packages
Try to develop your application using a well-defined set of packages. Particu-
larly, try not to intern symbols in built-in packages. You may find at delivery
time that a particular built-in package is suitable for throwing out, and there-
fore have to go back and take your symbol out of it in order to do so safely.

Note: When you use built-in packages in your own packages (via
defpackage), take care when naming symbols, since they may accidentally tie
up with external function or class definitions in the built-in package and cause
them to be retained unnecessarily. (This retention occurs because Delivery
does not throw out unused definitions if they are referred to by some other
symbol in the application — See “Use of symbols, functions, and classes” on
page 140.)
 143

14 Efficiency considerations when coding for delivery

144

15

15 Self-contained examples
This chapter enumerates the set of examples in the LispWorks library which
illustrate how to deliver a runtime.

See README.txt files in the sub-directories for instructions. To view the exam-
ple code and the README.txt file, open the file in the Editor tool in the Lisp-
Works IDE. Evaluating the calls to example-edit-file shown below will
achieve this.

Note: In the README.txt files, "Use X as delivery script" (when X is a file
name) means you can either:

• Use the file path as a command-line argument with -build. That is, run
LispWorks in a console like this:
LispWorks-image -build X

or

• Use the script in the Application Builder tool in the the LispWorks IDE.
To do this, either edit the file and use the editor command Meta+X
Build Application, or start the Application Builder tool directly and
enter the file path in the Build script pane.

For more information about the Application Builder tool, see the Lisp-
Works IDE User Guide.
145

15 Self-contained examples

146
15.1 Delivering a Cocoa CAPI application examples
These files illustrate building Cocoa applications on Mac OS X, using tem-
plates to create the application bundle:

(example-edit-file "delivery/macos/README.txt")

(example-edit-file "delivery/macos/single-window-application")

(example-edit-file "delivery/macos/multiple-window-application")

15.2 Delivering a CAPI application examples
These files illustrate building a CAPI "Hello World" application:

(example-edit-file "delivery/hello/README.txt")

(example-edit-file "delivery/hello/deliver")

(example-edit-file "delivery/hello/hello")

These files illustrate building a CAPI application which plays the Othello
game:

(example-edit-file "delivery/othello/README.txt")

(example-edit-file "delivery/othello/deliver")

(example-edit-file "capi/applications/othello")

These files illustrate building a CAPI application with error handling:

(example-edit-file "delivery/debugger-hook/README.txt")

(example-edit-file "delivery/debugger-hook/application-with-
errors")

(example-edit-file "delivery/debugger-hook/deliver")

15.3 Delivering a dynamic library examples
These files illustrate building a dynamic library on Unix-like platforms:

(example-edit-file "delivery/dynamic-library/README.txt")

(example-edit-file "delivery/dynamic-library/example")

(example-edit-file "delivery/dynamic-library/deliver")

15.4 Delivering a Windows service examples
These files illustrate building a dynamic library to load into Java:

(example-edit-file "java/lisp-as-dll/README.txt")

(example-edit-file "java/lisp-as-dll/LispWorksCaller.java")

(example-edit-file "java/lisp-as-dll/deliv-script")

15.4 Delivering a Windows service examples
These files illustrate creating a service on Microsoft Windows:

(example-edit-file "delivery/ntservice/README.txt")

(example-edit-file "delivery/ntservice/define-service")

(example-edit-file "delivery/ntservice/deliver")

(example-edit-file "delivery/ntservice/build-config")

(example-edit-file "delivery/ntservice/testapp-lw-test")

(example-edit-file "delivery/ntservice/ntservice")

(example-edit-file "delivery/ntservice/testapp-lw")
 147

15 Self-contained examples

148

16

16 Delivery Reference Entries
This chapter contains reference pages for Delivery, including the interface to
the Delivery process.

deliver Function

Summary Creates LispWorks executable applications and dynamic
libraries.

Package lispworks

Signature deliver function file level &rest keywords

Arguments function A symbol.

file A string or pathname.

level An integer in the inclusive range [0, 5].

keywords Keyword arguments described in full in
Chapter 5, “Keywords to the Delivery Func-
tion”.
149

16 Delivery Reference Entries

150
Description The function deliver is the main interface to the delivery
tools. You use it to create LispWorks executable applications
and dynamic libraries.

The first three arguments are required.

If you are creating an executable application, function should
name a function of no arguments. This function will be called
on startup of the executable. If you are creating a dynamic
library, function should be nil.

file names the file in which the delivered image should be
saved. The file extension .exe is appended to executables
delivered on Microsoft Windows. For dynamic libraries, a file
extension is appended as follows:

Microsoft Windows.dll

Mac OS X .dylib

Other Unix-like systems.so

If the delivery keyword :split is true then a second file con-
taining the Lisp heap is created.

On Mac OS X, you may wish to create an application bundle
containing your delivered image. For an example showing
how to do this, see “Creating a Mac OS X application bundle”
on page 133.

level specifies the delivery level which is a measure of how
much work Delivery does to reduce the size of the image.
level 5 is the most severe. The least work on image reduction
is done at level 0.

The most important keywords arguments are :interface and
:multiprocessing. If your application uses CAPI, you must
pass :interface :capi. If your application does not use the
CAPI, but does use multiprocessing, then you must pass
:multiprocessing t. Your first attempt to deliver your
application should use no more than these keywords.

In addition, a variety of other keywords can be passed to
deliver. These are for fine-tuning by controlling aspects of
delivery explicitly. Add more keywords only when you find
that you need them.

All the deliver keywords are documented in Chapter 5,
“Keywords to the Delivery Function”. Additionally, they can
been seen in the LispWorks image by calling:

(require "delivery")
(deliver-keywords)

deliver checks that load-all-patches has been called. If
load-all-patches has not been called in the session, then
deliver signals an error.

Notes For information about invoking deliver using the IDE, see
"The Application Builder" in the LispWorks IDE User Guide.

See also deliver-keywords

Chapter 5, “Keywords to the Delivery Function”
deliver in the LispWorks User Guide and Reference Manual
delivered-image-p in the LispWorks User Guide and Refer-
ence Manual
save-image in the LispWorks User Guide and Reference Manual

delivery-value Accessor

Summary Accesses the value of a delivery keyword.

Package lispworks

Signature delivery-value deliver-keyword

setf (delivery-value new-value deliver-keyword) => new-
value
 151

16 Delivery Reference Entries

152
Arguments deliver-keyword One of the legal keywords to deliver.
There are listed in Chapter 5, “Keywords to
the Delivery Function”.

new-value A value appropriate for deliver-keyword.

Values new-value A value appropriate for deliver-keyword.

Description The accessor delivery-value gets or sets new-value as the
value of deliver-keyword.

These must only be called after deliver is called. deliver-key-
word must be one of the legal keywords to deliver (see
“Alphabetical list of deliver keywords” on page 37, or can be
displayed by calling deliver-keywords). delivery-value
returns the value associated with deliver-keyword. When
deliver is called, the values associated with each keyword
are initialized from the arguments to deliver or using their
default values (which are printed by deliver-keywords), or
set to nil. Values can be changed later by user actions that
were added to the "Delivery actions" action list, and then by
the system. Before starting the shaking operations, the values
of the keywords are reset, and delivery-value cannot be
called after the shaking.

You can use the setter of delivery-value to set the value of
a keyword. Since the user actions are done before the system
actions, these system actions (which also use delivery-
value to access the keyword’s value) will see any change that
the user actions effected.

See also deliver

deliver-keywords

deliver-keep-symbol-names Function

Summary Causes specified symbol names to be retained if the symbols
are retained.

Package hcl

Signature deliver-keep-symbol-names &rest symbols

Arguments symbols Symbols.

Description The function deliver-keep-symbol-names marks the sym-
bols symbols such that their names are kept if the symbols
themselves are not shaken out. This is useful when the sym-
bol name is used as long the symbol is used. For example,
you may have a function that calls error, passing its name
(the symbol) to be included in the error message. If the sym-
bol is not referenced by the actual application, it will be
shaken out and there is no issue, but if it is referenced, you
still want the message to print the name properly. For exam-
ple the import interface of Java, which generates many callers
and there is a good chance that many of them will not be
used, marks these callers to keep the symbol names.

Notes If you want to ensure that the symbol is kept even if it is not
referenced, use deliver-keep-symbols.

See also deliver-keep-symbols

:keep-symbol-names

deliver-keep-symbols Function

Summary Causes symbols and their names to be retained.

Package hcl

Signature deliver-keep-symbols &rest symbols

Arguments symbols Symbols.
 153

16 Delivery Reference Entries

154
Description The function deliver-keep-symbols marks symbols such
that they are not shaken out during delivery, and their names
are kept.

This is useful for symbols that are not explicitly referenced by
Lisp (and hence may be shaken out) but are still needed, for
example symbols that are called directly from Java.

Using deliver-keep-symbols has the same effect as passing
:keep-symbols to deliver, but deliver-keep-symbols is
much more convenient because you can use it in your source
code before loading the delivery module.

You will typically add a call to deliver-keep-symbols after
the definition(s) of the symbols, as in the example below.

Examples (defun function-called-directly-from-java (x y)

)

(deliver-keep-symbols
 'function-called-directly-from-java)

See also deliver-keep-symbol-names

:keep-symbols

deliver-keywords Function

Summary Prints the legal keywords to deliver.

Package lispworks

Signature deliver-keywords => nil

Description The function deliver-keywords prints the legal keywords
to deliver.

If the default value for a particular keyword is non-nil, it is
printed on the same line. The default is a form that is evalu-

ated if the keyword was not passed to deliver, in the order
that deliver-keywords prints.

deliver-keywords also prints a short documentation string
for each keyword.

See also deliver

delivery-shaker-cleanup Function

Summary Defines a cleanup function that is called after the shaking
operation.

Package lispworks

Signature delivery-shaker-cleanup object function

Arguments object An object.

function A function designator.

Description The function delivery-shaker-cleanup can be used to
define a cleanup function that is called after the shaking
operation. delivery-shaker-cleanup stores a pointer to
function and a weak pointer to object. After the shaking, the
shaker goes through all the object/function pairs, and for each
object that is still alive, calls function with object as argument.
This is used to perform operations that are dependent on the
results of the shaking operation.

If the cleanup function has to be called unconditionally, then
object should be t. The cleanup function should be a symbol
or compiled function/closure, unless the evaluator is kept
via :keep-eval. The shaker performs another round of
shaking after calling the cleanup functions, so unless some-
thing points to them, they are removed before the delivered
image is saved. This also means that objects (including sym-
bols) that survived the shaking until the cleanup function is
 155

16 Delivery Reference Entries

156
called, but become garbage as a result of the cleanup func-
tion, are removed as well.

The cleanup function cannot use delivery-value. If the
value of one of the keywords to deliver is needed in the
cleanup function, it has to be stored somewhere (for example,
as a value of a symbol, or closed over). It cannot be bound
dynamically around the call to deliver, because the cleanup
function is executed outside the dynamic context in which
deliver is called.

Examples Suppose the symbol P:X is referred to by objects that are not
shaken, but its values are used in function P:Y, which may or
may not be shaken. We want to get rid of the value of P:X if
the symbol P:Y has been shaken, and set the value of P:X to T
if :keep-debug-mode is passed to deliver and is non-nil, or
nil otherwise.

(defun setup-eliminate-x ()
 (let ((new-value
 (if (delivery-value :keep-debug-mode)
 t
 nil)))
 (delivery-shaker-cleanup
 t
 #'(lambda ()
 (unless (find-symbol "Y" "P")
 (let ((sym (find-symbol "X" "P")))
 (when sym
 (set sym new-value))))))))

(define-action "Delivery actions" "Eliminate X"
 'setup-eliminate-X)

This sets up the lambda to be called after the shaking opera-
tion. It will set the value of P:X if the symbol P:Y has been
shaken.

Notes about the cleanup function:

1. It does not call delivery-value itself. Instead, it closes
over the value.

2. It does not contain pointers to P:X or P:Y. In this case, it is
specially important not to keep a pointer to P:Y, because
otherwise it is never shaken.

3. It does not assume that P:X will survive the shaking.

4. It does assume that the package "P" is not deleted or
smashed.

The cleanup functions are called after the operation of deliv-
ery-shaker-weak-pointer is complete, and are useful for
cleaning up the operations of delivery-shaker-weak-
pointer.

See also delivery-shaker-weak-pointer

delivery-shaker-weak-pointer Function

Summary Used to make a pointer from one object to another weak
object during the shaking operation.

Package lispworks

Signature delivery-shaker-weak-pointer pointing accessor &key
setter remover dead-value pointed

Arguments pointing An object. You are free to use your own
notion of pointing, for example, it may be
the key in a hash table.

accessor A symbol or a list starting with a symbol.

setter A function designator or a list starting with
a function designator.

remover A function designator or a list starting with
a function designator, or t.

dead-value An object.

pointed An object.
 157

16 Delivery Reference Entries

158
Description The function delivery-shaker-weak-pointer is used to
make a pointer from one object pointing to another weak
object pointed during the shaking operation. The operations
of delivery-shaker-weak-pointer are:

1. At the time it is called it computes the setter and remover if
these are nil, and creates a record with all the arguments
for the shaker.

2. Before the shaker starts shaking, for each record it finds
the value of the pointed object (if pointed is nil) using the
accessor.

If pointed is nil and the accessor returns nil, the shaker
does not do anything else for this record. Otherwise, it
stores weak pointers to both the pointing object and the
pointed object, and uses the remover to remove the
pointer from the pointing object.

3. After the main shaking operation, for each pair of point-
ing/pointed objects it checks if both have survived the
shaking. If they did, it stores a pointer to the pointed object
in pointing using the setter.

If both pointed and setter are non-nil then accessor is not used.
Otherwise accessor is called with the pointing object and
returns the pointed object. accessor is used for two purposes:

• Getting the pointed object if pointed is nil, and

• Computing the setter if setter is nil.

If accessor is a symbol then it specifies a function that is called
with the pointing object as its argument. If accessor is a list
then the car of the list is called with the pointing object as its
first argument, and the cdr of the list forming the rest of the
arguments, that is:

(apply (car accessor) pointing (cdr accessor))

For example, if accessor is (slot-value name) the call is
(slot-value pointing name), and if accessor is (aref 1 2)
the call is (aref pointing 1 2).

If setter is nil, it is computed by the system using accessor and
the same expansion that setf would use. If setter is non-nil, it
has the same properties as the accessor, except that in the call
the pointed object is inserted before the rest of the arguments.
That is, if setter is (set-something name), the call is (set-
something pointed pointing name). In addition, where the
accessor accepts a symbol, the setter also accepts a function
object.

The default value of remover is t, which means use the setter.
remover is used to remove the pointer from the pointing object.
It is called exactly like the setter, except that the first argument
is dead-value, rather than pointed.

pointed gives the value of the pointed object. If pointed is nil
then accessor is used to get the pointed object.

The default value of dead-value is nil. This the value that is
stored by the remover in the pointing value before starting the
shaking. Note that if the pointed object is shaken, the pointing
object is left with the dead-value.

Note that between the calls to the remover and the setter (steps
2 and 3 above), the pointing object points to the wrong thing
(the dead-value). This may cause problems if the object is used
by the system during the shaking (this does not happen
unless you access objects which you should not access), or if
you define more than one delivery-shaker-weak-pointer
on the same object, and one of these uses a slot that has been
defined by the other. Thus you have to make sure that you do
not cause this situation.

Example Suppose the keys of *my-hash-table* are conses of an
object and a number, and it is desired to remove from *my-
hash-table* those entries where the car is not pointed to
from anywhere else. This can be done by something like this :
 159

16 Delivery Reference Entries

160
;; This will eliminate all entries where the car is nil
(defun clean-my-hash-table (table)
 (maphash (lambda (x y)
 (declare (ignore y))
 (unless (car x) (remhash x table)))
 table))

;; This will cause the car of any entry where the car is
;; not pointed to from another object to change to nil
(defun shake-my-hash-table ()
 (maphash #'(lambda (x y) (declare (ignore y))
 (delivery-shaker-weak-pointer x 'car))
 my-hash-table))

;; This will cause clean-my-hash-table to be called
;; later in the shaking, provided that *my-hash-table*
;; is still alive.
(delivery-shaker-cleanup *my-hash-table*
 'clean-my-hash-table)

;; Call this function at delivery time
(define-action "Delivery Actions" "shake my hash table"
 'shake-my-hash-table)

If the car can be nil, the code above removes some entries it
should not. In this case the appropriate forms should be
changed to:

(delivery-shaker-weak-pointer x 'car
 :dead-value 'my-dead-value)

and

(when (eq (car x) 'my-dead-value) (remhash x table))

(This assumes there are no entries where the car is my-dead-
value.)

Note that the cleanup function is not going to be called unless
the hash table actually survives the shaking operation.

Example The value of *aaa* is a list of objects of type a-struct,
which has a slot called name, which points to a symbol. We
want to get rid of any of these structures if the symbol is not
pointed to by some other object.

Implementation A:

Make the pointers from the structures to the names be weak,
and have the cleanup function throw away any structure
where the name becomes nil.

(defun clean-*aaa* ()
 (loop for a on *aaa* do
 (delivery-shaker-weak-pointer
 a
 'a-struct-name)))

(delivery-shaker-cleanup
 '*aaa*
 #'(lambda (symbol)
 (set symbol
 (remove-if-not 'a-struct-name
 (symbol-value symbol)))))

(define-action "Delivery Actions" "Clean *aaa*"
 'clean-*aaa*)

Implementation B:

Make a pointer from the symbol to the structure, and make
aaa point weakly to the names, and set *aaa* to nil. The
remover and accessor do nothing, and the setter is defined to
restore *aaa*. This implementation does not use the cleanup
function.
 161

16 Delivery Reference Entries

162
(defun clean-*aaa* ()
 (let ((setter
 #'(lambda (name symbol)
 (set symbol (nconc
 (symbol-value symbol)
 (list (get name 'a-struct))))
 (remprop name 'a-struct))))
 (dolist (x *aaa* ())
 (let ((name (a-struct-name x)))
 (setf (get name 'a-struct) x)
 (delivery-shaker-weak-pointer '*aaa* nil
 :remover nil
 :pointed name
 :setter setter)))
 (setq *aaa* nil)))

(define-action "Delivery actions" "Clean aaa"
 'clean-*aaa*)

See also delivery-shaker-cleanup

Index
Symbols
"SYMBOL-FUNCTION-VECTOR" 126

A
accessor
delivery-value 151

:action-on-failure-to-open-
display keyword 37

ActiveX control 88
ActiveX DLL 88
:analyse keyword 37
Application Builder tool 11
application error log 7
applications

coding for efficient delivery 139–143
command line 136
icons 48
name of delivered image file 18, 149
non-GUI 136
standalone delivery 19–26

automatic memory management. See gar-
bage collection.

automation-server-exit-delay
function 66

automation-server-main
function 66

automation-server-top-loop
function 66

C
call counting

all symbols in application 38
recording results of 39, 42
setting up 38

:call-count keyword 38

call-next-method local function 40
calls-who function 59
CAPI

geometry 106
preferences 106
window positions 106

change-class generic function 40
classes

accessors 68
deleting and keeping 39
delivery issues 28
dynamic definition 99
ole-control-component 88
printing information about 39

:classes-to-keep-effective-
slots keyword 39

:classes-to-remove keyword 39
:clean-down keyword 39
:clean-for-dump-type keyword 39
CLOS 99–103

deleting and keeping 50–51
diagnostics 39
dynamic definition 99
method dispatch efficiency 99–102
object printing code 51
templates for method combinations 101

:clos-info keyword 39
:clos-initarg-checking

keyword 40
code signing 70
coding applications for efficient

delivery 139–143
command line applications 136
Command+C 81
Command+V 81
Command+X 81
163

Index

164
Common Lisp Object System 99–103
:compact keyword 41, 122
compile function 66
compile-file function 2, 66
complex number representation, deleting

and keeping 51
:condition-deletion-action

keyword 41
:console keyword 41
convert-to-screen function 89, 91
corrupted executable 91
create-macos-application-

bundle function 12, 134, 135

D
debugger-hook variable 14, 109
debugging and testing

checking an image without running it 67
in a delivered image 52
stub definitions for deleted functions 57

define-foreign-callable
macro 14, 21, 43, 111

define-ole-control-component
macro 88

delete-packages list 42
:delete-packages keyword 42, 113,

116
deleting and keeping

class accessors 68
classes 39
CLOS 50–51
complex number representation 51
debugger 52
documentation 53
dspec table 59
editor commands 45
eval function 143
evaluators 53
external symbols 68–69
fasl dumper 53
find-symbol function 117–118, 142
format directives 46
function names
functions 47
history of forms entered 58
listener top level 58
load function 55
macros 56
methods, class-direct 68
module facility 56
packages 42, 112–113
packages, all 52
plist indicators 67
structure internals 57
stub definitions for deleted functions 57
walker 59

deliver function 2, 10, 18, 98, 149
delivered image

debugger 52
module facility, deleting and keeping 56

delivered-image-p function 129
Delivering for Android 98
Delivering for iOS 97–98
Delivering for mobile platforms 97–98
Delivering on Linux, FreeBSD, AIX,

x86/x64 Solaris and Unix 89–95
Delivering on Mac OS X 79–83
Delivering on Windows 85–88
deliver-keep-symbol-names

function 152
deliver-keep-symbols

function 153
deliver-keywords function 31, 154
deliver-to-android-project

function 98
delivery 10, 17–29

class issues 28, 140
diagnostics for all symbols 38
examples 12
function issues 140
keywords for controlling 37–77
library dependencies, and 139
Lisp interface to 10, 18, 37–77, 149
methods, and 28
package issues 46, 56, 112, 143
preparation for 19
severity level 18, 27, 149
stages of 4, 26
standalone applications 19–26
stub definitions for deleted functions 57
symbol issues 28, 112, 140
system packages 113
treeshaking 27–28, 69
with a command shell 11
with a DOS command window 11
with Terminal.app 11
without running the application 67
without writing to disk 49

Delivery actions 129, 140, 152, 156, 159, 161
delivery level 18, 27, 149
delivery-shaker-cleanup

function 155
delivery-shaker-weak-pointer

function 157

Index
delivery-value accessor 151
diagnostics

all delivered symbols 38
CLOS usage 39

:diagnostics-file keyword 42
dismiss-splash-screen

function 71
display function 89, 91
:display-progress-bar

keyword 42
DLL delivery
:automatic-init keyword 37
:dll-added-files keyword 43
:dll-exports keyword 43, 111
:dll-extra-link-options

keyword 44
documentation, deleting and keeping 53
dspec table, deleting and keeping 59
dynamic library delivery
:automatic-init keyword 37
:dll-added-files keyword 43
:dll-exports keyword 43
:dll-extra-link-options

keyword 44
:image-type keyword 48

E
Edit menu

standard gestures 81
standard keystrokes 81

:editor-commands-to-delete
keyword 45, 104

:editor-commands-to-keep
keyword 45, 104

editors
deleting and keeping commands 45,

104–106
Emulation 45

:editor-style keyword 45
efficiency

run time code loading 139–140
See also size of the application.

error function 14
error handling 107–108

application-generated errors 107
fallback handler 109
system-generated errors 107, 108

:error-handler keyword 46
:error-on-interpreted-func-

tions keyword 46
eval function

deleting and keeping 53

effects on size of application 143
:exe-file keyword 46
exporting symbols from packages 46, 69
:exports keyword 46
external symbols and delivery 68–69

F
failed to enlarge memory 122
fasl dumper, deleting and keeping 53
file for call-count output 42
files

association for extension 81, 87
association for type 81, 87
double clicking 81, 87
launching 81, 87

find-symbol function
effects on application size 117–118, 142

FLI
templates 110, 125

:format keyword 46
function names, deleting and keeping
functions

deleting and keeping 47
deliver 98
deliver-keep-symbol-

names 152
deliver-keep-symbols 153
deliver-keywords 31, 154
deliver-to-android-

project 98
delivery-shaker-cleanup 155
delivery-shaker-weak-

pointer 157
dismiss-splash-screen 71
error 14
eval 53
log-bug-form 15
names, deleting and keeping
output-backtrace 15
process-run-function 14
stub definitions for deleted functions 57

:functions-to-remove keyword 47

G
garbage collection 5, 28

delivery, and 27, 28
heap compaction before delivery 41
See also treeshaking.

generic functions
class-direct methods 68
collapsing into ordinary functions 47
 165

Index

166
:generic-function-collapse
keyword 47

:gf-collapse-output-file
keyword 47

:gf-collapse-tty-output
keyword 47

H
handler-bind macro 14
handler-case macro 14
heap compaction before delivery 41
history list of forms entered

deleting and keeping 58

I
:icon-file keyword 48
image

split on saving 70
:image-type keyword 48, 70
initialize-multiprocessing

function 61
:in-memory-delivery keyword 49
:interface keyword 49
intern function and application size 28,

117, 142
internal symbols and application size 69
:interrogate-symbols keyword 49
:interrupt-function keyword 50

K
:keep-clos keyword 50, 99, 102
:keep-clos-object-printing

keyword 51
:keep-complex-numbers

keyword 51
:keep-conditions keyword 52
:keep-debug-mode keyword 52
:keep-documentation keyword 53
:keep-editor keyword 53, 104
:keep-eval keyword 53
:keep-fasl-dump keyword 53
:keep-function-name keyword 54,

124
:keep-gc-cursor keyword 55
keeping. See deleting and keeping.
:keep-keyword-names keyword 55
:keep-lisp-reader keyword 55
:keep-load-function keyword 55
:keep-macros keyword 56, 124
:keep-modules keyword 56
:keep-package-manipulation
keyword 56
:keep-pretty-printer keyword 57
:keep-structure-info keyword 57
:keep-stub-functions keyword 57
:keep-symbol-names keyword 58
:keep-symbols keyword 58, 116, 125
:keep-top-level keyword 58
:keep-trans-numbers keyword 59
:keep-walker keyword 59
:keep-xref-info keyword 59
keywords
:action-on-failure-to-open-

display 37
:analyse 37
:call-count 38
:classes-to-keep-effective-

slots 39
:classes-to-remove 39
:clean-down 39
:clean-for-dump-type 39
:clos-info 39
:clos-initarg-checking 40
:compact 41, 122
:condition-deletion-

action 41
:console 41
:delete-packages 42, 113, 116
:diagnostics-file 42
:display-progress-bar 42
:editor-commands-to-

delete 45, 104
:editor-commands-to-keep 45,

104
:editor-style 45
:error-handler 46
:error-on-interpreted-

functions 46
:exe-file 46
:exports 46
:format 46
:functions-to-remove 47
:generic-function-

collapse 47
:gf-collapse-output-file 47
:gf-collapse-tty-output 47
:icon-file 48
:image-type 48, 70
:in-memory-delivery 49
:interface 49
:interrogate-symbols 49
:interrupt-function 50
:keep-clos 50, 99, 102

Index
:keep-clos-object-
printing 51

:keep-complex-numbers 51
:keep-conditions 52
:keep-debug-mode 52
:keep-documentation 53
:keep-editor 53, 104
:keep-eval 53
:keep-fasl-dump 53
:keep-function-name 54, 124
:keep-gc-cursor 55
:keep-keyword-names 55
:keep-lisp-reader 55
:keep-load-function 55
:keep-macros 56, 124
:keep-modules 56
:keep-package-

manipulation 56
:keep-pretty-printer 57
:keep-structure-info 57
:keep-stub-functions 57
:keep-symbol-names 58
:keep-symbols 58, 116, 125
:keep-top-level 58
:keep-trans-numbers 59
:keep-walker 59
:keep-xref-info 59
:kill-dspec-table 59
:license-info 59
:macro-packages-to-keep 60
:make-instance-keyword-

check 60
:manifest-file 60
:metaclasses-to-keep-effec-

tive-slots 61
:multiprocessing 61
:never-shake-packages 61, 116
:no-symbol-function-

usage 61
:numeric 62
:old-cpu-compatible 62
:packages-to-keep 63, 116
:packages-to-keep-

externals 63
:packages-to-keep-symbol-

names 63
:packages-to-remove-

conditions 64
:packages-to-shake-

externals 64
:post-delivery-function 64
:print-circle 65

:product-code 65
:product-name 65
:quit-when-no-windows 65
:redefine-compiler-p 66
:registry-path 66
:remove-plist-indicators 67
:remove-setf-function-

name 67
:run-it 67
:shake-class-accessors 67
:shake-class-direct-

methods 68
:shake-classes 68
:shake-externals 68, 117
:shake-shake-shake 28, 69
:smash-packages 69, 114, 116
:smash-packages-symbols 70
:split 70
:startup-bitmap-file 70
:structure-packages-to-

keep 71
:symbol-names-action 71
:symbols-to-keep-structure-

info 73
:versioninfo 73
:warn-on-missing-

templates 77, 101
keywords for controlling delivery 37–77

severity level, and 27
:kill-dspec-table keyword 59

L
libraries 2

dependencies between 139
effects on application size 139

:license-info keyword 59
Lisp executable apparently corrupted 91
LispWorks IDE 2
listener top level

deleting and keeping 58
load function, deleting and keeping 55
load-all-patches function 151
loading code at run time 139–140

restrictions upon 55
log-bug-form function 15, 81, 87, 92
logging 7

M
:macro-packages-to-keep

keyword 60
macros
 167

Index

168
define-foreign-callable 14,
21, 43, 111

define-ole-control-
component 88

handler-bind 14
handler-case 14

macros, deleting and keeping 56
make-instance generic function 40,

60, 103
:make-instance-keyword-check

keyword 60
:manifest-file keyword 60
memory clashes 122
memory management. See garbage collec-

tion.
:metaclasses-to-keep-effec-

tive-slots keyword 61
methods

class-direct, deleting and keeping 68
discriminating on classes 28
dispatch efficiency 99–102
dynamic definition 99
printing information about 39

modules
loading 2, 55, 112

msvcr80.dll 85
:multiprocessing keyword 61

N
:never-shake-packages

keyword 61, 116
New in LispWorks 7.0
deliver-keep-symbol-names

function 152
deliver-keep-symbols

function 153
:keep-xref-info delivery

keyword 59
New in LispWorks 7.1
:dll-extra-link-options

delivery keyword 44
:keep-modules default value of has

changed 56
non-GUI applications 136
:no-symbol-function-usage

keyword 61
:numeric keyword 62

O
ocx file 88
:old-cpu-compatible keyword 62
ole-control-component class 88
output-backtrace function 15

P
package manipulation, deleting and

keeping 56
packages

deleting and keeping 42, 112–113
deleting versus smashing 113–114
delivery 143
exporting symbols from 46, 69
keeping 63, 115
keeping all 52
smashing 69, 112–114

:packages-to-keep keyword 63, 116
:packages-to-keep-externals

keyword 63
:packages-to-keep-symbol-

names keyword 63
:packages-to-remove-condi-

tions keyword 64
:packages-to-shake-externals

keyword 64
plist indicators, deleting and keeping 67
:post-delivery-function

keyword 64
prelink 91
:print-circle keyword 65
process-run-function function 14
:product-code keyword 65
:product-name keyword 65

Q
:quit-when-no-windows

keyword 65

R
:redefine-compiler-p keyword 66
:registry-path keyword 66
reinitialize-instance generic

function 40
:remove-plist-indicators

keyword 67
:remove-setf-function-name

keywords 67
require function 2, 55, 93, 112
run time library

requirement on Windows 85
:run-it keyword 67

Index
S
save-image function 2
Self-contained examples

Creating the Mac OS X application bun-
dle when delivering a Cocoa
application 146

Delivering a CAPI application 146
Delivering a Cocoa application 146
Delivering a Hello World

application 146
Delivering a Unix dynamic library 146
Delivering a Windows service 147
Delivering the Othello application 146
Error handling in a delivered CAPI

application 146
set-clos-initarg-checking

function 40
set-quit-when-no-windows

function 66
severity level of the delivery 18, 27, 149

keyword parameters, and 27
:shake-class-accessors

keyword 67
:shake-class-direct-methods

keyword 68
:shake-classes keyword 68
:shake-externals keyword 68, 117
:shake-shake-shake keyword 28,

69
shaking. See treeshaking.
size of the application
intern function, and 117, 142
internal symbols, and 69
interned symbols, and 28
packages, and 143

smashing packages 69, 112–114
:smash-packages keyword 69, 114,

116
:smash-packages-symbols

keyword 70
splash screen 70
:split keyword 70
standalone applications. See applications,

standalone delivery.
startup and shutdown

shutdown when all windows closed 66
startup function 18, 149
startup function, ignoring 67

startup image 70
startup screen 70
startup window 70
:startup-bitmap-file keyword 70

structure internals, deleting and
keeping 57

:structure-packages-to-keep
keyword 71

stub definitions for deleted functions 57
:symbol-names-action keyword 71
symbols

deleting and keeping 115–116
:symbols-to-keep-structure-

info keyword 73
system packages and delivery 113

T
templates

CLOS method combinations 101
FLI 110
Foreign Language Interface 110

the zaps file 126
top-level-interface-geome-

try-key function 106
treeshaking 28–29

garbage collection, and 27–28
interned symbols, classes, functions,

and 28
Lisp interface to 69

truncated executable 91
type declaration and discrimination 141

U
uncaught errors

handling 109
update-instance-for-rede-

fined-class generic
function 40

V
variables
debugger-hook 14, 109

:versioninfo keyword 73

W
walker, deleting and keeping 59
:warn-on-missing-templates

keyword 77, 101
who-calls function 59

X
X resources

dependency on symbol names 91
fallback resources on GTK+ 89
 169

Index

170
fallback resources on Motif 91

	Delivery User Guide
	Copyright and Trademarks
	Contents
	1 Introduction
	1.1 What does Delivery do?
	1.1.1 Making the image smaller

	1.2 What do you get with Delivery?
	1.2.1 Programming libraries and facility support code
	1.2.2 Functionality removed by delivery

	1.3 Conventions and terminology used in this manual
	1.3.1 Common Lisp reference text
	1.3.2 Platform-specific keywords
	1.3.3 Example files

	1.4 A breakdown of the delivery process
	1.4.1 Developing your application
	1.4.2 Managing and compiling your application
	1.4.3 Debugging, profiling and tuning facilities
	1.4.4 Delivering your compiled application
	1.4.5 Licensing issues
	1.4.6 Modules
	1.4.7 Error handling
	1.4.8 Troubleshooting

	1.5 Examples

	2 A Short Delivery Example
	2.1 Developing the program
	2.2 Delivering the program
	2.2.1 Delivering the program using the LispWorks IDE
	2.2.2 Delivering the program using a command shell
	2.2.3 Further examples

	3 Writing Code Suitable for Delivery
	3.1 Separate run time initializations from the build phase
	3.2 Error handling in delivered applications
	3.3 Efficiency considerations

	4 Delivering your Application
	4.1 The delivery function: deliver
	deliver

	4.2 Using the delivery tools effectively
	4.2.1 Saving the image before attempting delivery
	4.2.2 Delivering the application in memory

	4.3 Delivering a standalone application executable
	4.4 Delivering a dynamic library
	4.4.1 Simple delivery of a dynamic library
	4.4.2 Using the dynamic library
	4.4.3 Simple Windows example
	4.4.3.1 Using the Application Builder

	4.4.4 Simple non-Windows example
	4.4.5 Further example
	4.4.6 More about building dynamic libraries

	4.5 How to deliver a smaller and faster application
	4.5.1 Making the image smaller

	4.6 How Delivery makes an image smaller
	4.6.1 Garbage collecting the image
	4.6.2 Shaking the image

	5 Keywords to the Delivery Function
	5.1 Topic-based list of deliver keywords
	5.1.1 Controlling the behavior of the delivered application
	5.1.2 Testing and debugging during delivery
	5.1.3 Behavior of the delivery process
	5.1.4 Retaining or removing functionality
	5.1.4.1 Directing the behavior of the treeshaker and garbage collector
	5.1.4.2 Classes and structures
	5.1.4.3 Symbols, SYMBOL-NAME, functions, and packages
	5.1.4.4 Editor functionality
	5.1.4.5 CLOS metaclass compression
	5.1.4.6 Input and output
	5.1.4.7 Dynamic code
	5.1.4.8 Numbers
	5.1.4.9 Conditions deletion

	5.2 Alphabetical list of deliver keywords
	:action-on-failure-to-open-display
	:analyse
	:automatic-init
	:call-count
	:classes-to-keep-effective-slots
	:classes-to-remove
	:clean-down
	:clean-for-dump-type
	:clos-info
	:clos-initarg-checking
	:compact
	:condition-deletion-action
	:console
	:delete-packages
	:diagnostics-file
	:display-progress-bar
	:dll-added-files
	:dll-exports
	:dll-extra-link-options
	:editor-commands-to-delete
	:editor-commands-to-keep
	:editor-style
	:error-handler
	:error-on-interpreted-functions
	:exe-file
	:exports
	:format
	:functions-to-remove
	:generic-function-collapse
	:gf-collapse-output-file
	:gf-collapse-tty-output
	:icon-file
	:image-type
	:in-memory-delivery
	:interface
	:interrogate-symbols
	:interrupt-function
	:keep-clos
	:keep-clos-object-printing
	:keep-complex-numbers
	:keep-conditions
	:keep-debug-mode
	:keep-documentation
	:keep-editor
	:keep-eval
	:keep-fasl-dump
	:keep-foreign-symbols
	:keep-function-name
	:keep-gc-cursor
	:keep-keyword-names
	:keep-lisp-reader
	:keep-load-function
	:keep-macros
	:keep-modules
	:keep-package-manipulation
	:keep-pretty-printer
	:keep-structure-info
	:keep-stub-functions
	:keep-symbol-names
	:keep-symbols
	:keep-top-level
	:keep-trans-numbers
	:keep-walker
	:keep-xref-info
	:kill-dspec-table
	:license-info
	:macro-packages-to-keep
	:make-instance-keyword-check
	:manifest-file
	:metaclasses-to-keep-effective-slots
	:multiprocessing
	:never-shake-packages
	:no-symbol-function-usage
	:numeric
	:old-cpu-compatible
	:packages-to-keep
	:packages-to-keep-externals
	:packages-to-keep-symbol-names
	:packages-to-remove-conditions
	:packages-to-shake-externals
	:post-delivery-function
	:print-circle
	:product-code
	:product-name
	:quit-when-no-windows
	:redefine-compiler-p
	:registry-path
	:remove-plist-indicators
	:remove-setf-function-name
	:run-it
	:shake-class-accessors
	:shake-class-direct-methods
	:shake-classes
	:shake-externals
	:shake-shake-shake
	:smash-packages
	:smash-packages-symbols
	:split
	:startup-bitmap-file
	:structure-packages-to-keep
	:symbol-names-action
	:symbols-to-keep-structure-info
	:versioninfo
	:warn-on-missing-templates

	6 Delivery on Mac OS X
	6.1 Application bundles
	6.2 Bad interaction with clean-up utilities
	6.3 Cocoa and GTK+ images
	6.4 Terminal windows and message logs
	6.4.1 Controlling use of a terminal window
	6.4.2 Logging debugging messages

	6.5 File associations for a Macintosh application
	6.6 Editor emulation
	6.7 Standard Edit keyboard gestures
	6.8 Quitting a CAPI/Cocoa application
	6.9 Retaining Objective-C classes
	6.10 X11/Motif considerations
	6.11 Examples of delivering Cocoa applications

	7 Delivery on Microsoft Windows
	7.1 Run time library requirement
	7.2 Application Manifests
	7.3 DOS windows and message logs
	7.3.1 Controlling use of a DOS window
	7.3.2 Logging debugging messages

	7.4 File associations for a Windows application
	7.5 Editor emulation
	7.6 ActiveX controls
	7.7 Example of delivering a Service

	8 Delivery on Linux, FreeBSD, AIX, x86/x64 Solaris and Unix
	8.1 GTK+ considerations
	8.1.1 GTK+ libraries on the target machine
	8.1.2 Fallback resources

	8.2 X11/Motif considerations
	8.2.1 Loading Motif
	8.2.2 Motif on the target machine
	8.2.3 Fallback resources
	8.2.4 X resource names use Lisp symbol names

	8.3 LispWorks executable corrupted
	8.4 Logging debugging messages
	8.5 Editor emulation
	8.6 Products supporting dynamic library delivery
	8.7 Run time licensing on SPARC Solaris
	8.7.1 Protection of the delivery product on SPARC Solaris
	8.7.2 Protection of the delivered image on SPARC Solaris
	8.7.3 Unprotected runtime applications on SPARC Solaris
	8.7.4 Expiration of unprotected runtime applications on SPARC Solaris

	9 Delivering for mobile platforms
	9.1 Delivery of iOS runtimes
	9.1.1 Compiler not available in iOS runtimes
	9.1.2 How to deliver an iOS runtime

	9.2 Delivery of Android runtimes
	9.2.1 How to deliver an Android runtime

	10 Delivery and Internal Systems
	10.1 Delivery and CLOS
	10.1.1 Applications defining classes or methods dynamically
	10.1.2 Special dispatch functions and templates for them
	10.1.2.1 Finding the necessary templates
	10.1.2.2 Incorporating the templates into the application

	10.1.3 Delivery and the MOP
	10.1.4 Compression of CLOS metaobjects
	10.1.5 Classes, methods, and delivery
	10.1.6 Delivery and make-instance initarg checking

	10.2 Delivery and the Lisp reader
	10.3 Editors for delivered applications
	10.3.1 Form parsing and delivery
	10.3.2 Emulation and delivery
	10.3.3 Editor command groups

	10.4 Delivery and CAPI
	10.4.1 Interface geometry depends on Lisp symbol names

	10.5 Error handling in delivered applications
	10.5.1 Making the application handle errors
	10.5.1.1 Handling errors generated by the application
	10.5.1.2 Handling errors generated by the Lisp system
	10.5.1.3 Providing a fallback handler for uncaught errors

	10.5.2 Deleting of condition classes

	10.6 Delivery and the FLI
	10.6.1 Foreign Language Interface templates
	10.6.2 Foreign callable names

	10.7 Modules
	10.8 Symbol, SYMBOL-NAME and package issues during delivery
	10.9 Throwing symbols and packages out of the application
	10.9.1 Deleting packages
	10.9.2 How to delete packages
	10.9.3 Smashing packages
	10.9.4 How to smash packages
	10.9.5 When to delete and smash packages

	10.10 Keeping packages and symbols in the application
	10.10.1 Ensuring that packages are kept
	10.10.2 Ensuring that symbols are kept

	10.11 Coping with intern and find-symbol at run time
	10.12 Symbol-name comparison

	11 Troubleshooting
	11.1 Debugging errors in the delivery image
	11.2 Problems with undefined functions or variables
	11.3 Problems with READ
	11.4 Failure to find a class
	11.5 REQUIRE was called after delivery time with module ...
	11.6 Failed to reserve... error in compacted image
	11.7 Memory clashes with other software
	11.8 Possible explanations for a frozen image
	11.9 Errors when finalizing classes
	11.10 Warnings about combinations and templates
	11.11 Valid type specifier errors
	11.12 Stack frames with the name NIL in simple backtraces
	11.13 Blank or obscure lines in simple backtraces
	11.14 Nil is not of type hash-table errors
	11.15 FLI template needs to be compiled
	11.16 Failure to lookup X resources
	11.17 Reducing the size of the delivered application
	11.18 Symbol names changed to "Dummy Symbol Name"
	11.19 Debugging with :no-symbol-function-usage
	11.20 Interrogate-Symbols

	12 Interface to the Delivery Process
	12.1 Interface to the delivery process

	13 Example: Delivering CAPI Othello
	13.1 Preparing for delivery
	13.1.1 Writing a delivery script

	13.2 Delivering a standalone image
	13.3 Creating a Mac OS X application bundle
	13.3.1 Example application bundle delivery script
	13.3.2 Alternative application bundle creation code
	13.3.3 Further Mac OS X delivery examples

	13.4 Command line applications
	13.5 Making a smaller delivered image
	13.5.1 Increasing the delivery level

	14 Efficiency considerations when coding for delivery
	14.1 Use of modules
	14.2 Loading code at run time
	14.3 General strategy for reducing the image size
	14.4 Use of symbols, functions, and classes
	14.5 Making references to packages
	14.6 Declaring the types of variables used in function calls
	14.7 Avoid referencing type names
	14.7.1 Referencing types via methods
	14.7.2 Referencing types via predicates

	14.8 Use of the INTERN and FIND-SYMBOL functions
	14.9 Use of the EVAL function and the invocation of uncompiled functions
	14.10 User-defined and built-in packages

	15 Self-contained examples
	15.1 Delivering a Cocoa CAPI application examples
	15.2 Delivering a CAPI application examples
	15.3 Delivering a dynamic library examples
	15.4 Delivering a Windows service examples

	16 Delivery Reference Entries
	deliver
	delivery-value
	deliver-keep-symbol-names
	deliver-keep-symbols
	deliver-keywords
	delivery-shaker-cleanup
	delivery-shaker-weak-pointer

	Index

