
LispWorks®

IDE User Guide
Version 6.1

Copyright and Trademarks
LispWorks IDE User Guide (Unix version)

Version 6.1

November 2011

Copyright © 2011 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be construed as a
commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or inaccuracies that may appear in this
publication. The software described in this book is furnished under license and may only be used or copied in accordance with the terms of
that license.

LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the registered trade-
marks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986, 1987, 1988 Xerox
Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, pro-
vided that this copyright and permission notice appear in all copies and supporting documentation, and that the name of M.I.T. not be used
in advertising or publicity pertaining to distribution of the software without specific, written prior permission. M.I.T. makes no representa-
tion about the suitability of this software for any purpose. It is provided “as is” without express or implied warranty. M.I.T. disclaims all war-
ranties with regard to this software, including all implied warranties of merchantability and fitness. In no event shall M.I.T. be liable for any
special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of con-
tract, negligence or other tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of ICU software obtained from http://source.icu-project.org and which bears the following copyright and permis-
sion notice:
ICU License - ICU 1.8.1 and later
COPYRIGHT AND PERMISSION NOTICE
Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Soft-
ware"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright
notice(s) and this permission notice appear in all copies of the Software and that both the above copyright notice(s) and this permission
notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIM-
ITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF
THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or
other dealings in this Software without prior written authorization of the copyright holder. All trademarks and registered trademarks men-
tioned herein are the property of their respective owners.

US Government Restricted Rights
The LispWorks Software is a commercial computer software program developed at private expense and is provided with restricted rights.
The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth in the accompanying End User
License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR 12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14
Alt III, as applicable. Rights reserved under the copyright laws of the United States.

Address

LispWorks Ltd
St. John’s Innovation Centre
Cowley Road
Cambridge
CB4 0WS
England

Telephone

From North America: 877 759 8839
(toll-free)

From elsewhere: +44 1223 421860

Fax
From North America: 617 812 8283
From elsewhere: +44 870 2206189

www.lispworks.com

http://www.lispworks.com

Contents
Preface xi

1 Introduction 1

Major tools 2

2 A Short Tutorial 5

Starting the environment 6
Creating a Listener 7
Using the Debugger 9
Viewing output 12
Inspecting objects using the Inspector 13
Examining classes in the Class Browser 15
Summary 18

3 Common Features 21

Displaying tool windows 22
Setting preferences 28
Performing editing functions 39
The Break gesture 42
The history list 43
Operating on files 44
Displaying packages 45
Performing operations on selected objects 48
Using different views 51

iii

iv
Tracing symbols from tools 55
Linking tools together 56
Filtering information 56
Regexp matching 59
Completion 61
Examining a window 66

4 Getting Help 69

Online manuals in HTML format 69
Online help for editor commands 72
Browsing manuals online using Adobe Reader 73
Reporting bugs 73

5 Session Saving 75

What session saving does 75
The default session 76
What is saved and what is not saved 76
Saving sessions 77
Redirecting images to a Saved Session image 82
Non-IDE interfaces and session saving 83

6 Manipulating Graphs 85

An overview of graphs 85
Searching graphs 87
Expanding and collapsing graphs 87
Moving nodes in graphs 88
Displaying plans of graphs 89
Preferences for graphs 91
Using graphs in your programs 96

7 The Podium 97

The podium window 97
Specifying the initial tools 98

8 The Class Browser 99

Simple use of the Class Browser 100
Examining slot information 107

Examining superclasses and subclasses 110
Examining classes graphically 112
Examining generic functions and methods 116
Examining initargs 120
Examining class precedences 122

9 The Object Clipboard 125

Placing objects on the Object Clipboard 126
Browsing clipped objects 129
Removing objects 130
Filtering 130
Using the Object Clipboard with a Listener 131

10 The Compilation Conditions Browser 135

Introduction 135
Examining conditions 137
Configuring the display 138
Access to other tools 140

11 The Debugger Tool 141

Description of the Debugger 143
What the Debugger tool does 148
Simple use of the Debugger tool 149
The stack in the Debugger 150
An example debugging session 151
Performing operations on the error condition 153
Performing operations on stack frames 153
Performing operations on frame variables 155
Configuring the debugger tool 155
The Notifier window 158
Errors in CAPI display callbacks 159

12 The Tracer 161

Introduction 161
Tracing and Untracing functions 161
Examining the output of tracing 162
Example 164

 v

vi
13 The Editor 169

Displaying and editing files 171
Displaying output messages in the Editor 175
Displaying and swapping between buffers 175
Displaying Common Lisp definitions 179
Changed definitions 181
Finding definitions 183
Setting Editor preferences 184
Basic Editor commands 187
Other essential commands 192
Cutting, copying and pasting using the clipboard 193
Cutting, copying and pasting using the kill ring 193
Searching and replacing text 197
Using Lisp-specific commands 201
Help with editing 209

14 The Function Call Browser 211

Introduction 211
Examining functions using the graph views 212
Examining functions using the text view 216
Configuring the function call browser 218
Configuring graph displays 219
Performing operations on functions 220

15 The Generic Function Browser 221

Examining information about methods 222
Examining information about combined methods 225
Configuring the Generic Function Browser 231

16 The Search Files tool 233

Introduction 233
Performing searches 235
Viewing the results 244
Modifying the matched lines 245
Configuring the Search Files tool 246

17 The Inspector 253

Inspecting the current object 253
Description of the Inspector tool 254
Filtering the display 255
Examining objects 257
Operating upon objects and items 258
Configuring the Inspector 263
Customizing the Inspector 267
Creating new inspection formats 267

18 The Symbol Browser 273

Introduction 273
Description of the Symbol Browser 275
Configuring the Symbol Browser 279

19 The Interface Builder 281

Description of the Interface Builder 282
Creating or loading interfaces 283
Creating an interface layout 286
Creating a menu system 289
Editing and saving code 294
Performing operations on objects 298
Performing operations on the current interface 303
Performing operations on elements 305

20 Example: Using The Interface Builder 307

Creating the basic layout 309
Specifying attribute values 311
Creating the menu system 314
Specifying callbacks in the interface definition 317
Saving the interface 319
Defining the callbacks 319
Creating a system 323
Testing the example interface 323

21 The Listener 325

The basic features of a Listener 326

 vii

viii
Evaluating simple forms 327
Re-evaluating forms 329
The debugger prompt and debugger level 329
Interrupting evaluation 330
The History menu 331
The Expression menu 331
The Values menu 333
The Debug menu 333
Execute mode 334
Setting Listener preferences 338
Running Editor forms in the Listener 339
Help with editing in the Listener 339

22 The Output Browser 341

Interactive compilation messages 343

23 The Process Browser 347

The process list 350
Process control 350
Other ways of breaking processes 351
Updating the Process Browser 351
Process Browser Preferences 352

24 The Profiler 355

Introduction 355
Display of Profiler Data 358
A description of profiling 361
Steps involved in profiling code 362
Format of the cumulative results 369
Interpreting the cumulative results 370
Profiling pitfalls 370
Some examples 372

25 The Shell and Remote Shell Tools 375

Introduction 375
The Shell tool 375
Command history in the shell 377

Configuring the shell to run 377
The Remote Shell tool 377

26 The Stepper 379

Introduction 379
Simple examples 382
The implementation of the Stepper 385
Stepper controls 386
Stepper restarts 390
Breakpoints 390
Stepping macro forms 396
Listener area 398
Configuring the Stepper 399

27 The System Browser 403

Introduction 403
A brief introduction to systems 404
The System Browser 406
A description of the System Browser 406
Examining the system tree 407
Examining systems in the text view 410
Generating and executing plans in the preview view 412
Examining output in the output view 416
ASDF Integration 417
Configuring the display 419
Setting options in the system browser 420

28 The Window Browser 421

Introduction 421
Configuring the Window Browser 424
Performing operations on windows 427

29 The Application Builder 429

Introduction 429
Preparing to build your application 431
Building your application 434
Editing the script 435

 ix

x

Troubleshooting 435
Running the saved application 436
Using the Application Builder to save a development image 437
Configuring the Application Builder 438

 Index 439

Preface
Conventions used in this manual

This manual assumes that you have at least a basic knowledge of Common
Lisp. Many source code examples are used throughout the manual to illus-
trate important concepts, but only extensions to Common Lisp which are spe-
cific to the environment are explained in detail.

This manual does provide a complete description of the windowed develop-
ment environment available in your Lisp image. This includes a description of
the user interface itself, and a description of how the user interface interacts
with Common Lisp.

Using the mouse

Throughout this manual, actions that you perform using the mouse are
described in terms of the gesture used, rather than the combination of mouse
buttons and keys that need to be used to perform the operation. This is
because the buttons that are used are highly dependent on the platform you
are running your Lisp image on, the operating system you are using, and even
the type of mouse that you have attached to your computer. The mouse ges-
tures available in the environment are described below.
xi

xii
Select

This is by far the most common mouse gesture, and is used for nearly all
mouse operations in the environment. Use the select gesture to

• display a menu,

• choose a command from a menu which is already displayed,

• select items from a list or graph

• select or deselect a toggle switch,

• click on a button,

• position the mouse pointer in a piece of text.

Depending on the characteristics of your operating system or (if you are using
a UNIX system) your window manager, you may also need to use select in
order to move the mouse focus to another window.

If you are using a mouse with several buttons, you can nearly always select by
clicking the left-most button, but you should refer to the documentation for
your operating system or window manager if you are unsure. This is particu-
larly true if you are using a mouse which has been set up for use by a left-
handed person, since it is possible that the function of the mouse buttons has
been reversed.

Multiple select

Multiple selection is used in lists and graphs when you want to select more
than one item. You can select several items from any list or graph in the envi-
ronment, and there are a large number of commands which can operate
equally well on these multiple selections.

There are a number of standard ways of making multiple selections in a list or
graph, depending on your operating system or window manager. Check the
relevant documentation if you are unsure, or try any of the following:

• Holding down the Shift key while selecting an item.

• Holding down the Control key while selecting an item.

• The middle mouse button (if you have a three-button mouse).

Typically, in lists, holding down the Shift key lets you make a contiguous
selection, and holding down the Control key lets you make a discontiguous
selection.

• To select a block of items from a list, select the first item, hold down the
Shift key, and then select the last item; the intervening items are also
selected.

• To select several items which do not form a block, hold down the Con-
trol key while selecting each item individually.

This behavior is typical in a number of operating systems or window manag-
ers. You are probably familiar with it if you are familiar with using a mouse.

Double-click

The double-click gesture consists of two select gestures, performed in rapid
succession. In general, any item in a list, tree or graph may be double-clicked.

Double-clicking in a choice is usually a shortcut for selecting an item and
choosing a common menu command, and the precise action that takes place
depends on the context in which the double-click was performed. Double-
clicking can only be performed on single selections.

In the Editor double-click selects the current Lisp form.

Triple-click

The triple-click gesture consists of three select gestures, performed in rapid
succession.

In the Editor this selects the line on GTK+ and Cocoa. The triple-click gesture
is not currently supported in LispWorks on Microsoft Windows.

Alternate select

This is a less common gesture, and is used almost exclusively within the Lisp-
Works IDE to display a context menu (sometimes referred to as the "context
menu" or the "right button menu").

If you are using a mouse with several buttons, you should find that you can
perform this gesture by clicking the right-most mouse button. On a Macintosh
with a single button mouse, the context menu is raised by holding down the
 xiii

xiv
Control key and clicking the mouse button. Refer to the documentation for
your window manager or operating system if you are unsure.

Choosing menu commands and other controls

Throughout this manual, menu command names and other text labels are
shown in This Bold Font.

Submenus are indicated by use of the > character. Thus, for instance, the
instruction

“Choose File > Open”

means that you should select the File menu on a menu bar, and choose the
Open command in the menu that appears. Similarly,

“Choose Works > Tools > Editor”

means that you should display the Works menu by selecting it, select Tools
from this menu to display a submenu, and choose the Editor command from
this submenu.

The sequence can include labels of other GUI elements such as tabs and list
items. For example the instruction

“Choose Preferences... > Environment > General > Use in-place completion”

means that you should select the Preferences... menu item, then select the
Environment item in a list within the dialog that appears, then select the Gen-
eral tab within that dialog, and lastly access the button labelled Use in-place
completion.

Using the keyboard

Throughout this manual there are descriptions of commands that you can
choose by typing at the keyboard. This is especially true when discussing the
built-in editor, which relies heavily on the use of keyboard commands, and
the Common Lisp listener, which uses many of the same commands.

Throughout this manual, keyboard input including the names of keys you
press is shown in This Font.

Keyboard commands generally use a combination of ordinary keys together
with the modifier keys Control, Shift, Escape, Alt, Meta and Command (not
all of these are available on each platform).

UNIX implementation note: You should use the Meta or © key wherever this
manual refers to the Alt key.

In all cases, the Control, Shift, Meta and Command keys should be held down
concurrently with the specified letter. For example:

Ctrl+S is read as “hold down the Control key and press S”.

Ctrl+Shift+A is read as “hold down the Control and Shift keys and
press A”.

In the editor in Emacs emulation mode, instead using the Meta (Alt) modifier
with a key, the Escape key can be pressed and released before pressing the
key. For example:

Esc E is read as “press and release the Escape key, then press E”.

Alt+E is read as “hold down the Alt key and press E”.

The two key inputs above are equivalent in Emacs emulation mode. This man-
ual generally refers to Alt when referring to the editor key strokes.

For more information on using keyboard commands in the built-in editor and
the Listener, see “Using keyboard commands” on page 174.

Appearance of the graphical tools

The screenshots in this manual show toolbars that may have been customized
(using the context menu) so you might see some differences from your setup.
 xv

xvi

1

1 Introduction
This manual gives you a complete guide to the LispWorks IDE development
environment. This environment comprises a large number of window-based
tools which have been designed with the Common Lisp developer in mind.
The following are among the features provided by the environment:

• A fully functional code Editor specifically designed to make writing
Common Lisp source code as swift as possible, emulating Emacs or
KDE/Gnome key styles

• A Common Lisp Listener for evaluating Common Lisp forms interac-
tively.

• A range of debugging tools including a graphical Debugger, source
code Stepper, code Profiler, Tracer, and the Inspector.

• A range of browsers for examining different objects in your Lisp image,
such as the generic functions or CLOS classes that have been defined.

• A tool for simplifying source code management; vital if you are
involved in developing large applications.

• (Microsoft Windows, Linux, x86/x64 Solaris and FreeBSD platforms
only) A tool for designing window-based interfaces to your applica-
tions. A point-and-click interface is used to design the interface, and
Lisp code is generated for you.
1

1 Introduction

2

• A Shell window that lets you run system utilities (DOS commands on
Windows, shell commands on Unix-based systems) inside LispWorks.
Remote shells are also supported on Unix-based systems.

• A Search Files tool that allows you to find text matching a regular
expression in files.

• An Object Clipboard that allows you to manage selected and copied
objects.

• Saved sessions which can be restarted at a later date, allowing you to
resume work after restarting your computer.

Because of the large number of tools available, consistency is a vital theme in
the environment; each tool has a similar look and feel so that you need only
spend a minimum amount of time learning how to use the environment.

In addition, there is a high degree of integration between the tools available.
This means that it is possible to transfer pieces of information throughout the
environment in a logical fashion; if you create an object in the Listener, you
can examine it by transferring it directly to the Inspector. The class of objects
that it belongs to can be examined by transferring it to a Class Browser, and
from there, the generic functions which have methods defined on it can be
browsed.

To reflect these themes of consistency and integration, the earlier chapters in
this manual deal with the generic aspects of the environment, while at the
same time introducing you to the more important tools.

1.1 Major tools
The environment supports a wide range of tools which can help you to work
on your Lisp source code more quickly and efficiently. This section gives you a
brief introduction to the most important tools.

You can create any of the tools described here by choosing the appropriate
command from the Tools menu of the podium window, or by selecting the rel-
evant tool from the Works > Tools menu on any other tool.

For full details about any of these tools, see the relevant chapter. The second
part of this manual covers each of the tools in the order that they are found on
the Tools menu.

1.1 Major tools
1.1.1 The Listener

A Common Lisp Listener is provided to let you evaluate Common Lisp forms.
This tool is invaluable as a method of testing your code without necessitating
compilation or evaluation of whole files of Common Lisp source code.

1.1.2 The Editor

A built-in editor is provided to allow you to develop Common Lisp code. It is
based on Emacs, an editor which you may already be familiar with. As an
alternative to Emacs keys, the editor offers KDE/Gnome emulation.

The built-in editor offers a wide range of functions specifically designed to
help you develop Common Lisp code, and it is fully integrated into the envi-
ronment so that code being developed is immediately available for testing.

1.1.3 The Class Browser

This tool allows you to examine the Common Lisp classes that are defined in
your environment. You can look at the superclasses and subclasses of a given
class and see the relationships between them, and you can examine the slots
available for each class.

In addition, you can examine the functions and methods defined on a given
class, or the precedence list or initargs for the class.

1.1.4 The Output Browser

The Output Browser collects and displays all output from the environment
which may be of use. This includes warning and error messages displayed
during compilation and output generated by tracing or profiling functions.
Many other tools in the environment also provide you with an output view,
which lets you see any output which is appropriate to that tool.

1.1.5 The Inspector

The Inspector lets you examine and destructively modify the contents of Com-
mon Lisp objects. It is an invaluable tool during development, since it lets you
inspect the state of any part of your data at any stage during execution. Thus,
it is easy to see the value of a slot and, if necessary, alter its value, so that you
 3

1 Introduction

4

can test out the effects of such an alteration before you make the changes nec-
essary in the source code itself.

1.1.6 The Object Clipboard

The Object Clipboard is used to manage multiple Lisp objects. You can select
any object in the Object Clipboard for use in paste operations.

As an example of adding a Lisp object to the Object Clipboard, follow these
steps:

1. Evaluate a Lisp expression in the Listener window. Its value is printed.

2. Choose the menu command Values > Clip.

The value from the Listener is now in the Object Clipboard.

If you have not already made an Object Clipboard visible, then do so now
using the menu command Works > Tools > Object Clipboard.

The Object Clipboard can be seen in Figure 1.1.

Figure 1.1 Object Clipboard Tool

You can use the left mouse button to select any item in the Object Clipboard,
then use the context menu (usually invoked by the right mouse button) to
inspect, inspect class, open a Listener, or copy the object.

2

2 A Short Tutorial
This chapter gives you a short tutorial illustrating simple use of some of the
major tools in the environment, and attempts to familiarize you with the way
that tools can be used developing Common Lisp applications.

Note that some of the examples given in this chapter use symbols taken from
the CAPI library. Do not worry if you are not familiar with the CAPI (if, for
instance, you have been using another library, such as CLIM, to develop your
applications). It is not essential that you fully understand the example code
used in order to gain benefit from the tutorial. If you wish to learn more about
the CAPI, you should refer to the CAPI User Guide and the CAPI Reference
Manual, both of which are supplied in electronic form with your LispWorks
software. The Help menu allows you to search all documentation from inside
the LispWorks IDE.

Note: When using either the GTK+ GUI or the deprecated X11/Motif GUI,
before you start working through the tutorial, ensure that the DISPLAY UNIX
environment variable is set correctly, and that you have started the LispWorks
IDE, for example by

(env:start-environment)

To maintain continuity, try to work your way through the whole of this tuto-
rial in one session.
5

2 A Short Tutorial

6

2.1 Starting the environment
On Linux, x86/x64 Solaris and FreeBSD, assuming that you have the Lisp-
Works executable location in your path, just type its name in any xterm or
command shell window. This name is lispworks-6-1-0-amd64-linux or
lispworks-6-1-0-x86-freebsd or similar depending on which product you
are running. Under KDE or Gnome, you might want to set up a system menu
item to start LispWorks.

On Linux, x86/x64 Solaris and FreeBSD, the LispWorks IDE starts automati-
cally in the supplied image. On SPARC Solaris and HP-UX, the LispWorks
IDE starts when the command line argument -env is specified. If -env is not
specified, LispWorks will start in terminal ("tty") mode with a prompt similar
to the following:

CL-USER 1 >

Type the following Lisp form at the prompt to start the LispWorks IDE:

(env:start-environment)

You should see a splash screen, followed by the Podium window. The Podium
is shown in Figure 2.1. A Listener window will also appear if your image is
configured to start one.

Figure 2.1 The Podium

The Podium window is automatically displayed whenever you start the Lisp-
Works IDE. Its menu bar gives you access to various commands, as well as all
the other tools in the environment. Its toolbar gives you quick access to some
of the more convenient menu commands.

Menu BarToolbar

2.2 Creating a Listener
 Like many other applications, the menu bar contains File,Tools, Windows and
Help menus and a LispWorks specific menu named Works. The Works menu
contains commands that apply to the current window and also contains
menus that allow navigation between tools in the LispWorks environment.

 The File menu allows you to open a file in an Editor, or print a file, regardless
of which window is active. When the Editor or Listener tool is active, the File
menu contains other commands for miscellaneous operations on the file dis-
played. The Tools menu gives you access to all of the LispWorks IDE tools.
The Windows menu lists all the active LispWorks windows you have running.

Note: If you wish to exit the Lisp image during this tutorial or at any other
time, choose Works > Exit > LispWorks.

2.1.1 The Lisp Monitor

In the deprecated Motif IDE only, a Lisp Monitor window also appears when
you start the LispWorks IDE. This is actually a separate process which shows
you the state of the Lisp image, and monitors any garbage collection activity
which occurs. For the most part you can ignore this window, although you
may sometimes find the buttons on it useful for breaking into the Lisp process
if you run source code which crashes Lisp for any reason. If you wish, you
may close the Lisp Monitor window.

Figure 2.2 The Lisp Monitor

2.2 Creating a Listener
The Listener tool interactively evaluates the Lisp forms you enter. During a
typical session, you evaluate pieces of code in the Listener, then examine the
 7

2 A Short Tutorial

8

effects in other tools, returning to the Listener whenever you want to evaluate
another piece of. The structure of this tutorial reflects this two-stage approach.

Except on Unix platforms, a Listener is created when you start the LispWorks
IDE. If you don’t currently have a Listener (check the Windows menu), start
one by choosing Tools > Listener from the podium or clicking on in the
Podium. This section of the tutorial demonstrates some of its more useful fea-
tures. A Listener window is shown in Figure 2.3 below.

Figure 2.3 Listener

The Listener contains two views: the Listener view and the output view. At
the bottom of the Listener is an echo area that is visible in either view. The
echo area is used to prompt you for information when performing editor com-
mands such as searching for text. You can switch between the two views by
clicking the Listener and Output tabs respectively. You can evaluate Lisp forms
in the Listener view by typing the form, followed by Return. Any output that
is produced is displayed in the Listener view.

1. Type the following form into the Listener and press Return.

(+ 1 2)

2.3 Using the Debugger
The result of the evaluation, 3, appears in the Listener, and a new
prompt is printed. Notice that the number in the prompt has been incre-
mented, indicating that a form has been evaluated.

Because you may want to enter a number of very similar forms, com-
mands are provided which make this easy.

2. Press Meta+P.

The form that you just evaluated is printed at the new prompt. You can
press Return to evaluate this form again, or, more usefully, you can edit
the form slightly before evaluating it.

3. Press Ctrl+B to move the cursor back one space. Now press the Back-
space key to delete the number 2, and type 3 in its place.

You have edited the form (+ 1 2) to create a new form, (+ 1 3).

4. Press Return to evaluate the new form.

The result of the evaluation, 4, appears in the Listener, followed by another
new prompt, with the prompt number incremented once again.

2.3 Using the Debugger
A debugger tool is provided to help track down the cause of problems in your
source code. This section introduces you to some of the ways in which it can
be used.

1. Enter the following definition in the Listener:

(defun test ()
 (let ((total 0))
 (loop for i below 100 do
 (incf total i) when (= i 50) do
 (break "We've reached fifty"))))
This function counts from 0 to 100, accumulating the total as it
progresses, and forces entry into the debugger when the count has
reached 50.

2. Next, call the function by entering (test) into the Listener.

Initially, the command line debugger is entered. This is a debugger
which can be used from within the Listener itself. More details about
 9

2 A Short Tutorial

10
what you can do in the command line debugger can be found by typing
:? at the debugger prompt.

3. To enter the debugger tool at this point, choose the menu command
Debug > Start GUI Debugger or press in the Listener toolbar.

2.3 Using the Debugger
The debugger tool appears, as shown in Figure 2.4.

Figure 2.4 Debugger tool

Debugger backtrace.

State of variables for
selected frame.

Error condition. Control buttons.
 11

2 A Short Tutorial

12
The debugger tool gives a view of the backtrace (in the Backtrace: pane),
showing the functions that are on the stack, and their internal variables
(including any arguments) at the point that the error occurred.

4. In the Backtrace: pane, notice that there is a right-pointing triangle to the
left of the word TEST. This indicates an expandable node. Click on this to
open up the tree display, showing the local variables used in function
test. Notice that the value for i is 50, as you would expect.

There is a row of toolbar buttons at the top of the debugger which let
you perform a number of different actions.

5. Choose Restarts > (continue) Return from break. or click on the Continue
icon from the toolbar to exit the Debugger and continue execution.

The debugger disappears from the screen, and the command line debugger in
the Listener is exited, leaving you at the Lisp prompt in the Listener.

2.4 Viewing output
There are many different ways to view output generated by the environment.
In many tools, for example, output appears as soon as it is generated — this
happens, for instance, when you compile code in the built-in editor.

At other times, you can view output in a tool called the Output Browser. This
tool collects together all the output generated by the environment, and is par-
ticularly useful for viewing output generated by your own processes (which
cannot be displayed in any other environment tool). The Output Browser dis-
plays all the output sent to the default value of the variable *standard-out-
put*.

1. Evaluate the following in the Listener.

(capi:contain
 (make-instance 'capi:push-button-panel
 :items '(:red :yellow :blue)
 :selection-callback
 #'(lambda (data interface)
 (format t
 "Pressed button in interface ~S~%
data=~S~%"
 interface data))))

2.5 Inspecting objects using the Inspector
This is a piece of CAPI code that creates a window with three buttons,
labeled RED, YELLOW and BLUE, as shown in Figure 2.5. Pressing any of
these buttons prints the value of the button pressed.

Figure 2.5 Example CAPI window

2. Click on the Output tab in the Listener.

3. Try clicking on any of the buttons in the window you just created, and
look at the output generated.

4. Now try a second example by entering the form below into the Listener
at the current prompt (remember to click the Listener tab in the Listener
first).

(capi:contain (make-instance
 'capi:text-input-pane
 :callback #'(lambda (text interface)
 (format t
 "You entered: ~S~%" text))
 :title "My Text Input Pane"))

The object that this code creates is going to demonstrate the Inspector
tool. The code above creates a window containing a text input pane. You
can type text directly into a text input pane, and this can be passed, for
instance, to other functions for further processing.

5. Type the word hello into the text input pane and press Return. Look at
the generated output in the output view.

2.5 Inspecting objects using the Inspector
The variables *, **, and *** hold the results of expressions which have been
evaluated in the Listener. * always holds the result of the last expression eval-
uated; ** holds the previous value of *, and *** holds the previous value of
 13

2 A Short Tutorial

14
**. These variables (* in particular) are not only useful in their own right; the
environment uses them to pass values between different tools.

1. Make sure the Listener tab is visible, and type *.

If you have followed this tutorial so far, the text input pane object that
you created above is returned. This is because the capi:contain func-
tion returns the object that is being contained. You can easily inspect this
object more closely in the Inspector tool.

2. Choose the menu command Values > Inspect.

This creates an Inspector tool which displays the capi:text-input-
pane object currently contained in *.

Figure 2.6 Examining a text input pane in the Inspector

The commands in the Values menu always act upon the current value of *.
This enables you to pass a value easily from one tool to another.

2.6 Examining classes in the Class Browser
The main part of the Inspector is a list of all the slots in the object being
inspected. This list shows both the name of each slot and its current value.
Above this list is a button labeled Filter with a text box to its right. This lets
you filter the information shown in the main list, which can be useful when
you are inspecting objects with a large number of slots. The name of the object
being inspected appears immediately below the echo area.

3. Click in the Filter text box, type the word text.

This restricts the display in the Inspector to only those items which con-
tain the string “text”, either in the slot name or in the slot value.

After using the filter, you can easily see that one of the available slots
contains the word hello that you typed into the text input pane.

The Inspector always displays the actual instantiation of a given object
(as opposed to a copy of it), so that you can be certain that any changes
to the object itself are reflected in the Inspector.

4. Display the text input pane that you created earlier.

If you can no longer see it, choose Works > Windows > Container; this is a
simple way to display any of the windows and tools that you have cre-
ated so far. (There are actually two windows with this name; if you
choose the wrong one first of all, then just choose the other one.)

5. Click in the text input pane and delete the word hello. Type goodbye
and press Return.

6. Select the Inspector to make it the active window and choose Works >
Refresh.

The description of the text slot now reflects the new value you specified.

7. Close the Inspector by choosing Works > Exit > Window.

You can close any window in the environment in this way, although there are
often other ways of closing windows.

2.6 Examining classes in the Class Browser
This section shows you how to use the Class Browser tool to examine informa-
tion about the Common Lisp class of any given object. The examples given use
 15

2 A Short Tutorial

16
the text input pane object that you created earlier, and show you how you can
change the values of a slot programmatically.

1. In the Listener, type * once again.

Notice that the * variable still contains the value of the text input pane
object. This means that it is easy to perform several actions on that
object. Notice further that the environment is aware that the object has
been changed: the value returned by * reflects the change to the text slot
that you made in the last section.

2. From the Listener, choose Values > Class.

2.6 Examining classes in the Class Browser
This creates a Class Browser, shown in Figure 2.7, which allows you to
examine the class of the object contained in *.

Figure 2.7 Examining the class of an object using the Class Browser

Ensure that the Slots tab is selected, as in the illustration. In the Class: box, the
name of the current Common Lisp class is printed. The list below the Filter box
displays the slots available to the current class, and list labeled Description:
displays the description of any selected slot. The filter works in the same way
 17

2 A Short Tutorial

18
as the Inspector’s filter. There is also a checkbox labeled Include Inherited Slots.
Selecting this checkbox lets you switch between displaying all the slots
defined on the current class and all its superclasses, and only those slots
defined directly on the current class. By default, slots defined on any super-
classes (inherited slots) are shown in the main area.

3. Filter the display as you did for the Inspector; click in the Filter box, and
this time type the word foreground.

Only those slots with the string “foreground” in their names are dis-
played.

4. Select the CAPI::FOREGROUND slot from the list. A description of the slot
appears in the description area, including information such as the ini-
targs, readers, and writers of the slot.

Notice that the class text input pane has both a reader, capi:simple-pane-
foreground, and a writer, (setf capi:simple-pane-foreground). We can
use this information to programmatically change the text shown in the text
input pane.

5. Type this form into the Listener:

(setf (capi:simple-pane-foreground *) :red)

The text displayed in the text input pane is displayed in red to reflect the new
value you have specified. Notice how you were able to use the * variable to
refer directly to the text input pane object itself.

2.7 Summary
In this introductory tutorial you have seen how to perform the following
actions:

• Start the windowing environment.

• Evaluate and re-evaluate Common Lisp forms using the Listener.

• Invoke the Debugger, follow the backtrace that it produces, and return
from the error which caused entry to the Debugger.

• Collect and display data generated by your own code in the Output
Browser.

2.7 Summary
• Use the Inspector to examine the current state of an object.

• Use the Class Browser to find out detailed information about a given
class, so that you can make arbitrary programmatic changes to an
instance of that class.

The next two chapters describe elements of the environment which are com-
mon to all tools.

Other chapters in this manual describe the other tools available in the environ-
ment. Each chapter is intended to be reasonably independent of the others, so
you can look at them in any order you wish. You are advised to study the
chapters on the basic tools, such as the Inspector, the Class Browser and the
Editor first, since a knowledge of these tools is vital if you want to get the best
out of the environment.
 19

2 A Short Tutorial

20

3

3 Common Features
Th LispWorks IDE has been designed so that its features are consistent
throughout, and tools have a uniform look and feel. All tools have certain
characteristics which look the same, and behave in a consistent manner. By
making as many common features as possible, learning how to use each tool is
much simpler.

Chapter 2, “A Short Tutorial”, introduced you to some of the major tools in the
environment, demonstrating the commonality and high integration between
them, and showing how this can be used to good effect in the development
process. This chapter describes these common features in more detail.

Most of the common features in the environment can be found under the
Works, File, Tools, Windows, History and Help menus. Using the commands
available under these menus you can:

• Move to any other tool.

• Cut, copy or paste via the clipboard and the Object Clipboard tool.

• Perform search and replace operations.

• Re-issue a previous command, or re-examine an object.

• Perform operations such as loading and saving files.

Each menu command operates on the window associated with the menu.
21

3 Common Features

22
In addition, some other conventions have been adopted throughout the Lisp-
Works IDE:

• Many tools have a number of different views: ways of displaying infor-
mation. Each view is made available by clicking on a different tab in the
tool.

• Lists displayed in many tools can be filtered in order to hide redundant
or uninteresting information.

These features are described in full in this chapter. Please note that subsequent
descriptions of individual tools in the environment do not include a descrip-
tion of these menus, unless a feature specific to the individual tool is
described.

Online help is also available from the Help menu in any window. These facili-
ties are described in Chapter 4, “Getting Help”.

Many tools allow you to display information in the form of a graph. These
graph views behave consistently throughout the environment, and a descrip-
tion of the graph features offered is given in Chapter 6, “Manipulating
Graphs”.

3.1 Displaying tool windows
There are many tools available, and you can display them in a number of
ways.

You can also control how tools are re-used within the environment. That is,
whether an existing Listener window (for example) is raised or a new one cre-
ated, when you ask for a Listener tool. In this section we will discuss global
and per-tool control of reuse.

3.1.1 Displaying existing windows

Choose the Windows menufrom the podium. This menu contains a list of all
the windows currently available in the environment. Choosing any item from
this list brings the window to the front of the display.

3.1 Displaying tool windows
3.1.2 Iconifying existing windows

To iconify a window, use the command provided by your window manager.

3.1.3 Displaying tools using the mouse

To display most tools:

1. Choose the Tools menu from the podium.

Most tools in the environment are listed in this menu.

2. Choose the tool you require from the menu.

or

1. Choose the Works > Tools menu from any tool.

2. Choose the tool you require from this menu.

or

1. Click the appropriate button on the Podium.

For example, to display a Process Browser, click .

The tool is created (if necessary), and displayed. Using this method can be
useful you may not remember immediately whether you have an existing
instance of a given tool or not.

3.1.4 Displaying tools using the keyboard

Accelerators are provided for the popular items on the Tools menu.

Each tool accelerator is an alphanumeric key together with platform-specific
modifier keys as shown in “Tool accelerator keys” on page 24.

You cannot configure these pre-defined tool accelerators.

3.1.4.1 Tool accelerator modifier keys

On GTK+ and Motif the modifiers are Meta+Ctrl. For example, Meta+Ctrl+L
raises a Listener.
 23

3 Common Features

24
3.1.4.2 Tool accelerator keys

The accelerator keys for each tool are as shown in Table 3.1

Table 3.1 Tool accelerators

Tool Name Accelerator

Listener Meta+Ctrl+L

Editor Meta+Ctrl+E

Output Browser Meta+Ctrl+U

Inspector Meta+Ctrl+I

Class Browser Meta+Ctrl+C

Generic Function Browser Meta+Ctrl+G

Symbol Browser Meta+Ctrl+S

Object Clipboard Meta+Ctrl+O

Function Call Browser Meta+Ctrl+X

System Browser Meta+Ctrl+Y

Compilation Conditions
Browser

Meta+Ctrl+D

Search Files Meta+Ctrl+F

Profiler None

Tracer Meta+Ctrl+T

Stepper None

Window Browser Meta+Ctrl+W

Process Browser Meta+Ctrl+P

Shell None

Application Builder Meta+Ctrl+A

3.1 Displaying tool windows
3.1.4.3 Special considerations when using tool accelerators

In the deprecated Motif GUI, tool accelerators work only in KDE/Gnome edi-
tor emulation. Also, you need a keyboard with Alt on mod1 and Meta on a dif-
ferent modifier (for example, mod3).

3.1.5 Re-using tool windows

3.1.5.1 Global control of re-use

By default, tools windows are re-used where possible. For example, suppose
you already have a Listener window (potentially iconified) but do not have an
Inspector window. When you choose Tools > Listener in the podium, the exist-
ing Listener is displayed. When you choose Tools > Inspector, an Inspector is
created and displayed.

You can switch off re-use of tool windows. To do this, first raise the Prefer-
ences dialog as described in “Setting preferences” on page 28. In the Prefer-
ences dialog under Environment > General > Window Options uncheck the Reuse
all tools box and click OK. Now, when you choose Tools > Listener a new Lis-
tener is created, regardless of whether one already exists, and other tools
behave in the same way.

The setting of Reuse all tools will be retained for your subsequent LispWorks
sessions.

3.1.5.2 Per-window control of re-use

When the Reuse all tools option is on, tools windows are reusable by default.
However, it is possible to specify that a particular instance of a tool is not reus-
able. To make your Inspector not reusable, follow these steps:

Debugger None

Table 3.1 Tool accelerators

Tool Name Accelerator
 25

3 Common Features

26
1. Ensure that the Reuse all tools option is checked under Works > Tools >
Preferences....

2. In the Inspector window, open the menu Works > Customize and deselect
the Resuable option.

3. Now try Tools > Inspector. A new Inspector window is created.

The Reuse all tools option is persistent, but the per-tool setting Resuable
applies only to the current instance of the tool, and it does not affect future
sessions.

3.1.6 Toolbar configurations

Most tools have toolbars offering one-click access to frequently-used com-
mands. For example, the Editor has a toolbar for operating on source code.

Figure 3.1 The Editor’s source operations toolbar

You may prefer to remove such toolbars. You can control whether a tool dis-
plays its toolbars by the option Show Toolbar.

To hide toolbars for a particular type of tool:

1. Raise the Preferences dialog as described in “Setting preferences” on
page 28.

2. Select the tool in the list on the left side of the dialog.

3. Select the General tab on the right side of the dialog.

4. Uncheck Show Toolbar and click OK to confirm the setting.

You can also customize the toolbar by removing rarely-used buttons and add-
ing or removing separators between groups of buttons. To do this, raise the
context menu on the toolbar, choose Customize and make your selections in
the Customize Toolbar dialog. You can also use this menu to select whether
this toolbar’s buttons show an image, or text, or both.

3.1 Displaying tool windows
Note: The functionality of each toolbar is available elsewhere. For example the
Editor’s source code operations are also available on the Buffer, Definitions and
Expression menus.

3.1.7 Copying windows

Choose Works > Clone in a given tool window to make a copy of that tool win-
dow. This is useful, for instance, if you wish to have two different views on an
object simultaneously, and allows you to have several copies of a tool without
having to change its re-use property using the Works > Customize menu.

3.1.8 Closing windows

Close any window in the environment using one of the following methods:

• Choose Works > Exit > Window

• Use a window-manager-specific feature, if available

• In Editor windows only, use the Emacs-like command Delete Window
(keystroke Ctrl+X 0)

3.1.9 Updating windows

To manually update any tool, choose Works > Refresh.

Updating a tool is a useful way of making a snapshot of an aspect of the envi-
ronment that you are interested in. For instance, imagine you want to compare
a number of instances of a CLOS class against a known instance of the same
class using the Inspector. You can do this as follows:

1. Create an object to inspect, by entering in a Listener

(make-instance 'capi:text-input-pane)

2. Choose Values > Inspect to view the object in the Inspector.

3. Make sure the Inspector is the active window, and choose Works > Clone
to make a copy of it.

4. In the Listener, enter the same form again to create a second object.
 27

3 Common Features

28
Note: You can use Esc P in Emacs emulation or Ctrl+Up in Windows
emulation to get the previous Listener command.

5. View the new object in the Inspector as in Step 2. Compare it to the orig-
inal instance that is still displayed in the clone.

3.2 Setting preferences
Choose Tools > Preferences... from the podium or Works > Tools > Preferences...
or click to raise the Preferences dialog. This dialog is used to specify:

• options affecting the development environment in general such as those
described in “Re-using tool windows” on page 25 or the name of your
initialization file, and

• options specific to each type of tool, such as the Editor tool, Inspector
tool and so on.

The tool-specific options are described in the chapter relevant to each tool.

The remainder of this section describes the general environment options. To
see these, ensure that Environment is selected in the list on the left side of the
Preferences dialog, and select the General, Emulation, Styles, and File Encodings
tabs.

In all cases your setting is preserved for future use after you click OK to close
the Preferences dialog.

3.2 Setting preferences
3.2.1 General options

The first tab under Environment contains the General options.

Figure 3.2 The Preferences dialog

3.2.1.1 The window options

Reuse all tools controls whether LispWorks uses an existing tool rather than
starting up a new copy. For example if Reuse all tools is checked, if an editor is
already open, choosing File > Open and selecting a new file causes the file to be
opened in the existing editor.

Use separate Editor windows for each file controls whether LispWorks will open
a separate Editor window for each file (or editor buffer) that you have in
 29

3 Common Features

30
memory. In addition, when Use separate Editor windows for each file is checked,
closing an Editor window will remove the underlying editor buffer from
memory, possibly asking if you want to save it. The default setting is
unchecked.

Note: for information about Editor windows, editor buffers and files, see “Dis-
playing and swapping between buffers” on page 175.

Check Use recent directory for opening files to make operations such as File >
Open use the directory of the file most recently edited as the default directory
in the file dialog. Deselect this option to make the dialog’s default directory be
the current working directory.

Note: this option does not affect the Editor tool, for which the file dialog
always uses the directory of the currently visible file as the default directory.

3.2.1.2 Controlling completion behavior

In-place completion is enabled by default in the IDE. If you prefer the modal
dialog style of completion familiar to users of LispWorks 5.0 and previous ver-
sions, deselect the Use in-place completion option.

When using in-place completion to complete a filename, by default you must
always select an item from the in-place completion window. You can acceler-
ate this interaction by checking the option Auto-insert on single file completion.
Then, if there is just one possible completion, it is automatically selected and
appended to your input.

3.2.1.3 Quitting the environment

Choose Works > Exit > LispWorks... to exit LispWorks.

You can control whether LispWorks prompts for confirmation before exiting,
using Works > Tools > Preferences.... The Confirm Before Exiting preference has
these meanings:

Never LispWorks exits immediately.

When modified buffers

If there are modified editor buffers, a dialog asks you
whether these should be saved before exiting.

3.2 Setting preferences
Always A dialog asks you to confirm whether LispWorks
should exit.

3.2.1.4 Automatic filters on dialogs

The option Add a filter to dialog lists longer than: affects modal dialogs contain-
ing long lists. When the list is longer than the value of this option, the list has a
filter, which you can use as described in “Filtering modal dialog completion”
on page 66.

3.2.1.5 Automatic use of Find Definitions view

The option Use Find Definitions list for more items than: affects the behavior of
source location commands such as the editor commands Find Source and
Find Source for Dspec, and the menu command Expression > Find Source.
When the number of source location results exceeds the value of this option,
then the results are immediately displayed in the Find Definitions view of an
Editor tool. This is particularly useful when you need to locate the definition
of a particular CLOS method from the generic function name.

The Find Definitions view is described in “Finding definitions” on page 183.

3.2.1.6 Initialization file

By default LispWorks looks for a file .lispworks to be loaded automatically
when LispWorks is started. You should create an initialization file and add to
it Lisp code to initialize the LispWorks image to suit your needs.

The Preferences dialog can be used to specify a different initialization file, in
the Initialization File area. You can either enter the path and filename directly
into the text input box, or use the button to display a file selection dialog.
Clicking on undoes any alterations entered.

Note: it is up to each user to create and maintain their own personal initializa-
tion file. A sample personal initialization file is supplied with LispWorks - see
the file lib/6-1-0-0/config/a-dot-lispworks.lisp in the LispWorks dis-
tribution.
 31

3 Common Features

32
3.2.2 Configuring the editor emulation

The second tab under Environment contains the Emulation options.

Figure 3.3 The Emulation tab of the Environment Preferences

Here you can configure the editor to behave according to one of two pre-
defined editor input styles (emulations) which determine how keyboard input
is processed and other properties such as the shape of the input cursor. You
can also set the cursor blink rate.

The choice of emulation affects the Editor and other LispWorks tools contain-
ing editors such as the Output Browser, Stepper and Profiler.

3.2.2.1 Choosing the key input style

The Editor and other tools using capi:editor-pane offer two key input
styles: Emacs emulation or KDE/Gnome emulation. By default, Emacs emula-
tion is used. To choose an emulation, select Environment > Emulation in the
Preferences dialog as shown in “Configuring the editor emulation” on page 32
and select one of the Editor keys like... options.

3.2 Setting preferences
Note: In this and other manuals, the Emacs keys are generally given. For help
with findings keys for editor commands, choose Help > Editing > Command to
Key. Also see the files config/key-binds.lisp and config/msw-key-
binds.lisp which contain the forms defining the keys for each input style.

3.2.2.2 Setting the cursor blink rate

By default the editor cursor blinks on and off at the usual rate for your com-
puter.

To change the blink rate, select Specify in the Cursor Blink Rate area. Either
scroll to choose the rate in Milliseconds, or enter an integer between 100 and
2000.

To stop the editor cursor from blinking, select None in the Cursor Blink Rate
area.
 33

3 Common Features

34
3.2.3 Setting the editor font, color and other style attributes

The third tab under Environment contains the Styles options.

Figure 3.4 The Styles tab of the Environment Preferences

By default the editor uses a system default font. You can choose an alternative
font and see a sample of it displayed in the Editor Font area. Click in the Sam-
ple: area to raise a font chooser. After you select the font, the text "Click here to
choose the font" is displayed in your selected font.

3.2 Setting preferences
To make the LispWorks editor actually use your alternative font, select Over-
ride the system default font.

This specifies the font used in Editor and Listener windows and all other tools
based on the editor, such as the Shell, Stepper and Profiler tools.

If you deselect Override the system default font the system remembers your
choice of alternative font, but does not actually use it for display.

3.2.3.1 Setting the text style attributes

By default the LispWorks IDE uses a variety of text styles to:

• highlight selected text

• distinguish interactive input in the Listener and Shell tools

• distinguish compiler messages in the Output tab or Output Browser

• make Lisp code more easily readable with syntax coloring

• indicate matching parentheses, easing the writing of correct Lisp forms

Note: The last two of these features operate only in Lisp mode.

To change the attributes of one or more text styles, first select Environment >
Styles in the Preferences dialog as shown in “Setting the editor font, color and
other style attributes” on page 34.

Then, to make Common Lisp symbols appear with red foreground rather than
the default purple for example, first select Lisp Keyword in the Style Name list.
Then select Specified alongside Foreground and double-click on the color area
to the right. In the Color chooser that appears, choose the new color and click
OK. Now click OK on the Preferences dialog and see the change in the way
your Lisp code is displayed. You may need to force the editor window to
redisplay, for example by scrolling, to see the change take effect.

For each named style, the Foreground and Background each have exactly one
of the following values:

None No special formatting

Default Platform-standard highlighting, as for selected text

Specified The color specified is used.
 35

3 Common Features

36
Modified The system generates a color which is usable for
highlighting.

A large cross appears in the Foreground (Background) color area when None,
Modified or Default is selected. This indicates that the color is not used for the
Foreground (Background).

If you wish to turn off the highlighting of interactive input in the Listener and
Shell tools, first select Interactive Input in the Style Name list. Then uncheck all
the attributes and click OK.

To restore all styles to those in LispWorks as shipped, click Restore Defaults.

Note: the foreground and background colors of windows are set via the sys-
tem, not in LispWorks. To alter these colors on GTK+ or Motif, see "Matching
resources" in the CAPI User Guide and specify resources for the application
class Lispworks.

The text styles used in syntax coloring have these meanings and default
appearance:

Table 3.2 Syntax styles

Style Name Use Default appearance

Region Highlight The active region Native highlight

Show Point Matching parentheses
:green back-
ground

Interactive Input Input in a Listener or Shell Bold

Highlight
Editor help such as
Describe Bindings

Bold

Completion
Dynamic and in-place
completions. Transient.

Modified
background

Search Match
The matching text during an
incremental search (as
invoked by Ctrl+S)

Inverse

3.2 Setting preferences
3.2.3.2 Controlling parenthesis coloring

You can control whether the editor colors parentheses in Lisp code. By default,
pairs of matching parens are displayed in the same color, with a different color
for forms at different depths. You can switch off this coloring by deselecting
the option Color parenthesis in the Styles tab of the Environment preferences.

Line Wrap Marker
Displays the editor’s line
wrap marker, where a line is
wrapped or truncated

:purple fore-
ground, modified
background

Lisp Function Name
Name in defun, defmacro,
defmethod and defge-
neric forms

:blue foreground

Lisp Comment
Comments and feature
expressions

:firebrick
foreground

Lisp Type
Name in deftype or other
def... form, or lambda list
keyword such as &optional

:forestgreen
foreground

Lisp Variable Name
Name in defvar or
defparameter forms

:darkgoldenrod
foreground

Lisp String A string literal
:rosybrown
foreground

Lisp Keyword
defun, defmacro or other
definer named def...

:purple
foreground

Lisp Builtin A keyword symbol
:orchid
foreground

Arglist Highlight
The current argument in a
Function Arglist

Displayer window
Inverse

Table 3.2 Syntax styles

Style Name Use Default appearance
 37

3 Common Features

38
3.2.4 Setting the default encodings

The fourth tab under Environment contains the File Encodings options.

The Editor has defaults for the encodings used when opening and saving files.
For many users these defaults will suffice. If you need to change either, select
the Environment > File Encodings tab of the Preferences dialog.

Figure 3.5 The File Encodings tab of the Preferences dialog

For example, to make the Editor save Carriage Return line-terminated files by
default, select CR in the Line Termination Options under Output.

3.3 Performing editing functions
3.3 Performing editing functions
This section discusses commands available in the Edit menu of any window.
These commands fall into five areas:

• Undoing changes.

• Using the clipboard.

• Selecting text and objects.

• Searching for text.

• Substituting text.

3.3.1 Undoing changes

You can undo changes made in a tool using Edit > Undo. This facility is most
useful in the Editor and Listener— see “Other essential commands” on page
192 for more details.

3.3.2 Using the clipboard

You can use the clipboard to transfer data between tools, or even between the
LispWorks IDE and other applications that you are running. There are three
commands available, as follows:

• Choose Edit > Copy to put the selected item or text from the active pane
onto the clipboard.

• Choose Edit > Cut to put the selected item or text from the active pane
onto the clipboard and remove it from the active pane.

• Choose Edit > Paste to replace the selected item or text in the active pane
with the contents of the clipboard.

Use of Copy or Cut followed by Paste lets you transfer items between tools, or
to different parts of the same tool.

Unlike the clipboard in many other applications, the LispWorks IDE clipboard
can contain a Common Lisp object. This makes the LispWorks IDE clipboard
an exceptionally powerful tool, allowing you to pass objects between different
tools in the environment so that they can be examined in different ways.
 39

3 Common Features

40
If the clipboard contains a Lisp object and you use the Paste command on a
pane that only accepts text, then the object's printed representation will be
pasted.

There are several ways to use these commands:

• In the Editor, you can Copy chunks of text and Paste them into different
places, either within the same file or between different files. If you have
sections of code which are very similar, rather than typing each section
out explicitly, just Paste in the same section as many times as you need
and change only the relevant parts. “Cutting, copying and pasting using
the kill ring” on page 193 describes a number of more sophisticated
methods that can be used in the Editor.

• In the Class Browser's Hierarchy view (for example), you can Copy a
selected class from the Superclasses pane to the clipboard and then
Paste it into another tool. Because the Common Lisp object itself is cop-
ied to the clipboard, it is treated usefully according to the tool. For
instance, if you paste it into an Inspector using Edit > Object > Paste
Object, then the class is inspected. If you paste it into an editor however,
the class name is simply pasted as text.

As well as the menu commands, you can use the , and buttons in
the toolbar, for Cut, Copy and Paste respectively.

Note: You can also transfer data within the environment using the standard
actions commands described in “Performing operations on selected objects”
on page 48.

3.3.3 Using the Object operations with the clipboard

You can use the clipboard to transfer a tool's "primary object" between tools.
There are three commands available, as follows:

• Choose Edit > Object > Copy Object to put the selection or “primary
object” onto the clipboard.

• Choose Edit > Object > Cut Object to put the selection or “primary object”
onto the clipboard and remove it from the tool it was copied from.

• Choose Edit > Object > Paste Object to put the contents of the clipboard
into the current tool.

3.3 Performing editing functions
Use of Copy Object or Cut Object followed by Paste Object lets you transfer
items between tools, or to different parts of the same tool. There are several
ways to use these commands:

• In the Class Browser (for example) you can Copy Object the class to the
clipboard and then Paste Object it into another tool. Because the Com-
mon Lisp object itself is copied to the clipboard, it is treated usefully
according to the tool. For instance, if you paste it into an Inspector, it is
inspected. If you paste it into an editor however, the class name is sim-
ply pasted as text.

• Between any of the tools, you can Cut Object, Copy Object, and Paste
Object Common Lisp objects. You can, for instance, make an instance of
a class in the Listener, inspect it by Values > Inspect, and then Copy
Object it in the Inspector, and then Paste Object it into a Class Browser to
examine its class.

• If you have several Common Lisp objects which you want to keep track
of, store them in the Object Clipboard. You can do this by a Clip com-
mand in tools such as the Class Browser, or by Edit > Object > Paste
Object in the Object Clipboard tool. See Chapter 9, “The Object Clip-
board” for more information about that tool.

Note: You can also transfer data within the environment using the standard
actions commands described in Section 3.8 on page 48.

UNIX Implementation Note: The environment also interacts with the stan-
dard UNIX clipboard, so that data can be transferred to or from applications
other than Lisp. To do this, the UNIX and the LispWorks IDE clipboards are
kept in synchronization all the time, as follows:

• Whenever a Common Lisp object is copied to the LispWorks IDE clip-
board, its string representation is copied onto the UNIX clipboard.

• Whenever a string is copied to the UNIX clipboard, it is copied onto the
LispWorks IDE clipboard as a string.

3.3.4 Selecting text and objects

Choose Edit > Select All or Edit > Deselect All to select or deselect all the text in
an Editor or Listener window, or all the items in a list or graph. These com-
 41

3 Common Features

42
mands are useful whenever there is too much information to be able to select
items one at a time.

These commands operate on the active pane of the current tool.

3.3.5 Searching for text and objects

You can search for and change text in most tools using Edit > Find..., Edit > Find
Next, and Edit > Replace....

Choose Edit > Find... to find an item in the current tool (this might be a piece of
text, or a fragment of Common Lisp, or an object, depending on the tool). You
must supply an item to find in the dialog that appears.

Choose Edit > Find Next if you want to search for the next occurrence of an item
you have already found. This command does not prompt you for an item to
find, and so is only available if you have already found something.

Choose Edit > Replace... if you want to replace one string of text with another.
A dialog box prompts you for a text string to find, and a text string to replace
it with. This command is only available in the Editor and the Listener, and is
most useful in the Editor.

These commands operate on the active pane of the current tool.

3.4 The Break gesture
The keyboard Break gesture is Meta+Ctrl+C.

This chooses a process that is useful to break, and breaks it.

Note that you cannot use Escape in place of Meta. As there are many different
types of keyboard, if it is not possible to assert which is the Meta key on your
keyboard, it may be marked with a special character, such as a diamond, or it
may be one of the function keys — try F11.

Meta+Ctrl+C applies to both GTK+ and Motif. If your keyboard has the
Break key, then you can also use this alternate break gesture. The key
sequence can be configured using capi:set-interactive-break-gestures.

The process to break is chosen as follows:

3.5 The history list
1. If the break gesture is sent to any LispWorks IDE window or other CAPI
interface that is waiting for events, it does "Interface break", as described
below.

2. Otherwise it checks for a busy processes that is essential for LispWorks
to work correctly, or that interacts with the user (normally that means
that some CAPI interface uses it), or that is flagged as wanting interrupts
(currently that means a REPL). If it finds such a busy process, it breaks it.

3. Otherwise it activates or starts the Process Browser. Note that this tool,
documented in “The Process Browser” on page 347, can be used to break
any other process.

"Interface break" depends on the interface. For an interface that has another
process, notably the Listener with its REPL, it breaks that other process. For
most tools it starts the Process Browser, otherwise just it breaks the interface's
process.

3.5 The history list
The history list of a tool stores the most recent events which have been carried
out in that tool, or the most recent objects which have been browsed in it.

The History > Items submenu provides a list of these events (or objects), allow-
ing you to repeat any of them (or browse them again) by choosing them from
the menu. This gives you an easy way of repeating forms in the Listener,
inspecting objects or browsing classes again, revisiting searches, and so on.

The menu lists the last ten unique items to have entered the history list of the
active window. Because each entry is unique, some items may have occurred
more than ten events ago.

If the editor is the active window, the History > Items submenu lists the buffers
currently open.

3.5.1 Repeating events from the history list

The easiest way of repeating an event from the history list is to choose it from
the History > Items submenu. There may be times, though, when this is incon-
venient (the items on the list may be too long to be able to distinguish between
them easily, or you might want to repeat an item that occurred more than ten
 43

3 Common Features

44
events ago). In such cases, there are three commands which offer an alterna-
tive way of choosing items.

Choose History > Previous to perform the previous item in the history list of the
tool. This is usually the most recent event you have performed, but may not be
(if, for instance, the last action was itself an event that was already on the his-
tory list).

Choose History > Next to perform the next item in the history list. This item is
not usually available unless the last event you performed involved an item
already on the history list.

Note: You can also use the and buttons in the toolbar.

3.5.2 Editing the history list

Choose History > Modify to remove items from the History > Items menu. A dia-
log appears that contains all of the items in the current History menu. Select
the items you wish to retain, and click OK. Any items which were not selected
in the dialog are removed from the history list.

Note: another way to keep track of items that you’re interested in (such as
appear in the history lists of various tools) is to place them on the Object Clip-
board. See Chapter 9, “The Object Clipboard” for more details.

3.6 Operating on files
The File menu allows you to perform operations on files stored on disk. Some
commands are only available for tools which need to interact with the files
you have stored on disk, such as the Listener and Editor.

The default commands available in the File menu are described below. Note
that in some tools, the File menu contains additional commands specific to
that tool. Please refer to the relevant chapters for each tool for a description of
these additional commands.

Choose File > New to open a new buffer in the built-in Editor. If an Editor win-
dow has not yet been created, this command also creates one. The new buffer
is unnamed.Alternatively, you can click the button in the toolbar. This
toolbar button is available on appropriate tools, and in the podium as shown
in Figure 2.1, page 6.

3.7 Displaying packages
Choose File > Open to open an existing file in a new editor buffer. Where
appropriate, a dialog appears, allowing you to choose a filename. If an editor
window has not yet been created, this command creates one. Alternatively,
you can click the button in the toolbar. This toolbar button is available on
appropriate tools, and in the LispWorks podium, shown in Figure 2.1, page 6.

Choose File > Load to load a file of Lisp source code or a fasl (binary) file.
Choose File > Compile to compile a file of Lisp source code. Choose File > Com-
pile and Load compile a source file and load the resulting fasl file. When appro-
priate, each command displays a dialog, allowing you to choose the file you
want to load or compile.

Choose File > Print to print a file. A dialog allows you to choose a file to print.
The current printer can be changed or configured by choosing the File > Printer
Setup... menu option.

Choose File > Browse Parent System to view the parent system of the current
file in the System Browser. This command is only available if the system has
already been defined. See Chapter 27, “The System Browser” for a complete
description of the System Browser.

Choose File > Recent Files to raise a submenu listing the last 10 files visited
via the File > Open... and File > Save As... commands. This allows speedy
return to the files you are working on.

Note: As described above, the behavior of each command can vary slightly
according to the tool in which the command is chosen. For instance, choosing
File > Print in the Editor prints out the displayed file, whereas choosing File >
Print in the Listener prompts you for a file to print.

3.7 Displaying packages
Symbols can be displayed either with their package information attached or
not. In the LispWorks IDE, symbols are displayed with the package name
attached by default.

For example, suppose you have created a package FOO which includes a sym-
bol named bar and a symbol named baz. Suppose further that you created a
 45

3 Common Features

46
new package FOO2, which used the FOO package. This can be done as shown
below:

(defpackage foo (:use "COMMON-LISP"))
(defpackage foo2 (:use "FOO" "COMMON-LISP"))

Note that in defining both packages, the COMMON-LISP package has also been
used. It is good practice to use this package, to ensure that commonly-used
symbols are available.

When creating packages which use other packages, exported symbols can be
called without having to refer to the package name.

To illustrate this, let us return to our example.

Figure 3.6 Two example packages

We have two packages: FOO1 and FOO2. FOO1 contains symbols bar and baz.
The symbol bar has been exported, whereas the symbol baz is not exported.

When the current package is FOO2, you can refer to bar without using the
package name. This is because FOO2 uses FOO1 and bar is exported. However
to refer to baz you must still use the FOO1 package name like this: foo1::baz.
This is because baz is not exported.

Note also that when the current package is other than FOO1 or FOO2, you can
refer to foo1:bar, but you can only refer to baz as foo1::baz.

Package names are usually displayed alongside symbols in a list. Having a
package entry on every line can be unhelpful, especially if the majority of
items listed are from the same package. To hide the package names for the
symbols in a given type of tool:

1. Raise the Preferences dialog as described in “Setting preferences” on
page 28.

FOO1 FOO2

bar

baz foo1::baz

bar

3.7 Displaying packages
2. Select the tool type in the list on the left side of the dialog.

3. Uncheck Show Package Names in the General tab.

4. Click OK to confirm your setting.

3.7.1 Specifying a package

If you are working in a particular package, you can adjust the tools to display
symbols as you would refer to them from that package—that is, as the pack-
age sees them. This can make listings clearer and, more importantly, can show
you which symbols have been exported from a package.

Doing this changes the process package of the tool. This means that both dis-
played symbols and symbols typed into the tool are assumed to be in the
package specified. This can be useful in a browser, for example, if you intend
to browse a number of different objects which come from the same package.

To change the process package for a given type of tool:

1. Raise the Preferences dialog as described in “Setting preferences” on
page 28.

2. Select the tool type in the list on the left side of the dialog.

3. Select the General tab on the right side of the dialog, if necessary.

4. Delete the package name in the Package box, and type in the name of the
new package.

5. Click to confirm this new name.

6. Click OK to make the change.

Note: If you wish, you can partially type the package name and then click .
This allows you to select from a list of all package names which begin with the
partial input you have entered. See “Completion” on page 61 for detailed
instructions on using completion.

As an example, imagine you are looking at a list of symbols in the Inspector.
You are working in the package FOO, and some of the symbols in the Inspector
 47

3 Common Features

48
are in that package, while others are in another package. To change the current
package of the Inspector to FOO, follow the instructions below:

1. Raise the Preferences dialog as described in “Setting preferences” on
page 28.

The Preferences dialog indicates that COMMON-LISP-USER is the current
package in this window.

2. Select Inspector in the list on the left side of the dialog.

3. In the Package box on the right side of the dialog, delete COMMON-LISP-
USER, and type FOO.

4. Click OK to make the change.

In the Inspector all the symbols available from FOO appear without the pack-
age prefix FOO. Similarly, all exported symbols in packages which FOO uses
appear without a package prefix, while all others have an appropriate pack-
age prefix.

3.8 Performing operations on selected objects
In any tool, there are a number of operations that you can always perform on
the selected objects, irrespective of the type of objects you have selected. This
allows you to perform some powerful operations and also ensures a consis-
tent feel to every tool in the environment.

In this context the term “selected objects” is meant in the widest sense, and
can refer to any items selected anywhere in a tool, be it in a list of items, or a
graph. It can also refer to the tool’s current object: that is, the object which is
currently being examined.

These operations are available throughout the environment, and are referred
to as standard action commands. As with other commands that are specific to
the active window, standard action commands are usually available from
menus on the main menu bar of the tool you are using. The objects which are
operated on by a given standard action command depend on the menu from
which you chose the command.

As an example, consider examining the contents of Common Lisp objects
using the Inspector.

3.8 Performing operations on selected objects
The standard action commands for the Inspector are present in two places: the
Object menu, and the Slots menu.

• Choose a standard action command from the Object menu to perform
an operation on the Inspector’s current object.

• Choose a standard action command from the Slots menu to perform an
operation on the selected components of the Common Lisp object.

Notice that in the first case, the object operated on is the tool’s current object:
you do not have to take any further action before performing the operation.

In the second case, the objects examined represent more specific pieces of
information: you need to select them before you can perform the operation.
This, therefore, examines more discrete pieces of information about the cur-
rent object.

Many tools have one or more submenus like those described above. The first
operates on the current object. What that object is, and hence the name of the
submenu in which the commands are to be found, depends on the tool you are
using. For instance, if you are examining classes, the commands can be found
in a Classes menu. If you are examining methods, they can be found in a Meth-
ods menu.

Some tools contain two or more such menus; precise details are given in the
relevant chapters.

As a guide, if a menu has a plural for a name, the commands in that menu can
be performed on multiple selections. If the menu name is not pluralized, com-
mands only affect a single selection.

3.8.1 Operations available

The standard action commands available are described below. In these
descriptions, the term “current object” refers to the Lisp object that is being
acted upon by the menu command. This depends on the tool being used and
the menu in which the command appears, but should be obvious from the
context.

Choose Browse to browse the current object using an appropriate browser. A
browser is a tool which lets you examine a particular type of Common Lisp
 49

3 Common Features

50
object, and there are a large number of them available in the environment.
Some of the browsers available are:

• The Class Browser, which lets you examine CLOS classes.

• The Generic Function browser, which lets you examine the generic func-
tions in the environment, and the methods you have defined on them.

See the appropriate chapters for a full description of each browser; there is a
chapter of this manual devoted to each available browser. The precise name of
the Browse menu command reflects the type of browser that is used to exam-
ine the selected object. Thus, if the command is Browse – Generic Function, a
Generic Function Browser is used.

Choose Class to look at the class of the current object in a Class Browser.
Alternatively, click on in the toolbar. See Chapter 8, “The Class Browser”
for full details about this tool.

Choose Clip to add the current object to the Object Clipboard. See Chapter 9,
“The Object Clipboard” for full details about this tool.

Choose Copy to copy the current object to the clipboard, thus making it avail-
able for use elsewhere in the environment. Note that performing this opera-
tion on the object currently being examined by the tool (for example, choosing
the command from the Object menu when an Inspector is the active window)
has the same effect as choosing Edit > Copy, whereas choosing this option from
other menus (such as a Description menu) copies more discrete information to
the clipboard.

Choose Documentation to display the Common Lisp documentation (that is,
the result of the function documentation) for the current object. It is printed
in a help window.

Choose Find Source to search for the source code definition of the current
object. Alternatively, click on in the toolbar. If it is found, the file is dis-
played in the Editor: the cursor is placed at the start of the definition. See
Chapter 13, “The Editor” for an introduction to the Editor tool. You can find
only the definitions of objects you have defined yourself (those for which you
have written source code)—not those provided by the environment or the
Lisp implementation.

3.9 Using different views
Choose Inspect to invoke an Inspector on the current object. Alternatively,
click on in the toolbar. See Chapter 17, “The Inspector”, for details about
the Inspector. If you are ever in any doubt about which object is operated on
by a standard action command, choose this command.

Choose Listen to paste the current object into the Listener. Alternatively, click
on in the toolbar. Chapter 21, “The Listener” provides you with full details
about this tool.

Choose Function Calls to describe the current object in a function call browser.
See Chapter 14, “The Function Call Browser” for more details.

Choose Generic Function to describe the current object (a generic function or a
method) in a Generic Function Browser. If the current object is a method, then
its generic function is described in the Generic Function Browser and the
method is selected. See Chapter 15, “The Generic Function Browser” for more
details.

Choose Browse Symbols Like to display symbols matching the current object in
a Symbol Browser. See Chapter 18, “The Symbol Browser” for more details.

3.9 Using different views
Many tools in the LispWorks IDE have several different views, each of which
can display information which is pertinent to the task at hand. You can switch
to any of the available views by clicking on the appropriate tab at the top of
the tool. When choosing a different view, the layout of the tool itself changes.

Figure 3.7 Click tabs to display different views of a tool

The Slots view is
currently visible.

Click here to display
the Hierarchy view.

Click here to display
the Precedence view.
 51

3 Common Features

52
In tools which are browsers, different views allow you to display different
pieces of information about the same objects; for instance, in the Class
Browser you can switch from a view which shows you information about the
slots in a given Common Lisp class to one which shows information about the
initargs of the class.

In other tools, different views may show you completely different types of
related information. For example, in the Listener you can switch from the Lis-
tener view to a view that shows you any output that has been generated by
the Listener.

All tools have a default view when you first start them. The default view is the
one which you are most likely to make most use of, or the one which you use
first. When you first start the built-in Editor, the default view is the text view.
When you start a Class Browser, the default view shows you the slots avail-
able for the current class, as you have already seen.

3.9.1 Sorting items in views

You can sort the items displayed in the main area of any view using the Prefer-
ences for a given tool.

To specify the sorting for the Class Browser, for example:

1. Raise the Preferences dialog as described in “Setting preferences” on
page 28.

3.9 Using different views
2. Select the tool (the Class Browser in this example) in the list on the left.
Note that an image representing each tool is shown alongside the tool
names:

Figure 3.8 Example General Preferences

Control the sort

order of a tool
using the options
in this panel.

Select the type of

tool in this panel.
 53

3 Common Features

54
Notice that tool Preferences, such as the one shown above, generally
have several tabs. In these cases, the options described in this section are
always available in the General tab, so select this tab if necessary.

3. Choose one of the options in the Sort area to specify the sort order of
items in Class Browser windows.

The options available vary according to the tool, but at least the follow-
ing will be available:

By Name Sorts symbols in a list or graph according to the name
of each item. The packages that the symbols are resi-
dent in are ignored when this option is used; thus, the
symbol vv:allocate would be listed before aa:vec-
torize.

By Package Sorts symbols in a list or graph according to the pack-
age they are listed in. Thus, all symbols in the aa pack-
age would be listed together, as would all symbols in
the vv package. In addition, the aa package would be
listed before the vv package. Within a given package,
objects are listed in alphabetical order when using this
option: thus, aa:carry-out-conditions would be
listed before aa:vectorize.

Unsorted Lists all symbols in a graph or list in the order in which
they are occur naturally in the object being examined.
This can sometimes be a useful option in itself, and is
always the quickest option available. You may some-
times want to use this option if you are displaying a
large number of items and you are not filtering those
items in any way.

The option you specify takes effect when you click OK in the Preferences dia-
log. Your setting affects existing tools and is remembered for use when you
create the same type of tool in the future.

Note: There are sometimes other options available in the Sort area of the Pref-
erences dialog, depending on the nature of the tool. These options are
described in the chapter specific to each tool.

3.10 Tracing symbols from tools
Only those views whose main area consists of a list or a graph can be sorted.
In particular, the default views of tools such as the Listener or the Editor,
which is an editor window which you can type directly into, cannot be sorted.

3.10 Tracing symbols from tools
For some tools, submenus under the relevant main menus (for example, the
Expression menu on the Editor tool) contain a Trace submenu that allows you
to set tracing options for a function, method, macro, or generic function. This
is a useful shortcut to the trace macro, since it gives you some control over
tracing in the environment without having to work directly at the Common
Lisp prompt.

Below, the current function means the currently selected function, method,
macro or generic function, or in the case of the Editor and Listener, the symbol
under the cursor.

A Trace submenu generally has the following commands:

• Choose Trace to trace the current function.

• Choose Trace Inside to trace the current function within the current con-
text. Choosing this command sets the :inside option for trace.

• Choose Trace with Break to trace the current function, and enter the
debugger on entry to it. Choosing this command sets the :break option
to t.

• Choose Untrace to turn off tracing on the current function.

• Choose Untrace All to turn off tracing on currently traced functions.
Note that this does not turn off tracing in the environment as a whole.

• Choose Show in Tracer to trace the current function and display in the
Tracer tool. This offers you more control over tracing. See Chapter 12,
“The Tracer” for details.

• Choose Toggle Tracing to turn all tracing commands in the environment
on or off. Choose Toggle Tracing again to restore the previous tracing
state.
 55

3 Common Features

56
3.11 Linking tools together
You can link together pairs of tools, so that changing the information dis-
played in one tool automatically updates the other. This can be done for virtu-
ally any tool in the LispWorks IDE, and provides a simple way for you to
browse information and see how the state of the Lisp environment changes as
you run your code. For instance, you can make between an Inspector and a
Listener so that every time you evaluate a form in the Listener, its value is
automatically inspected.

You can also link two copies of the same tool. This can be a very useful way of
seeing two views of a tool at once. For instance, you could create a copy of the
Class Browser by choosing Works > Clone, and then link them together. By
keeping one browser in the subclasses view, and the other in the slots view,
you can automatically see both the subclasses and the available slots for a
given class.

Linked tools have a master-slave relationship. One tool (the slave) gets
updated automatically, and the other tool (the master) controls the linking
process. To link together any two tools:

1. Select the tool that the link is to be established to. For example, to form a
link from an Inspector to a Class Browser to ensure that a class selected
in the Class Browser is automatically inspected, you would use the Edit
menu of the Class Browser.

2. Choose Edit > Link > fromtool where fromtool is the title of the tool you
wish to link from.

To break a link, select -- No Link -- instead of a specific tool.

To view all the current links that have been established, choose Edit > Link from
> Browse Links... Select any of the links listed and click on Remove Link(s) to
remove them.

3.12 Filtering information
Many tools have views which display information in a list. Items in these lists
may be selected, and you can usually perform operations on selected items
(for instance, by means of the standard action commands, as described in
“Performing operations on selected objects” on page 48).

3.12 Filtering information
Such lists are often long, including information which you are not interested
in. For instance, Common Lisp objects may contain a large number of slots,
most of which are of no importance to your work.

Most such lists in have a filter area which allows you to hide theuninteresting
information. The filter area is above the list, and consists of the Filter pane into
which you can enter text, toolbar buttons, and the Matches pane. There is also
a filter modes dropdown menu, described in “Advanced Filtering” on page
58.

3.12.1 Plain Filtering

This section describes how you can filter list items based on a substring match.

Figure 3.9 Filter area with plain match

Matching items listed here

Enter string to
filter by here

Number of
matching items

Click here to
unfilter items

Filter modes
menu
 57

3 Common Features

58
To use the filter, simply enter text in the box to the right of the Filter modes
menu button. The list is filtered automatically as you type. Only those items
that contain the specified string are displayed in the list—all the others are
hidden from the display. The number of items that are listed is printed in the
Matches area to the right of the Filter box.

To unfilter items (that is, display all the items in a list once again) delete the
string in the Filter box or click the button.

3.12.2 Advanced Filtering

This section describes how you can filter list items by a regular expression
match rather than a plain string match, make the match case-sensitive, and
how to invert the filter.

To alter the way that the filter operates, select one or more options from the Fil-
ter dropdown menu to the left of the filter pane. You can select this filter
modes menu using the mouse, but is more convenient with a keyboard ges-
ture. Each gesture selects or deselects one filter mode. The keyboard gestures
invoking advanced filter modes are shown in Table 3.3.

The choice of items displayed changes according to the content of the filter
pane and the selected filter options. The label on the Filter dropdown changes
to indicate your selected filter options.

In the example illustrated below, we have inspected the string "LispWorks",
entered a regular expression which matches uppercase characters, and

Table 3.3 Advanced Filter modes

Keyboard gesture Filter mode Description

Ctrl+Shift+R Regexp Search
Filters by regular expression
matching

Ctrl+Shift+E Exclude Matches Excludes items matching the filter

Ctrl+Shift+C Case Sensitive
Filters by a case-sensitive
comparison

3.13 Regexp matching
pressed Ctrl+Shift+R Ctrl+Shift+C to select the Regexp Search and Case
Sensitive filter modes.

Figure 3.10 Filter area with regular expression match

Now press Ctrl+Shift+E to select the Exclude Matches filter option. Only the
lowercase characters of the string "LispWorks" are displayed in the list.

Note: For details of the regular expression syntax, see “Regular expression
syntax” on page 59.

Note: The three filter modes are mutually independent.

3.13 Regexp matching
Regular expressions (regexps) can be used when searching and filtering
throughout the IDE. This section describes exactly how LispWorks regexp
matching operates.

3.13.1 Regular expression syntax

. Matches any single character except a newline. For
example, c.r matches any three character string start-
ing with c and ending with r.

* Matches the previous regexp any number of times
(including zero times). For example, ca*r matches
strings beginning with c and ending with r, with any
number of as in-between.

Enter regular expresion
to filter by here.

Select filter mode here.
 59

3 Common Features

60
+ Matches the previous regexp any number of times, but
at least once. For example, ca+r matches strings begin-
ning with c and ending with r, with at least one a in-
between.

? Matches the previous regexp either 0 or 1 times. For
example, ca?r matches either the string cr or car, and
nothing else.

^ Matches the next regexp as long as it is at the beginning
of a line. For example, ^foo matches the string foo as
long as it is at the beginning of a line.

$ Matches the previous regexp as long as it is at the end
of a line. For example, foo$ matches the string foo as
long as it is at the end of a line.

[] Contains a character set to be used for matching, where
the other special characters mentioned do not apply.
The empty string is automatically part of the character
set. For example, [a.b] matches either a or . or b or the
empty string. The regexp c[ad]*r matches strings
beginning with c and ending with r , with any number
of as and ds in-between.

The characters - and ^ have special meanings inside
character sets. - defines a range and ^ defines a comple-
ment character set. For example, [a-d] matches any
character in the range a to d inclusive, and [^ab]
matches any character except a or b.

\ Quotes the special characters. For example, * matches
the character * (that is, * has lost its special meaning).

\| Specifies an alternative. For example, ab\|cd matches
either ab or cd.

\(, \) Provides a grouping construct. For example,
ab\(cd\|ef\) matches either abcd or abef.

3.14 Completion
3.13.2 Regexp and plain string matching

Sometimes you need to select an option to use regexp matching, as the default
behavor uses a plain string comparison. For example, see “Advanced Filter-
ing” on page 58.

Other areas always use regexp matching, such as the search target in some
modes of the “The Search Files tool” on page 233, and editor commands with
names containing "Regexp".

3.14 Completion
Where there is a finite set of meaningful text inputs (symbol names, names of
existing files or editor commands, and so on) the IDE helps you to enter your
text by offering completion. When you invoke completion, the system takes
your partial input and either:

• extends your partial input to an unambiguous longer (but possibly par-
tial) input, or

• presents a choice of the possible meaningful inputs.

When your input remains partial, you may repeat the completion gesture.

When you see a choice of the possible meaningful inputs, certain gestures
allow you to narrow the choice and quickly select the desired input, as
described in “Selecting the completed input” on page 62.

3.14.1 Invoking completion

When a command prompts for input in the echo area, the keys Tab, ? and
Space can invoke completion, depending on the context.

In the Editor tool, a variety of completion commands are available. For exam-
ple, in Emacs emulation Tab invokes the command Indent Selection or
Complete Symbol. See the LispWorks Editor User Guide for details of this and
other editor commands.

In the Shell tool, Tab expands filenames.

In the Listener tool using Emacs emulation, Escape Tab expands filenames.
 61

3 Common Features

62
In many text input panes such as the Class: field of a Class Browser tool, Up
and Down invoke in-place completion while pressing the button raises a com-
pletion dialog.

Also, clicking the button to the right of a text input pane raises a modal
completion dialog, as described in “Completion dialog” on page 66.

3.14.2 Selecting the completed input

The IDE presents the choice of inputs in one of two ways, described in the
next two sections. The option Works > Tools > Preferences... > Environment >
General > Use in-place completion controls whether in-place completion is used.

3.14 Completion
3.14.2.1 In-place completion

In-place completion presents the choice of complete inputs in a special non-
modal window. Figure 3.11 below shows this in the context of the editor com-
mand Complete Symbol.

Figure 3.11 Example in-place completion window

While this window is visible, most keyboard gestures such as unmodified
alphanumeric and punctuation keys are processed as ordinary input, adding
to your partial input. This reduces the number of possible completions. Con-
versely, deleting part of your input will increase the number of possible com-
pletions.
 63

3 Common Features

64
You can navigate the choice with Up and Down and you can select the desired
completion at any time with Return or double-click. To cancel the attempt to
complete, press Escape.

3.14.2.2 Filtering in-place completion

You can reduce the number of displayed completions by adding a filter to the
in-place completion window.

3.14 Completion
To add the filter, press Ctrl+Return. To use the filter, type a substring of the
desired result. By default, filtering is by a case-insensitive substring compari-
sion.

Figure 3.12 Example in-place completion window with filter
 65

3 Common Features

66
You can set filter modes to alter the way that the filter operates, just as
described in “Advanced Filtering” on page 58. Briefly, you select options from
the Filter dropdown menu or with the keyboard gestures Ctrl+Shift+R,
Ctrl+Shift+E and Ctrl+Shift+C. The choice of items displayed changes
according to the content of the filter pane and the selected filter options, and
the label on the Filter dropdown changes to indicate your selected filter
options.

3.14.3 Completion dialog

When the Use in-place completion option (see “Selecting the completed input”
on page 62) is off, all keyboard completion gestures raise a modal dialog pre-
senting a choice of completion options.

Also, clicking the button to the right of a text input pane raises a modal
completion dialog.

You can navigate the choice with Up and Down and you can select the desired
completion at any time with the Return key, double-click, or click the OK but-
ton. To cancel the attempt to complete, press Escape.

3.14.3.1 Filtering modal dialog completion

A modal completion dialog automatically has a filter if the number of possible
completions exceeds the value of the option Works > Tools > Preferences... >
Environment > General > Add a filter to dialog lists longer than:. By default this
option has value 25.

The filter options described above are also available in a modal completion
dialog, and are controlled by the same keyboard gestures, for example
Ctrl+Shift+R. See “Advanced Filtering” on page 58 for details.

3.15 Examining a window
You can examine any tool window with the Works > Interface menu.

This menu contains the standard action commands described in Section 3.8 on
page 48. Thus, choose Works > Interface > Inspect to inspect the capi:inter-
face object for the window.

3.15 Examining a window
Choose Works > Interface > Browse - Window to browse the structure of the win-
dow object. From here you can browse the child windows.

For information about the tools mentioned, see Chapter 8, “The Class
Browser” and Chapter 17, “The Inspector” and Chapter 28, “The Window
Browser”.
 67

3 Common Features

68

4

4 Getting Help
All tools contain a Help menu that gives you access to a variety of forms of
online help. This chapter describes how to use this online help.

4.1 Online manuals in HTML format
A complete documentation set is provided with LispWorks in the form of
HTML files. Asuming that you have installed the documentation, these files
are in the directory which is the result of evaluating this form:

(sys:lispworks-dir "manual/online/")

The Help menu links directly to these HTML files, allowing you to go straight
to the most relevant documentation for the current context.

No proprietary extensions to HTML have been used, so you can use any
HTML browser to view the documents. The Help menu drives the following
browsers: Netscape, Firefox, Mozilla and Opera.

4.1.1 Browsing manuals online

Choose Help > Manuals to select any of the available manuals from a submenu.
69

4 Getting Help

70
If you already have an HTML browser running, a link to the first page of the
manual you choose is displayed in it. If you do not have a browser running,
one is started for you.

4.1.2 Searching the online manuals

Choose Help > Search... to search the online documentation. The Search dialog,
shown in Figure 4.1, appears.

Figure 4.1 Search dialog

Enter string to search for here.

Select manuals to search here. Select packages to search here.

Select other options here.

4.1 Online manuals in HTML format
This dialog lets you specify what you want to search for, and which manuals
you want to search in.

Enter a string of text in the Search for area.

There are a number of additional options that you can set if you want:

• Select Whole Word if you want to confine your search to whole words
only. Select Partial Search if you want to match part of a word as well.
By default, partial searches are performed. For example, if Whole Word is
selected, searching for “pane” only matches the word “pane”. If Partial
Search is selected, searching for “pane” also matches “panels”.

• You can choose whether to search the index or the table of contents of
any given manual; select Index or Contents as appropriate. By default,
indexes are searched, as these tend to produce the richest information.

Select the manuals you want to search in the Manuals list. If nothing is
selected, all manuals are searched. You can select any number of items in this
list.

Select the packages you want to search from the Packages list. If nothing is
selected (the default), all packages are searched. You can select any number of
items in this list.

Note that selections made in the Manuals and Packages lists reflect each other.
If you choose one or more manuals, the relevant packages are also selected,
and if you choose one or more packages, the relevant manuals are selected.

Once you have specified the search options, click OK. The results of the search
are displayed in your HTML browser.

The Help menu has a command Lisp Knowledgebase which takes you to the
LispWorks support page where a knowledgebase of problems and solutions
can be searched. There is also a command LispWorks Patches which takes you
to the page where you can download the latest patches for LispWorks. The
support page also contains guidelines on how to prepare a useful bug report.

4.1.3 Getting help on the current tool

Choose Help > On Tool... to get help on the current tool. This takes you to the
appropriate online chapter of this manual.
 71

4 Getting Help

72
4.1.4 Getting help on the current symbol

Choose Help > On Symbol... to search for help on the symbol under the point
(in an editor-based window) or the current object of a tool. This option dis-
plays the Search dialog described in Section 4.1.2, but with options pre-
selected to enable you to search for documentation on the current symbol.
Click OK, and the results of the search are displayed in your HTML browser.

4.1.5 Getting help from the LispWorks website

Please check our online knowledgebase at www.lispworks.com before report-
ing problems to Lisp Support. You may find a solution or workaround there.
Choose Help > Lisp Knowledgebase to visit the online knowledgebase.

4.1.6 Getting patches from the LispWorks website

You must run LispWorks with the latest patch release installed. This is avail-
able from www.lispworks.com. The command Help > LispWorks Patches is a
convenient shortcut to visit the patch download page.

4.1.7 Configuring the browser used

We recommend that you use Netscape. You can specify the location of the
browser used by Help > Browser Preferences... > Browser > Browser Executable
Location. You can enter the directory here in the Directory window. However,
the default setting, Use PATH, is adequate for most users. It means that the
Netscape executable found via your UNIX environment variable PATH is
used.

Alternatively, set the variable *browser-location* (details in the LispWorks
User Guide and Reference Manual).

4.2 Online help for editor commands
You can display online help for any available editor command using the com-
mands under Help > Editing. See Section 13.14 on page 209 for details.

http://www.lispworks.com
http://www.lispworks.com

4.3 Browsing manuals online using Adobe Reader
4.3 Browsing manuals online using Adobe Reader
The LispWorks manuals are also available in PDF (Portable Document For-
mat). These can be found in the LispWorks library directory lib/6-1-0-0/
manual/offline/pdf .

You can view these files and print them using Adobe Reader, which can be
downloaded freely from the Adobe website at www.adobe.com.

You may also download the PDF format manuals from the LispWorks website
at www.lispworks.com/documentation/.

4.4 Reporting bugs
The Help menu also contains a Report Bug command that provides a template
for reporting LispWorks bugs. Please do use this when you contact Lisp Sup-
port.

Before sending a report, please check the instructions at
www.lispworks.com/support/bug-report.html.
 73

http://www.adobe.com
http://www.lispworks.com/support/bug-report.html
http://www.lispworks.com/documentation/

4 Getting Help

74

5

5 Session Saving
You can save a LispWorks IDE session, which can be restarted at a later date.
This allows you to resume work after restarting your computer.

This chapter describes what session saving does, and how you can configure
and use it in the LispWorks IDE.

It is also possible to save a session programmatically, which is described in the
LispWorks User Guide and Reference Manual, but saving sessions is primarily
intended for users of the LispWorks IDE.

Note: saving sessions uses save-image and therefore it is not available in
LispWorks Personal Edition.

5.1 What session saving does
When you save a session, LispWorks performs the following three steps:

1. Closing all windows and stopping multiprocessing.

2. Saving an image.

3. Restarting the LispWorks IDE and all of its windows.

If a saved session is run later, then it will redo the last step above, but see
“What is saved and what is not saved” on page 76 for restrictions.
75

5 Session Saving

76
Sessions are stored on disk as LispWorks images, by default within your per-
sonal application support folder (the exact directory varies between operating
systems).

5.2 The default session
There is always a default session, which is used when you run the supplied
LispWorks image.

Initially the default session is the one named LispWorks Release.

When you run any other image directly, including a saved session or an image
you created with save-image, it runs itself (not the default session).

Saved sessions are platform- and version-specific. In particular, a 32-bit Lisp-
Works saved session cannot be the default session for 64-bit LispWorks, or
vice-versa.

5.3 What is saved and what is not saved
All Lisp code and data that was loaded into the image or was created in it is
saved. This includes all editor buffers, the Listener history and the values of
cl:*, cl:** and cl:***.

All threads are killed before saving, so any data that is accessible only through
a mp:process object, or by a dynamically bound variable, is not accessible.

All windows are closed, so any data that is accessible only within the win-
dowing system is not accessible after saving a session.

The windows are automatically re-opened after saving the session and all Lisp
data within the CAPI panes is retained.

External connections (including open files, sockets and database connections)
become invalid when the saved session is restarted. In the image from which
the session was saved, the connections are not explicitly affected but if these
connections are thread-specific, they will be affected because the thread is
killed.

In recreated Shell tools the command history is recovered but the side effects
of those commands are not. Debugger and Stepper windows are not re-
opened because they contain the state of threads that have been killed.

5.4 Saving sessions
See "Saving a session programmatically" in the LispWorks User Guide and Refer-
ence Manual for interfaces allowing you to control what happens when saving
a session.

5.4 Saving sessions
This section describes how you can use the Saved Sessions window to save a
session, schedule regular saving, and manage your saved sessions.

Choose Works > Tools > Saved Sessions... to raise the Saved Sessions window.

Figure 5.1 The Saved Sessions window

In the Saved Sessions tab is a list of known saved sessions. The default session
is marked with *. If you select a session (other than LispWorks Release) in the
list, you can see details of when and where it was saved in the Details: area.
 77

5 Session Saving

78
To save a session from the running image, click the Save Now button, which
raises the Save Session dialog (see “The Save Session dialog and actual sav-
ing” on page 80).

To launch a session, select it in the list and click the Launch button. This
invokes the saved session.

To delete a session, select it in the list and click the Delete button. Note that this
does not merely remove it from the list but permanently deletes the session,
deleting the actual file from the disk.

To make a session be the default saved session, select it in the list and click the
Set As Default button. This causes LispWorks images to redirect to this session
when they start (see “Redirecting images to a Saved Session image” on page
82).

5.4 Saving sessions
5.4.1 Scheduling automatic session saving

You can set up automatic periodic session saving using the Scheduled tab of
the Saved Sessions controller window.

Figure 5.2 The Scheduled tab of the Saved Sessions window

Select or deselect Save session using this schedule to switch automatic saving
on or off.

You can select days in the week and a time of the day to do the saving.

When the saving time is reached, the system raises the Save Session dialog
and waits for some period of time to allow you to change the settings, cancel
the saving, or confirm it. If the period of time passes without you cancelling,
the system proceeds to do the saving. The period of time to wait is set by the
Allow cancellation option.

Click the Defaults... button to raise the Save Session dialog which allows you to
set the parameters for the saving. When you confirm, it does not save the ses-
 79

5 Session Saving

80
sion, but remembers the settings and uses them when doing the automatic
saving.

5.4.2 The Save Session dialog and actual saving

Click the Defaults... button in the Scheduled tab of the Saved Sessions control-
ler window to raise the Save Session dialog.

Figure 5.3 Setting the defaults for scheduled session saving

5.4 Saving sessions
Enter a name for the session in the Session name: box. This name will be dis-
played in the list of sessions in the Saved Sessions tab of the Saved Sessions
controller window.

Under File name: you can define the filename in which to save the image. The
name is constructed by a prefix, optionally followed by one or more of the Ver-
sion (of LispWorks), the Weekday, the Date or the Time. The full name that
would be used is displayed after Sample:. Note that:

1. The name does not contain the file type.

2. The Weekday, Date and Time are derived from the moment when the
Save Session dialog was raised. They are not updated.

Under Options: there are additional options:

1. You can change the directory in which to save the image in the Save in
directory: box.

2. You can specify that the saved session is the default session by selecting
Use as default session. This means that LispWorks images will redirect to
it (see “Redirecting images to a Saved Session image” on page 82).

3. The saving process can be made to overwrite an existing image if it
exists by selecting Overwrite existing file. If this is not checked the saving
process refuses to save on top of an existing image.

4. You can specify that the saved session will reload the initialization files
when it restarts, by selecting Re-load init files when starting session.

When you click OK to confirm the dialog, the session saving is scheduled.

5.4.3 Saving a session interactively

If you invoked the Save Session dialog from the Save Now button, it appears as
described in “Scheduling automatic session saving” on page 79 except that a
default Session name: is provided and there is also an option Remember these
settings. If this is selected, then when you confirm the saving the settings are
remembered and used the next time this dialog appears.

Once you click OK to confirm, the saving starts. First all the IDE interfaces are
destroyed in a way that makes it possible to resurrect them. Then multipro-
cessing is stopped. It then saves the LispWorks image. While it is saving it
 81

5 Session Saving

82
prints messages to the console. Once it finished saving it restarts the IDE and
all its interfaces. The pathname of the saved image is printed to the back-
ground output as well.

If there is an error during the saving, you can interact with it via the console.
There is a restart "Abort saving and restart the IDE" to allow you to return to
the IDE.

5.5 Redirecting images to a Saved Session image
Redirecting an image means that when the image starts it actually causes
another image to start. The idea is that you save your sessions and redirect the
release image, so that starting LispWorks from the link in /usr/bin or other
shortcut will actually start the saved session.

Only the installation image redirects, or images that were saved from it by
using save-image with the -build command line argument. Images that
were re-saved using the -init command line argument do not redirect.

Redirection occurs automatically when the default saved session is not the
LispWorks Release. The default saved session can be set by Works > Tools >
Saved Sessions... > Saved Sessions > Set As Default. It is marked by * in the list.
It is possible to make the process of saving a session set the default saved ses-
sion to the newly saved session by selecting it under Options: in the Save Ses-
sion dialog, described in “The Save Session dialog and actual saving” on page
80.

When the redirection switch is on, when the installation image starts it redi-
rects to the default saved session. It does it after processing the command line
arguments (including -build, -load and -eval), but before loading any ini-
tialization file (whether the default or those that are passed by -siteinit or -
init). It passes all the command line arguments to the saved session, fol-
lowed by few other arguments. Note that this means that if you start a redi-
rected image with command line arguments, it will process the arguments,
redirect and then the redirected image will process the arguments too.

Passing the command line argument -lw-no-redirection prevents the redi-
rection.

5.6 Non-IDE interfaces and session saving
5.6 Non-IDE interfaces and session saving
If there are CAPI interfaces on the screen (other than the LispWorks IDE)
when session saving is invoked, these interfaces are destroyed and then dis-
played again. Note that the display will occur in a different thread than the
one running the interface before the saving (which was killed when the inter-
face was destroyed).

If an interface (or any of its children) contains information that is normally
destroyed (in some sense) in the destroy-callback, this information can be pre-
served. For the details see capi:interface-preserving-state-p and
capi:interface-preserve-state in the CAPI Reference Manual.
 83

5 Session Saving

84

6

6 Manipulating Graphs
Views that use graphs are provided in the Class Browser, Function Call
Browser, and Window Browser. These views let you, for instance, produce a
graph of all the subclasses or superclasses of a given class, or the layouts of a
given CAPI interface.

In the Class Browser, the subclasses and superclasses views use graphs. The
Function Call Browser uses graph views for its Called By and Calls Into views.
There is only one view in the Window Browser, and that uses a graph.

All graphs in the LispWorks IDE can be manipulated in the same way. This
chapter gives you a complete description of the features available.

All graphs have an associated graph layout menu, available by displaying a
context menu over the graph itself by using the alternate select gesture. This
menu contains all the commands that are directly relevant to graphs.

6.1 An overview of graphs
An example graph is shown in Figure 6.1 below. All graphs are laid out by the
LispWorks IDE, so that their elements are displayed in an intuitive and easily
visible hierarchy. A graph consists of a number of nodes, linked together by
branches. By default, graphs in the environment are plotted from left to right:
for any given node, the node to which it is linked on the left is known as its
85

6 Manipulating Graphs

86
parent, and the nodes to which it is linked on the right are known as its chil-
dren. The originating node of the graph (on the far left) is referred to as the root
node, and the outermost nodes of the graph (towards the right) are referred to
as leaf nodes. The root node does not have a parent, and leaf nodes do not have
any children.

Figure 6.1 Example graph pane

You can select nodes in a graph pane in exactly the same way that you select
items in a list. Selected nodes are highlighted, as shown in Figure 6.1.

Similarly, you can copy nodes from a graph onto the clipboard in a manner
consistent with use of the clipboard in the rest of the environment. When you
copy any selected node onto the clipboard, the Lisp object itself is copied onto
the clipboard, so that it can be transferred into other tools in the LispWorks
IDE.

UNIX Implementation Note: The string representation of the Lisp object is
copied into the UNIX clipboard, so that it can be transferred to other applica-
tions.

Root node.

Leaf nodes.

Nodes.Branches. Selected node.

6.2 Searching graphs
6.2 Searching graphs
Sometimes graphs can be too large to fit onto the screen at once. In this case, it
is useful to be able to search the graph for any nodes you are interested in.
There are two commands which let you do this.

Choose Edit > Find... to find any node in the graph whose name contains a
given string. Choose Edit > Find Next to find the next node in the graph that
contains that string. Whenever a matching node is found, it is selected in the
graph. If necessary, the window scrolls so that the selected node is visible.

Note that you do not have to specify a complete node name: to find all nodes
that include the word “debug” in their name, just type debug into the dialog.
All searches are case insensitive.

A full description of these commands can be found in Section 3.3.5 on page 42.

6.3 Expanding and collapsing graphs
You may often find that you are only interested in certain nodes of a graph.
Other nodes may be of no interest and it is useful, especially in large graphs,
to be able to remove their children from the display.

Notice that some nodes have a small circle drawn alongside them, as shown in
Figure 6.2. The circle indicates that the node is not a leaf node, that is, it has
children. Moreover, the circle is filled black if the node is currently expanded,
and is unfilled if the node is currently expandable (also referred to as col-
lapsed).

6.3.1 Expanding and collapsing by clicking

To collapse or expand any node with children in a graph, click on the circle
alongside it. Thus, click on the unfilled circle of an expandable node to display
 87

6 Manipulating Graphs

88
its children, and click on the filled circle of an expanded node to hide its chil-
dren.

Figure 6.2 Expanded and expandable nodes

For instance, in Figure 6.2, click on the unfilled circle alongside CAPI:TOOL-
BAR-COMPONENT to display its subclasses. Click on the filled circle to hide
them.

6.3.2 Expanding and collapsing by menu commands

You can also collapse or expand nodes using the context menu:

• Choose Expand Nodes to expand the selected node.

• Choose Collapse Nodes to collapse the selected node.

6.4 Moving nodes in graphs
Although the layout of any graph is calculated automatically, you can move
any node in a graph manually. This can be useful if the information in the
graph is dense enough that some nodes are overlapping others.

Expanded node

Expandable
nodes

6.5 Displaying plans of graphs
To move the selected node, hold down the Shift key and select and drag the
node to the desired location.

Figure 6.3 Moving a node in a graph

At any time, you can choose Reset Graph Layout from the context menu to
restore the nodes to their original positions.

6.5 Displaying plans of graphs
Many graphs are too large to be able to display in their entirety on the screen.
As with any other window, you can use the scroll bars to display hidden parts
of the graph. However, you can also display a plan view of the entire graph.

1. Select node.

2. Hold down Shift key.

3. Select and drag node to new location.
 89

6 Manipulating Graphs

90
To display the plan view of any graph, hold down the Control key and select
the graph, or choose Enter Plan Mode from the context menu. The graph is
replaced by its plan view, similar to the one shown in Figure 6.4.

Figure 6.4 Example plan view

Each node in the original graph is represented by a rectangle in the plan view.
The currently selected node is shown as a filled rectangle, and all other nodes
are clear. You can select nodes in the plan view, just as you can in the normal
view.

A dotted grid is drawn over the plan view; you can use this grid to alter the
section of the graph that is shown in the normal view. The size and position of
the grid represents the portion of the graph that is currently displayed in the
normal view.

Nodes.
Currently selected

node.

Boundary of current

normal view.

Select inside inner rectangle
to move the boundary of the

normal view.

Select inside outer rectangle
to resize the boundary of the

normal view.

6.6 Preferences for graphs
• To move the grid, so that a different part of the graph is shown in the
normal view, hold down Shift and select and drag the innermost rect-
angle of the grid. The entire grid moves with the mouse pointer.

• To resize the grid, so that a different proportion of the graph is shown,
hold down Shift and select and drag the outermost rectangle of the
grid. The entire grid will resize. You can select any part of the grid
except the innermost rectangle to perform this action.

To return to the normal view, hold down Control and select the graph again,
or choose Exit Plan Mode from the context menu. The part of the graph indi-
cated by the grid in the plan view is displayed.

6.6 Preferences for graphs
A number of graph layout preferences can be set for any tool that uses graphs.
You can control settings in the Preferences dialog. To do this:

1. Display the Preferences dialog either by choosing Graph > Preferences...
from the graph layout context menu or by one of the methods described
in “Setting preferences” on page 28.

2. Select the relevant tool in the left side of the Preferences dialog, and
select a graph layout tab on the right.
 91

6 Manipulating Graphs

92
For example, the graph layout preferences for subclasses in the Class Browser
are shown in Figure 6.5.

Figure 6.5 Layout Preferences for the Subclass Graph

This section describes the options available in the graph layout tabs of the
Preference dialogs for any tool that uses graphs.

6.6.1 Altering the depth and breadth of graphs

For large graphs, you may find that you want to alter the maximum depth and
breadth in order to simplify the information shown. Each graph pane has its
own depth and breadth setting, which is used for all graphs drawn in it. These
are available in the Max Expansion panel of the graph layout tabs in the Prefer-
ences dialog.

6.6 Preferences for graphs
The depth and breadth of a graph are depicted in Figure 6.6.

Figure 6.6 Depth and breadth of graphs

Choose a number from the Depth list to change the maximum depth of graphs
in a given tool. The depth of a graph is the number of generations of node
which are displayed. Most graphs have a default initial depth of 2, which
means that you must expand any nodes you want to investigate by expanding
them yourself. The default value is 2.

Note that the maximum depth setting is ignored for nodes which you have
expanded or collapsed. See Section 6.3 on page 87.

Choose a number from the Breadth list to change the maximum breadth of a
given tool. The breadth of a graph is the number of child nodes which are dis-
played for each parent. If there are more children than can be displayed (the
maximum breadth setting is less than the number of children for a given
node) an extra node is visible. This node is labeled “…”, followed by the num-
ber of nodes that remain undisplayed. Nonetheless you can expand this node
by the Expand Nodes command allowing you to display the additional chil-
dren without having to alter the maximum breadth setting for the whole
graph. By default, the maximum breadth is set to None, so that all the children
for a node are displayed, no matter how many there are. An example of this

Depth = 3

Breadth = 3

Breadth = 2
 93

6 Manipulating Graphs

94
feature is shown in Figure 6.7 below, where the maximum breadth has been
set to 3.

Figure 6.7 Displaying children hidden by the maximum breadth setting

To ensure that all available information is graphed in a given tool, set both the
maximum depth and maximum breadth to None.

6.6.2 Displaying different graph layouts

As already mentioned, graphs are laid out from left to right by default, but
they can be laid out in other orientations. This can be configured in the Layout
panel of the graph layout tab in the Preferences dialog.

Click “Left to Right” to layout a graph from the left of the screen to the right,
as shown in Figure 6.8. This is the default orientation for every graph in the
environment.

Figure 6.8 Left to right layout

This node has been
expanded.

Expand this node to reveal 3
more nodes (currently hidden).

A

D

6.6 Preferences for graphs
Click “Right to Left” to layout a graph from the right of the screen to the left,
as shown in Figure 6.9.

Figure 6.9 Right to left layout

Click “Top Down” to layout a graph from the top of the screen to the bottom,
as shown in Figure 6.10.

Figure 6.10 Top down layout

Click “Bottom Up” to layout a graph from the bottom of the screen to the top,
as shown in Figure 6.11.

Figure 6.11 Bottom up layout

A

D

A

D

A

D

 95

6 Manipulating Graphs

96
6.7 Using graphs in your programs
You can read about the CAPI class graph-pane in the CAPI Reference Manual
for detailed API information for using graphs in your own programs. We will
also look at a short example in this section. The following code listing defines
a callback function and creates a graph-pane object:

(defun node-children (node)
 (if (equal node 'pets)
 (list 'dog 'parrot)
 (if (equal node 'dog)
 (list 'Kito 'Otis 'Sammy 'Teddy)
 (if (equal node 'parrot)
 (list 'Brady)))))

(setq test-graph
 (capi:contain
 (make-instance 'capi:graph-pane
 :roots '(pets)
 :children-function
 'node-children)
 :best-width 300
 :best-height 400))

The children function node-children should return nil for a leaf node in the
graph or a list of child nodes for a non-leaf node. Figure 6.12 shows the gener-
ated graph-pane.

Figure 6.12 Sample Graph from a User Program

7

7 The Podium
7.1 The podium window
When you start the LispWorks IDE, by default a window known as the podium
appears.

Figure 7.1 The LispWorks podium

The podium contains a menu bar, a toolbar, and a message areaThe icons in
the podium’s toolbar access the Listener, Editor, Output Browser, Inspector,
Class Browser, Generic Function Browser, Symbol Browser, Object Clipboard,
Function Call Browser, System Browser, Compilation Conditions Browser,
Search Files, Profiler, Tracer, Stepper, Window Browser, Process Browser, Shell
and Application Builder tools. If you hold the mouse over these icons for a
second, the corresponding tool name will appear as floating help text.

The IDE tools have most of these menu items in common with the podium.

Menu bar.Message area. Toolbar.
97

7 The Podium

98
The menu bar contains five menus:

• The Works menu contains commands that operate on the current win-
dow.

• The File menu contains commands that open, load, save and compile
Lisp files.

• The Tools menu contains commands to create and configure the Lisp-
Works IDE tools.

• The Windows menu lists all the current windows in the environment. To
make any window the active window, choose it from this menu.

• The Help menu contains commands described in Chapter 4, “Getting
Help”.

7.2 Specifying the initial tools
By default the LispWorks IDE starts up with the Podium and a Listener.

If you want to see other tools each time you start the LispWorks IDE, then you
can add action items in your personal initalization file, or in a saved image.

For example, to start an Editor tool, define an action on the pre-defined "Ini-
tialize LispWorks tools" action-list:

(define-action "Initialize LispWorks tools"
 "Make an Editor Tool"
 #'(lambda (screen)
 (capi:find-interface 'lw-tools:editor
 :screen screen))
 :after "Create default the tools")

Note: the names of the various tools are exported in the LW-TOOLS package.

For more information about action lists, including an example which opens
specific files in the Editor tool, see the LispWorks User Guide and Reference Man-
ual.

8

8 The Class Browser
The Class Browser allows you to examine Common Lisp classes. It contains
seven views, allowing you to view class information in a number of different
ways. You can display each view by clicking the appropriate tab. The available
views are as follows:

• The slots view is used to look at the slots available to the class browsed.
This view is rich in information, showing you details about items such
as the readers and writers of the selected slot.

• The subclasses view produces a graph of the subclasses of the current
class, giving you an easy way to see the relationship between different
classes in the environment.

• The superclasses view produces a graph of the superclasses of the cur-
rent class, giving you an easy way to see the relationship between dif-
ferent classes in the environment.

• The hierarchy view lets you see the immediate superclasses and the
immediate subclasses of the current class, using a text-based interface.

• The initargs view allows you to see the initargs of the current class
together with information about each initarg. See Section 8.6 on page
120 for more details on how you can use this view.
99

8 The Class Browser

100
• The functions view allows you to see information about the CLOS
methods that have been defined on the current class. See Section 8.5 on
page 116 for details on using the information in this view.

• The precedence view is used to show the class precedence list for the
current class. See Section 8.7 on page 122 for more details on how you
can use this information.

To create a Class Browser, choose Tools > Class Browser or click . Alterna-
tively, to invoke a Class Browser on a Lisp object use Meta+X Describe
Class in an Editor, or choose Class from any submenu that provides the stan-
dard action commands to invoke a Class Browser on the Lisp object referred
to by that submenu, or click . This automatically browses the class of the
Lisp object. For more information on how the standard action commands refer
to objects in the environment, see Section 3.8 on page 48.

8.1 Simple use of the Class Browser
This section describes some of the basic ways in which you can use the Class
Browser by giving some examples. If you wish, you can skip this section and
look at the descriptions of each individual view: these start with Section 8.2 on
page 107.

When examining a class, the slot names of the class are displayed by default.

To examine a class, follow the instructions below:

1. Create a push button panel by entering the following in the Listener:

(capi:contain
 (make-instance 'capi:push-button-panel
 :title "Test Buttons"
 :items '(:one :two :three)))

The push button panel appears on your screen.

2. With the Listener as the active window, choose Values > Class.

8.1 Simple use of the Class Browser
This invokes the Class Browser on the button panel. The class
capi:push-button-panel is described in the Class Browser.

Figure 8.1 Examining classes in the Class Browser

Notice that, although you invoked the browser on an object that is an instance
of a class, the class itself is described in the Class Browser. Similarly, if you had
pasted the object into an Inspector, the instance of that object would be
inspected. Using the environment, it is very easy to pass Common Lisp objects
 101

8 The Class Browser

102
between different tools in this intelligent fashion. This behavior is achieved
using the LispWorks IDE clipboard; see Section 3.3.3 on page 40 for details.

See Section 3.8 on page 48 for a full description of the standard action com-
mands available.

8.1.1 Examining slots

A list of the slots in the current class is printed in the Slots area. By selecting
any slot, you can examine it in more detail in the Description area.

While still examining the capi:push-button-panel class, select any slot in
the Slots area.

Figure 8.2 Description of a slot

A description of the slot is given in the Description area. For details about the
information contained in this description, see Section 8.2.4 on page 109.

8.1.2 Examining inherited slots

By default, inherited slots (those slots which are defined in a superclass of the
current class, rather than the current class itself) are listed in the Slots area
along with the slots defined in the current class. Deselect the Include Inherited
Slots button just above the Filter box to inhibit this listing.

8.1 Simple use of the Class Browser
1. While still examining the capi:push-button-panel class, click Include
Inherited Slots to deselect this option.

No slots are displayed in the Slots area. This is because all the slots available to
the capi:push-button-panel class are inherited from its superclasses. No
slots are defined explicitly on the capi:push-button-panel class.

2. Select Include Inherited Slots again, and then select a few slots in the Slot
area in turn.

Notice that the slot description for each slot tells you which superclass the slot
is defined on.

8.1.3 Filtering slot information

The Filter box can be used to filter out information about slots you are not
interested in. This is especially useful if you are examining classes which con-
tain a large number of slots.

The example below shows you how to create an instance of a CAPI object, and
then limit the display in the Class Browser so that the only slots displayed are
those you are interested in:

1. In a Listener, create a button object by typing the following:

(capi:contain (make-instance 'capi:list-panel
 :items '("Apple" "Orange" "Pear")))

This creates a list panel object and displays it on your screen. The list
panel object is the current value in the Listener.

2. Make the Listener window active and choose Values > Class to examine
the class of the object in the Class Browser.

3. Click the Slots tab in the Class Browser to switch to the Slots view.

Suppose you are only interested in seeing the callbacks that can be
defined in a list panel.
 103

8 The Class Browser

104
4. Type callback in the Filter box.

Figure 8.3 Using filters to limit the display in the Class Browser

You can immediately see the types of callback that are available to CAPI list
panel objects. See the CAPI Reference Manual for details about these callbacks.

For more information about using filters, see “Filtering information” on page
56.

8.1 Simple use of the Class Browser
8.1.4 Examining other classes

There are two ways that you can examine other classes. The first is to type the
name of the class you wish to see into the Class text box at the top of the
browser. For long class names, you might find it useful to type just a few char-
acters and then press Up or Down to invoke in-place completion. Press Return
or click and the named class is described.

1. While still examining class capi:list-panel, type
capi:push-button-panel into the Class area.

The class capi:push-button-panel is described.

Because some class names may be potentially quite long, you can use comple-
tion to reduce typing. This allows you to select from a list of all class names
which begin with the partial input you have entered. See “Completion” on
page 61 for detailed instructions. When you have entered the complete class
name, click on to make this the class being described.

The second way to examine other classes is by using the Superclasses and
Subclasses lists available in the hierarchy view. Click on the Hierarchy tab to
display the hierarchy view.

The main part of the hierarchy view consists of two lists:

• The Superclasses list shows all the superclasses of the current class.

• The Subclasses list shows all the subclasses of the current class.

Double-click on any superclass or subclass of the current class to examine it.

1. Double-click on CAPI:BUTTON-PANEL in the Superclasses list.

The capi:button-panel class is described.

2. Double-click on CAPI:PUSH-BUTTON-PANEL in the Subclasses list.

The capi:push-button-panel class is described again.

So, using the Hierarchy tab, you can easily look through the related classes in a
system.
 105

8 The Class Browser

106
8.1.5 Sorting information

As with many of the other tools in the LispWorks IDE, you can sort the items
in any of the lists or graphs of the Class Browser using the Preferences dialog.
Raise this dialog as described in “Setting preferences” on page 28, and then
select Class Browser in the list on the left side.

Figure 8.4 Setting Class Browser preferences

Under the General tab, there are three options for sorting items, listed in the
Sort panel.

• Unsorted - Displays items in the order they are defined in.

• By Name - Sorts items alphabetically by name. This is the default setting.

• By Package - Sorts items alphabetically by package name.

For more information on sorting items, see Section 3.9.1 on page 52.

8.2 Examining slot information
8.2 Examining slot information
When the Class Browser is first invoked, the default view is the slots view.
You can also click the Slots tab to swap to it from another view. The slots view
is shown in Figure 8.5.

Figure 8.5 Examining slots in the Class Browser
 107

8 The Class Browser

108
Section 8.1 on page 100 introduced you to the slots view in the Class Browser.
This section gives a complete description of this view. For completeness, some
information may be repeated.

The areas available in the slots view are described below.

8.2.1 Class box

You enter the name of the class you want to browse in the Class text box. You
can type in a class name explicitly, or you can transfer a class to the Class
Browser using the Class standard action command in another tool, or by past-
ing a class in explicitly.

Note: You can use Edit > Paste to paste a class name into this area, even if the
clipboard currently contains the string representation of the class name, rather
than a class object itself. This lets you copy class names from other applica-
tions directly into the Class Browser. See Section 3.3.3 on page 40 for a com-
plete description of the way the LispWorks IDE clipboard operates, and how it
interacts with the UNIX clipboard.

8.2.2 Filter area

The Filter area lets you restrict the information displayed in the Slots list. See
“Filtering information” on page 56 for a description of how to use the Filter
area in any tool, and Section 8.1.3 on page 103 for an example of how to use it
in the Class Browser.

8.2.3 Slots list

The main section of the slots view lists the slot names of the current class.
Selecting a slot in this list displays a description of it in the Description list,
and you can operate on any number of selected slots using the commands in
the Slots menu.

The number of items listed in the Slots area is printed in the Matches box.

If Include Inherited Slots is selected, slots inherited from the superclasses of the
current class are listed as well as those explicitly defined on the current class.
Deselect this button to see only those slots defined on the current class. You
can also configure the default setting of this option. To do this raise the Prefer-

8.2 Examining slot information
ences dialog as described in “Setting preferences” on page 28, then select Class
Browser in the list on the left side of the Preferences dialog, and then select the
Slots/Functions tab to see the Include Inherited Slots option.

8.2.4 Description list

This list displays a description of the selected slot. The following information
is printed:

• From Classes - The classes that this slot is defined in.

• Slot Name - The name of the slot.

• Type - The slot type.

• Initargs - The initargs, if any, which can be used to refer to the slot.

• Initform - The initform, or initial value, of the slot.

• Readers - The readers of the slot. These are the names of any functions
which can be used to read the current value of the slot.

• Writers - The writers of the slot. These are the setf methods which may
be used to change the slot value.

• Allocation - The allocation of the slot.

To operate on any of the items displayed in this area, select them and choose a
command from the Description menu. This menu contains the standard action
commands described in Section 3.8 on page 48. You can operate on more than
one item at once by making multiple selections in this area.

8.2.5 Performing operations on the current class

You can operate on the current class using the commands in the Classes menu.
The standard action commands described in Section 3.8 on page 48 are avail-
able in this submenu.

Choose Classes > Browse Metaclass to select, and describe in the normal way,
the class of the current class.
 109

8 The Class Browser

110
8.3 Examining superclasses and subclasses
The hierarchy view of the Class Browser lists the immediate superclasses and
subclasses of the current class. This view can be useful for navigating the class
hierarchy if you want to be able to see both superclasses and subclasses at the
same time.

Click on the Hierarchy tab to browse classes with the hierarchy view. The hier-
archy view shown in Figure 8.6 appears.

Figure 8.6 Viewing superclass and subclass information in the Class Browser

The areas available in the hierarchy view are described below.

8.3 Examining superclasses and subclasses
8.3.1 Class box

As with other views in the Class Browser, the name of the class being browsed
is given here. See Section 8.2.1 on page 108 for more details.

8.3.2 Superclasses list

This list displays the immediate superclasses of the current class. Double-
clicking on any class makes it the current class.

Selecting a class in this list displays its description in the Description list.

8.3.3 Subclasses list

This list displays the immediate subclasses of the current class. Double-click-
ing on any class makes it the current class.

Selecting a class in this list displays its description in the Description list.

8.3.4 Description list

This list displays a description of the first class selected in either the Super-
classes or Subclasses lists, or the current class if there is no selection in either
of these lists. The following information is printed:

Package The name of the package that the selected class is
defined in.

Name The name of the selected class.

Metaclass The class of the selected class. The metaclass is the class
of Lisp object that the current class belongs to.

Accessibility The accessibility of the selected class—whether the
symbol is external or internal, as returned by
find-symbol.

To operate on any of the items displayed in this area, select them and choose a
command from the Description menu. This menu contains the standard
actions commands described in Section 3.8 on page 48. You can operate on
more than one item at once by making a multiple selection in this area.
 111

8 The Class Browser

112
8.3.5 Performing operations on the selected classes or the current class

You can use the Classes menu to perform operations on any number of items
selected in either the Subclasses area or the Superclasses area. If no items are
selected, then the current class is operated on by the commands in this sub-
menu. The standard actions commands described in Section 3.8 on page 48 are
available in this submenu.

Choose Classes > Browse Metaclass to select, and describe in the normal way,
the class of the selected classes, or the current class.

Note: If more than one item is selected, and the command chosen from the
Classes menu invokes a tool which can only display one item at a time, then
the extra items are added to the History > Items submenu of the tool, so that
you can easily display them.

8.4 Examining classes graphically
As already mentioned, you can view class relationships graphically using
either the superclasses or subclasses views. This gives an immediate impres-
sion of the class hierarchy, but contains no details about information such as
slots, readers and writers.

Click on the Subclasses tab to browse subclasses in a graph, and click on the
Superclasses tab to view superclasses in a graph. Except for the type of infor-

8.4 Examining classes graphically
mation shown, these two views are visually identical. The subclasses view is
shown in Figure 8.7.

Figure 8.7 Viewing subclasses graphically in the Class Browser

The areas available in the subclasses and superclasses views are described
below.
 113

8 The Class Browser

114
8.4.1 Class box

As with other views in the Class Browser, the name of the class being browsed
is shown here. See Section 8.2.1 on page 108 for details.

8.4.2 Subclasses and superclasses graphs

The main area of these views is a graph showing either the subclasses or the
superclasses of the current class, depending on the view you have chosen. The
generic facilities available to all graph views throughout the environment are
available here: see Chapter 6, “Manipulating Graphs” for details.

Selecting a node in this displays a description of the class it represents in the
Description list.

8.4.3 Description list

This list displays a description of the first class selected in the graph. This
gives the same information as the Description list in the hierarchy and prece-
dence views. See Section 8.3.4 for details.

8.4.4 Performing operations on the selected classes or the current class

You can operate on the selected node in the graph using the commands in the
Classes menu. If no node is selected, then the current class is operated on by
the commands in this menu. The standard actions commands described in
Section 3.8 on page 48 are available in this menu.

Choose Classes > Browse Metaclass to select, and describe in the normal way,
the class of the selected classes, or the current class.

8.4.5 An example

1. Examine the class capi:choice by typing capi:choice into the Class
area of the Class Browser and pressing Return or clicking on .

The class is described in the current view.

2. Click on the Subclasses tab in the Class Browser.

8.4 Examining classes graphically
The relationships between capi:choice and its subclasses are shown in
a graph, as in Figure 8.8.

Figure 8.8 Relationship between capi:choice class and its subclasses

By default, the subclasses of the current class are shown in the graph. To
expand a non-leaf node in the graph, click on the circle to its right.

3. Expand the CAPI:BUTTON-PANEL node to see the subclasses of this class.

The classes of button panel object available are displayed in the graph,
including the push button panel class that you saw in the examples in
Section 8.1 on page 100.

4. To graph the superclasses, click the Superclasses tab.

The relationships between capi:choice and its superclasses are shown
in a graph, as in Figure 8.9.

Figure 8.9 Relationship between capi:choice class and its superclasses
 115

8 The Class Browser

116
8.5 Examining generic functions and methods
Click the Functions tab to examine information about the generic functions
and methods defined on the current class. The functions view shown in Figure
8.10 appears.

Figure 8.10 Displaying function information in the Class Browser

This view can be especially useful when used in conjunction with the Generic
Function Browser. The areas available are described below.

8.5 Examining generic functions and methods
8.5.1 Class box

As with other views in the Class Browser, the name of the class being browsed
is given here. See Section 8.2.1 on page 108 for more details.

8.5.2 Filter box

The Filter box lets you restrict the information displayed in the list of func-
tions or methods. See “Filtering information” on page 56 for a description of
how to use the Filter box in any tool, and Section 8.1.3 on page 103 for an
example of how to use it in the Class Browser.

8.5.3 List of functions or methods

This lists either the generic functions with applicable methods for the current
class, or the applicable methods for the current class. Items selected in this list
can be operated on via the Methods menu, as described in Section 8.5.6 on
page 118. Double-clicking on a function or method displays its source code
definition in the Editor, if possible.

Select Methods or Generic Functions from the drop-down list box to choose
which type of information to list.

If Include Inherited is checked, generic functions or methods inherited from the
superclasses of the current class are displayed.

If Include Accessors is checked, accessor methods/functions are displayed.
When Include Accessors is not checked, methods/functions defined by the
:readers, :writers and :accessors slot options in defclass are omitted
from the display.

You can configure the default settings of these options in the Preferences dia-
log. To do this raise the dialog as described in “Setting preferences” on page
28, then select Class Browser in the list on the left side and then select the Slots/
Functions tab to see the default settings that you can configure.

8.5.4 Description list

The list at the bottom of the tool gives a description of the function or method
selected in the main list. The following information is shown:
 117

8 The Class Browser

118
Name The name of the selected generic function or method.

Function The function which the selected function or method
relates to.

Lambda List The lambda list of the selected generic function or
method.

Documentation The Common Lisp documentation for the selected func-
tion or method, if any exists.

Source Files The source files for the selected generic function or
method.

To operate on any of the items displayed in this area, select them and choose a
command from the Description menu. This submenu contains the standard
actions commands described in Section 3.8 on page 48. You can operate on
more than one item at once by making a multiple selection in this area.

8.5.5 Performing operations on the current class

You can operate on the current class using the commands in the Classes menu.
The standard action commands described in Section 3.8 on page 48 are avail-
able from this submenu.

Choose Classes > Browse Metaclass to select and describe the class of the cur-
rent class.

8.5.6 Operations specific to the current function or method

In addition to the commands described above, the following commands are
available when using the functions view.

The standard action commands described in Section 3.8 on page 48 are avail-
able from the Methods menu.

Choose Methods > Undefine... to remove the selected functions or methods
from the LispWorks image. You are prompted before the functions or methods
are removed.

Warning: Do not remove system functions and methods, such as those
defined for CAPI classes used as examples in this chapter.

8.5 Examining generic functions and methods
Choose Methods > Trace to display the Trace submenu available from several
tools. This submenu lets you trace the selected methods or generic functions.
A full description of the commands in this submenu is given in Section 3.10 on
page 55.
 119

8 The Class Browser

120
8.6 Examining initargs
Click the Initargs tab to examine information about the initargs of the current
class. The initargs view shown in Figure 8.11 appears.

Figure 8.11 Displaying initarg information in the Class Browser

8.6 Examining initargs
The areas available are described below.

8.6.1 Class box

This area gives the name of the class being browsed. See Section 8.2.1 on page
108 for details.

8.6.2 Filter box

The Filter box lets you restrict the information displayed in the initargs list.
See “Filtering information” on page 56 for a description of how to use the Fil-
ter box in any tool, and Section 8.1.3 on page 103 for an example of how to use
it in the Class Browser.

8.6.3 List of initargs

This lists the slots in the current class for which initargs have been defined.
Selecting an item in this list displays information in the Description list. Any
items selected can also be operated on via the Slots menu.

8.6.4 Description list

This area gives a description of the initarg selected in the Initargs area. The fol-
lowing items of information are displayed:

Initarg The name of the selected initarg.

Default Initarg The default value for the selected initarg, if defined
with :default-initargs.

Default From Class

The class providing the default for the initarg.

From Classes The class from which the selected initarg is inherited.

Slot Name The name of the slot to which this initarg relates.

Type The type of the selected initarg.

Initargs All initargs applicable to the same slot.

Initform The initform for the slot to which this initarg relates.
 121

8 The Class Browser

122
Readers The readers for the slot to which this initarg relates.

Writers The writers for the slot to which this initarg relates.

Allocation The allocation for slot to which this initarg relates. See
CLOS in the ANSI Common Lisp specification for
details.

Items selected in this list can be operated on via the Description menu.

8.6.5 Performing operations on the current class

You can operate on the current class using commands in the Classes menu.
The standard action commands described in Section 3.8 on page 48 are avail-
able in this submenu.

Choose Classes > Browse Metaclass to select, and describe in the normal way,
the class of the current class.

8.7 Examining class precedences
Click the Precedence tag to examine information about the precedence list of
the current class. The precedence view shown in Figure 8.12 appears.

The precedence list is used to generate the method combinations for a class,
and thus can be used to tell you which method applies in a given case.

8.7 Examining class precedences
See Chapter 15, “The Generic Function Browser” for details on examining
information about methods.

Figure 8.12 Displaying precedence information in the Class Browser

The areas available are described below.

8.7.1 Class box

As with all other views in the Class Browser, the current class is printed in this
area. See Section 8.2.1 on page 108 for full details of its use.
 123

8 The Class Browser

124
8.7.2 Filter box

The Filter box lets you restrict the information displayed in the list of prece-
dences. See “Filtering information” on page 56 for a description of how to use
the Filter box in any tool, and Section 8.1.3 on page 103 for an example of how
to use it in the Class Browser.

8.7.3 List of precedences

This list is the class precedence list of the current class. Precedences are listed
highest first. Double-clicking on an item in this list describes that class in the
Class Browser.

8.7.4 Description list

This gives the same class description available in the superclasses, subclasses,
and hierarchy views. See Section 8.3.4 on page 111 for details.

8.7.5 Performing operations on the selected classes or the current class

You can operate on any number of selected items in the list of precedences
using the commands in the Classes menu. If no items are selected, then the
current class is operated on by the commands in this submenu. The standard
actions commands described in Section 3.8 on page 48 are available in this
submenu.

Choose Classes > Browse Metaclass to select, and describe in the normal way,
the class of the selected classes, or the current class.

Note: If more than one item is selected, and the command chosen from the
Classes menu invokes a tool which can only display one item at a time, then
the extra items are added to the History > Items submenu of the tool, so that
you can easily display them.

9

9 The Object Clipboard
The Object Clipboard is a utility that allows you to keep track of multiple Lisp
objects as you examine and manipulate them with the LispWorks IDE tools.

Recall that a Lisp object which is viewed in some tool can be temporarily
stored and then pasted into another tool. See the descriptions of the Copy, Cut
and Paste commands in “Using the Object operations with the clipboard” on
page 40 and “Operations available” on page 49.

The Object Clipboard, and its associated Clip command provides a more pow-
erful mechanism whereby multiple Lisp objects can be stored ("clipped") and
later retrieved.

Note: the Clip command retains a pointer to the clipped object even if you do
not have an Object Clipboard tool visible. When you create the tool, the
clipped objects are visible in it
125

9 The Object Clipboard

126
To create an Object Clipboard tool, choose Works > Tools > Object Clipboard or
click in the Podium.

Figure 9.1 The Object Clipboard

The Object Clipboard creates a name for the clipped object based on its type,
and shows the object itself in the Value column.

9.1 Placing objects on the Object Clipboard
You can place an object on the Object Clipboard by using the menu command
Clip, available in most tools as described below..

9.1.1 The Listener

To place the current object of a Listener on the Object Clipboard (that is, the
value of the variable cl:*), choose Values > Clip in the Listener.

If your Listener is in the debugger, you can clip the condition object by Debug
> Condition > Clip.

9.1 Placing objects on the Object Clipboard
9.1.2 The Class Browser

To place a class from the Class Browser on the Object Clipboard, select the
class name in the Hierarchy, Superclasses, Subclasses or Precedence tab, and
choose Classes > Clip.

To place a slot definition object from the Class Browser on the Object Clip-
board, select the slot name in the Slots tab, and choose Slots > Clip.

To place a method or generic function object from the Class Browser on the
Object Clipboard, select it in the Functions tab, and choose Methods > Clip.

9.1.3 The Inspector

To place the currently inspected object in the Inspector on the Object Clip-
board, choose Object > Clip.

To place the value in a slot of the currently inspected object, select the slot in
the Inspector, and choose Slots > Clip.

9.1.4 The Function Call Browser

To place the current function on the Object Clipboard, choose Function > Clip.
If you have selected a function name in the Function Call Browser, that func-
tion is clipped instead.

9.1.5 The Generic Function Browser

To place a method from the Generic Function Browser on the Object Clip-
board, select the method and choose Methods > Clip. For the generic function
object itself, choose Function > Clip.

9.1.6 The Debugger

To place the condition object from the Debugger tool on the Object Clipboard,
choose Condition > Clip.

To place the value of a variable in the Debugger’s backtrace area on the Object
Clipboard, select the variable and choose Variables > Clip.
 127

9 The Object Clipboard

128
9.1.7 The Stepper

To place the value of a variable in the Stepper’s Backtrace tab onto the Object
Clipboard, select the variable and choose Variables > Clip.

9.1.8 The System Browser

To place the system object from the System Browser onto the Object Clip-
board, choose Systems > Clip.

9.1.9 General clipping

To place any CAPI top level window itself on the Object Clipboard, choose
Works > Interface > Clip.

To place data from a Description panel, such as in the Class Browser or in the
Tree tab of the Compilation Conditions Browser, select the desired parts of the
Description and choose Description > Clip.

9.2 Browsing clipped objects
9.2 Browsing clipped objects
For each object in the Object Clipboard, you can can browse it in various tools
as described below. First, select the object you want to browse and note that
the Object menu is enabled:

Figure 9.2 An object selected in the Object Clipboard

9.2.1 The Inspector

To inspect any object that is on the Object Clipboard, select it and choose
Object > Inspect.

9.2.2 The Class Browser

To browse the class of any object that is on the Object Clipboard, select it and
choose Object > Class.

9.2.3 The Listener

To paste an object from the Object Clipboard into the Listener, choose Object >
Listen.
 129

9 The Object Clipboard

130
9.2.4 General browsing

To browse an object that is on the Object Clipboard, select it and choose the
Browse command from the Object menu. For example, if the object is a generic
function, the menu command is Object > Browse - Generic Function.

9.2.5 Pasting of clipped objects

This is another way to view a clipped object in another tool.

Paste an object from the Object Clipboard into another tool by:

1. Select the object in the Object Clipboard window

2. Choose Edit > Copy.

3. Make the other tool window active.

4. Choose Edit > Paste.

9.3 Removing objects
To remove an object from the Object Clipboard, select it and choose Edit >
Object > Cut Object.

To empty the Object Clipboard, first remove any filter. Then choose Edit >
Select All followed by Edit > Object > Cut Object.

Note: if you close the Object Clipboard window, the objects in it are not
removed from the Object Clipboard. They are preserved and displayed in a
subsequently created Object Clipboard windows.

9.4 Filtering
You can use the Filter box of the Object Clipboard in the standard way to
reduce the number of clipped objects displayed.

9.5 Using the Object Clipboard with a Listener
For example to see only the method objects in the Object Clipboard, enter
"method" in the Filter box.

Figure 9.3 Use of the Filter box in the Object Clipboard

For more information about filtering, see “Filtering information” on page 56.

9.5 Using the Object Clipboard with a Listener
Here we place several objects on the Object Clipboard. Then we link the
Object Clipboard with a Listener tool, giving a convenient way to manipulate
these objects in turn.

In the Listener:

1. Enter
 131

9 The Object Clipboard

132
(capi:contain
 (make-instance 'capi:display-pane
 :text "Display Pane"
 :background :green))

A green display pane is displayed.

2. Ensure that the Listener window is active, so that the Values menu is
enabled. Choose Values > Clip to place the display pane on the Object
Clipboard.

3. Enter

(capi:contain
 (make-instance 'capi:editor-pane
 :text "Editor Pane"
 :background :yellow))

A yellow editor pane is displayed.

4. Return to the Listener and choose Values > Clip to place the editor pane
on the Object Clipboard.

5. Enter

(capi:contain
 (make-instance 'capi:graph-pane))

A graph pane is displayed.

6. Return to the Listener and choose Values > Clip to place the graph pane
on the Object Clipboard.

Now choose Tools > Object Clipboard or click in the Podium. Notice that
this creates an Object Clipboard tool if you do not already have one. The

9.5 Using the Object Clipboard with a Listener
Object Clipboard shows the objects you just clipped, and the most recently
clipped object appears at the top. It should look like Figure 9.4.

Figure 9.4 CAPI panes in the Object Clipboard

In the Listener choose Edit > Link from and select the Object Clipboard in the
submenu. Now, whenever you select an object in the Object Clipboard, it is
also pasted into the Listener - that is, it becomes the value of *. We use this
link to manipulate the CAPI pane objects in the Listener.

1. In the Object Clipboard select DISPLAY-PANE-1. This raises the linked
Listener window and pastes the display pane object.

2. Enter in the Listener:

(capi:apply-in-pane-process
 * #'(setf capi:simple-pane-background) :red *)

The display pane background becomes red.

3. In the Object Clipboard select EDITOR-PANE-1. This raises the linked
Listener window and pastes the editor pane object.
 133

9 The Object Clipboard

134
4. In the Listener choose History > Previous or use Esc P, and press Return,
to enter the same command again

(capi:apply-in-pane-process
 * #'(setf capi:simple-pane-background) :red *)

The editor pane background also becomes red.

5. In the Object Clipboard select GRAPH-PANE-1. This raises the linked
Listener window and pastes the graph pane object.

6. Enter in the Listener:

(capi:apply-in-pane-process
 * #'(setf capi:graph-pane-roots) '(2 3) *)

The graph pane is altered.

Notice how linking the Listener with the Object Clipboard allows you to
manipulate the clipped objects in turn via the value of *.

10

10 The Compilation Conditions
Browser
10.1 Introduction
The Compilation Conditions Browser gives you an interface to the warning
and error conditions you are likely to encounter when compiling your source
code. It allows you to see the relationship between different errors or warn-
ings encountered during compilation, and gives you immediate access to the
source code which produced them.

You can use it to view the conditions signaled during compilation of files from
any part of the environment: whether you are compiling files using the Sys-
tem Browser or the Editor, any ensuing conditions can be displayed in the
Compilation Conditions Browser. The Compilation Conditions Browser
requires the source code to come from a file.

The Compilation Conditions Browser has three views.

• The All Conditions view, which shows all conditions grouped by file
name.

• The Errors view, which shows all errors grouped by file name.

• The Output view, which can be used to display the output messages in
the environment.
135

10 The Compilation Conditions Browser

136
To create a Compilation Conditions Browser, you can choose Works > Tools >
Compilation Conditions Browser or click in the Podium.

A more common way to create a Compilation Conditions Browser is to press
Return when the Output tab (of any tool) reports compilation conditions. See
“Compiling in memory” on page 203 for details.

10.2 Examining conditions
10.2 Examining conditions
The All Conditions view is visible when the Compilation Conditions Browser is
first invoked. The tool appears as shown in Figure 10.1.

Figure 10.1 The Compilation Conditions Browser

There are three tabs. These show the same information, in different ways:

• All Conditions - default view that shows all conditions in a tree represen-
tation, grouped by filename. Each item in the tree can be expanded to
show the conditions that were generated during compilation of that file.
 137

10 The Compilation Conditions Browser

138
Selecting a compilation message in the tree view causes the data for the
selected message to be shown in the Description area. Double-clicking
on an item (or using Find Source on the context menu, as illustrated
above) shows the source code of the condition in an Editor, highlighting
the nearest subform to where the condition occurred. After doing this,
Ctrl+X ` (backquote) can be used to find the source of the next condi-
tion shown in the browser.

• Errors - shows all errors in a tree representation, grouped by filename.
You can perform the same operations in this view as in All Conditions.

• Output - shows the raw compilation output. You will see this same out-
put in the tool that performed the compilation.

The description area in the All Conditions and Errors views of the Compilation
Conditions Browser shows a description of any item selected in the conditions
area. The description contains details of the selected condition. The following
information is shown:

Condition The error condition for the selected item in the message
area.

Class The class of the selected condition.

Definition The name of the form in which the condition was sig-
naled.

File The name of the file that contains the Lisp source code
that caused the selected condition.

Items selected in this area may be examined using the Description menu which
allows a variety of LispWorks tools to be invoked on the selected item in the
description area.

10.3 Configuring the display
The manner in which the Compilation Conditions Browser displays informa-
tion can be customized using the Preferences dialog. To do this, raise the dia-
log as described in “Setting preferences” on page 28 and then select

10.3 Configuring the display
Compilation Conditions in the list on the left side of the Preferences dialog. The
General tab is shown:

Figure 10.2 The Compilation Conditions Browser General preferences

Here you can select or deselect Show Package Names to toggle display of pack-
ages in all references to symbols, and you can use the Package box to specify
the current package when displaying symbols.

Setting a suitable package and turning off display of package names can
greatly simplify a complicated list.

Select of deselect Show Toolbar to control whether Compilation Condition
Browser tools have a toolbar.
 139

10 The Compilation Conditions Browser

140
10.3.1 Display preferences

The Display tab of the Compilation Conditions Browser preferences appears as
in Figure 10.3.

Figure 10.3 The Compilation Conditions Browser Display preferences

This tab includes the pathnames selection area, which has two radio buttons.

Check Show Full Pathname to show the full pathname of all files displayed.
This is the default setting.

Check Show Leaf Pathname to show just the filename of all files displayed, and
omit the full pathname.

10.4 Access to other tools
The Compilation Conditions Browser is integrated with the other tools allow-
ing intuitive interaction.

You can easily find the source the generated a condition, as described in
“Examining conditions” on page 137.

Items selected in the Description area may be examined using the Description
menu. See “Operations available” on page 49 for more information on the
operations available from this menu. Additionally, double-clicking on part of
the description displays it in an Inspector or Class Browser, as appropriate.

11

11 The Debugger Tool
When developing source code, mistakes may prevent your programs from
working properly, or even at all. Sometimes you can see what is causing a bug
in a program immediately, and correcting it is trivial. For example, you might
make a spelling mistake while typing, which you may instantly notice and
correct.

More often, however, you need to spend time studying the program and the
errors it signalled before you can debug it. This is especially likely when you
are developing large or complex programs.

A Debugger tool is provided to make this process easier. This tool is a graphi-
cal front-end to the command line debugger which is supplied with your Lisp
image. In order to get the best use from the Debugger tool, it is helpful if you
are familiar with the command line debugger supplied. See the LispWorks User
Guide and Reference Manual for a description of the command line debugger.

The Debugger tool can be used to inspect programs which behave in unex-
pected ways, or which contain Common Lisp forms which are syntactically
incorrect.

There are two ways that you can invoke the Debugger tool:

• If you evaluate code that signals an error in a Listener, the command
line debugger is entered automatically. At this point, choose Debug >
141

11 The Debugger Tool

142
Start GUI Debugger or click the button in the Listener toolbar to
invoke the Debugger tool.

• If you run code that signals an error from another source (for example,
as a result of running a windowed application, or compiling code in a
file of source code), by default a Notifier window appears. Click on the
Debug button in the Notifier window to invoke the Debugger tool.

For more information about the Notifier window, including the way to bypass it,
see “The Notifier window” on page 158.

Here is a short example introducing the Debugger tool:

1. Define the following function in the Listener.

(defun thing (number)
 (/ number 0))

This function which attempts to divide a number given as an argument
by zero.

2. Now call this function as follows:

(thing 12)

The call to thing invokes the command line debugger.

3. Choose Debug > Start GUI Debugger or click the button to invoke the
Debugger tool. Notice that the window title contains the name of the
process being debugged.

4. For now, click the Abort button in the Debugger toolbar to return to
the top level loop in the Listener.

The command line debugger can be entered by signaling an error in interpre-
tation or execution of a Common Lisp form. For each error signaled, a further
level of the debugger is entered. Thus, if, while in the debugger, you execute
code which signals an error, a lower level of the debugger is entered. The
number in the debugger prompt is incremented to reflect this.

Note that you can also invoke the command line debugger by tracing a func-
tion and forcing a break on entry to or exit from that function. See the tutorial
chapter (Section 2.3) for the example code used in Figure 2.4 and Figure 11.1.

11.1 Description of the Debugger
11.1 Description of the Debugger
By default the debugger tool appears as shown in Figure 11.1 below.

Figure 11.1 Debugger tool

The debugger tool has two areas, and a toolbar. These are described below. If
you invoke the debugger tool by clicking Debug in a notifier window, the tool
also contains a listener pane. This provides you with a useful way of evaluat-
ing Common Lisp forms interactively in the context of the error.

Debugger backtrace.

State of variables for
selected frame.

Error condition. Control buttons.

Echo area.
 143

11 The Debugger Tool

144
11.1.1 Condition box

This area displays the error condition which caused entry to the debugger.
You cannot edit the text in this box.

The error condition can be operated on by commands in the Condition menu.
See “Performing operations on the error condition” on page 153 for details.

11.1.2 Backtrace area

The backtrace area displays the function calls on the execution stack. Each tree
root or list item in the backtrace area represents a stack frame associated with
a function call.

Double-clicking on any stack frame finds and displays the source code defini-
tion for that function in the Editor, if this is known. Any frame selected in this
area can be operated on using the commands in the Frame menu, which is also
available as the context menu. See “Performing operations on stack frames”
on page 153 for details.

The backtrace is displayed either in a tree or a list, with the behaviors
described below.

You can choose which type of display it uses by the Frames and Arguments
preference, described in “Configuring the debugger tool” on page 155.

11.1.2.1 Frames and Variables in a tree

When the Frames and Arguments preference has the value Tree-view, the
Debugger appears as shown in Figure 11.2 below.

Each expandable root node in the Backtrace: tree represents a stack frame
associated with a function call. You can operate on the frame as described in
“Backtrace area” on page 144.

Expanding a stack frame node displays any variables associated with that
function call. You can double click on any variable to inspect it using the
Inspector tool. Any items selected in this area can be operated on using the

11.1 Description of the Debugger
commands in the Variables menu: see “Performing operations on frame vari-
ables” on page 155 for details.

Figure 11.2 Variables in the Debugger tree view

Each call frame is a root in the tree with a icon and has several kinds of
subnode:

• A subnode with a yellow disc icon represents a normal lexical vari-
able.

• A subnode with a red disc icon represents a closure variable (either
from an outer scope or used by an inner scope).
 145

11 The Debugger Tool

146
• A subnode with a purple disc icon represents a special variable.

• A subnode with a cyan disc icon represents some other frame.

Double-click on a icon to show the source of that function, if available, in
the Editor. Double-click on any of the disc icons to show that variable in the
Inspector.

11.1 Description of the Debugger
11.1.2.2 Frames and Variables in two lists

When the Frames and Arguments preference has the value Two list-panels, the
Debugger appears as shown in below.

Figure 11.3 Debugger tool with two list-panels

Debugger backtrace.

State of variables for
selected frame.

Error condition. Control buttons.

Echo area. Context menu operates on selected
frame or variable.
 147

11 The Debugger Tool

148
Each item in the Backtrace: list represents a stack frame associated with a
function call. You can operate on the frame as described in “Backtrace area”
on page 144.

A second list titled Local variables: shows the local variables of the frame
which si selectd in the Backtrace: list. You can operate on the variables simi-
larly to the backtrace tree: double click on a variable to inspect it or use the
commands in the Variables menu, which is also available as the context menu.

Note: with Two list-panels, only the local variables of the current frame are dis-
played.

11.1.3 Toolbar buttons

At the top of the debugger tool is a row of buttons, as described below. Click:

• to break the current execution.

• to return from the debugger and invoke the continue restart.

• to return from the debugger and invoke the abort restart.

• to select the previous stack frame in the backtrace area.

• to select the next stack frame in the backtrace area.

• to print the backtrace in the Listener.

• to print the variable bindings of the current frame in the Listener.

• to find the source code for the current stack frame.

If you hold the mouse cursor stationary over any button for about one second,
then help text appears that identifies the button.

11.2 What the Debugger tool does
The Debugger tool provides a number of important facilities for inspecting
programs.

Common Lisp, like most programming languages, uses a stack to store data
about programs during execution. The Debugger tool allows you to inspect
and change this stack to help get your programs working properly.

11.3 Simple use of the Debugger tool
You can use it to trace backwards through the history of function calls on the
stack, to see if the program behaves as expected, and locate points at which
things have gone wrong.

You can also inspect variables within those functions, again to verify that the
program is doing what is expected of it.

The Debugger tool also allows you to change variables on the stack. This is
useful when testing possible solutions to the problems caused by a bug. You
can run a bugged program, and then test fixes within the Debugger tool by
altering values of variables, and then resume execution of the program.

11.3 Simple use of the Debugger tool
When you enter the Debugger tool, the Condition area displays a message
describing the error. The Restarts menu lists a number of restart options, which
offer you different ways to continue execution.

1. For example, type the name of a variable which you know is unbound
(say fubar) at the Listener prompt.

2. Click in the Listener toolbar or choose Debug > Start GUI Debugger to
enter the Debugger tool.

3. Select the Restarts menu to display the options available.

A number of restarts are displayed that offer you different ways in
which to proceed. These are the same options as those displayed at the
command line debugger before you invoked the debugger tool.

Two special restarts can be chosen: the abort and continue restarts. These
are indicated by the prefixes (abort) and (continue) respectively. As a
shortcut, you can use the Abort or Continue toolbar buttons to
invoke them, instead of choosing the appropriate menu command.

In the case of the continue restart, different operations are performed in
different circumstances. In this example, you can evaluate the form
again. If you first set the variable to some value, and then invoke the
continue restart, the debugger is exited.

4. In the Listener, set the value of fubar as follows:

(setq fubar 12)
 149

11 The Debugger Tool

150
5. Click Continue in the debugger tool.

The debugger tool disappears, and the command line debugger is exited in
the Listener, and the value 12 is returned; the correct result if the variable had
been bound in the first place.

You can also click Abort to invoke the abort restart. This restart always
exits the current level of the debugger and returns to the previous one, ignor-
ing the error which caused the present invocation of the debugger.

In general, you should use the continue restart if you have fixed the problem
and want to continue execution, and the abort restart if you want to ignore the
problem completely and stop execution.

11.4 The stack in the Debugger
As already mentioned, the debugger tool allows you to examine the state of
the execution stack, which is shown in the Backtrace area. This area consists of a
sequence of stack frames. A stack frame is a description of some part of a pro-
gram, or something relating to the program, which is packaged into a block of
memory and placed on the stack during program execution. These frames are
not directly readable without the aid of the debugger.

There can be frames on the stack representing active function invocations, spe-
cial variable bindings, restarts, and system-related code. In particular, the exe-
cution stack has a call frame for each active function call. That is, it stores
information describing calls of functions which have been entered but not yet
exited. This includes information such as the arguments with which the func-
tions were called. By default, only call frames for active function calls are dis-
played in the Backtrace area. See Section 11.9 on page 155 for details of how to
display other types of call frame.

The top of the stack contains the most recently-created frames (and so the
innermost calls), and the bottom of the stack contains the oldest frames (and
so the outermost calls). You can examine a call frame to find the name of a
function, and the names and values of its arguments, and local variables.

11.5 An example debugging session
11.5 An example debugging session
To better understand how you can make use of the debugger, try working
through the following example session. In this example, you define the facto-
rial function, save the definition to a file on disk, compile that file and then call
the function erroneously.

1. Choose File > New or click on .

A new file is created and displayed in the Editor. If you have not already
invoked the Editor, it is started for you automatically.

2. In the new file, define the function fac to calculate factorial numbers.

(defun fac (n)
 (if (= n 1) 1
 (* n (fac (- n 1)))))

3. Choose File > Save or click on and enter a filename when prompted.

4. Choose File > Compile and Load to compile the file and load the resulting
fasl file.

The Editor switches to the output view while compilation takes place.
When prompted, press Space to return to the text view. The fac function
is now defined and available for you to use.

5. In the Listener, call fac erroneously with a string argument.

(fac "turtle")

LispWorks notices the error: The arguments of = should be numbers, and
one of them is not.

6. Choose Debug > Start GUI Debugger or click to invoke the Debugger
tool.

Take a moment to examine the backtrace that is printed in the Backtrace
area.

7. Starting from the selected frame, expand or select the next three frames
in the Backtrace area in turn to examine the state of the variables which
were passed to the functions in each call frame. Pay particular attention
to the fac function.
 151

11 The Debugger Tool

152
The error displayed in the Condition box informs you that the = function
is called with two arguments: the integer 1 and the string “turtle”.
Clearly, one of the arguments was not the correct type for =, and this has
caused entry into the debugger. However, the arguments were passed to
= by fac, and so the real problem lies in the fac function.

In this case, the solution is to ensure that fac generates an appropriate
error if it is given an argument which is not an integer.

8. Double-click on the line FAC in the Backtrace area of the debugger tool.

The Editor appears. The subform within the definition of fac which
actually caused the error is highlighted. Double-clicking on a line in the
Backtrace area is a shortcut for choosing Frame > Find Source or using the

 button. If the Debugger can find the erroneous subform, this is high-
lighted, otherwise the definition itself is highlighted if it can be found.

9. Edit the definition of the fac function so that an extra if statement is
placed around the main clause of the function. The definition of fac now
reads as follows:

(defun fac (n)
 (if (integerp n)
 (if (= n 1) 1
 (* n (fac (- n 1))))
 (print "Error: argument must be an integer")))

The function now checks that the argument it has been passed is an inte-
ger, before proceeding to evaluate the factorial. If an integer has not been
passed, an appropriate error message is generated.

10. Choose File > Save and File > Compile and Load again, to save, recompile
and load the new definition.

11. Click on the Abort button in the debugger tool, to destroy the tool and
return the Listener to the top level loop.

12. In the Listener, type another call to fac, once again specifying a string as
an argument. Note that the correct error message is generated. You will
see it twice, becase fac prints the message and then the Listener prints
the return value of fac.

This next part of the example shows you how you can use the various restarts
which are listed as commands in the Restarts menu.

11.6 Performing operations on the error condition
1. Call fac again with a new argument, but this time type the word length
incorrectly.

(fac (legnth "turtle"))

2. Choose Debug > Start GUI Debugger or click to invoke the debugger
tool.

You can spot immediately what has gone wrong here, so the simplest strategy
is to return a value to use.

3. Choose Restarts > Return some values from the form (LEGNTH "turtle").

You are prompted for a form to be evaluated.

4. Enter 6 in the dialog and click OK. This is the value that would have been
returned from the correct call to (length "turtle").

Having returned the correct value from (length "turtle"), fac is called
with the correct argument and returns the value 720.

11.6 Performing operations on the error condition
You can perform operations on the error condition that caused entry into the
debugger using the commands available in the Condition menu.

The standard action commands are available in the Condition menu. For more
details about these commands, see Section 3.8 on page 48.

Choose Condition > Report Bug to generate a bug report template.

11.7 Performing operations on stack frames
Any frame in the Backtrace list can be operated on using commands in the
Frame menu. This menu is also available as a popup from the backtrace area
itself. The commands available allow you to operate on the function displayed
in the selected frame.

11.7.1 Source location, documentation, inspect and method combination
 153

11 The Debugger Tool

154
for the current frame

Choose Frame > Find Source to search for the source code definition of the
object pointed to by the current frame. If it is found, the file is displayed in the
Editor: the cursor is placed at the start of the definition or at the subform
which cause the error, if known. The form is highlighted. See Chapter 13, “The
Editor” for an introduction to the Editor.

Choose Frame > Documentation to display the Common Lisp documentation
for the object pointed to by the current frame, if any exists. Note that this is the
result of the Common Lisp function documentation, not the supplied manu-
als. It is printed in a special Output Browser window.

Choose Frame > Inspect Function to display an Inspector tool showing the
selected frame’s function.

Choose Frame > Method Combination to display a Generic Function Browser
tool in the Method Combinations view for the arguments in the selected
frame. This command is only available when the selected frame is a call to a
standard method. See “Examining information about combined methods” on
page 225 for information about using the Method Combinations view.

11.7.2 Restarts and returning from the frame

Choose Frame > Restart Frame to continue execution from the selected restart
frame. The action that is taken when choosing this command is printed with
each restart frame in the Backtrace area. Note that restart frames must be
listed for this command to be available: see “Configuring the call frames dis-
played” on page 156 for details.

Choose Frame > Restart Frame Stepping to step through execution from the
selected restart frame. This frame becomes the active frame in a Stepper tool.
See Chapter 26, “The Stepper” for information about using the Stepper tool.

Choose Frame > Return from Frame to resume execution from the selected
frame. A dialog prompts for a value to return from the selected frame. Previ-
ously entered values are available via a dropdown in this dialog. This option
allows you to continue execution smoothly after you have corrected the error
which caused entry into the debugger.

11.8 Performing operations on frame variables
Choose Frame > Break On Return from Frame to trap execution when it returns
from the selected frame. This command prints a message telling you that the
trap has been set, and when Lisp returns from the frame it calls break, allow-
ing you to enter the debugger again.

11.7.3 Tracing the function in the frame

Choose Frame > Trace to display the standard Trace menu. This lets you trace
the function in the selected frame in a variety of ways: see “Tracing symbols
from tools” on page 55 for details.

11.8 Performing operations on frame variables
You can perform operations on a variable selected in the Variables area by the
standard action commands which are available in the Variables menu or from
the context menu on the variables list itself. For more details about these com-
mands, see Section 3.8 on page 48.

Choose Variables > Set... to set the value of a variable selected in the Variables
area. A dialog prompts you to enter a form which is evaluated to yield the
new value for the variable. Previously entered forms are available via a drop-
down in this dialog. The Common Lisp variable * is bound to the current
value of the variable in the frame.

11.9 Configuring the debugger tool
You can control the behavior and appearance of the debugger using the Pref-
erences dialog.

To do this, raise the Preferences dialog by one of the methods described in
“Setting preferences” on page 28 and select Debugger in the list on the left side
of the dialog.
 155

11 The Debugger Tool

156
Figure 11.4 Debugger Preferences

11.9.1 Configuring the call frames displayed

By default, the call frame for each active function call in the backtrace is listed
in the Backtrace area. There are a number of other types of call frame which
are hidden by default. Display call frames of these types by selecting them in
the View Frame panel of the debugger Preferences:

Bindings Displays all the binding frames in the Backtrace list.

Catchers Lists the catch frames in the Backtrace list.

Handlers Lists the handler frames in the Backtrace list.

Hidden Symbols Lists any hidden symbols in the Backtrace list.

Restarts Lists all the restart frames in the Backtrace list. Each
restart frame is listed, with the restart action to be taken
given in brackets. To restart execution at any restart
frame, select the frame, and choose Debug > Frame >
Restart Frame.

11.9 Configuring the debugger tool
Invisible Functions

Lists all invisible frames (such as the call to the error
function itself) in the Backtrace list.

Note that all these commands can be toggled: choosing any command
switches the display option on or off, depending on its current state. By
default, all the options are off when the debugger is first invoked.

11.9.2 Displaying package information

As with other tools, you can configure the way package names are displayed
in the debugger tool in the Package box of the Debugger Preferences.

Check Show Package Names to turn the display of package names in the Back-
trace and Variables lists on and off.

Specify a package name in the text box to change the process package of the
debugger tool. You can use completion to reduce typing: click on to which
allows you to select from a list of all package names which begin with the par-
tial input you have entered. See “Completion” on page 61 for detailed instruc-
tions.

By default, the current package is the same as the package from which the
error was generated.

11.9.3 Behavior on closing the Debugger

By default, when you close the Debugger window it attempts to abort, that is
to call the abort restart.

Uncheck the Abort When Closed option only if you want to turn off this behav-
ior.

11.9.4 Frames and variables display

To choose to view frames and variables in two lists rather than one tree, select
the value Two list-panels in the Frames and Variables option.
 157

11 The Debugger Tool

158
11.10 The Notifier window
When an error is signalled in processes other than the Listener REPL, by
default a Notifier window appears. This shows the error message, and allows
you to choose how to proceed by offering the restarts and other options.

Figure 11.5 The Notifier window

The Notifier window has three main areas.

The Message: area displays the error message.

The Restarts: area contains a list of available restarts. To invoke a restart, select
it in the list and click OK, or double-click on it in the list.

The row of buttons at the bottom of the Notifier window operate as follows:

Report Bug Prompts for basic information about the bug and then
creates an Editor tool containing a template bug form
with a stack backtrace and other information. Use this if
you believe you have found a bug and wish to report it

11.11 Errors in CAPI display callbacks
to Lisp Support. Visit www.lispworks.com/support/
bug-report.html for more information about report-
ing bugs.

Debug Raises a Debugger tool, as described earlier in this
chapter.

Abort Invokes the abort restart.

OK Invokes the restart which is selected in the Restarts: list.

Some processes cannot be debugged in the LispWorks IDE. Errors in these
processes are handled slightly differently in the Notifier window which has
these two buttons:

Debug Snapshot Creates a snapshot Debugger. This contains a copy of
the stack backtrace which you can examine as described
in this chapter. However it is less interactive in that you
cannot take any restart or return from a frame. For more
information see "Snapshot debugging of startup errors"
in the LispWorks User Guide and Reference Manual.

Get Backtrace Creates an Editor tool containing the stack backtrace.

In this case there is no Debug button.

11.10.1 Bypassing the Notifier window

If you prefer a Debugger tool to appear immediately, without the intermediate
Notifier window, set *enter-debugger-directly* to a true value.

11.11 Errors in CAPI display callbacks
Errors in CAPI display callbacks are problematic for the Debugger tool,
because they can be invoked repeatedly. In order to handle this situation, the
display of a CAPI pane where an error occurs in a display-callback (a "broken"
pane) is normally disabled until the Debugger tool exists. Therefore while
debugging such errors some panes will not be displayed correctly.

This issue can also occur with focus related callbacks, such as editing-callback
in capi:text-input-pane.
 159

http://www.lispworks.com/support/bug-report.html
http://www.lispworks.com/support/bug-report.html

11 The Debugger Tool

160
If it is not easy to fix the problem, exiting the Debugger tool allows the error to
happen again. To prevent this, in some cases there is a restart to disable the
display of the broken pane permanently. Once this happens, the pane is not
displayed correctly.

12

12 The Tracer
12.1 Introduction
The Tracer tool is a debugging aid which gives you an interface to the Lisp-
Works trace facilities. These allow you to follow the execution of particular
functions and help you identify where errors occur during execution.

To create a Tracer, choose Works > Tools > Tracer or click in the Podium.
Alternatively, a tracer can be created or displayed from within many other
tools by choosing the command Trace > Show in Tracer in any menu whose
commands operate on a traceable symbol.

The Tracer has three views:

• The Trace State view allows you to trace and untrace functions and
change trace options for each function.

• The Output Data view records all tracing events in a tree structure and
allows you to examine the arguments and results of each function call.

• The Output Text view shows all tracing events in textual format.

12.2 Tracing and Untracing functions
The Trace State view has a Trace pane where you can enter a function name.
Press Return or click the button to trace that function.
161

12 The Tracer

162
The Traced Functions pane shows the list of functions that are currently
traced. When some functions are selected, the Function menu contains the
standard commands described in “Performing operations on selected objects”
on page 48. As with other tools, choose Edit > Select All and Edit > Deselect All
to select and deselect all the functions listed in the Traced Functions area.

The Selected Options area shows the trace options for a function selected in
the Traced Functions pane. The trace options allow you to restrict or expand
upon the information printed during a trace and can be modified by double-
clicking on the item in the Traced Functions pane which raises the Trace
Options dialog. For information about the trace options, see the section "Trac-
ing options" in the LispWorks User Guide and Reference Manual. Note that the
options only apply to the first selected function. Each traced function has its
own, independent, set of options.

The Tracing Enabled button can be used to turn all tracing off, whilst retaining
the tracing state, and switch it back on again.

The Untrace button untraces the functions selected in the Traced Functions
pane.

The Untrace All button untraces all functions.

In addition, the Tracer tool will track changes to the set of traced functions that
are made from other tools, for example calls to the macros trace and untrace
or the Trace submenu described in “Tracing symbols from tools” on page 55.

12.2.1 Tracing methods

You can trace methods (primary and auxiliary) within a generic function by
entering the method dspec. For example, enter

(method my-function :before (integer))

in the Trace pane to trace the :before method of the generic function my-
function that specializes on the class integer.

12.3 Examining the output of tracing
When you call a function that is traced, LispWorks collects information about
the arguments it was called with and the values that it returned. This informa-

12.3 Examining the output of tracing
tion is printed to the trace output stream, which might be the Listener or the
Background Output. In addition, if a Tracer tool is on the screen, the informa-
tion is shown in its Output Text view and collected in its Output Data view in
a tree format.

12.3.1 The Output Data view

Each call is a node in the tree with a icon. Double-click on it to show the
source of that function, if available, in the Editor.

A call node has several kinds of subnode:

• The subnode with a icon shows the arguments passed to the func-
tion. Double-click on it to show the arguments in the Inspector. Expand-
ing this node shows each argument with its name (if known) as a
subnode with a yellow icon. Double-clicking on one of the argu-
ments shows that argument in the Inspector.

• The subnode with a icon shows the value or values returned from
the function. Double-click on it to show the values in the Inspector.
Expanding this node shows each value as a subnode with a icon.
Double-clicking on one of the values shows that value in the Inspector.

• Any subnodes with a icon show calls to traced functions within the
parent function.

• Subnodes marked with a represent folded data. These are older calls
which are hidden automatically to reduce clutter. Expand this node to
reveal the folder data.

• A subnode with a icon represents an uncaught throw (control trans-
fer) along with the catch tag. Expanding this node shows each thrown
value as a subnode with a icon.

You can collapse the tree by clicking on the toolbar button.

You can clear the trace output data from the display by clicking on the
toolbar button.

You can restore the last cleared output data by clicking on the toolbar but-
ton.
 163

12 The Tracer

164
12.3.2 The Output Text view

This simply displays the textual trace output.

12.4 Example
This section shows an example of tracing two functions and examining the
output.

Define the following functions

(defun foo (x y) (bar y x))

(defun bar (x y) (values (vector x y) (list y x)))

in a Listener and start the Tracer tool. The trace these functions by entering
foo into the Trace pane of the Tracer and pressing Return or clicking the
button. Notice that the symbol name appears in the Traced Functions: area.

Do the same for bar.

12.4 Example
For longer function names, you might find it useful to type just a few charac-
ters and then press Up or Down to invoke in-place completion.

Figure 12.1 The Trace State view showing bar and foo

Then call

(foo 100 200)

in the Listener. You will see output something like this printed in the Listener.
 165

12 The Tracer

166
CL-USER 1 > foo 100 200
0 FOO > ...
 >> X : 100
 >> Y : 200
 1 BAR > ...
 >> X : 200
 >> Y : 100
 1 BAR < ...
 << VALUE-0 : #(200 100)
 << VALUE-1 : (100 200)
0 FOO < ...
 << VALUE-0 : #(200 100)
 << VALUE-1 : (100 200)
#(200 100)
(100 200)

CL-USER 2 >

Note: the format of the output is affected by the value of *trace-verbose*.

12.4 Example
Now switch to the Output Text view of the Tracer and you will similar output.

Figure 12.2 The Output Text view
 167

12 The Tracer

168
Now switch to the Output Data view of the Tracer, which will looks like this

Figure 12.3 The Output Data view

The node that is labeled Arguments 100 200 contains the arguments to the func-
tion foo. Double-click on this node to show those arguments in an Inspector.

The first node that is labeled Values #(200 100) (100 200) contains the values
returned by bar. Expand this node to reveal the two values. Double-click on
one of the values nodes to inspect it. You can also see that these values were in
turn returned by foo, as shown by the second node that is labeled Values #(200
100) (100 200).

Outer call
to foo

Arguments
to foo

Inner call
to bar

Values
returned by
foo

13

13 The Editor
The environment has a text editor which is designed specifically to make writ-
ing Lisp source code easier. By default it emulates the GNU Emacs text editor,
and you should refer to the LispWorks Editor User Guide supplied with your
software, for a full description of the extensive range of functions and com-
mands available. It can also emulate a KDE/Gnomestyle text editor.

The Editor features a comprehensive set of menus, as well as a number of dif-
ferent views, and its interface is consistent with the other tools in the environ-
ment. This chapter gives a complete description of these aspects of the Editor,
as well as giving you a general overview of how the Editor is used. If you
have not used Emacs before, this chapter tells you all you need to know to get
started.

The Editor is integrated with the other tools and offers a wide range of opera-
tions. The most commonly used of these can accessed using menu commands.
The full range of editor commands is accessed via the keyboard commands
described in more detail in the LispWorks Editor User Guide. These operations
range from simple tasks such as navigating around a file, to more complex
actions which have been specifically designed to ease the task of writing Lisp
code.
169

13 The Editor

170
By becoming familiar with the menu commands available, you can learn to
use the Editor effectively in a very short space of time, before moving on to
more advanced operations.

Like many other tools, the Editor offers a number of different views, which
you can switch between using the tabs at the top of the Editor window. Unlike
other tools, one view in particular is used more often than any other.

• The text view is the most commonly used view in the Editor. This lets
you read and edit text files which are stored in your filesystem.

• The output view shows output messages. Compiler messages are high-
lighted and you can easily locate the source code that generated them.

• You can edit many different files at once in the same Editor. The buffers
view provides a quick way of navigating between different files that
you have open.

• The definitions view is a convenient way of seeing the classes, func-
tions, macros, variables and so on that are defined in the current file.

• Files may contain many definitions. The find definitions view lets you
search for particular definitions of interest across many files.

You can create an Editor using any of the following methods:

• Choose Tools > Editor. Notice that you are not actually editing a file
immediately when you create an Editor like this.

• Choose File > Open..., or click on in the toolbar, and choose a file-
name in the dialog that appears.

• Choose File > Recent Files and choose a filename from the submenu that
appears.

• Make the Listener the active window, and press Ctrl+X Ctrl+F. Type
in the name of a file that you want to edit. If the file is not in the current
directory, enter the full pathname.

• Choose the command Find Source (available on various menus, for
example Frame in the Debugger tool), or click on or to display
source code in an Editor tool.

13.1 Displaying and editing files
• Use the keyboard accelerator described in “Displaying tools using the
keyboard” on page 23.

Note: this chapter assumes you are using the default Emacs emulation. Thus
one way to open a file is with the keystrokes Ctrl+X Ctrl+F as described
above. If you use KDE/Gnome keys, you would use instead the keystroke
Ctrl+O.

You can always discover which key to use for a particular editor command, or
conversely which command is invoked by a particular key. See “Help with
editing” on page 209 for details.

13.1 Displaying and editing files
The Text view is the default view in the Editor, and is the one which you will
become most familiar with. In this view, a buffer containing the text of the cur-
rent file is displayed, and you can move around it and change its contents as
you wish, then save it back to the original file (assuming that you have per-
mission to write to it). The text view is automatically displayed when you first
invoked the Editor, and you can click on the Text tab to switch back to it from
 171

13 The Editor

172
any other view. Figure 13.1 below shows an Editor in the text view with a file
open.

Figure 13.1 Text view in the Editor

The text view has three areas, described below.

13.1.1 The toolbar

The Editor toolbar offers easy access to commands which operate on source
code. In the text view it allows you to set breakpoints, and macroexpand, com-
pile or evaluate code.

The Editor toolbar also contains the standard history toolbar. This is enabled
in every view of the Editor tool.

13.1.2 The editor window

The editor window is the main part of the Editor. The text of the current file is
shown in this area. A block cursor denotes the current position in the files in
Emacs emulation. In KDE/Gnome editor emulation, a vertical line cursor
appears in the active editor window. Text is entered into the file at this posi-
tion when you type or paste.

13.1 Displaying and editing files
To move the cursor to a particular point in the file, you can use any combina-
tion of the following methods:

• Position the cursor by moving the mouse pointer and selecting the point
at which you want to place the cursor.

• If the file is too large to display all of it in the editor window, use the
scroll bars to move up and down the file.

• Use any of the numerous keyboard commands that are available for
navigating within a file.

If you are unfamiliar with the Editor, you can use the first two methods to
begin with. As you become more familiar, you will find it is often quicker to
use the keyboard commands described in the LispWorks Editor User Guide.
Some of the most basic commands are also described in this chapter, in Section
13.8 on page 187.

13.1.3 The echo area

Underneath the editor window is an echo area, identical to the echo area in the
other tools. This is used by the Editor to display status messages, and to
request more information from you when necessary. The echo area is con-
tained in every view in the Editor.

Whenever you invoke a command which requires further input (for instance,
if you search a file for a piece of text, in which case you need to specify the text
you want to search for), you are prompted for that input in the echo area. Type
any information that is needed by the Editor, and the characters you type are
displayed ("echoed") in the echo area.

For many commands, you can save time by using completion. When you have
partially specified input in the echo area, you can press a key (usually Tab, ?
or Space, depending on the command) and the Editor attempts to complete
what you have typed. If it cannot complete your partial input uniquely, a win-
dow appears which lists all the possible alternatives and allows you to select
the desired completion. See “Completion” on page 61 for detailed instruc-
tions.

For example, suppose you have three files in the current directory,
test1.lisp, test2.lisp and test3.lisp, and you want to edit test2.lisp
 173

13 The Editor

174
using keyboard commands. Type Ctrl+X Ctrl+F, then type test and press
Tab. A list appears which shows all three files. To edit test2.lisp, double-
click on the item marked test2.lisp in this list. For longer lists, the comple-
tion GUI helps you to quickly reduce the choice. See “Completion” on page 61
for details.

To see when completion is appropriate and when it is not, experiment by
pressing the Tab key when typing in the echo area. As a rule, if there are a
finite number of things you could meaningfully enter, then completion is
appropriate. Thus, when opening a file already on disk, completion is appro-
priate (there is a finite number of files in the current directory). When specify-
ing a string to search for, however, completion is not appropriate (you could
enter any string).

13.1.4 Using keyboard commands

A full description of the keyboard commands available in the Editor is beyond
the scope of this manual, and you are advised to study the LispWorks Editor
User Guide to gain a full appreciation of the capabilities of the Editor. How-
ever, of necessity, certain basic keyboard commands are discussed in this
chapter. See Section 13.8 on page 187 of this manual for a brief introduction to
some of the most important ones. The menu commands available are
described throughout the rest of this chapter.

As with other keyboard commands used in the environment, the keyboard
commands used in the Editor are invoked by using a combination of the mod-
ifier keys Control, Shift, Escape, Alt and Command (not all of these are avail-
able on each platform), in conjunction with ordinary keys. Some of the
commands available perform the same, or a similar task as a menu command.

Each keyboard command in the editor is actually a shortcut for an extended edi-
tor command. You can invoke any extended command by typing its command
name in full, preceded by the keyboard command Alt+X. Thus, to invoke the
extended command Visit Tags File, type Alt+X visit tags file fol-
lowed by Return. Case is not significant in these commands, and completion
(described in “Completion” on page 61) may be used to avoid the need to type
long command names out in full. This method is often useful if you are not
certain what the keyboard shortcut is, and there are many extended com-
mands which do not have keyboard shortcuts at all.

13.2 Displaying output messages in the Editor
Many of the keyboard commands described in this chapter and in the Lisp-
Works Editor User Guide also work in the Listener. Feel free to experiment in
the Listener with any of the keyboard commands that are described.

13.2 Displaying output messages in the Editor
As with several other tools, the Editor provides an output view which can be
used to examine any output messages which have been generated by the envi-
ronment. Click on the Output tab to switch to this view. See Chapter 22, “The
Output Browser”, for more information about this view.

13.3 Displaying and swapping between buffers
The contents of the editor window is the buffer. Technically speaking, when
you edit a file, for example by File > Open..., its contents are copied into a
buffer which is then displayed in the window. You actually edit the contents
of the buffer, and never the file. When you save the buffer, for example by File
> Save, its contents are copied back to the actual file on disk. Working in this
way ensures that there is always a copy of the file on disk—if you make a mis-
take, or if your computer crashes, the last saved version of the file is always on
disk, ensuring that you do not lose it completely.

Because of this distinction, the term buffer is used throughout, when referring
to the text in the window.

An Editor can only have one editor window, although there can be many buff-
ers open at once. This means that you can edit more than one file at once,
although only one buffer can be displayed at a time in the window—any oth-
ers remain hidden.

When you close a buffer, for example with the menu command File > Close or
the key Ctrl+X K, the buffer is removed. This is different to the command
Works > Exit > Window which closes the window and does not affect the buffer.
 175

13 The Editor

176
The diagram below shows the distinctions between the window, buffers and
files on disk.

Figure 13.2 Distinctions between the window, buffers, and files on disk

The buffers view allows you to display a list of all the buffers that are cur-
rently open in the Editor, and gives you an easy way of navigating between

Files on disk

Buffers

Editor Window

13.3 Displaying and swapping between buffers
them. Click on the Buffers tab to switch to this view, or press Ctrl+X Ctrl+B.
The Editor appears as shown in Figure 13.3 below.

Figure 13.3 Listing buffers in the Editor

The buffers view has two areas, described below.
 177

13 The Editor

178
13.3.1 Filter area

You can use this area to restrict the number of buffers displayed in the Buffers
area. For example you could display just the Lisp source files (that is, those
with file type lisp) by entering .lisp as shown in Figure 13.4, page 178.

Figure 13.4 Filtering the buffers list in the Editor

You can filter by regular expression matching, and you can exclude matches
and make the filtering case-insensitive. See “Filtering information” on page 56
for the details.

13.3.2 Buffers area

Each item in the Buffers area list represents an editor buffer. Properties of the
buffer such as its size (in bytes) and its mode are displayed. See the LispWorks
Editor User Guide for information about editor modes.

Double-click on any buffer to display it in the Editor’s text view.

Buffers selected in the Buffers area can be operated on by commands in the
Buffers menu, which is also available as the context menu. The associated files

13.4 Displaying Common Lisp definitions
can be operated on by commands in the File menu. For example, to save mul-
tiple buffers, select them the Buffers area and choose File > Save. See “Using
Lisp-specific commands” on page 201 for more details.

13.3.3 Editor tool solely as buffers list

You can use a particular Editor tool solely as a buffers list.

To do this, set an Editor tool to be non-reusable by switching off the option
Works > Customize > Resuable. Then select the Buffers tab or press Ctrl+X
Ctrl+B.

This Editor tool will continue to display the buffers list and will not be re-used
by operations which want to display a buffer, or list definitions, and so on.
Other Editor tools will be used, and created as necessary, for those operations.

13.4 Displaying Common Lisp definitions
The definitions view lists all the Common Lisp definitions which can be found
in the current buffer. Open a file containing several defining forms, such as the
Othello game example in examples/capi/applications/othello.lisp.
 179

13 The Editor

180
and then click on the Definitions tab. The Editor appears as shown in Figure
13.5 below.

Figure 13.5 Examining Common Lisp definitions in the Editor

The definitions view has two areas, described below.

13.4.1 Filter box

You can use this area to restrict the number of definitions displayed in the def-
initions area. See Section 3.12 on page 56 for details about how to use the Filter
box in a tool.

13.4.2 Definitions area

Double-click on any definition in this area to display its source code in the
Editor’s text view. Definitions selected in this area can be operated on using
commands in the Editor’s Definitions menu, which is also available as the con-

13.5 Changed definitions
text menu. See “Other facilities” on page 208 for complete details of the com-
mands available.

13.5 Changed definitions
The Changed Definitions view allows you to see which definitions have been
edited in the current session.

Edit some of the definitions in the Othello game example in examples/capi/
applications/othello.lisp and then click on the Changed Definitions tab.
The Editor appears as shown in Figure 13.6 below.

Figure 13.6 The Changed Definitions view in the Editor

Notice that the Changed Definitions view is similar to the Definitions view. The
Editor’s Definitions menu, and the filter box, can be used on definitions listed
here in the same way as in the Definitions view.
 181

13 The Editor

182
13.5.1 Setting the reference point for changed definitions

The Changed Definitions view has an additional area labelled Show definitions
changed since:. This allows you to change the reference point against which
the current buffer is compared when computing the changes.

The reference point can be:

First Edit The state of the buffer just before you first edited it in
the current LispWorks session. This is the initial refer-
ence point.

Last Save The state of the buffer when you last saved it to file

Last Compile The state of the buffer when you last compiled it.

Select from the Show definitions changed since: popup list to change the refer-
ence point.

Figure 13.7 Setting the reference point in the Changed Definitions view.

13.6 Finding definitions
When you alter the reference point, the list of changed definitions is
recomputed.

The list of changed definitions is computed using the editor command Buffer
Changed Definitions. See the Editor User Guide for more information about
this and related commands.

13.6 Finding definitions
Use the Find Definitions view to locate definitions recorded by the system with
a given name. Firstly click on to ensure you have compiled the buffer dis-
playing the Othello example. Then enter the name of the definition you are
searching for in the name box and press Return or click on to display a list
of matches together with their locations. Double-click on a match to display
the source.

Figure 13.8 Displaying matches in the Find Definitions view
 183

13 The Editor

184
In addition, after using the editor command Find Source (bound to Alt+.)
or other source location commands, you can invoke the Find Definitions view
to display a complete list of the matches with the editor command Alt+X
View Source Search.

Further, the option Use Find Definitions list for more items than: controls auto-
matic use of this view, as described in “Automatic use of Find Definitions
view” on page 31.

13.7 Setting Editor preferences
You can configure several aspects of the Editor tool, including:

• how items are listed in buffers and definitions views

• whether the Editor toolbar is displayed

These editor-specific options are described in “Controlling options specific to
the Editor” on page 185.

13.7.1 Controlling other aspects of the Editor

Other configuration options affect the Editor but also apply to other tools in
the LispWorks IDE which are based on capi:editor-pane. These options
control

• the choice of Emacs or KDE/Gnome editor key input

• the cursor style and blink rate

• the font

• the text styles used for selected text and Lisp syntax coloring

• automatic use of the Find Definitions view by the source location com-
mands

• the default encodings used when opening and saving files

• whether parentheses are colored in Lisp code.

You set these options via Works > Tools > Preferences... > Environment. These
Environment options are described in “Setting preferences” on page 28, which

13.7 Setting Editor preferences
you should read for a full appreciation of the options affecting your Editor
tools.

13.7.2 Controlling options specific to the Editor

This section describes options affecting only the Editor tool.

To configure these choose Works > Tools > Preferences... and select Editor in the
list on the left side of the Preferences dialog. This displays these options:

Figure 13.9 Editor Preferences

Any changes you make are applied and saved for future use when you choose
OK to dismiss the Preferences dialog.

13.7.2.1 Sorting items in lists

By default, items in the buffers and various definitions views are sorted alpha-
betically according to their name. The options in the Sort panel in the Editor
Preferences allow you to change this, as follows:

Unsorted Leaves items in these lists unsorted. For views which
list definitions, choosing this option lists definitions in
the order in which they appear in the source code.
 185

13 The Editor

186
By Name Sort according to the item name. This is the default
setting.

By Package Sort according to the buffer package or the package of
the definition’s name.

By Type Sorts items according to the type of the definition, or
the attributes of the buffer.

13.7.2.2 Displaying package information

As with many other tools, you can configure the way package names are dis-
played in the Editor. Because of the nature of this tool, you need to be a little
more aware of the precise nature of these commands in order to avoid confu-
sion. This information can be configured using the Package box of the Editor
Preferences shown in Figure 13.9.

Click Show Package Names to toggle display of package names in the main
areas of the buffers and various definitions views.

Type a package name into the text field to change the current package in the
Editor. You can use completion to reduce typing, by clicking which allows
you to select from a list of all package names which begin with the partial
input you have entered. See “Completion” on page 61 for detailed instruc-
tions. When you have entered the complete name, click the button to con-
firm the package name.

Note that this does not change the package currently displayed; it merely
changes the Editor’s notion of “where” it is in the environment, and this in
turn affects the way symbols are printed in the buffers and various definitions
views.

By default, the current package is CL-USER.

13.7.2.3 Controlling toolbar display

You can control whether Editor tools display toolbars such as the source oper-
ations and history toolbars by the option Show Toolbar, as described in “Tool-
bar configurations” on page 26.

13.8 Basic Editor commands
13.8 Basic Editor commands
This section deals with some of the most basic commands available in the Edi-
tor. It describes how to perform simple file management, how to move around
a buffer, and tells you about some other more general commands available.

13.8.1 Opening, saving and printing files

When you first start up the Editor, the first thing you must do is open a file.

Use file extensions .lisp or .lsp for Common Lisp files. The Editor recog-
nizes these extensions and places the buffer in Lisp mode. Lisp mode provides
special features for use in Lisp editing, as described in “Lisp mode” on page
201.

You can create a new Lisp buffer by choosing File > New or clicking on . The
new file is automatically in Lisp mode, and the buffer is called “Unnamed”.
When you try to save this buffer, the Editor prompts you for a filename.

As you have already seen, you can open an existing file by choosing File >
Open... or clicking on . A dialog appears from which you can select a file to
edit.

To save a file, choose File > Save or click on . If the file has not been saved
before (that is, if you created the file by choosing File > New and this is the first
time you have saved the file), you are prompted for a directory and a file-
name.

You can also save a file by using the keyboard command Ctrl+X Ctrl+S.

If you want to make a copy of the file (save the file under a different name)
choose File > Save As... and specify a name in the dialog that appears.

Choose File > Revert to Saved to revert back to the last saved version of the file.
This replaces the contents of the current buffer with the version of that file
which was last saved on disk. This command is useful if you make a number
of experimental changes which you want to abandon.

As well as saving whole files to disk, you can save any part of a file to disk
under a different filename. To do this:
 187

13 The Editor

188
1. Select a region of text by clicking and holding down the select mouse
button, and dragging the pointer across the region of text you want to
save. The text is highlighted as you drag the pointer across it.

2. With the text still highlighted, choose File > Save Region As....

3. In the echo area, specify the name of a file to save the selected text to.

Note that the selected text is copied into the new file, rather than moved; it is
still available in the original buffer.

To find out more about selecting regions of text, see “Marking the region” on
page 194. To find out more about operating on regions of text, see “Using
Lisp-specific commands” on page 201.

To print the file in the current buffer to your default printer, choose File >
Print.... The printer can be changed or configured by choosing the File > Printer
Setup... menu option.

13.8.2 Moving around files

This section describes how you can move the cursor around the buffer. There
are a variety of commands, allowing you to move sideways, up, or down by
one character, or by a number of characters.

To move directly to any point in the buffer, position the pointer and click the
left mouse button. If necessary, use the scroll bars to reveal sections of the
buffer which are not visible in the window.

You can either use the arrow keys, or the keyboard commands shown below
to move the cursor in any direction by one character.

Figure 13.10 Moving the cursor by one character

Ctrl+P

Ctrl+B Ctrl+F

Ctrl+N

13.8 Basic Editor commands
The keyboard commands below move to the beginning or end of the line, or
the top or bottom of the buffer.

Figure 13.11 Keyboard commands for basic movement within an editor buffer

Press Ctrl+V or the Page Down key to scroll down one screenful of text.

Press Esc V or Alt+V or the Page Up key to scroll up one screenful of text.

You should ensure that you learn the keyboard commands described above,
since they make navigation in a buffer much easier.

13.8.3 Inserting and deleting text

The editor provides a sophisticated range of commands for cutting text which
are described in “Cutting, copying and pasting using the kill ring” on page
193. However, the two basic commands for deleting text which you should
remember are as follows:

• To erase the previous character, use the Backspace key.

• To erase the next character, use Ctrl+D or the Delete key if available.

You can insert text into a buffer by typing characters, or by pasting (see “Cut-
ting, copying and pasting using the kill ring” on page 193) or by inserting the
contents of a file.

Alt+<

Ctrl+A Ctrl+E

Alt+>
 189

13 The Editor

190
By default, when typing in a buffer, any characters to the right of the cursor
are moved further to the right. If you wish to overwrite these characters,
rather than preserve them, press the Insert key. To return to the default
behavior, just press the Insert key once more.

To insert the contents of one file into another, choose File > Insert.... A dialog
appears so that you can choose a file to insert, and this is then inserted into the
current buffer, starting from the current position of the cursor.

13.8.4 Using several buffers

As mentioned above, you can have as many buffers open at once as you like.
Repeated use of File > Open... or Ctrl+X Ctrl+F just creates extra buffers.

Because the Editor can only display one buffer at a time, you can use either
menu commands or keyboard commands to swap between buffers.

Each item in the History > Items submenu is an open buffer. To swap to a given
buffer, choose it from the menu, and it is displayed in the editor window.

Alternatively, click on the Buffers tab to swap to the buffers view; see “Dis-
playing and swapping between buffers” on page 175 for details.

To use the keyboard, type Ctrl+X B. You are prompted for the name of the
buffer you wish to display. The last buffer you displayed is chosen by default,
and is listed in the echo area in brackets, as shown below.

Select Buffer: (test.lisp):

To swap to the buffer shown in brackets, just press Return. To swap to another
buffer, type in the name of that buffer. Remember that completion (press Tab)
can help.

To close the buffer that is currently displayed, choose File > Close, or type
Ctrl+X K.

• If you use File > Close, the current buffer is closed.

• If you use Ctrl+X K, you can close any buffer, not just the current one.
Type a buffer name in the echo area, or press Return to close the current
buffer.

13.8 Basic Editor commands
Note: If you attempt to close any buffer which you have changed but not yet
saved, a dialog appears, giving you the opportunity to cancel the operation.

To save all the buffers in the Editor, choose File > Save All.... A dialog appears
which lists each modified buffer. By default, each buffer is selected, indicating
that it is to be saved. If there are any buffers that you do not want to save,
deselect them by clicking on them. The dialog has four buttons, as follows:

• Click Yes to save the selected buffers.

• Click All to save all the listed buffers.

• Click No to save none of the listed buffers.

• Click Cancel to cancel the operation.

This dialog is also displayed if there are any unsaved files when you exit the
environment.

Sometimes you may find that being able to display only one buffer in the win-
dow simply does not give you enough flexibility. For instance, you may have
several buffers open, and you may want to look at two different buffers at
once. Or you may have a very large buffer, and want to look at the beginning
and end of it at the same time.

You can do any of these by creating a new Editor window. Choose Works >
Clone or press Ctrl+X 2 or click the button. This creates a copy of your
original Editor. The new Editor displays the same buffer as the original one.

• If you want to look at two different sections of this buffer at once, sim-
ply move to the section that you want to look at in one of the Editors.

• If you want to look at a different buffer, use the History > Items submenu
or the keyboard commands described above to switch buffers.

Changes made to a buffer are automatically reflected across all editor win-
dows—the buffer may be displayed in two different windows, but there is still
 191

13 The Editor

192
only one buffer. This means that it is impossible to save two different versions
of the same file on disk.

13.9 Other essential commands
Finally, there are three basic functions which you should add to your stock of
familiar commands.

13.9.1 Aborting commands

To abort any command which requires you to type information at the echo
area, type Ctrl+G at any point up to where you would normally press Return.
For instance, if you type Ctrl+X Ctrl+F in order to open a file, and then
decide against it, type Ctrl+G instead of specifying a filename.

If you are using KDE/Gnome editor emulation, press Esc to abort a com-
mand.

13.9.2 Undoing commands

If you choose Edit > Undo the last editor action performed is undone. Succes-
sive use of Edit > Undo revokes more actions (rather than undoing the last
Undo command, as is the case with many other editors).

When using Emacs emulation you can undo via the Emacs keystroke Ctrl+_.
Thus, to undo the last five words typed, press Ctrl+_ five times.

If you are using KDE/Gnome editor emulation, press Ctrl+Z to undo.

13.9.3 Repeating commands

To perform the same command n times, type Ctrl+U n followed by the com-
mand you want to perform.

For instance, to move forward 10 characters, type Ctrl+U 10 Ctrl+F.

If you are using KDE/Gnome editor emulation, type Ctrl+* n followed by
the command.

13.10 Cutting, copying and pasting using the clipboard
13.10 Cutting, copying and pasting using the clipboard
The Editor provides the standard methods of cutting, copying and pasting
text using the clipboard. To select a region of text, click and hold down the
select button, and drag the pointer across the region you want to select: the
text is highlighted using the Region Highlight text style as you select it.

Choose Edit > Select All to select all the text in the buffer, and Edit > Deselect All
if you want to deselect it.

Once you have selected a region use either of the following commands:

• Choose Edit > Copy to copy the region to the clipboard. This leaves the
selected region unchanged in the editor buffer.

• Choose Edit > Cut to delete the region from the current buffer, and place
it in the LispWorks IDE clipboard. This removes the selected region
from the buffer.

Choose Edit > Paste to copy text from the clipboard into the current buffer. The
text is placed at the current cursor position.

These commands are also available from the context menu in the editor win-
dow, which is usually invoked by clicking the right mouse button.

The Editor also provides a much more sophisticated system for cutting, copy-
ing and pasting text, as described below.

13.11 Cutting, copying and pasting using the kill ring
The Editor provides a sophisticated range of commands for cutting or copying
text onto a special kind of clipboard, known as the kill ring, and then pasting
that text back into your Editor later on. There are three steps in the process, as
follows:

• Marking a region of text.

• Cutting or copying the text in that region to place it in the kill ring.

• Pasting the text from the kill ring back into a buffer.
 193

13 The Editor

194
13.11.1 Marking the region

First of all, you need to mark a region of text in the current buffer which you
want to transfer into the kill ring. There are two ways that you can do this:

• Select the text you want to copy or cut using the mouse. Click and hold
down the Select mouse button, and drag the pointer across the region
you want to mark.

The selected text is highlighted using the Region Highlight text style.

• Using keyboard commands

To mark the region with the keyboard, place the cursor at the beginning of the
text you want to mark, press Ctrl+Space, and move the cursor to the end of
the region you want to mark, using keyboard commands to do so. Unlike mark-
ing with the mouse, this does not highlight the region.

Because the Editor does not highlight the marked region when you use key-
board commands, a useful Emacs key to remember is Ctrl+X Ctrl+X. Press-
ing this exchanges the current cursor position with the start of the marked
region and highlights the region. Press Ctrl+X Ctrl+X a second time to
return the cursor to its original position and leave the region marked.

Press Ctrl+G (or Esc in KDE/Gnome emulation) to remove the highlighting
in a region.

13.11.2 Cutting or copying text

Once you have marked the region, you need to transfer the text to the kill ring
by either cutting or copying it.

Cutting text moves it from the current buffer into the kill ring, and deletes it
from the current buffer, whereas copying just places a copy of the text in the
kill ring.

• Choose Edit > Cut or press Ctrl+W to cut the text. In KDE/Gnome emu-
lation the key is Ctrl+X.

• Choose Edit > Copy or press Alt+W to copy the text. In KDE/Gnome
emulation the key is Ctrl+C.

13.11 Cutting, copying and pasting using the kill ring
Notice that these commands transfer the selected text to the LispWorks IDE
clipboard as well as the kill ring. This is so that the selected text can be trans-
ferred into other tools, or even into other applications.

UNIX Implementation Note: The selected text is also transferred to the UNIX
clipboard.

13.11.3 Pasting text

Once you have an item in the kill ring, you can paste it back into a buffer as
many times as you like.

• Press Ctrl+Y to paste the text in the kill ring back into the buffer. In
KDE/Gnome emulation the key is Ctrl+V.

Note that you must use the keyboard command if you wish to paste the
item that is in the kill ring (as opposed to the item in the LispWorks IDE
clipboard).

With many editors you can only do this with one item at a time. The clipboard
is only able to contain one item, and so it is the only one available for pasting
back into the text.

However, the kill ring allows you to keep many items. Any of these items can
be pasted back into your document at any time. Every time you cut or copy
something, it is added to the kill ring, so you accumulate more items in the kill
ring as your session progresses.

Consider the following example. In Figure 13.12, the kill ring contains three
items; the words factorial, function and macro respectively.

Figure 13.12 Kill ring with three items

factorialfunction

macro
 195

13 The Editor

196
First, the word factorial was cut from the current buffer (this would remove
it from the buffer). Next, the word function was copied (which would leave
it in the buffer but add a copy of it to the kill ring), and lastly, the word macro
was cut.

Note the concept of the kill ring rotating (this is why it is known as a ring).
Every time a new item is added (at the top, in these figures), the others are all
shunted around in a counter-clockwise direction.

Whenever you perform a paste, the current item in the kill ring—the word
macro in this case—is copied back into the buffer wherever the cursor cur-
rently is. Note that the current item is not removed from the kill ring.

Figure 13.13 Pasting from the kill ring

What you have seen so far does exactly the same thing as the standard clip-
board. True, all three items have been kept in the kill ring, but they are of no
use if you cannot actually get at them.

The Emacs key to do this is Alt+Y or Esc Y. This rotates the kill ring in the
opposite direction—thus making the previous item the current one—and
pastes it into the buffer in place of the item just pasted. In Figure 13.13, the
word macro would be replaced with the word function.

factorialfunction

macro

13.12 Searching and replacing text
You can use Alt+Y as many times as you like. For instance, if you actually
wanted to paste the word factorial in the document, pressing Alt+Y would
replace the word function with the word factorial.

Figure 13.14 Rotating the kill ring

If you pressed Alt+Y a third time, the kill ring would have rotated completely,
and macro would have been the current item once again.

Note: You can never use Alt+Y without having used Ctrl+Y immediately
beforehand.

Here is a summary of the way Ctrl+Y and Alt+Y work:

• Ctrl+Y pastes the current item in the kill ring into the buffer.

• Alt+Y rotates the kill ring back one place, and then pastes the current
item into the buffer, replacing the previously pasted item.

13.12 Searching and replacing text
The Editor provides a wide range of facilities to search for and replace text.
The examples below introduce you to the basic principles; please refer to the
LispWorks Editor User Guide for a complete description of the facilities avail-
able.

13.12.1 Searching for text

The simplest way of searching for text in a buffer is to use the commands
available in the menu bar:

1. Choose Edit > Find... to search for text in the current buffer.

2. Type a string to search for in the dialog that appears.

factorial

function

macro

factorial

macro function
 197

13 The Editor

198
3. Click the Find Next button.

Figure 13.15 Use of the Find dialog in the Editor

The cursor is placed immediately after the next occurrence in the current
buffer of the string you specified. To search the buffer from the start, rather
than the current point, check From Top and click Find Next. To search upwards,

13.12 Searching and replacing text
select Up in the Direction panel and click Find Next. To search again for a string
that you previously searched for, select the string from the Find what list and
click Find Next.

To dismiss the Find dialog, click Cancel.

After you have used the Find dialog, you can use Edit > Find Next to find the
next occurrence of the last string for which you searched using the dialog,
without raising the dialog again.

13.12.2 Incremental searches

Press Ctrl+S to perform an incremental search (in which every character you
type further refines the search). A prompt appears in the echo area, asking you
to type a string to search for. As soon as you start typing, the search com-
mences.

Consider the following example: open the file examples/capi/applica-
tions/othello.lisp. You want to search for the word “defmethod” in the
buffer.

1. Press Ctrl+S

The following prompt appears in the echo area.

I-Search:

2. Type the letter d.

The prompt in the echo area changes to

I-Search: d

The cursor moves to the first occurrence of “d” after its current position.

3. Type the letter e.

The prompt in the echo area changes to

I-Search: de

The cursor moves to the first occurrence of “de”.

4. Type the letter f.

The prompt in the echo area changes to
 199

13 The Editor

200
I-Search: def

The cursor moves to the first occurrence of “def”.

This continues until you stop typing, or until the Editor fails to find the string
you have typed in the current buffer. If at any point this does occur, the
prompt in the echo area changes to reflect this. For instance, if your file con-
tains the word “defun” but no word beginning “defm”, the prompt changes to

Failing I-Search: defm

as soon as you type m.

13.12.3 Replacing text

You can search for text and replace it with other text using the Edit > Replace...
menu item. Type a string to search for and a string to replace it with in the
Replace dialog that appears, and click Find Next. The cursor is placed immedi-
ately after the next occurrence in the current buffer of the string you specified.
To replace this occurrence and locate the next one, click Replace. To leave this
occurrence as it is and locate the next one, click Find Next. Note that this type
of searching is not incremental.

For instance, assume you wanted to replace every occurrence of “equal” to
“equalp”.

1. Choose Edit > Replace....

The Replace dialog appears.

2. Type equal in the Find what box:

3. Type equalp in the Replace with box and click Find Next.

The search will stop at every occurrence of “equal” after the current cursor
position:

• If you want to replace this occurrence, click Replace.

• If you do not want to replace this occurrence, click Find Next.

• If you want to replace this occurrences and all later occurrences, click
Replace All.

• If you want to abandon the operation altogether, click Cancel.

13.13 Using Lisp-specific commands
Note: Both Edit > Find... and Edit > Replace... start searching from the current
position in the buffer. When the end of the buffer is reached, you are asked
whether to start again at the beginning. To start from the top of the buffer ini-
tially, check the From Top option before searching.

13.13 Using Lisp-specific commands
One of the main benefits of using the built-in editor is the large number of
keyboard and menu commands available which can work directly on Lisp
code. As well as editing facilities which work intelligently in a buffer contain-
ing Lisp code, there are easily-accessible commands which load, evaluate or
compile, and run your code in any part of a buffer.

Other tools in the LispWorks IDE are integrated with the Editor. So for exam-
ple you can find the source code definition of an object being examined in a
browser, or set breakpoints in your code, or flag symbols in editor buffers for
specific actions such as tracing or lambda list printing.

This section provides an introduction to the Lisp-specific facilities that are
available using menu commands. For a full description of the extended editor
commands, please refer to the LispWorks Editor User Guide.

All of the commands described below are available in the Editor’s Buffers, Def-
initions, and Expression menus. They operate on the current buffers, defini-
tions, or expression, the choice of which is affected by the current view.

13.13.1 Lisp mode

Some aspects of the LispWorks editor behave differently depending on which
"mode" the buffer is using (see the LispWorks Editor User Guide for information
about editor modes). These include syntax coloring and parenthesis matching.
which operate only in Lisp mode and are described in “Setting the text style
attributes” on page 35. Also, certain commands such as those for indentation
operate specially in Lisp mode.

To make a new buffer suitable for Lisp code, you can use the New Buffer
command or the File > New menu item, both of which start the buffer in Lisp
mode.
 201

13 The Editor

202
If your Lisp source files are saved with an extension .lisp or .lsp, then the
editor will automatically open them in a Lisp mode buffer.

13.13.2 Current buffers, definitions and expression

In the Text view, the current buffer is the currently visible buffer, and the Buff-
ers menu acts on this. The current expression is the symbol over which the
cursor is positioned, or the one immediately before the cursor if it is not on a
symbol. The current definition is the definition in which that current symbol
occurs. For example:

(defun test ()
 (test2))

In the function shown above, if the cursor were placed on the letter “e” of
test2, the current expression would be the symbol test2, and the current
definition would be test.

In the Buffers view, the current buffer(s) are all the selected buffers. The Defini-
tions and Expression menus are not available.

In the Definitions, Changed Definitions and Find Definitions views, the cur-
rent definitions are all the selected definitions. The Buffers and Expression
menus are not available.

In each view, the Buffers, Definitions and Expression menu commands act on
the current buffer(s), definition(s) or expression.

13.13.3 Evaluating code

When you are editing Lisp code, you may want to evaluate part or all of the
buffer in order to test the code. The easiest way to do this is using menu com-
mands, although there are keyboard commands which allow you to evaluate
Lisp in the Editor as well.

There are three menu commands which allow you to evaluate Lisp in the cur-
rent buffer.

Choose Buffers > Evaluate to evaluate all the code in the current buffer. If you
are in the buffers view, then this command evaluates the code in all the
selected buffers.

13.13 Using Lisp-specific commands
Choose Expression > Evaluate Region to evaluate the Lisp code in the current
region. You must make sure you have marked a region before choosing this
command; see “Marking the region” on page 194. Whether you use the mouse
or keyboard commands to mark a region does not matter. If you have a few
Lisp forms that you want to evaluate, but do not want to evaluate the whole
buffer, you should use this command.

Choose Definitions > Evaluate or click in the toolbar to evaluate the current
definition. In the text view this is a little like evaluating the marked region,
except that only the current definition is evaluated, whereas working with a
marked region lets you evaluate several. This command is useful if you have a
single function in the current buffer which you want to test without taking the
time to evaluate the whole buffer or mark a region.

In the various definitions views, this command evaluates the code for all the
selected definitions.

To load the file associated with the current buffer, choose File > Load. To load
multiple files associated with buffers, select them in the buffers view and
choose File > Load. If there is not a current buffer, the menu command File >
Load... is available, which prompts for a file to load.

13.13.4 Compiling code

You can also compile Lisp code in an editor buffer in much the same way that
you can evaluate it. Code can be compiled in memory or to a file.

13.13.4.1 Compiling in memory

Choose Buffers > Compile or click in the toolbar to compile all the code in
the current buffer.

Choose Expression > Compile Region to compile the Lisp code in the current
region.

Choose Definitions > Compile or click in the toolbar to compile the current
definition.

During compilation, the Editor tool temporarily displays compiler output in
the Output tab. Once compilation has finished, you can press Space to display
the current buffer once again.
 203

13 The Editor

204
Additionally, if any conditions were signalled during the compilation, you can
view these in the Compilation Conditions Browser by pressing Return. You
can also locate the source code that generated a message via the context menu,
as described in “Interactive compilation messages” on page 343.

You can review the output at any time by clicking the Output tab of the Editor.

13.13.4.2 Compiling to a file

To compile the file associated with the current buffer, choose File > Compile. To
compile multiple files associated with buffers, select them in the buffers view
and choose File > Compile. If there is not a current buffer, the menu command
File > Compile... is available, which prompts for a file to compile.

Note: this command calls the Common Lisp function compile-file; it creates
the fasl file but does not load it. You can use File > Load to later load the fasl.

To compile a file (or files) and load the resulting fasl file(s) with a single com-
mand, choose File > Compile and Load. If there is not a current buffer, the menu
command File > Compile and Load... is available.

13.13.5 Argument list information

Press Ctrl+` to show information about the operator in the current form, in a
displayer window on top of the Editor. The displayer shows the operator and
its arguments, and tries to highlight the argument at the cursor position using
the style “Arglist Highlight” .

While the displayer is visible:

• Ctrl+/ controls whether the documentation string of the operator is
also shown

• Ctrl++ moves the displayer up

• Ctrl+- moves the displayer down

13.13.6 Breakpoints

A breakpoint causes execution of Lisp code to stop when it is reached, and the
LispWorks IDE displays the stack and the source code in a Stepper Tool. See

13.13 Using Lisp-specific commands
“Breakpoints” on page 390 for information about using breakpoints with the
Stepper Tool.

A breakpoint can be at the start, function call or return point of a form.

13.13.6.1 Setting breakpoints

To set a breakpoint, for example at the call to + in one of your functions:

1. Open the file containing the call in an Editor tool.

2. Ensure the definition is indented. You can use the Lisp mode command
Indent Form (Meta+Ctrl+Q in Emacs emulation).

3. Ensure the definition is compiled.

4. Position the cursor on the symbol +.

5. Choose the menu command Expression > Toggle Breakpoint, or click
in the Editor toolbar, or run the editor command Toggle Breakpoint.
The symbol + is highlighted red indicating that a breakpoint is set.

When the breakpoint is reached, a Stepper tool is invoked, allowing you to
step through the code, add further breakpoints, and so on. See “The Stepper”
on page 379 for more information about the Stepper tool.

13.13.6.2 Editing breakpoints

To edit the Conditional or Printing properties of a breakpoint, choose the
menu command Expression > Edit Breakpoints and proceed as described in
“Editing breakpoints” on page 395.

To visit the source code where a breakpoint was set, choose the menu com-
mand Expression > Edit Breakpoints, select a breakpoint and press the Goto
Source button. This cancels the dialog and then displays the source containing
the breakpoint.

13.13.6.3 Removing breakpoints

To remove a breakpoint under the cursor, click in the toolbar. Equivalently
choose the menu command Expression > Toggle Breakpoint or run the editor
command Toggle Breakpoint.
 205

13 The Editor

206
Where you wish to remove one or more breakpoints without finding them in
the source, choose Expression > Edit Breakpoints, select a breakpoint or break-
points in the Breakpoints list, and click Remove.

13.13.6.4 Reloading code with breakpoints

A message like this:

Retain 1 breakpoint from loaded file...

means that a breakpoint is set in a buffer while you have loaded that buffer's
underlying file from disk, for example by menu commands File > Load or File >
Compile And Load. Loading the file re-evaluates all of its forms, but the IDE
does not have a way to reset the breakpoints in these forms automatically.
Therefore it asks you what to do.

Answer Yes to add breakpoints to the newly loaded definitions. Answer No to
remove the breakpoints.

13.13.7 Tracing symbols and functions

A wide variety of tracing operations are available in the Buffers, Definitions
and Expression menus. The scope of each operation depends on which menu
the command is chosen from.

Choose Trace from either the Buffers, Definitions or Expression menus to dis-
play a menu of trace commands that you can apply to the current region or
expression, or the currently selected buffers or definitions, as appropriate.
Note that you can select several items in the buffers and definitions views.

See “Tracing symbols from tools” on page 55 for full details of the tracing facil-
ities available in the Editor.

13.13.8 Packages

It is important to understand how the current package (that is, the value of the
Common Lisp variable *package*) is determined when running Lisp opera-
tions such as evaluation or compilation commands in a buffer. Usually it is
obvious: most Lisp source files have a single in-package form. The Editor
uses the specified package as the current package when you evaluate or com-

13.13 Using Lisp-specific commands
pile code in that buffer, or perform some other operation that depends on the
current package.

However it is possible for a source file to contain multiple in-package forms,
or none at all. In this case, the Editor uses a suitable binding for the current
package depending on the location in the buffer, as described below. This
means that you do not have to worry about setting the package explicitly
before evaluating part of a buffer, and that operations within a buffer use the
expected current package.

13.13.8.1 The primary package

Each buffer has a package associated with it, known as the primary package.
This is set when the buffer is created, and is displayed in the message area at
the bottom of the Editor window. The primary package provides a default,
used when the current package cannot be determined by other means.

If the buffer is created by opening a file containing an in-package form, that
package is the primary package. If there are multiple in-package forms, the
primary package is taken from the first of these forms. If there is no in-pack-
age form, the primary package is CL-USER.

You can set the primary package if needed with the editor command Set
Buffer Package. See the LispWorks Editor User Guide for details.

13.13.8.2 The current package for Lisp operations

When evaluating or compiling an entire buffer, the Editor uses in-package
forms as they appear in the code. For any code that precedes the first in-
package form, or when there is no in-package form, the code is evaluated or
compiled in the primary package.

When evaluating or compiling a region of the current buffer (as opposed to all
of it), the Editor uses in-package forms as they appear in the region. For any
code that precedes the first in-package form of the region, or when there is
no in-package form in the region at all, the Editor searches for the previous
in-package form in the buffer. If this is found, it determines the current pack-
age, otherwise the primary pacakge is used.
 207

13 The Editor

208
When evaluating or compiling a definition, and for operations such as symbol
completion at the cursor point, the Editor searches for the previous in-pack-
age form in the buffer. If this is found, it determines the current package, oth-
erwise the primary pacakge is used.

13.13.9 Indentation of forms

The Editor provides facilities for indenting your code to help you see its struc-
ture. These facilities are available only in Lisp mode. The Emacs key
Alt+Ctrl+Q indents the current Lisp form, and the Tab key indents a single
line.

You can customize Lisp mode indentation by using the Defindent command,
see the LispWorks Editor User Guide for details.

See “Lisp mode” on page 201 for more information about Lisp mode.

13.13.10 Other facilities

A number of other Lisp-specific facilities are available using the menus in the
Editor.

If the current buffer is associated with a file that is part of a system as defined
by defsystem, choose File > Browse Parent System to browse the system it is
part of in the System Browser. See Chapter 27, “The System Browser” for more
information about this tool.

Choose Definitions > Undefine... to remove the current definitions from your
Lisp image. Similarly, choose Buffers > Undefine... to remove the definitions in
the current buffer or selected buffers. By selecting items in the buffers view, or
the various definitions views, you can control over the definitions which can
be removed with one command. Both of these commands prompt you for con-
firmation with a second chance to modify the list of definitions to remove.

Choose Definitions > Generic Function to describe the current definition in a
Generic Function Browser. See Chapter 15, “The Generic Function Browser”
for more details.

Standard action commands can be found on the Expression menu, allowing
you to perform a number of operations on the current expression. See “Per-
forming operations on selected objects” on page 48 for full details.

13.14 Help with editing
Choose Expression > Arguments to print the lambda list of the current expres-
sion in the echo area, if it is a function, generic function or method. This is the
same as using the Emacs key command Alt+=, except that the current expres-
sion is automatically used.

Choose Expression > Value to display the value of the current expression in the
echo area.

Choose Expression > Macroexpand or click in the toolbar to macroexpand
the current form. The macroexpansion is printed in the Output tab, in the same
way that compilation output is shown. Note how an in-package form con-
taining the current package is printed with the macroexpansion, meaning that
you can preform a further macroexpansion. Press Space when the cursor is at
the end of the output window to return to the Text tab.

Choose Expression > Walk to recursively macroexpand the current form.

13.14 Help with editing
Two help commands are available which are specific to the Editor and any
tools which use editor windows.

Choose Help > Editing > Key to Command and type a key sequence to display a
description of the function it is bound to, if any.

Choose Help > Editing > Command to Key and supply an editor command name
to see the key sequence it is bound to, if any.
 209

13 The Editor

210

14

14 The Function Call Browser
14.1 Introduction
The Function Call Browser gives you a way to view a user-defined function in
the Lisp image together with the functions that call it or the functions it calls.

It has three views.

• The Called By view allows you to examine a graph of the functions
which call the function being browsed. This is the default view.

• The Calls Into view allows you to examine a graph of the functions
which are called by the function being browsed.

• The Text view lets you see immediate callers and callees of the browsed
function using lists rather than a graph.

To create a Function Call Browser, choose Works > Tools > Function Call Browser
or click in the Podium. Alternatively, select a function in another tool, and
choose Function Calls from the appropriate actions menu to browse the
selected function in the Function Call Browser. Finally, in an editor executing
Alt+X List Callers or Alt+X List Callees calls up a Function Call
Browser on the current function.

Note: the cross references between function calls are generated by the com-
piler, hence you can use the Function Call Browser only for compiled code.
211

14 The Function Call Browser

212
Moreover, the compiler setting to generate cross references must be on when
you compile your code. Switch it on by evaluating

(toggle-source-debugging t)

When cross referencing is on, this line appears in the output of the compiler:

;;; Cross referencing is on

14.2 Examining functions using the graph views
There are two graph views in the Function Call Browser. The Called By view is
the default view. The Function Call Browser appears as in Figure 14.1.

Figure 14.1 Viewing functions using the “Called By” view

In this view, the Function Call Browser has five areas.

14.2 Examining functions using the graph views
14.2.1 Function area

The Function area displays the name of the function being examined, and here
you can enter the name of another function to examine. You can use comple-
tion to reduce typing. This allows you to select from a list of all functions in
the current package whose names begin with the partial input you have
entered. Invoke completion by Up, Down or click the button. See “Comple-
tion” on page 61 for detailed instructions. When you have entered the com-
plete function name, click to confirm your choice

14.2.2 Show functions control

The popup list Show functions from packages allows you to restrict the
functions displayed based on their package. It affects the display in all views.
Below, the current package means the symbol-package of the function cur-
rently being examined in the Function Call Browser. The options are:

All Display all the functions known to the compiler.

Current and Used

Display only those functions in the current package or
packages on the package use list of the current package.

Current and Standard

Display only those functions in the current package or
the standard packages COMMON-LISP, HCL and LISP-
WORKS.

Current Display only functions in the current package.

14.2.3 Graph area

A graph of all the callers of the function is displayed in a graph in the Called
By view. The graph area of the Calls Into view is similar, but the graph dis-
played is of the functions called by the function being browsed.

Note that if source level debugging is off, or the function was not compiled,
there is no information to display here. To turn on source level debugging, call

(toggle-source-debugging t)
 213

14 The Function Call Browser

214
The generic facilities available to all graph views in the LispWorks IDE are
available here; see Chapter 6, “Manipulating Graphs” for details.

14.2.4 Echo area

The echo area of the Function Call Browser is similar to the echo area of the
podium. It displays messages concerning the Function Call Browser.

14.2 Examining functions using the graph views
14.2.5 The function description button

Clicking on Function Description >> changes the view of the Function Call
Browser to include more information on the function being browsed. The
browser appears as in Figure 14.2

Figure 14.2 The Function Call Browser in function description mode

Two further panes appear. Note that the function description button has now
changed to Function Description << and that clicking on it restores the view of
the Function Call Browser

The extra panes are a function description area, and a documentation area.
 215

14 The Function Call Browser

216
14.2.5.1 Function description area

The Function Description area gives a description of the function selected in
the mainarea, or, if nothing is selected, the current function (as displayed in
the Function area). The following items of information are displayed:

Name The name of the function.

Function The function object.

Lambda List The lambda list of the function.

Source Files The source file in which the function is defined, if any.

You can operate on any of the items in this area using the commands in the
Description menu, which is also available as the context menu. This contains
the standard actions described in “Performing operations on selected objects”
on page 48.

14.2.5.2 Documentation area

The Documentation area shows the documentation for the function selected in
the main area as returned by the Common Lisp function documentation. If no
function is selected, the documentation for the current function is shown.

14.3 Examining functions using the text view
Click on the Text tab to see a textual display of the callees and callers of a func-
tion. This view has the advantage that both callees and callers can be seen
simultaneously. It is very similar to the text view in the Class Browser, as

14.3 Examining functions using the text view
described in “Examining other classes” on page 105. When in the text view,
the Function Call Browser appears as shown in Figure 14.3.

Figure 14.3 Viewing functions using the text view

The function area, show functions from packages area, function description
area and echo area are as in the graph views.

14.3.1 Called By area

The Called By area lists those functions which the current function calls.

To make any function in this list be the current function, double-click on it.
 217

14 The Function Call Browser

218
14.3.2 Calls Into area

The Calls Into area lists those functions which call the current function.

To make any function in this list be the current function, double-click on it.

14.4 Configuring the function call browser
The Function Call Browser can be configured using the preferences dialog.
Select Works > Tools > Preferences... or click to display the dialog, and
select Function Call Browser in the list on the left side of the dialog which
appears. This displays these options:

Figure 14.4 The function call browser preferences

14.4.1 Sorting entries

The functions displayed in each tab of the Function Call Browser can be sorted
in a number of ways.

Choose By Name to sort entries according to the function name. This is the
default setting.

Choose By Package to sort functions according to their package.

Choose Unsorted to leave functions unsorted.

14.5 Configuring graph displays
14.4.2 Displaying package information

As with other tools, you can configure the way package names are displayed
in the Function Call Browser.

Choose Show Package Names to turn on and off the display of package names
in the Text, Called By, Calls Into and Description areas.

See “Displaying packages” on page 45 for more information about using Show
Package Names.

14.5 Configuring graph displays
The preferences can also be used to configure how the Function Call Browser
displays graphical information in the Called By and Calls Into views. Click on
the Called By Layout tab or the Calls Into Layout tab in the Preferences. Both
views perform the same operations on the relevant Function Call Browser
view.

Figure 14.5 A layout view in the Function Call Browser preferences

14.5.1 Graph layout settings

The layout radio buttons are used to set the direction in which the graph is
displayed. The default setting is Left to Right.
 219

14 The Function Call Browser

220
14.5.2 Graph expansion settings

The Max. Expansion settings determine how much of the graph to display. The
default depth value is 2—this ensures that only functions that directly call (or
are directly called by) are shown in the graph. If this value were set to 3, for
example, then functions that call a function that calls the function being
browsed would also be displayed.

The breadth value has a default value of 40, and sets how many functions are
displayed at each level of the graph.

14.5.3 Plan mode settings

The Rotation checkbox determines whether the graph layout can be rotated
when in plan mode. By default it is unchecked.

You can enter plan mode when displaying a graph by selecting Enter Plan
Mode from the context menu. If rotation is enabled and the plan is smaller than
the graph, you can rotate the plan by holding down the Shift key and mov-
ing the mouse left or right.

14.6 Performing operations on functions
A number of operations can be performed on functions selected in the Text
area (when in the Text view) or in the Called By or Calls Into areas, or on the
current function (when there are no functions selected elsewhere).

The Function menu gives you access to the standard actions described in “Per-
forming operations on selected objects” on page 48.

The Function > Trace submenu gives you the ability to trace and untrace the
functions selected in the Text, Called By and Calls Into views.

15

15 The Generic Function
Browser
The Generic Function Browser allows you to examine the generic functions in
the Lisp image, together with any methods that have been defined on them. It
has two views which allow you to browse different types of information:

• The methods view, which shows you a description of the generic func-
tion and the methods defined on it. This is the default view.

• The method combinations view, which lets you examine the list of
method combinations for any generic function.

To create a Generic Function Browser, choose Works > Tools > Generic Function
Browser or click in the Podium.

Other ways to create a Generic Function Browser are:

• If the current object in a tool is a generic function or method, choose the
Generic Function standard action command from the appropriate menu

• Use the editor command Alt+X Describe Generic Function

• If there is a method on the debugger stack, you can display the Method
Combination via the Frame menu of a Debugger tool
221

15 The Generic Function Browser

222
15.1 Examining information about methods
When the Generic Function Browser is first displayed, the default view is the
methods view. You can also choose it explicitly by clicking on the Methods tab
of the Generic Function Browser.

The methods view is shown in Figure 15.1 below.

Figure 15.1 Generic function browser

15.1 Examining information about methods
The methods view has four main sections, described below.

15.1.1 Function area

The Function: box shows the name of the generic function you are examining.
To browse a generic function, you can enter its name directly into the Function:
box. You can also paste the generic function from another tool in one of two
ways:

• Choose Edit > Copy or the standard action command Copy in another
tool to copy the generic function to the clipboard, then choose Edit >
Paste in the Generic Function Browser to transfer the generic function
in.

• Choose the standard action command Generic Function in the other tool
to display the generic function in the Generic Function Browser in one
action.

When entering the name of a function, you can use completion to reduce typ-
ing. This allows you to select from a list of all generic functions whose names
are accessible in the current package and begin with the partial input you
have entered. Invoke completion by pressing Up or Down, or by clicking the
button. The methods are listed immediately. See “Completion” on page 61 for
more information about completion. If you enter the generic function name
directly without using completion, click to confirm the name.

Note: You can use Edit > Paste to paste in a generic function, even if the Lisp-
Works IDE clipboard currently contains the string representation of the func-
tion, rather than the function itself. This lets you copy in generic functions
from other applications, as well as from the environment. See “Using the
Object operations with the clipboard” on page 40 for a complete description of
the way the LispWorks IDE clipboard operates, and how it interacts with the
UNIX clipboard.

You can operate on the current generic function using the commands in the
Generic Function Browser’s Function menu. See “Performing operations on
the current function or selected methods” on page 225 for details.
 223

15 The Generic Function Browser

224
15.1.2 Filter area

The Filter lets you restrict the list of methods displayed. See “Filtering infor-
mation” on page 56 for details about how to use the Filter area.

15.1.3 Methods list

This area displays the methods defined on the generic function.

• Selecting a method in this list displays its description in the Description
list.

• Double-clicking on a method displays its source code definition in the
editor, if it is available.

The number of items listed in the list of methods is printed in the Matches box.

You can operate on any number of selected methods in this area using the
commands in the Generic Function Browser’s Methods menu. See Section
15.1.5 on page 225 for details.

15.1.4 Description list

The Description list shows a description of the method selected in the list of
methods, or of the generic function itself if no method is selected.

The following information is listed:

Method The method object that is selected in the list of methods.

Lambda List The lambda list of the generic function.

Combination The class of method combination for the generic func-
tion.

To operate on any of the items displayed in this area, select them and choose a
command from the Description menu. This menu contains the standard action
commands described in “Performing operations on selected objects” on page
48. You can operate on more than one item at once by making a multiple selec-
tion in this area.

15.2 Examining information about combined methods
15.1.5 Performing operations on the current function or selected methods

You can use the Function and Methods menus to access commands that operate
on the current generic function or the selected methods. These commands are
similar to commands available in other tools, and so you should find them
familiar.

The following commands are available from either the Function or Methods
menus:

• The standard action commands let you perform a number of operations
on the selected methods or the current function. For details on the com-
mands available, see “Performing operations on selected objects” on
page 48.

• Choose Undefine... to undefine the current generic function or the
selected methods so that they are no longer available in the Lisp image.
Choosing Undefine... on a method undefines the method function and
removes it from the methods of the generic function. However, the
generic function can still be called with its different method selection.

• The Trace submenu gives you the ability to trace and untrace the current
generic function or the selected methods. See “Tracing symbols from
tools” on page 55 for details about the commands available in this sub-
menu.

15.2 Examining information about combined methods
The method combinations view lets you examine information about the com-
bined methods of the current generic function. You supply a signature and
Generic Function Browser displays the combined methods of the generic func-
tion together with the arguments that match that method combination point.

Method combinations show you the calling order of methods. They use the
class precedence lists of the classes on which the methods of a generic function
operate. Being able to view these combinations gives you a simple way of see-
ing how before, after, and around methods are used in a particular generic
function.

You can display this view by clicking the Method Combinations tab of a
Generic Function Browser, or from the Debugger tool by choosing Frame >
 225

15 The Generic Function Browser

226
Method Combination in a frame containing a standard method. The method
combinations view is shown in Figure 15.2 below.

Figure 15.2 Generic function browser displaying method combinations

The method combinations view has a number of main sections, described
below.

15.2.1 Function box

As with the methods view, the name of the generic function being browsed is
shown here. See “Function area” on page 223 for details.

15.2 Examining information about combined methods
15.2.2 Signatures button

Click Signatures... to display the Method Signatures dialog shown in Figure
15.3. This dialog lists the signatures for the methods defined on the current
generic function. The signature of a method shows the types of the arguments.

Figure 15.3 Method Signatures dialog

To list the method combinations of any defined method in the Generic Func-
tion Browser, select its signature from the list in the Signatures panel of the
Method Signatures dialog and click OK.

You can restrict the signatures displayed using Filter box in the usual way.

You can also restrict the display with the Restricted Class box. See “Restricting
displayed signatures by class” on page 229 for details.
 227

15 The Generic Function Browser

228
15.2.3 Arguments types box

The Arguments Types: box is used to specify a signature, in order to see the
method combinations. You can specify a signature here by either:

• Choosing a signature using the Method Signatures dialog, as described
in “Signatures button” on page 227.

• Typing the signature list directly and clicking .

The method combinations for the relevant method are displayed in the list of
method combinations.

15.2.4 List of method combinations

The main list in the method combinations view shows method combinations
for the signature specified in the Arguments Types: box.

• Selecting any method in the list displays its description in the Descrip-
tion: list.

• Double-clicking on any method in the list displays its source code defi-
nition in the editor, if it is available.

You can operate on any number of selected methods in this area using the
commands in the Methods menu. See “Performing operations on the current
function or selected methods” on page 225 for details.

15.2.5 Description list

The Description list displays a description of any method selected in the list of
method combinations. The same items of information are shown as in the
methods view; see “Description list” on page 224.

To operate on any of the items displayed in this area, select them and choose a
command from the Description menu. This menu contains the standard com-
mands described in “Performing operations on selected objects” on page 48.
You can operate on more than one item at once by making a multiple selec-
tion.

15.2 Examining information about combined methods
15.2.6 Restricting displayed signatures by class

The Method Signatures dialog was introducted in “Signatures button” on
page 227. You can display this dialog by clicking Signatures... in the Generic
Function Browser.

By default, the Method Signatures dialog displays the signatures of all meth-
ods defined on the generic function. When there are many methods, or when
the distinction between different classes is not clear, this can be confusing.

To simplify the display, you can restrict the signatures displayed to a chosen
class and its superclasses. To do this, enter the name of the chosen class into
the Restricted Class box. You can click which allows you to select from a
list of all class names which begin with the partial input you have entered. See
“Completion” on page 61 for detailed instructions. As with similar text input
 229

15 The Generic Function Browser

230
panes in the IDE, click to confirm your choice, to cancel the current set-
ting.

Figure 15.4 Restricting the signatures by class

Once you have made a choice, only those signatures that contain the specified
class or one of its superclasses are listed in the Signatures restricted to... panel
of the dialog. This simplified display is useful when there are a large number
of complicated signatures.

Be aware of the difference between this approach and the use of the Argument
box in the Signatures panel. Restricting signatures confines the signatures
offered in the dialog by means of the class of the signatures.

Click to display the signatures for all methods defined once again.

15.3 Configuring the Generic Function Browser
15.3 Configuring the Generic Function Browser
Choose Works > Tools > Preferences... or click , and then select Generic Func-
tion Browser in the list on the left side of the Preferences dialog.

Using the options in the Sort panel, you can sort the items in the Generic Func-
tion Browser as you can in many of the other tools in the LispWorks IDE.

Unsorted Displays items in the order they are defined in.

By Method Qualifier

Sorts items by the CLOS qualifier of the method. This
groups together any :before, :after, and :around
methods.

By Name Sorts items alphabetically by name. This is the default
setting.

By Package Sorts items alphabetically by package name.

For more information on sorting items, see “Sorting items in views” on page
52.

You can also set the process package of the Generic Function Browser, and
choose to hide package names in the display, using the Package box. See “Dis-
playing packages” on page 45 for full details.

You can also control whether the Generic Function Browser displays the his-
tory toolbar by the option Show Toolbar, as described in “Toolbar configura-
tions” on page 26.
 231

15 The Generic Function Browser

232

16

16 The Search Files tool
16.1 Introduction
The Search Files tool gives you a convenient way of performing searches on
directories, individual files or systems. You can create a Search Files tool by
choosing Works > Tools > Search Files or clicking in the Podium or use the
keyboard accelerator described in “Displaying tools using the keyboard” on
page 23. You can also start context-dependent searches, for example by choos-
ing Edit > Search Files... or Systems > Search Files..., or from editor command
such as Meta+X Search Files.
233

16 The Search Files tool

234
Out of necessity, this chapter makes some references to other tools in the envi-
ronment which you may not yet be familiar with. However, this chapter does
not assume any prior knowledge of these tools.

Figure 16.1 The Search Files tool

The Search Files tool has the following areas:

• The toolbar contains a dropdown list that chooses the kind of search to
perform (Plain Directory was used in the screenshot above). There are
also buttons to start and stop a search, and to perform a query replace
operation on the matched lines.

• The Search Specifications area lets you specify what to search for and
where to search. This area is filled in or partly filled in automatically
when you start a context-dependent search. You can also enter suitable
values directly, or modify the existing values.

16.2 Performing searches
• The filter area lets you restrict the search results displayed in the main
area.

• The main area displays the results of the last search in a tree. You can
expand each file to showed the matched lines within it.

16.2 Performing searches
You can use the Search Files tool in two different ways.

• You can enter details of where to search and what to search for directly
into the tool and click the button. This is described in more detail in
“Entering Search Specifications directly” on page 235.

• You can use an Editor command or menu command that starts a con-
text-dependent search. This is described in more detail in “Using con-
text-dependent searches” on page 243.

All kinds of search other than Grep use a LispWorks regular expression
(regexp). For details of the syntax of LispWorks regular expressions see "Regu-
lar expression searching" in the LispWorks Editor User Guide.

All kinds of search other than Grep actually operate on editor buffers (see
“Displaying and swapping between buffers” on page 175) rather than files.
The Search Files tool creates buffers when needed, which involves some over-
head. Therefore if you are searching a large number of files (or a number of
large files) which are not already opened in the Editor, a Grep search is best
because it operates directly on the files.

While the tool is searching, you can examine the results but you cannot
change the search specifications. To stop a search, click the button in the
toolbar.

16.2.1 Entering Search Specifications directly

To enter the search specifications directly, decide which kind of search to per-
form from the dropdown list in the toolbar and then fill in the boxes in the
Search Specifications area. The different search kinds are described below. You
can also hide the search specifications by choosing Hide Search Area from the
dropdown list in the toolbar.
 235

16 The Search Files tool

236
16.2.1.1 Plain Directory searches

A Plain Directory search is used to search for a particular regexp in all files
whose names match a particular pattern. Enter the regexp in the Regexp
Search String box and enter a set of filename patterns in the Filenames pattern
box. You can press Up or Down in the Filenames pattern box to complete physi-
cal directory components, as described in “Completion” on page 61.

The filename pattern should be a complete filename and can use the following
syntax to make it match more than one file:

• Use * within the pattern to match any sequence of characters in a direc-
tory or file name.

• Use ** within the the directory part of the pattern to match any number
of subdirectories.

Here are some examples of filename patterns:

. Matches all files in the root directory.

subdir/*.txt

Matches all txt files in root/subdir.

examples/**/*.lisp

Matches all lisp files in root/examples and its subdi-
rectories. This is similar to the pattern shown in Figure
16.1.

**/*zork*/*.bmp

Matches all bmp files in any directory under the root
directory that contains zork in its name

See also the Match flat file-namestring option in “Search Parameters” on page
247 for additional information.

If a filename pattern is a directory then all files in that directory are searched.

Check Case sensitive to make the search match only the case of letters exactly
as entered.

Check All files to ignore any list of File Types in the Preferences.

16.2 Performing searches
16.2.1.2 Root and Patterns searches

A Root and Patterns search is used to search for a particular regexp in all files
whose names match one or more patterns within a directory. Enter the regexp
in the Regexp Search String box, the starting directory in the Root Directory box,
and a set of filename patterns in the Pattern List box.

You can press Up or Down in the Root Directory box to complete physical direc-
tory components, as described in “Completion” on page 61.

Figure 16.2 A Roots and Patterns search

You can search subdirectories by including directory components (including
wild components) in the the Pattern List box.

Multiple filename patterns can be entered, separated by semicolons. Spaces
before and after each pattern are ignored. Each filename pattern should be a
 237

16 The Search Files tool

238
complete filename and can use the following syntax to make it match multiple
files:

• Use * within the pattern to match any sequence of characters in a direc-
tory or file name.

• Use ** within the the directory part of the pattern to match any number
of subdirectories.

• Use {name1,name2,...} to match any one of name1, name2 and so on.
Spaces before and after each name are ignored.

Here are some examples of pattern lists:

images/*.* ; icons/*.*

{images,icons}/*.*

Both of these patterns match all files in the root/images and the root/icons
directories.

**/{images,icons}/sunrise.{bmp,jpg,jpeg}

**/images/sunrise.{bmp,jpg,jpeg} ; **/icons/
sunrise.{bmp,jpg,jpeg}

Both of these patterns match all files with the name sunrise.bmp, sun-
rise.jpg or sunrise.jpeg in a directory named icons or images, anywhere
in the root directory.

{maj,min}or-events/{*-name,date}/*.txt

major-events/{*-name,date}/.txt ; minor-events/{*-name,date}/.txt

{maj,min}or-events/date/*.txt ; {maj,min}or-events/*-name/*.txt

Each of these three patterns matches all .txt files which are in a directory
date or a directory that ends with -name in the major-events or minor-
events directories.

See also the Match flat file-namestring option in “Search Parameters” on page
247 for additional information.

If a filename pattern is a directory then all files in that directory are searched.

Check Case sensitive to make the search match only the case of letters exactly
as entered, as illustrated above.

16.2 Performing searches
Check All files to ignore any list of File Types in the Preferences.

16.2.1.3 System Search

A System Search is used to search for a particular regexp in all the files refer-
enced by a LispWorks defsystem definition. Enter the regexp in the Regexp
Search String box and the system names in the System Names box. Multiple
system names can be entered, separated by semicolons.

Check Case sensitive to make the search match only the case of letters exactly
as entered.

You can also do a System Search in a "system" defined by another source code
manager such as ASDF, if you have configured LispWorks appropriately. See
“ASDF Integration” on page 417 for the details.
 239

16 The Search Files tool

240
16.2.1.4 Known definitions searches

You can use the Search Files tool to search in all files known to contain defini-
tions. To do this, select Known Definitions in the the dropdown list in the tool-
bar. Then complete your other search specifications and click the button.

Figure 16.3 A Known Definitions search

A file is known to contain definitions in one of two ways:

• A file was loaded and executed a defining form which was recorded by
the source location system. The associated source files are searched
when the list value of the variable dspec:*active-finders* contains
the keyword :internal.

• The file is recorded as a location in a tags database. Such files are
searched when the list value of the variable dspec:*active-finders*
contains the path of the tags database.

16.2 Performing searches
See "Dspecs: Tools for Handling Definitions" in the LispWorks User Guide and
Reference Manual for more information about definition recording and tags
databases.

16.2.2 Searching editor buffers

You can use the Search Files tool to search in all currently open editor buffers.
To do this, select Opened Buffers in the the dropdown list in the toolbar. Then
complete your other search specifications and click the button.

16.2.2.1 Grep searches

A Grep search is used to run an external program to search files and show the
results in the tool. Enter the working directory for the external program in the
 241

16 The Search Files tool

242
Root Directory box and the complete command line of the external program in
the Grep Command box.

Figure 16.4 A Grep search

The external program is typically grep, but other programs can be used as
long as they print the matched lines in this format:

filename:line-number line-text

When using grep you generally need to pass the -n option and the filename
argument /dev/null to force it to print the file and line number in all cases.
This is done automatically when you invoke the Search Files tool by the Editor
command Grep.

16.2 Performing searches
16.2.3 Using context-dependent searches

Context dependent searches take some information from the current window
and invoke the Search Files tool to perform the search. There are various Edi-
tor commands and menu commands that start a context-dependent search, as
described below.

16.2.3.1 Context-dependent searches using Editor commands

Search Files

Prompts for a search string and directory pattern and
then performs a Plain Directory or Root and Patterns
search. If an existing Search Files tool is reused by this
command and was last doing a Root and Patterns
search, then the directory pattern is split to fill the
boxes. Otherwise, a Plain Directory search is performed
using the directory pattern. If the directory pattern ends
in a slash, then the default pattern is added to the end
(see “Search Parameters” on page 247).

Search Files Matching Patterns

Prompts for a search string, root directory and set of
filename patterns and then performs a Root and Patterns
search.

Search System

Prompts for a search string and system name and then
performs a System Search.

Grep Prompts for command line arguments to pass to grep
and then performs a Grep search. The grep command is
created from these arguments, with a -n option and the
filename argument /dev/null as mentioned in “Grep
searches” on page 241.

16.2.3.2 Context-dependent searches using menu commands

Edit > Search Files...
 243

16 The Search Files tool

244
Opens a Search Files tool in for a Plain Directory or Root
and Patterns search, using the directory associated with
the current tool (in particular, the directory of the buffer
displayed in an Editor tool).

If an existing Search Files tool is reused by this com-
mand and was last doing a Root and Patterns search,
then the directory is placed in the Root Directory box.
Otherwise, the directory is placed in the Filename Pat-
terns box for a Plain Directory search with the default
pattern added to the end (see “Search Parameters” on
page 247).

Systems > Search Files...

Prompts for a regexp and performs a System Search in
the currently selected system.

16.2.3.3 Search History

The Search Files tool keeps a history of previous searches and their results.
You can revisit these searches using the and buttons as described in
“The history list” on page 43.

16.3 Viewing the results
The results of a search are displayed in the main area of the tool, grouped by
file. The file name, the number of matches in that file and the directory are
shown. Select a file and expand it to see the line number and text of each line
of that file that matches. You can configure the tool to expand the items as they
are added as shown in “Display” on page 249.

16.3.1 Displaying in an Editor
Double-click on the filename to open an Editor tool showing that file
and show the first match in that file. Similarly, double-click on the line
number to show that line in the Editor. Items that have been edited are
shown with a different icon. You can change an item to show as edited

16.4 Modifying the matched lines
or not edited using the Mark Edited and Mark Not Edited commands on the
context menu.

The Editor command Next Search Match can be used to move to the next
item in the last Search Files tool that you used.

16.3.2 Linking to an Editor

You can arrange for an Editor tool to immediately display one of the search
matches when you select it. To do this, choose Link to Editor from the context
menu in the main area of the Search Files tool. To remove the link, choose Link
to Editor from the context menu again.

Note: this is equivalent to using Edit > Link from > Search Files 1 in the Editor
tool.

16.3.3 Filtering the results

Use the Filter area to restrict the displayed results by a plain string match or a
regular expression match, as described in “Filtering information” on page 56.

The filter applies to the text in the match, not to the line number or file names.

16.3.4 Hiding certain results

When there are many results it can be useful to hide some which you know to
be uninteresting. Select the lines you wish to hide, raise the context menu and
choose Hide (or press the Delete key).

To restore hidden lines to the display, choose Unhide Others from the context
menu.

16.4 Modifying the matched lines
After a search you might want to perform a replace operation within the
matches, for example to rename a function or add a missing package prefix
throughout your source code.
 245

16 The Search Files tool

246
To do this, click or choose Query Replace... from the context menu in the
results area to raise the Query replace in matched lines dialog.

Figure 16.5 The Query replace in matched lines dialog

Enter a regular expression to replace in the Regexp to replace: box. Enter the
replacment text in the Replace by: box, and click OK.

For each of the matched lines that also matches the regular expression, an Edi-
tor tool displays the file with a prompt in the Echo Area. Type ’y’ or ’n’ to
make the replacement or not, for each match in turn.

Save the modified the editor buffers (see “Opening, saving and printing files”
on page 187) to commit your replacements to disk.

16.5 Configuring the Search Files tool
Various aspects of the Search Files tool's behavior and display can be config-
ured. To do this, select Works > Tools > Preferences... and then select Search
Files in the list on the left side of the Preferences dialog.

16.5 Configuring the Search Files tool
16.5.1 Search Parameters

In the Search Parameters view of the Search Files preferences you can config-
ure some aspects of searching operations.

Figure 16.6 Setting Search Parameter Preferences

Enter a file name pattern to add when invoking the tool from an Editor com-
mand in the Pattern to add when no file name is specified box.

Check Match flat file-namestring if you want the tool to match filename compo-
nent of patterns as a flat string, rather than a name and type. If this option is
not selected, then any text after the final . in the filename is treated as the type
and is only matched by similar text after the . in the pattern. For example,
when Match flat file-namestring is not selected, the pattern dir/*p matches
interp.exe, where the name interp ends with p but does not match
 247

16 The Search Files tool

248
file.lisp, where the name file ends with e. Conversely, when Match flat
file-namestring is selected, dir/*p matches file.lisp, where the file-
namestring file.lisp ends with p, but does not match interp.exe, where
the file-namestring interp.exe ends with e.

You can specify a limit on the size of files to search in the Maximum file size to
search box. This limit represents the maximum file size in bytes, and typical
values can be selected from the dropdown list. If larger files are found during
a search, they are skipped and a message ...files skipped because they
are bigger than... appears at the top of the results in the main area.

You can specify a limit on the number of matches displayed by the tool in the
Maximum number of matches box. Typical values can be selected from the drop-
down list. If more matches are found during a search, you are asked whether
to stop searching.

16.5 Configuring the Search Files tool
16.5.2 Display

You can configure the display of search results using the Display view.

Figure 16.7 Setting Display Preferences

Choose a color to display the text of unedited lines that show a match in a file.

Choose a color to display the text of edited lines that show a match in a file.

Check Display a filter to display a box that can be used to restrict which results
are displayed. This shown by default.
 249

16 The Search Files tool

250
Check Expand items to list the matches as they are found to cause the items
grouped under each file to be expanded while the search is running. The
default is to leave them collapsed, allowing you to expand them yourself.

Under Files shown: you can choose how the name of each matching file is dis-
played in the main results area. The values are:

With separate filename and directory

Displays the filename at the start and the complete
directory name at the end.

As complete names

Displays the full name of the file.

Relative to the search root

Displays the name of the file relative to the root direc-
tory specified in the search parameters.

16.5 Configuring the Search Files tool
16.5.3 File Types

You can add specify which file types to search in the File Types view.

Figure 16.8 Setting File Types Preferences

Check Use exclude list if you want to exclude certain file types even though
they match the pattern in the Search Specifications boxes. Enter the patterns to
exclude in the Exclude box, with multiple patterns separated by whitespace.

Check Use include list if you want to only include certain file types, even if the
pattern in the Search Specifications should allow other types. Enter the pat-
 251

16 The Search Files tool

252
terns to include in the Include box, with multiple patterns separated by
whitespace.

You cannot choose both of these options simultaneously.

16.5.4 The External Grep Program

By default, for Grep searches the tool runs grep on Unix/Linux/FreeBSD/
Mac OS X and a specific supplied grep.exe on Microsoft Windows. The
actual searching utility used can be configured with the variable lw:*grep-
command*.

The arguments passed to the searching utility are constructed using the values
of lw:*grep-fixed-args* and lw:*grep-command-format*. It is not be nec-
essary to alter the default values unless you use a non-default value of
lw:*grep-command* or have a non-standard grep installed.

See the LispWorks User Guide and Reference Manual for details of these Search
Files tool configuration variables.

17

17 The Inspector
The Inspector is a tool for examining objects in your Lisp image. You can also
use the Inspector to modify the contents of objects, where this is possible.

To raise an Inspector window, choose Works > Tools > Inspector or click in
the Podium.

17.1 Inspecting the current object
It is sometimes more natural to invoke an Inspector on some object you are
analysing. You can do this in several ways, including using the Inspect menu
command.

1. To create an example object, in the Listener, evaluate:

(make-instance 'capi:list-panel :items '(1 2 3 4))

2. Choose Values > Inspect from the Listener’s menu bar to see the Inspec-
tor tool window illustrated in Figure 17.1.

Note that you have not displayed the list-panel on screen yet. You will do
that in a few minutes.

Another way to inspect the current object (that is, the value of cl:*) in the Lis-
tener is the keystroke Ctrl+C Ctrl+I.
253

17 The Inspector

254
A general way to inspect the current object in most of the LispWorks tools is to
click the button.

Figure 17.1 Inspector

17.2 Description of the Inspector tool
The Inspector has the following areas:

• At the top of the Inspector, the tab of the main view shows the type of
the object being inspected. There may be other views depending on the
type of this object. For class instances, there is a Local Slots view.

• A Filter area provides a way of filtering out those parts of an object that
you are not interested in.

17.3 Filtering the display
• A list of attributes and values shows the contents of the object.

17.2.1 Adding a Listener to the Inspector

A small listener pane can be added to the Inspector tool, allowing you to eval-
uate Common Lisp forms in context, without having to switch back to the
main Listener tool itself. To add the listener pane to the Inspector, choose Show
Listener from the context menu in the attributes and values area.

17.3 Filtering the display
Sometimes an object may contain so many items that the list is confusing. If
this happens, use the Filter box to limit the display to only those items you are
interested in.

This continued example below shows you how to filter the attributes list so
that the only slots displayed are those you are interested in.

3. Type rep in the Filter box.

Figure 17.2 Using filters to limit the display in the Inspector
 255

17 The Inspector

256
You can immediately see the slots with names that include "rep". The names of
the slots, together with their slot values for the object being inspected, are dis-
played in the attributes list. For example, the representation slot currently con-
tains nil.

17.3.1 Updating the display

In some circumstances your object might get modified while you are inspect-
ing it, so you should be aware that the inspector display might need to be
refreshed. To see this:

4. In the Listener tool call (capi:contain *), where the value of * should
be the list-panel instance that you are inspecting.

5. In the Inspector choose the command Works > Refresh or click the
button. The Inspector should now appear as in Figure 17.3 below.

Figure 17.3 The filtered inspector display, refreshed

Notice that the representation slot no longer has value nil. The list-panel
instance has been modified by calling capi:contain, and the Inspector has
been updated to show the new slot value.

17.4 Examining objects
17.4 Examining objects
The attributes and values list is the most interesting part of the Inspector. Each
item in this list describes an attribute of the inspected object by displaying its
name (the first field in each entry) and the printed representation of its value
(the second field). For example, the inspection of a CLOS object yields a list of
its slots and their values. The description is called an inspection.

When inspecting instances of CLOS classes, you can choose to display only
those slots which are local to the class. By default, all slots are displayed,
including those inherited from superclasses of the class of the inspected
object.

6. Click to remove the filter

7. Select the Local Slots tab

Several slots defined locally for a list-panel are listed.

Figure 17.4 Inspector showing local slots of a CLOS instance
 257

17 The Inspector

258
As well as CLOS instances, other objects including lists and hashtables have
multiple views available in the Inspector. For example, a list can be viewed as
a plist, alist, cons or list if it has the appropriate structure.

17.5 Operating upon objects and items
The Object and Slots submenus allow you to perform the standard action com-
mands on either the object being inspected, or the slot values selected in the
main list. The commands available are largely identical in both menus, and so
are described together in this section.

17.5.1 Examination operations

The standard action commands are available in both the Object and Slots
menus, allowing you to perform a variety of operations on the current object
or any items selected in the list. For full details of the standard action com-
mands, see “Performing operations on selected objects” on page 48.

17.5.1.1 Example

Consider the following example, where a closure is defined:

(let ((test-button (make-instance 'capi:button)))
 (defun is-button-enabled ()
 (capi:button-enabled test-button)))

This has defined the function is-button-enabled, which is a closure over the
variable test-button, where the value of test-button is an instance of the
capi:button class.

1. Enter the definition of the closure shown above into a Listener.

2. Choose Values > Inspect.

The Inspector examines the symbol is-button-enabled.

3. Click on the FUNCTION slot to select the closure.

4. Choose Slots > Inspect to inspect the value in the selected slot.

The closure is inspected.

17.5 Operating upon objects and items
17.5.1.2 Recursive inspection

You can also double-click on an item in the attributes list to inspect its value.
Most users find this the most convenient way to recursively inspect objects.

To return to the previous inspection, choose History > Previous or click in
the toolbar.

17.5.2 Examining attributes

The Slots > Attributes submenu allows you to apply the standard action com-
mands (described in “Operations available” on page 49) to the attributes
rather than the values of those attributes.

For example, the Slots > Attributes > Inspect command causes the Inspector to
view the attributes, rather than the values, of the selected slots. This is useful
when inspecting hash tables or lists, since the attributes (keys) might be com-
posite objects themselves.

17.5.3 Tracing slot access

The Slots > Trace submenu provides four commands. When inspecting a
CLOS object, code which accesses the selected slot may be traced using these
commands.

Break on Access causes a break to the debugger if the slot is accessed for
read or write, either by a defined accessor or by slot-value.

Break on Read causes a break to the debugger if the slot is accessed for
read, either by a defined accessor or by slot-value.

Break on Write causes a break to the debugger if the slot is accessed for
write, either by a defined accessor or by slot-value.

Untrace turns off tracing on the selected slot.

The Object > Trace submenu provides the same four options, but these com-
mands control the tracing of all the slots in the object.

17.5.4 Manipulation operations

As well as examining objects in the Inspector, you can destructively modify
the contents of any composite object.
 259

17 The Inspector

260
This sort of activity is particularly useful when debugging; you might inspect
an object and see that it contains incorrect values. Using the options available
you can modify the values in the slots, before continuing execution of a pro-
gram.

Choose Slots > Set to change the value of any selected slots. A dialog appears
into which you can type a new value for the items you have selected. Previ-
ously entered values are available via a dropdown in this dialog.

Choose Slots > Paste to paste the contents of the clipboard into the currently
selected items.

17.5.4.1 Example

This example takes you through the process of creating an object, examining
its contents, and then modifying the object.

1. Create a button as follows:

(setq button1 (make-instance 'capi:button))

2. Choose Values > Inspect in the Listener to inspect the button in the
Inspector.

3. In the Listener, use the CAPI accessor button-enabled to find out
whether button1 is enabled.

(capi:button-enabled button1)

This returns t. So we see buttons are enabled by default. The next step is
to destructively modify button1 so that it is not enabled, but first we
will make the Inspector display a little simpler.

4. Choose Works > Tools > Preferences... and select Inspector in the list on
the left side of the Preferences dialog. You can now change the current
package of Inspector tools.

5. In the Package box, replace the default package name with CAPI and
click OK.

This changes the process package of the Inspector to the CAPI package,
and the package name disappears from all the slots listed. This makes
the display a lot easier to read.

17.5 Operating upon objects and items
6. In the Inspector, type enabled into the Filter box.

Button objects have a large number of slots, and so it is easier to filter out
the slots that you do not want to see than to search through the whole
list. After applying the filter, only one slot is listed.

7. Select the slot enabled.

8. Choose Slots > Set...

A dialog appears into which you can type a new value for the slot
enabled.

Figure 17.5 Entering a new slot value

9. Note that previously entered forms are available via a dropdown in this
dialog. Enter nil (or select it from the history) and click on OK.

The attributes and values area shows the new value of the enabled slot.

10. Click on the button. This removes the filter and displays all the slots
once again.

11. To confirm that the change happened, type the following in the Listener.
You should be able to recall the last command using Alt+P or History >
Previous.

(capi:button-enabled button1)

This now returns nil, as expected.
 261

17 The Inspector

262
The next part of this example shows you how you can modify the slots of an
object by pasting in the contents of the clipboard. This example shows you
how to modify the text and font of button1.

12. Type the following into the Listener and then press Return:

"Hello World!"

13. Choose Values > Copy to copy the string to the clipboard.

14. Select the TEXT slot of button1 in the Inspector.

15. Choose Slots > Paste to paste the "Hello World!" string into the text
slot of button1.

This sets the text slot of button1 to the string.

16. Enter the following into the Listener and press Return:

(let ((font (capi:simple-pane-font button1)))
 (if font
 (gp:find-best-font
 button1
 (apply 'gp:make-font-description
 (append (list :size 30)
 (gp:font-description-attributes
 (gp:font-description
 (capi:simple-pane-font button1))))))
 (gp:make-font-description :size 30)))

This form simply calculates a large font object suitable for the button
object.

17. Choose Values > Copy to copy the font to the clipboard.

18. Select the FONT slot of button1 in the Inspector.

19. Choose Slots > Paste to paste the font into the font slot of button1.

20. Confirm the effect of these changes by displaying the button object. To
do this, choose Object > Listen.

This transfers the button object back into the Listener. As feedback, the
string representation of the object is printed in the Listener above the
current prompt. The object is automatically transferred to the * variable
so that it can be operated on.

21. In the Listener, type the following:

17.6 Configuring the Inspector
(capi:contain *)

This displays a window containing the button object. Note that the text now
reads “Hello World!”, as you would expect, and that the font size is larger
than the default size size for buttons. Note further that you cannot click on the
button; it is not enabled. This is because you modified the setting of the
enabled slot in the earlier part of this example.

17.5.5 Copying in the Inspector

You can easily copy objects in the inspector, ready for pasting into other tools.

To copy the inspected object itself use Object > Copy

To copy a slot value use Slots > Copy.

To copy an attribute use Slots > Attributes > Copy.

Similarly you can use Object > ClipSlots > Clip or Slots > Attributes > Clipto place
the object itself, a slot value or an attribute on the Object Clipboard, so that
you can conveniently retrieve them later. See Chapter 9, “The Object Clip-
board” for details.

17.6 Configuring the Inspector
The Inspector Preferences allows you to set different display options includ-
ing the standard options for sorting items in the main list, displaying package
information and controlling display of the Inspector toolbar, together with
some additional options specific to the Inspector. To do this, raise the Prefer-
 263

17 The Inspector

264
ences dialog using one of the methods described in “Setting preferences” on
page 28 and select Inspector in the list on the left side of the dialog.

Figure 17.6 The General tab of the Inspector Preferences

Choose the sort option that you require from those listed in the Sort panel:

By Item Sorts items alphabetically according to the printed rep-
resentation of the item.

By Name Sorts items alphabetically according to their names.
This is the default setting.

By Package Sorts items alphabetically according to the packages of
the name field.

Unsorted Leaves items unsorted. This displays them in the order
they were originally defined.

17.6 Configuring the Inspector
In the Package box, specify the name of the process package for the Inspector.
Select Show Package Names if you want package names to be displayed in the
Inspector. See “Displaying packages” on page 45 for more details.

The Maximum panel contains options to let you configure the amount of infor-
mation displayed in the Inspector.

Choose a value from the Attribute Length drop-down list box to limit the length
of any attributes displayed in the main list (that is, the contents of the first col-
umn in the list). The default value is 100 characters, and the minimum allow-
able value is 20 characters.

Choose a value from the Items drop-down list box to limit the number of items
displayed in the main list. By default, 500 items are shown.

If you inspect an object that has more than the maximum number of items,
then the excess items are grouped together in a list which itself becomes the
last item displayed in the main list. Double-clicking on this inspects the
remaining items for the object.

If necessary, the Inspector splits any remaining items into several lists, all
linked together in this fashion. For instance, if you limit the maximum num-
ber of items to 10, and inspect an object with 24 items, the Inspector displays
the first 10, together with an 11th entry, which is a list containing the next ten
items. Double-clicking on this shows the next ten items, together with an 11th
 265

17 The Inspector

266
entry, which is a list containing the last four items. This is illustrated in Figure
17.7 below.

Figure 17.7 Displaying an object with more items than can be displayed

17.7 Customizing the Inspector
17.7 Customizing the Inspector
The Inspector Preferences provides two additional options in the listener
view.

Figure 17.8 The Listener tab of the Inspector Preferences

These options control the interaction between the listener pane of the Inspec-
tor, if it has one, and the Inspector itself.

See “Adding a Listener to the Inspector” on page 255 for details of how to add
a listener pane in the Inspector.

Check Bind $ to the current inspector object to bind the variable $ to the current
object in the Inspector in the listener.

Check Automatically inspect listener values to inspect listener values automati-
cally.

Both these options are checked by default.

17.8 Creating new inspection formats
There is a default inspection format for each Lisp object.

The Inspector tool can be customized by adding new inspection formats. To
do this, you need to define new methods on the generic function get-
inspector-values. See the LispWorks User Guide and Reference Manual for a
full description.

get-inspector-values takes two arguments: object and mode, and returns 5
values: names, values, getter, setter and type.

object The object to be inspected.
 267

17 The Inspector

268
mode This argument should be either nil or eql to some
other symbol. The default format for inspecting any
object is its nil format. The nil format is defined for all
Lisp objects, but it might not be sufficiently informative
for your classes and it may be overridden.

names The slot-names of object.

values The values of the slots corresponding to names. The
Inspector displays the names and values in two columns
in the scrollable pane.

getter This is currently ignored. Use nil.

setter This is a function that takes four arguments: an object
(of the same class as object), a slot-name, an index (the
position of the slot-name in names, counting from 0),
and finally a new-value. (It is usual to ignore either the
slot-name or the index.) This function should be able to
change the value of the appropriate slot of the given
object to the new-value.

type This is the message to be displayed in the message area
of the Inspector. This is typically either mode or—if mode
is nil—then the name of the class of object.

17.8.1 Example

Consider the following implementation of doubly-linked lists.

(in-package "DLL")

(defstruct (dll (:constructor construct-dll)
 (:print-function print-dll))
 previous-cell
 value
 next-cell)

17.8 Creating new inspection formats
(defun make-dll (&rest list)
 (loop with first-cell
 for element in list
 for previous = nil then cell
 for cell = (construct-dll :previous-cell cell
 :value element)
 doing
 (if previous
 (setf (dll-next-cell previous) cell)
 (setq first-cell cell))
 finally
 (return first-cell)))

(defun print-dll (dll stream depth)
 (declare (ignore depth))
 (format stream "#<dll-cell ~A>" (dll-value dll)))

You can inspect a single cell by inspecting the following object:

(dll::make-dll "mary" "had" "a" "little" "lamb")

The resulting Inspector shows three slots: dll::previous-cell with value
nil, value with value "mary" and dll::next-cell with value #<dll-cell
had>.

In practice, you are more likely to want to inspect the whole doubly-linked list
in one window. To do this, define the following method on get-inspector-
values.

(in-package "DLL")

(defun dll-root (object)
 (loop for try = object then next
 for next = (dll-previous-cell try)
 while next
 finally
 (return try)))

(defun dll-cell (object number)
 (loop for count to number
 for cell = object then (dll-next-cell cell)
 finally
 (return cell)))
 269

17 The Inspector

270
(defmethod lw:get-inspector-values ((object dll)
 (mode (eql 'follow-links)))
 (let ((root (dll-root object)))
 (values
 (loop for cell = root then (dll-next-cell cell)
 for count from 0
 while cell
 collecting count)
 (loop for cell = root then (dll-next-cell cell)
 while cell
 collecting (dll-value cell))
 nil
 #'(lambda (object key index new-value)
 (declare (ignore key))
 (setf (dll-value (dll-cell (dll-root object) index)) new-
value))
 "FOLLOW-LINKS")))

Inspecting the same object with the new method defined displays a new tab in
the Inspector "Follow Links". This shows five slots, numbered from 0 to 4 with
values "mary" "had" "a" "little" and "lamb".

The following example adds another method to get-inspector-values
which inspects cells rather than their value slots. The cells are displayed in a
"Fllow Cells" tab of Inspector. The setter updates the next-cell. Use this new
mode to inspect the "lamb" cell - that is, double-clink on the "lamb" cell in
the "Follow Cells" tab - and then set its next-cell slot to (make-dll "with"
"mint" "sauce").

(in-package "DLL")

17.8 Creating new inspection formats
(defmethod lw:get-inspector-values
 ((object dll) (mode (eql 'follow-cells)))
 (let ((root (dll-root object)))
 (values
 (loop for cell = root then (dll-next-cell cell)
 for count from 0
 while cell
 collecting count)
 (loop for cell = root then (dll-next-cell cell)
 while cell
 collecting cell)
 nil
 #'(lambda (object key index new-value)
 (declare (ignore key))
 (setf (dll-next-cell (dll-cell (dll-root object) index)) new-
value))
 "FOLLOW-CELLS")))

The extended sentence can now be inspected in the follow-links mode.
 271

17 The Inspector

272

18

18 The Symbol Browser
18.1 Introduction
The Symbol Browser allows you to view symbols in your LispWorks image
found by a match on symbol names, in a manner analogous to the Common
Lisp function apropos but with additional functionality.

You can restrict the search to specified packages. You can then filter the list of
found symbols based on their symbol name, restrict it to those symbols with
function or variable definitions and so on, and restrict it based on the symbols’
accessibility.

The Symbol Browser also displays information about each selected symbol
and allows you to perform operations on the symbol or objects associated
with it, including transferring these to other tools in the LispWorks IDE by
using standard commands.

To raise a Symbol Browser, choose Works > Tools > Symbol Browser or click
in the Podium.

Also the editor command Meta+X Apropos raises a Symbol Browser tool
using the supplied substring to match symbol names.

Also the standard action command Browse Symbols Like is available in Con-
text menus and also in the Expression menu of editor-based tools. This com-
273

18 The Symbol Browser

274
mand raises a Symbol Browser using the current symbol to match symbol
names.

18.2 Description of the Symbol Browser
18.2 Description of the Symbol Browser
 275

18 The Symbol Browser

276
Figure 18.1 The Symbol Browser

18.2 Description of the Symbol Browser
The Symbol Browser has five main areas.

18.2.1 Search Settings

The main search setting is the Regexp: box.

Enter a string or regular expression in the Regexp: box and press Return or
click the button. This will match symbol names of interned symbols in a
similar way to apropos, except that it is a case-insensitive regular expression
match.

The remainder of this section describes the other search settings.

18.2.1.1 Packages

By default symbols in all packages are listed, but you can restrict the search to
certain packages by clicking the Select Packages... button. This raises a dialog
which you use in just the same way as the Profiler’s Selected Packages dialog -
see “Choosing packages” on page 366 for instructions.

When you have selected packages only those symbols whose home package is
amongst the selected packages are shown, unless Accessibility (see “Accessi-
bility” on page 277) is set to All, in which case symbols inherited by the
selected packages are also shown.

18.2.1.2 Type

By default all symbols found are displayed but you can restrict this to func-
tions, classes, structures, variables, constants, keywords or others (meaning
the complement of all these subsets). If you wish to see, for instance, only
those symbols with a function or macro definition then select Functions in the
Type option pane.

18.2.1.3 Accessibility

You can also restrict the display to just those symbols which are present, exter-
nal or internal in their home package. Select the appropriate item in the Acces-
sibility option pane:

All Show all accessible symbols in the selected packages
 277

18 The Symbol Browser

278
Present Show all present symbols in the selected packages

Externals Only Show only external symbols in the selected packages

Internals Only Show only internal symbols in the selected packages

18.2.2 Filter area

The filter area allows you to filter the display of the symbols list in the same
way as other tools. See “Filtering information” on page 56 for details.

18.2.3 Symbols list

The symbols list displays the matched symbol names alongside the name of
their home package. You can sort the list by clicking on the Home Package or
Name header at the top of each column.

On GTK+ the foreground text of unselected items in the symbols list is colored
according to definitions on the symbol, as follows:

Green fbound, and also declared special

Purple fbound, and also a class

Red fbound

Blue declared special

White declared special, and a class

Orange a class

Black no definition

Select an item in the symbols list to display information about the symbol in
the Description and Documentation areas, or to perform an operation on it. You
may select multiple symbols, but in this case only the description and docu-
mentation for the first selected symbol is displayed.

You can transfer the selected symbol or symbols to other tools, for example by
Symbol > Listen or Symbol > Inspect.

To unintern the selected symbol or symbols, choose Symbol > Unintern....

18.3 Configuring the Symbol Browser
18.2.4 Description area

When you select an item in the Symbols list, various properties of that symbol
are displayed in the Description area as appropriate. These can include:

Home Package: The name of the symbol’s home package and an indica-
tion of whether it is external or internal

Name: The symbol name

Definitions: The dspec class names for any definitions known to the
system

Visible In: The names of the packages (other than the home pack-
age) that the symbol is visible in

Function: The function or macro function

Lambda List: The lambda list of the function or macro, if known to
the system

Plist: The symbol plist, if non-nil

Value: The value of a variable or constant

Class: The class name, representing the class object

Select an item in the Description list to perform an operation on it. For exam-
ple, if the symbol has a class definition, you can select the Class: item and do
Description > Listen to transfer the class object to the Listener tool.

18.2.5 Documentation area

When you select an item in the Symbols list, documentation known to the sys-
tem is displayed in the Documentation area.

Note: the documentation shown is that returned by the Common Lisp func-
tion documentation.

18.3 Configuring the Symbol Browser
Using the Symbol Browser Preferences, shown in Figure 18.2 below, you can
configure some properties of the tool. Choose Works > Tools > Preferences.... or
 279

18 The Symbol Browser

280
click and select Symbol Browser in the list on the left side of the Preferences
dialog.

Figure 18.2 Symbol Browser Preferences

To configure the default sort order for the Symbols list, select Unsorted, By
Name or By Package under Sort.

To configure the display of package names in the Description area, alter the
Package settings as described in “Displaying packages” on page 45.

You can control whether the Symbol Browser displays the history toolbar by
the option Show Toolbar, as described in “Toolbar configurations” on page 26.

Click OK in the Preferences dialog to see your changes in the Symbol Browser
tool and save them for future use.

19

19 The Interface Builder
The Interface Builder helps you to construct graphical user interfaces (GUIs)
for your applications. You design and test each window or dialog in your
application, and the Interface Builder generates the necessary source code to
create the windows you have designed.

You then need to add callbacks to the generated code to connect each window
to your application routines.

As you create each window, it is automatically displayed and updated on-
screen, so that you can see what you are designing without having to type in,
evaluate, or compile large sections of source code.

As well as making code development significantly faster, the Interface Builder
allows you to try out different GUI designs, making it easier to ensure that the
final design best suits your users’ needs.

Note: the Interface Builder is intended for testing interface designs and for
generation of the initial versions of the source code that implements your
design. It is not suitable for the complete development of complex interfaces.
Eventually you should work on the source code directly using the Editor tool
(see Chapter 13, “The Editor”).

Note: the Interface Builder is available on Windows, Linux, x86/x64 Solaris
and FreeBSD platforms only.
281

19 The Interface Builder

282
19.1 Description of the Interface Builder
The Interface Builder has three views that help you to design a window.

• The layouts view is used to specify the elements in each window or dia-
log of an application.

• The menus view is used to create menus and menu items for each win-
dow of an application.

• The code view lets you examine the source code that is automatically
generated as you create an interface.

The Interface Builder has its own menu bar, containing commands that let you
work with a loaded interface, or any of its components.

To create an Interface Builder, choose Tools > Interface Builder from the
podium.

Figure 19.1 The Interface Builder

Because the Interface Builder generates source code which uses the CAPI
library, this chapter assumes at least a minimum knowledge of the CAPI. See
the CAPI User Guide and the CAPI Reference Manual for details.

A complete example showing you how to use the Interface Builder to design
an interface, and how to integrate the design with your own code, is given in
Chapter 20, “Example: Using The Interface Builder”. You are strongly advised

19.2 Creating or loading interfaces
to work through this example after reading this chapter, or in conjunction
with it.

19.2 Creating or loading interfaces
In the context of this chapter, an interface refers to any single window which is
used in an application. Thus, an editor, an Open File dialog, or a confirmer
containing an error message are all examples of interfaces. The GUI for a com-
plete application is liable to comprise many interfaces. You can load as many
different interfaces into the Interface Builder as you like, although you can
only work on one interface at once. More formally, the class capi:interface
is the superclass of all CAPI interface classes, which is the set of classes used
to create elements for on-screen display. You can load any code which defines
instances of this class and its subclasses into the Interface Builder.

Once you have invoked the Interface Builder, you can create new interfaces, or
load any that have already been saved in a previous session. You must load or
create at least one interface before you can proceed.

19.2.1 Creating a new interface

When you first start the Interface Builder, a new interface is created for you
automatically. You can also choose File > New or click on to create a new
interface. A blank window, known as the interface skeleton, appears on-screen,
 283

19 The Interface Builder

284
as shown in Figure 19.2. The interface skeleton contains no layouts or panes,
or menus.

Figure 19.2 Skeleton window

You can use File > New to create as many interfaces as you want; they are all
displayed as soon as you create them. Since you can only work on one inter-
face at a time, use the History > Items submenu or the and toolbar but-
tons to switch between different interfaces that are currently loaded in the
Interface Builder.

As an alternative, type the name of an interface directly into the Interface text
box and press Return to create a new interface, or to switch to an interface
which is already loaded.

19.2.2 Loading existing interfaces

In the Interface Builder, choose File > Open... or click to load an existing
interface. You can load any CAPI interface, whether it is one that you have
designed using the Interface Builder, or one that has been hand-coded using
the CAPI. You can load as many interfaces as you want, and then use the His-
tory > Items submenu to swap between the loaded interfaces when working on
them.

19.2 Creating or loading interfaces
To load one or more existing interfaces:

1. Ensure the Interface Builder is the active window, and choose File >
Open....

A file prompter dialog appears.

2. Choose a file of Common Lisp source code.

You should choose a file that contains the source code for at least one CAPI
interface. If the file does not contain any such definitions, a dialog appears
informing you of this.

Once you have chosen a suitable file, for example the LispWorks library file
examples/capi/buttons/buttons.lisp, a dialog appears listing all the
interface definitions that have been found in the file, as shown in Figure 19.3.
This lets you choose which interface definitions to load into the Interface
Builder. By default, all the definitions are selected. You can select as many or
as few of the listed interfaces as you like; the All or None buttons can help to
speed your selection. Click Cancel to cancel loading the interfaces altogether.

Figure 19.3 Choosing which interfaces to load into the Interface Builder
 285

19 The Interface Builder

286
3. Select just the Button-Test interface and click OK to load it into the Inter-
face Builder.

Note: the File > Open... command in other tools does not display this dialog. To
load an interface definition, ensure the Interface Builder window is active.

19.3 Creating an interface layout
The default view in the Interface Builder is the layouts view, as shown in Fig-
ure 19.4. You use this view to specify the entire GUI, with the exception of the
menus. Click the Layouts tab to swap to this view from any other in the Inter-
face Builder.

Figure 19.4 Displaying the layouts in the Interface Builder

The Interface Builder has three sections in the layouts view.

19.3.1 Interface box

The interface text box displays the name of the current interface; the interface
that you are currently working on. Note that there may be several other inter-
faces loaded into the Interface Builder, but only one can be current.

19.3 Creating an interface layout
To switch to another loaded interface, or to create a new interface, type the
name of the interface into this area and press Return. You might find it useful
to type just a few characters and then press Up or Down to invoke in-place com-
pletion. The interface you specify appears and its layouts are shown in the
Interface Builder.

19.3.2 Graph area

This area displays, in graph form, the CAPI elements of the current interface.

By default, the graph is laid out from left to right. The main interface name is
shown at the extreme left, and the layouts and elements defined for that inter-
face are shown to the right. The hierarchy of the layouts (that is, which ele-
ments are contained in which layouts, and so on) is immediately apparent in
the graph.

An item selected in the graph can be operated on by commands in the Object
menu in the Interface Builder’s menu bar. This menu contains the standard
action commands described in Section 3.8 on page 48, as well as a number of
other commands described throughout this chapter.

To remove a layout or pane from your interface definition, select it in the
graph area and choose Edit > Cut or press the toolbar button.

19.3.3 Button panels

At the bottom of the Interface Builder is a tab layouts, each tab of which con-
tains a number of buttons. These tabs list the classes of CAPI elements that can
be used in the design of your interface.

• Click the Layouts tab to see the different types of layout that you can use
in an interface. This is the default tab and is displayed when you first
switch to the layouts view. All other elements must be contained in lay-
outs in order for them to be displayed.

• There are five different types of Panes tab: Basic, Text Input, Graph, Edi-
tor and Range. Click on each tab to see the different types of pane that
you can use in an interface. Note that Basic Panes includes Divider,
allowing you to add dividers to column and row layouts.
 287

19 The Interface Builder

288
• Click the Buttons tab to see the different types of button that you can
use in an interface.

• Click the Pinboard Objects tab to see the different types of pinboard
object that you can use in an interface.

• Click the Interfaces tab to see a number of types of pre-defined interface
objects that you can use in an interface. These are interfaces which are
already used in the LispWorks IDE, and which may be useful in your
own applications.

The precise list of items available depends on the package of the current inter-
face. To change this package, choose Interface > Package... and specify a pack-
age name in the dialog that appears. You must specify a package which
already exists in the Lisp image.

Note: The package of the current interface is not necessarily the same as the
current package of the Interface Builder. Like all other tools, the Interface
Builder has its own current package, which affects the display of symbol
names throughout the tool; see “Specifying a package” on page 47 for details.
By contrast, the package of the current interface is the package in which the
interface is actually defined. The window elements which are available for the
current interface depend on the visibility of symbols in that package. By
default, both the package of the current interface and the current package of
the Interface Builder are set to CL-USER by default.

An element chosen from any of these areas can be operated on by commands
in the Object menu. This menu contains the standard action commands
described in “Performing operations on selected objects” on page 48.

19.3.4 Adding new elements to the layout

To add a new element to the layout, click the relevant button in any of the tabs
in the button panel. The element is added as the child of the currently selected
graph node. If nothing is currently selected, the element is added as the child
of the last selected node.

Because construction of the interface layout is performed by selecting CAPI
elements directly, you must be familiar with the way that these elements are
used in the construction of an interface.

19.4 Creating a menu system
For instance, the first element to add to an interface is likely to be a CAPI lay-
out element, such as an instance of the row-layout class or column-layout
class. Not surprisingly, these types of element can be found in the Layouts tab
of the button panel. Elements such as buttons or panes (or other layouts) are
then added to this layout. In order to generate CAPI interfaces, it is important
to understand that all window elements must be arranged inside a layout ele-
ment in this way.

When you add an element to the design, two windows are updated:

• The graph in the layout view is updated to reflect the position of the
new element in the hierarchy.

• The interface skeleton is updated; the element that has been added
appears.

When you add an item, an instance of that class is created. By default, the val-
ues of certain attributes are set so that the element can be displayed and the
hierarchy layout updated in a sensible way. This typically means that name
and title attributes are initialized with the name of the element that has been
added, together with a numeric suffix. For instance, the first output pane that
is added to an interface is called Output-Pane-1. You should normally
change these attribute values to something more sensible, as well as set the
values of other attributes. See Section 19.6 for details about this.

For a practical introduction to the process of creating an interface using the
Interface Builder, see Chapter 20, “Example: Using The Interface Builder”.

19.3.5 Removing elements from a layout

To remove an element from a layout, select it in the graph area of the Layouts
view and choose Edit > Cut or press the toolbar button.

19.4 Creating a menu system
The menus view of the Interface Builder can be used to define a menu system
for the current interface. Click the Menus tab to switch to the menus view from
 289

19 The Interface Builder

290
any other view in the Interface Builder. The Interface Builder appears as
shown in Figure 19.5.

Figure 19.5 Displaying the menu structure of an interface

The menus view has two areas, together with six buttons which are used to
create different menu elements. As with layouts, it is important to understand
how CAPI menus are constructed. See the CAPI User Guide for details.

19.4.1 Interface box

This box is identical to the Interface box in the layouts view. See Section 19.3.1
for details.

19.4 Creating a menu system
19.4.2 Graph area

The graph area in the menus view is similar to the graph area in the layouts
view. It displays, in graph form, the menu system that has been defined for
the current interface. Menu items are displayed as the children of menus or
menu components, which in turn are displayed as the children of other
menus, or of the entire menu bar.

Like the layouts view, a new menu element is added as the child of the cur-
rently selected item in the graph, or the last selected element if nothing is cur-
rently selected.

19.4.3 Adding menu bars

A single menu bar is created in any new interface by default. This appears in
the graph area as a child of the entire interface.

If you decide to delete the menu bar for any reason, use the Menu Bar button to
create a new one.

19.4.4 Adding menus

To add a menu, click Menu on the button bar at the bottom of the Interface
Builder. Each menu must be added as the child of the menu bar, or as the child
of another menu or menu component. In the first case, the new menu is visible
on the main menu bar of the interface. Otherwise, it appears as a submenu of
the relevant menu.

Newly created menus cannot be selected in the interface skeleton until menu
items or components are added to them.

By default, new menus are called MENU-1, MENU-2 and so on, and appear in
the interface skeleton as Menu-1, Menu -2 and so on, as relevant. See Section
19.6 for details on how to change these default names.

19.4.5 Adding menu items

To add a menu item to the current interface, click Item on the button bar. Each
menu item must be added as the child of either a menu or a menu component.
 291

19 The Interface Builder

292
If added as the child of a menu component, new items have a type appropri-
ate to that component; see Section 19.4.6 for details.

By default, new menu items are named ITEM-1, ITEM-2, and so on, and are
displayed in the interface skeleton as Item-1, Item-2 and so on, as relevant. See
Section 19.6 for details on how to change these default names.

19.4.6 Adding menu components

Menu components are an intermediate layer in the menu hierarchy between
menus and menu items, and are used to organize groups of related menu
items, so as to provide a better structure in a menu system.

There are three types of menu component which can be defined using CAPI
classes:

• Standard menu components.

• Radio components.

• Check components.

19.4.6.1 Standard menu components

A standard menu component can be used to group related menu commands
that would otherwise be placed as direct children of the menu bar they popu-
late. This offers several advantages.

• Related menu items (such as Cut, Copy, and Paste) are grouped with
respect to their code definitions, as well as their physical location in an
interface. This encourages a logical structure which makes for a good
design.

• Using standard menu components to group related items is particularly
useful when re-arranging a menu system. Groups of items may be
moved in one action, rather than moving each item individually.

• Grouping items together using standard menu components adds a sep-
arator which improves the physical appearance of any menu.

Click Component in the button bar to add a standard menu component to the
current interface. Menu components must be added as the children of a menu.

19.4 Creating a menu system
Menu components are not visible in the interface skeleton until at least one
item or submenu has been added, using the Item or Menu buttons.

Menu items added to a standard menu component appear as standard menu
items in that component.

19.4.6.2 Radio components

A radio component is a special type of menu component, in which one, and
only one, menu item is active at any time. For any radio component,
capi:item-selected always returns t for one item , and nil for all the oth-
ers. The menu item that was selected last is the one that returns t.

Radio components are used to group together items, only one of which may
be chosen at a time.

Click Radio Component in the button bar of the Interface Builder to add a radio
component to the current interface. Radio components must be added as the
children of a menu, and, like standard menu components, are not visible in
the interface skeleton until items have been added. To add an item to a radio
component, click Item. New items are automatically of the correct type for
radio components. Note that you cannot add a submenu as an item in a radio
component.

The way that a selected radio component is indicated on-screen depends on
the operating system or window manager you are running; for example it
may be a dot or tick to the left of the selected item. On some systems, a dia-
mond button is placed to the left of every item, and this is depressed for the
item which is currently selected.

Like standard menu components, separators divide radio components from
other items or components in a given menu.

19.4.6.3 Check components

Like radio components, check components place constraints on the behavior
of their child items when selected. For each item in a check component,
capi:item-selected either returns t or nil, and repeatedly selecting a
given item toggles the value that is returned. Thus, check components allow
 293

19 The Interface Builder

294
you to define groups of menu items which can be turned on and off indepen-
dently.

An example of a check component in the LispWorks IDE are the commands in
the Tools > Customize menu, available from any window in the environment.

Click Check Component in the button bar of the Interface Builder to add a
check component to the current interface. Like other components, check com-
ponents must be added as the children of a menu, and are not visible until
items have been added. Use the Item button to add an item to a check compo-
nent; it is automatically given the correct menu type. Note that you cannot
add a submenu as an item in a radio component.

Like radio components, the way that check components are indicated on-
screen depend on the window manager or operating system being used. A
tick to the left of any items which are “switched on” is typical. Alternatively, a
square button to the left of check component items (depressed for items which
are on) may be used.

19.4.7 Removing menu objects

To remove a menu object from your interface definition, select it in the Graph
area of the Menus view and choose Edit > Cut or press the toolbar button.

19.5 Editing and saving code
As you create an interface in the Interface Builder, source code for the interface
is generated. You can use the code view to examine and, if you want, edit this
code. You can also save the source code to disk for use in your application.
This section discusses how to edit and save the code generated by the Inter-
face Builder, and discusses techniques which let you use the Interface Builder
in the most effective way.

19.5.1 Integrating the design with your own code

As your GUI evolves from design into the implementation phase, you will
need to integrate code generated by the Interface Builder with your own code
to produce a working application.

19.5 Editing and saving code
At one extreme, you can attempt to specify the entire GUI for an application
using the Interface Builder: even callbacks, keyboard accelerators for menu
items, and so on. This way the source code for the entire GUI would be gener-
ated automatically. However, this is not the recommended approach.

Instead you should use the Interface Builder for the basic design and initial
code generation only. Once you have created an interface skeleton for your
window or dialog that you are happy with, augment the automatically-gener-
ated source code with hand-written code. At this stage, you will use the Editor
tool, rather than the Interface Builder, to develop that window or dialog.
 295

19 The Interface Builder

296
19.5.2 Editing code

Click the Code tab to switch to the code view. You can use this view to display
and edit the code that is generated by the Interface Builder. The Interface
Builder appears as shown in Figure 19.6.

Figure 19.6 Displaying source code in the Interface Builder

Like the other views in the Interface Builder, an Interface: box at the top of the
code view displays the name of the current interface. See Section 19.3.1 for
details.

The rest of this view is dedicated to an editor window that displays the code
generated for the interface. Like other editor windows in the LispWorks IDE,
all the keyboard commands available in the built-in editor are available in the
Code area.

19.5 Editing and saving code
19.5.3 Saving code

There are several ways to save the code generated by the Interface Builder into
files of source code. Any files that you save are also displayed as buffers in the
editor.

Choose File > Save or click to save the current interface. If it has already
been saved to a file, the new version is saved to the same file. If the interface
has not been saved before, you are prompted for a filename. After saving, the
file is displayed in the editor.

Choose File > Save As... to save the current interface to a specific file. This com-
mand always prompts you for a filename; if the interface has not been saved
before, this command is identical to File > Save, and if the interface has already
been saved, this command saves a copy into the file you specify, regardless of
the file it was originally saved in. After saving, the file is displayed in the edi-
tor.

Choose File > Save All to save all of the interfaces that have been modified. A
dialog allows you to specify precisely which interfaces to save. Choosing this
command is analogous to choosing File > Save individually for each of the
interfaces you want to save. If there are any interfaces which have not been
saved previously, you are prompted for filenames for each one.

Choose File > Revert to Saved to revert the current interface to the last version
saved.

Choose File > Close to close the current interface. You are prompted to save
any changes if you have not already done so. The interface name is removed
from the History > Items submenu.

Individual interface definitions are saved in an intelligent fashion. You can
specify the same filename for any number of interfaces without fear of over-
writing existing data. Interface definitions which have not already been saved
in a given file are added to the end of that file, and existing interface defini-
tions are replaced by their new versions. Source code which does not relate
directly to the definition of an interface is ignored. In this way, you can safely
combine the definitions for several interfaces in one file, together with other
source code which might be unrelated to the user interface for your applica-
tion.
 297

19 The Interface Builder

298
Conversely, when loading interfaces into the environment (using File > Open
or), you do not have to specify filenames which only contain definitions of
interfaces. The Interface Builder scans a given file for interface definitions,
loads the definitions that you request, and ignores any other code that is in the
file. See Section 19.2.2 for details on loading interfaces into the Interface
Builder.

This approach to saving and loading interface definitions ensures that your
working practices are not restricted in any way when you use the Interface
Builder to design a GUI. You have complete control over the management of
your source files, and are free to place the source code definitions for different
parts of the GUI wherever you want; the Interface Builder can load and save
to the files of your choice without failing to load interface definitions and
without overwriting parts of the source code which do not relate directly to
the GUI.

19.6 Performing operations on objects
There are a large number of operations you can perform on any object selected
in the graph of either the layouts view or the menus view. These operations
allow you to refine the design of the current interface.

The techniques described in this section apply to an object selected in either
the layouts view or the menus view. Any changes made are automatically
reflected in both the Interface Builder and the interface skeleton.

19.6.1 Editing the selected object

As in any other tool in the LispWorks IDE , you can use the commands in the
Edit menu to edit the object currently selected in any graph of the Interface
Builder. See Section 3.3 on page 39 for full details on the commands available.

19.6.2 Browsing the selected object

As in other tools, you can transfer any object selected in the graph into a num-
ber of different browsers for further examination. The standard action com-
mands that let you do this are available in the Object menu. See Section 3.8 on
page 48 for details.

19.6 Performing operations on objects
19.6.3 Rearranging components in an interface

Rearranging the components of an interface in the most appropriate way is an
important part of interface design. This might involve rearranging the layouts
and window elements in an interface, or it might involve rearranging the
menu system.

The main way to rearrange the components of an interface (either the layouts
or the menu components) is to use the cut, copy and paste functions available,
as described below.

To move any object (together with its children, if there are any):

1. Select the object in a graph in the Interface Builder (either the layouts
view or the menus view, depending on the type of objects you are rear-
ranging).

2. Choose Edit > Cut or press .

The selected object, and any children, are transferred to the clipboard.
The objects are removed from the graph in the Interface Builder, and the
interface skeleton.

3. Select the object that you want to be the parent of the object you just cut.

You must make sure you select an appropriate object. For instance, in the
Layouts view you must make sure you do not select a window element
such as a button panel or output window, since window elements can-
not have children. Instead, you should probably select a layout.

4. Choose Edit > Paste or press .

The objects that you transferred to the clipboard are pasted back into the inter-
face design as the children of the newly selected object. The change is immedi-
ately visible in both the graph and the interface skeleton.

Note: You can copy whole areas of the design, rather than moving them, by
selecting Edit > Copy or press instead of Edit > Paste. This is useful if you
have a number of similar areas in your design.

The menu commands Object > Raise and Object > Lower can be used to raise or
lower the position of an element in the interface. This effects the position of
the element in the interface skeleton, the layout or menu hierarchy, and the
 299

19 The Interface Builder

300
source code definition of the interface. Note that these commands are avail-
able from the menu bar in the Interface Builder, rather than from the podium.

19.6.4 Setting the attributes for the selected object

Choose Object > Attributes from the Interface Builder’s menu bar to display the
Attributes dialog for the selected object. This is shown in Figure 19.7. You can
also double-click on an object to display this dialog.

19.6 Performing operations on objects
The Attributes dialog lets you set any of the attributes available to the selected
object, such as symbol names, titles, and callbacks. This gives you a high
degree of control over the appearance of any object in the interface.

Figure 19.7 Setting the attributes of the selected object

The precise list of attributes displayed in the dialog depends on the class of
the object that you selected in the graph of the Interface Builder.
 301

19 The Interface Builder

302
To set an attribute, type its value into the appropriate text box in the Attributes
dialog. Click OK to dismiss the Attributes dialog when you have finished set-
ting attribute values.

Because of the large number of attributes which can be set for any class of object, the
Attributes dialog shows the attributes in six general categories, as follows:

• Basic attributes.

• Advanced attributes.

• Title attributes.

• Callbacks attributes.

• Geometry attributes.

• Style attributes.

19.6.4.1 Basic attributes

These are the attributes that you are most likely to want to specify new values
for. This includes the following information, depending on the class of the
selected object:

• The name of the object.

• The items available (for list panels).

• The orientation and borders (for layouts).

• The text representation (for menu items).

19.6.4.2 Advanced attributes

This category lets you specify more advanced attributes of the selected object,
such as its property list.

19.6.4.3 Title attributes

This category lets you specify the title attributes of the selected object. These
attributes affect the way an object is titled on-screen.

19.7 Performing operations on the current interface
19.6.4.4 Callbacks attributes

This category lets you specify any of the callback types available for the
selected object. Many objects do not require any callbacks, and many require
several.

19.6.4.5 Geometry attributes

This category lets you control the geometry of the selected object, by specify-
ing any of the available height and width attributes. Geometry attributes are
not available for menu objects.

19.6.4.6 Style attributes

This category lets you specify advanced style settings for the selected object.
This includes the following attributes:

• The font used to display items in a list.

• The background and foreground colors of an object.

• The mnemonic used for a menu item.

19.7 Performing operations on the current interface
You can perform a number of operations on the current interface, using the
commands in the Interface menu in the Interface Builder.

19.7.1 Setting attributes for the current interface

Choose Interface > Attributes to set any of the attributes for the current inter-
face. An Attributes dialog similar to that shown in Figure 19.7 appears. You
set attributes for the current interface in exactly the same way as you do for
any selected object in the interface. See Section 19.6.4 for details.

19.7.2 Displaying the current interface

As already mentioned, an interface skeleton is automatically displayed when
you load an interface into the Interface Builder, and any changes you make to
the design are immediately reflected in the skeleton. There are also a number
 303

19 The Interface Builder

304
of commands which give you more control over the way that the interface
appears on-screen as you work on its design.

Choose Interface > Raise to bring the interface skeleton to the front of the dis-
play. This command is very useful if you have a large number of windows on-
screen, and want to locate the interface skeleton quickly.

Choose Interface > Regenerate to force a new interface skeleton to be created.
The existing interface skeleton is removed from the screen and a new one
appears. This command is useful if you have changed the size of the window,
and want to see what the default size is; this is especially applicable if you
have altered the geometry of any part of the interface while specifying
attribute values.

Regenerating the interface is also useful if you set an interface attribute which
does not cause the interface skeleton to be updated automatically. This can
happen, for instance, if you change the default layout of the interface, which
you might want to specify if an interface has several views.

Many interfaces in a GUI are used in the final application as dialogs or con-
firmers. For such interfaces, the interface skeleton is not necessarily be the
most accurate method of display. Choose Interface > Display as Dialog or Inter-
face > Confirmer to display the current interface as a dialog or as a confirmer, as
appropriate. Dialogs are displayed without a menu bar, and with minimal
window decoration, so that the window cannot be resized. Confirmers are
similar to dialogs, but have OK and Cancel buttons added to the bottom of the
interface. To remove a dialog, click in its Close box.

19.7.3 Arranging objects in a pinboard layout

Most types of layout automatically place their children, so that you do not
have to be concerned about the precise arrangement of different objects in an
interface. Pinboard land static ayouts, however, allow you to place objects
anywhere within the layout.

Objects which are added to a pinboard layout using the Interface Builder have
borders drawn around them in the interface skeleton. You can interactively
resize and place such objects by selecting and dragging these borders with the
mouse.

19.8 Performing operations on elements
When you have rearranged the objects in a pinboard layout to your satisfac-
tion, choose Interface > Display Borders. This turns off the border display,
allowing you to see the appearance of the final interface.

Note: You can only move and resize objects in a pinboard layout when bor-
ders are displayed in the interface skeleton. Choosing Interface > Display Bor-
ders toggles the border display.

19.8 Performing operations on elements
You can transfer any element selected in either the Layouts or Menus views
into a number of different browsers for further examination. This is done
using the standard actions commands that are available in the Object menu.
See “Performing operations on selected objects” on page 48 for details. These
commands are a useful way of finding out more information about the CAPI
objects you use in an interface.
 305

19 The Interface Builder

306

20

20 Example: Using The Interface
Builder
This example shows you how to use the Interface Builder to design a simple
interface. It explains how to create the layout and the menu system, and dem-
onstrates some of the attributes that you can set. Finally, the interface is saved
to a file, and combined with some other simple code to produce a working
example. You are strongly advised to read Chapter 19, “The Interface
Builder”, before (or in conjunction with) this chapter. It is also useful, though
not essential, if you are familiar with the editor (Chapter 13), the listener
(Chapter 21), and Common Lisp systems.
307

20 Example: Using The Interface Builder

308
The final interface created is shown in Figure 20.1. It consists of a column lay-
out which contains a graph pane, a display pane, and a list panel.

Figure 20.1 Example interface

Any select action performed in either the graph pane or the list panel is
described in the display pane. This includes the following actions:

• Selecting any item

• Deselecting any item

• Extending the selection (by selecting more than one item)

20.1 Creating the basic layout
Double-clicking any item in either the graph pane or the list panel displays a
dialog which shows which item you double-clicked.

Lastly, there are menu commands available which display, in a dialog, the cur-
rent selection in either pane. Choose Selection > Graph to see the currently
selected items in the graph pane, and choose Selection > List Panel to see the
currently selected items in the list panel.

20.1 Creating the basic layout
This section shows you how to create the basic layout for your interface, with-
out specifying any attributes. Normally, this stage would take you only a few
seconds. The process is described in detail here, to illustrate the way that the
Interface Builder ensures that the most appropriate item is selected in the
graphs of both the layouts and menus views, so as to minimize the steps you
need to take when creating an interface.

1. Create an Interface Builder, if you do not already have one.

2. Choose File > New or click on the toolbar button.

A new, empty, interface skeleton appears.

3. If the layouts view is not displayed, click the Layouts tab in the Interface
Builder.

To begin, you need to add the main column layout to the interface using
the buttons panels at the bottom of the Interface Builder. The Layouts tab
at the bottom of the Interface Builder (as distinct from the Layouts tab
you use to switch to the layouts view), lists the different types of layout
that you can add to an interface.

4. Click Column in the button panel.

A column layout object is added as a child of the interface object. Noth-
ing appears in the interface skeleton yet, since a column layout is a con-
tainer for other window objects, and cannot itself be displayed. Note
that the column layout remains selected in the layout graph. This is
because column layouts are objects which can themselves have children,
and the Interface Builder assumes that you are going to add some chil-
dren next.
 309

20 Example: Using The Interface Builder

310
5. In the button panel, click the Graph Panes tab, and then click Graph to
add a graph pane to the interface.

The graph pane object is added as the child of the column layout, and a
graph pane appears in the interface skeleton.

6. Next, click the Basic Panes tab and then click Display.

7. Next, click List Panel.

The objects that you specify are added to the interface, and the interface
skeleton is updated accordingly. Note that the column layout object
remains selected throughout. You have now created the basic layout for
the interface.

Next, suppose that you decide to add a title to the left of the display pane. You
might want to do this make it clear what information is being shown in the
display pane.

To do this, you can create a new row layout, add a title pane to it, and then
move the existing display pane into this new row-layout. In addition, you
must reorganize some of the elements in the interface.

1. Ensure that Column-Layout-1 is still selected in the Layout hierarchy
area.

The new row layout needs to be added as a child of the column layout.

2. In the button panel at the bottom of the Interface Builder, click the Lay-
outs tab to display the available layouts once more.

3. Click on Row.

Notice that the new row layout remains selected, ready for you to add
objects to it.

4. Click the Basic Panes tab again, and click Title.

Next, you must move the display pane you have already created, so that
it is contained in the new row layout.

5. In the Layout hierarchy area, select Display-Pane-1 and choose Edit >
Cut.

6. Select Row-Layout-1 and choose Edit > Paste.

20.2 Specifying attribute values
The items have already been placed in the row layout in the positions
you want them. However, the row layout itself has been added to the
bottom of the interface; you want it to be in the same position as the dis-
play pane you initially created. To do this, move the list panel to the bot-
tom of the interface.

7. Select List-Panel-1 and choose Object > Lower from the menu bar on
the Interface Builder itself.

You have now finished creating the layout for the example interface. The next
step is to name the elements of the interface in a sensible fashion.

20.2 Specifying attribute values
As you have already seen, the Interface Builder assigns default names such as
Row-Layout-1 to the elements you add to an interface; you usually want to
replace these with your own names. In addition, there are probably titles that
you want to add to the interface; you can see the default titles that have been
created by looking at the interface skeleton. The next stage of the example
shows you how to change these default names and titles.

Changing the name or title of an element is actually just a case of changing the
value assigned to an attribute of that element, as described in Section 19.6.4 on
page 300. You would normally assign values to a number of different
attributes at once, rather than concentrating on the names and titles of ele-
ments. The example is structured in this way to give you an idea of the sort of
working practices you might find it useful to adopt when generating interface
code.

To recap, the layout hierarchy of the example interface is shown in Figure 20.2.
To ensure that you can understand this layout easily in the future, it is impor-
tant to assign meaningful names and titles to the elements it contains now.

Figure 20.2 Layout hierarchy of the example interface
 311

20 Example: Using The Interface Builder

312
1. Select the Interface-1 object and then use the Interface > Attributes
menu item to show the attributes dialog.

The Attributes dialog appears as shown in Figure 20.3.

Figure 20.3 Attributes dialog for the example interface

Notice that the Name attribute of the interface has the value INTERFACE-
1, and the Title attribute has the value "Interface-1".

20.2 Specifying attribute values
Note: If this is not the first interface you have created in the current ses-
sion, the number is different.

2. Delete the value in the Name: text box, and type ib-example.

3. Delete the value in the Title: text box, and type "Example Interface".

4. Click OK to dismiss the Attributes dialog and update the interface.

The name of the interface is now displayed as Ib-Example in the Layout
hierarchy area, and the title of the interface skeleton changes to Example
Interface.

Note: Case is not significant in the Name attribute, because it is a Com-
mon Lisp symbol, but it is significant in the Title attribute, which is a
string.

5. Select the Column-Layout-1 element. Double-click to display its
Attributes dialog (you will now find this more convenient than using the
Object > Attributes menu item). Change the value of its Name attribute to
main-layout and click OK.

Now change the names of the other objects in the interface.

6. Select the graph pane and change its Name attribute to graph, and its
Interaction attribute to :extended-selection. Click OK.

7. Select the list panel and change its Name attribute to list, and its Inter-
action attribute to :extended-selection. Do not click OK yet.

The value of the Interaction attribute allows you to select several items
from the list panel and the graph pane, using the appropriate method for
your platform.

8. Change the Items attribute of the list panel to the following list of
strings:

'("One" "Two" "Three" "Four" "Five" "Six" "Seven" "Eight")

9. Click OK.

The row layout you created contains objects which are used solely to dis-
play information.

10. Select the row layout object and change its Name attribute to
display-layout.
 313

20 Example: Using The Interface Builder

314
11. Change the Adjust attribute of display-layout to :center. Click OK.

This value of the Adjust attribute centers the title pane and the display
pane vertically in the row layout, which ensures their texts line up along
the same baseline.

In the working example, the display-layout object is going to show
information about the current selection, so you need to change the
names and titles of the objects it contains accordingly.

12. Select the title pane and change its Name attribute to selection-title
and its Text attribute to "Selection:". Click OK.

13. Select the display pane and change its Name attribute to selection-
text, and its Text attribute to "Displays current selection". Click
OK.

This specifies a text string that is displayed when the interface is initially
created. This string disappears as soon as you perform any action in the
interface.

The layout hierarchy is now as shown in Figure 20.4. The names that you have
assigned to the different objects in the interface make the purpose of each ele-
ment more obvious.

Figure 20.4 Layout hierarchy with names specified

20.3 Creating the menu system
Next, you need to create a menu system for the example interface. This section
shows you how to create the basic objects which comprise it.

1. Click the Menus tab in the Interface Builder to switch to the menus view.

A menu bar is created automatically when you create a new interface. To
create the menu system for the example interface, you need to add a
menu which contains two items.

20.3 Creating the menu system
2. Select the Menu-Bar object in the Menu hierarchy area.

3. Click the Menu button (near the bottom of the Interface Builder) to create
the menu, then click Item twice to create the two items in the menu.

Notice that, as in the layouts view, an object remains selected if it can
itself have children. This means that creating the basic menu structure is
a very quick process.

Next, you need to name the objects you have created. As with the layouts, this
is achieved by specifying attribute values.

4. Make sure that the Menu-1 menu is still selected, and use the Object >
Attributes menu command to display its Attributes dialog.

5. Change its Name attribute to selection-menu. Do not click OK yet.

As well as specifying the Name attribute for the menu you created, you
need to change the Title attribute of each object you created. To do this,
you must ensure that the appropriate attribute categories are displayed
in the Attributes dialog.

6. Click on the Title tab in the Attributes dialog.
 315

20 Example: Using The Interface Builder

316
The Attributes dialog changes to appear as shown in Figure 20.5.

Figure 20.5 Displaying title attributes for a menu

7. In the Title tab view of the Attributes dialog, change the Title attribute to
"Selection". Click OK.

The Title attribute is used to specify the title of the menu that appears in
the interface itself; note the change in the interface skeleton.

Next, you need to change the attributes of the two menu items.

8. Select the "Item-1" object and press Return.

20.4 Specifying callbacks in the interface definition
9. In the Attributes dialog, change the Title attribute to "Graph" and the
Name attribute to graph-command. Click OK.

10. Double-click on the "Item-2" object to display its Attributes dialog and
change the Title attribute to "List Panel" and the Name attribute to
list-panel-command. Click OK.

You have now finished the basic definition of the menu system for your exam-
ple interface.

20.4 Specifying callbacks in the interface definition
The interface that you have designed contains a complete description of the
layouts and menus that are available, but does not yet specify what any of the
various elements do. To do this, you need to specify callbacks in the interface
definition. As you might expect, this is done by setting attribute values for the
appropriate elements in the interface.

In this example, the callbacks that you supply are calls to other functions, the
definitions for which are assumed to be available in a separate source code
file, and are discussed in Section 20.6. Note that you do not have to take this
approach; you can just as easily specify callback functions within the interface
definition itself, using lambda notation. It is up to you whether you do this
within the Interface Builder, or by loading the code in the editor. If you choose
the former, note that it may be easier to use the code view, rather than typing
lambda functions into the Attributes dialog.

20.4.1 Specifying layout callbacks and other callback information

This section shows you how to specify all the callbacks necessary for each ele-
ment in the example interface, together with other attributes that are required
for correct operation of the callback functions. You need to specify attribute
values for the display pane, the list panel and the graph pane.

1. If necessary, click the Layouts tab at the top of the Interface Builder to
display the layouts view.

2. Select Selection-Text in the layout hierarchy and display the
Attributes dialog.

3. Set the Reader attribute to selection-reader and click OK.
 317

20 Example: Using The Interface Builder

318
This reader allows the display pane to be identified by the callback code.

For the list panel, you need to specify four callbacks and a reader.

4. Select List in the layout hierarchy and display its Attributes dialog.

5. Set the Reader attribute to list-reader. Do not click OK yet.

Like the display pane, this reader is necessary so that the list panel can
be identified by the callback code.

Next, you need to specify the following four types of callback (make sure you
click the Callbacks tab):

Selection callback. The function that is called when you select a list item.

Extend callback. The function that is called when you extend the current selec-
tion.

Retract callback. The function that is called when you deselect a list item.

Action callback. The function that is called when you double-click on a list
item.

6. Now set the following attributes of the list panel.

Selection-Callback to 'update-selection-select
Extend-Callback to 'update-selection-extend
Retract-Callback to 'update-selection-retract
Action-Callback to 'display-selection-in-dialog

Click OK when done.

7. Select the Graph graph pane and display its Attributes dialog.

For the graph pane, you need to set the same four callbacks, as well as a
reader, and two other attributes that are important for the callback code
to run correctly.

8. Set the following attributes of the graph pane.

Selection-Callback to 'update-selection-select
Extend-Callback to 'update-selection-extend
Retract-Callback to 'update-selection-retract
Action-Callback to 'display-selection-in-dialog

9. Set the Reader attribute to graph-reader.

20.5 Saving the interface
10. Before you set the next callback, evaluate this form:

(defun children-function (x)
 (when (< x 8)
 (list (* x 2) (1+ (* x 2)))))

Now set the Children-Function attribute to 'children-function.

The children function defines what is drawn in the graph, and so is vital
for any graph pane. It is called when displaying the prototype interface,
so it is best to define it before setting this attribute.

11. Click OK to dismiss the Attributes dialog..

20.4.2 Specifying menu callbacks

The callbacks that are necessary for the menu system are much simpler than
for the layouts; the example interface only contains two menu commands, and
they only require one callback each.

1. Click the Menus tab to switch to the menus view.

2. Choose the "Graph" menu item, display its Attributes dialog and
change the Callback attribute to 'display-graph-selection. Click OK.

3. Choose the "List Panel" menu item, display its Attributes dialog and
change the Callback attribute to 'display-list-selection. Click OK.

20.5 Saving the interface
If you have followed this example from the beginning, the interface is now
completely specified. You can now save the source code definition in a file.

1. Choose File > Save or click to save the interface definition. Choose a
directory in the dialog that appears, and specify the filename
ib-example.lisp in the “File name” text box.

The file ib-example.lisp is displayed in an Editor tool.

20.6 Defining the callbacks
This section shows you how to create the callback functions you need to
define in order to complete the working example.
 319

20 Example: Using The Interface Builder

320
1. In an Editor tool, choose File > New or click to create a new file.

2. Choose File > Save or click to save the file. Save it in the same direc-
tory you saved ib-example.lisp, and call this new file ib-call-
backs.lisp.

3. In the editor, specify the package for the callback definitions by typing
the following into the ib-callbacks.lisp file:

(in-package "COMMON-LISP-USER")

4. Enter the function definitions given in the rest of this section.

5. Choose File > Save or click to save the file when you have entered all
the function definitions.

The functions that you need to define in this file are divided into the following
categories:

• Callbacks to update the display pane.

• Callbacks to display data in a dialog.

• Callbacks for menu items.

• Other miscellaneous functions.

20.6.1 Callbacks to update the display pane

One main function, update-selection, serves to update the display pane
whenever selections are made in the graph pane or the list panel.

(defun update-selection (type data interface)
 (setf (capi:display-pane-text (selection-reader interface))
 (format nil "~A ~A" data type)))

The following three functions are the callbacks specified whenever a select,
retract or extend action is performed in either the list panel or the graph pane.
Each function is named according to the type of callback it is used for, and it
simply calls update-selection with an additional argument denoting the
callback type.

(defun update-selection-select (&rest args)
 (apply 'update-selection "selected" args))

20.6 Defining the callbacks
(defun update-selection-retract (&rest args)
 (apply 'update-selection "deselected" args))

(defun update-selection-extend (&rest args)
 (apply 'update-selection "extended" args))

20.6.2 Callbacks to display data in a dialog

As with update-selection, one main function serves to display the data
from any action in a dialog.

(defun display-in-dialog (type data interface)
 (capi:display-message
 "~S: ~A ~S"
 (capi:interface-title interface) type data))

The function display-selection-in-dialog is the action callback for both
the graph pane and the list panel. It calls display-in-dialog, specifying one
of the required arguments.

(defun display-selection-in-dialog (&rest args)
 (apply 'display-in-dialog "selected" args))

Note: Although only one action callback is specified in the example interface,
the relevant functions have been defined in this modular way to allow for the
possibility of extending the interface. For instance, you may decide at a later
date that you want to display the information for an extended selection in a
dialog, rather than in the display pane. You could do this by defining a new
callback which calls display-in-dialog, passing it an appropriate argu-
ment.

20.6.3 Callbacks for menu items

Both menu items in the interface need a callback function. As with other call-
back functions, these are specified by defining a general callback, display-
pane-selection, which displays, in a dialog, the current selection of any
pane.
 321

20 Example: Using The Interface Builder

322
(defun display-pane-selection (reader data interface)
 (declare (ignore data))
 (capi:display-message "~S: ~S selected"
 (capi:capi-object-name
 (funcall reader interface))
 (capi:choice-selected-items
 (funcall reader interface))))

The following two functions call display-pane-selection, passing the
reader of a pane as an argument. These functions are specified as the callbacks
for the two menu items.

(defun display-graph-selection (&rest args)
 (apply 'display-pane-selection 'graph-reader args))

(defun display-list-selection (&rest args)
 (apply 'display-pane-selection 'list-reader args))

As with the other callback functions, specifying the callbacks in this way
allows for easy extension of the example.

20.6.4 Other miscellaneous functions

Graph panes require a function which is used to plot information, called the
children function. The value of the ROOTS attribute of a graph is passed as an
argument to the children function in order to start the plot. The example inter-
face uses the following simple children function. You already defined this if
you have followed the example, but add it also in ib-callbacks.lisp:

(defun children-function (x)
 (when (< x 8)
 (list (* x 2) (1+ (* x 2)))))

Note: The ROOTS attribute of a graph pane has a default value of (1). This is
generated automatically by the Interface Builder.

Finally, the function test-ib-example is used to create an instance of the
example interface.

(defun test-ib-example ()
 (capi:display (make-instance 'ib-example
 :best-height 300
 :best-width 200)))

20.7 Creating a system
20.7 Creating a system
If you have followed this example from the beginning, the interface and its
callbacks are now completely specified. Next, you can create a Common Lisp
system which integrates the interface definition with the callback code.

1. Choose File > New or click . This creates a new, unnamed file in the
editor.

2. Type the following form into this new file:

(defsystem ib-test
 (:package "CL-USER")
 :members ("ib-callbacks" "ib-example"))

This form creates a system called ib-test that contains two members;
ib-example.lisp (the file containing the interface definition) and ib-
callbacks.lisp (the file containing the callback code).

3. Choose File > Save or click to save the new file. Save it in the same
directory that you saved the ib-example.lisp and ib-call-
backs.lisp files, and call this file defsys.lisp.

20.8 Testing the example interface
You have now finished specifying the example interface and its callback func-
tions, so you can test it.

1. Choose File > Save or click to save ib-example.lisp, ib-call-
backs.lisp, and defsys.lisp if you have not already done so.

Next, you need to load the ib-test system into the environment.

2. In the editor, make sure that the file defsys.lisp is visible, and choose
File > Load to load it and define the system.

3. In the Listener, type the following form.

(load-system 'ib-test)

The ib-test system, together with its members, is loaded.

4. To test the interface, type the following form into the listener.

(cl-user::test-ib-example)
 323

20 Example: Using The Interface Builder

324
A fully functional instance of the example interface is created for you to exper-
iment with, as shown in Figure 20.1, page 308.

21

21 The Listener
The Listener is a tool that lets you evaluate Common Lisp expressions interac-
tively and immediately see the results. It is useful for executing short pieces of
Common Lisp, and extensive use is made of it in the examples given in this
manual. This chapter describes all the facilities of the Listener.
325

21 The Listener

326
21.1 The basic features of a Listener
A Listener is created automatically when you start the LispWorks IDE. You
can also create a Listener yourself by choosing Works > Tools > Listener or click
on in the Podium.

Figure 21.1 Listener

Main area.

Echo area

Tabs. Break GUI debuggerContinue Abort Backtrace

Previous
frame

Next
frame

Print
bindings

Debugger
prompt

Find
source

21.2 Evaluating simple forms
In the Listener view, the main area of the Listener contains a prompt at the left
side of the window.

Rather like the command line prompt in a Unix shell, this prompt helps you
identify the point in the Listener at which anything you type is evaluated. It
may also contain other useful information, by default this is the current pack-
age and the current number in the command history list. If your Listener is in
the debugger, as Figure 21.1, the prompt also contains a colon followed by an
integer indicating how many debugger levels have been entered.

In this chapter, the prompt is shown in most examples simply as PROMPT >.

You can click the Output tab to display the output view of the Listener; this
view displays any output that is created by the Listener, or any child processes
created from the Listener..

To familiarize yourself with the Listener, follow the instructions in the rest of
this chapter, which forms a short lesson. Note that, depending on the nature of
the image you are using, and the configuration that the image has been saved
with, the messages displayed by Lisp may be different to those shown here.

21.2 Evaluating simple forms
1. Type the number 12 at the prompt, and press Return.

In general, assume that you should press Return after typing something at the
prompt, and that you should type at the current prompt (that is, the one at the
bottom of the screen). In fact, the latter is not always necessary; “Execute
mode” on page 334 describes how to move the cursor to different places, and
thus you may not always be on the current prompt.

Any Common Lisp form entered at the prompt is evaluated and its results are
printed immediately below in the Listener.

When Common Lisp evaluates a number, the result is the number itself, and
so 12 is printed out:

PROMPT > 12
12

PROMPT >
 327

21 The Listener

328
When results are printed in the Listener, they start on the line following the
last line of input. The 12 has been printed immediately below the first prompt,
and below that, another prompt has been printed.

2. Type * at the current prompt.

PROMPT > *
12

PROMPT >

The variable * always has as its value the result of the previous expression; in
this case, 12, which was the result of the expression typed at the first prompt.
For a full description, see the Common Lisp Hyperspec. This is an HTML ver-
sion of the ANSI Common Lisp standard which is supplied with LispWorks.

3. Type (setq val 12) at the current prompt.

PROMPT > (setq val 12)
12

PROMPT >

The expression sets the variable val to 12. The result of evaluating the
form is the value to which val has been set, and thus the Listener prints
12 below the form typed at the prompt.

This is exactly the same behavior as before, when you typed a number it
was evaluated and the result printed in the Listener. What is different
this time, of course, is that Lisp has been told to “remember” that 12 is
associated with val.

4. Type val.

The form is evaluated and 12 is printed below it.

5. Type (+ val val val).

The form, which computes the sum of three vals, is evaluated, and 36 is
printed below it.

http://www.lispworks.com/reference/Hyperspec/
http://www.lispworks.com/reference/Hyperspec/

21.3 Re-evaluating forms
21.3 Re-evaluating forms
If you change val to some other number, and want to know the sum of three
vals again, you can avoid re-typing the form which computes it. To see how
this is done, follow the instructions below.

1. Type (setq val 1).

The variable val is now set to 1.

2. Press Meta+P or choose History > Previous or click .

PROMPT > (setq val 1)

The form you previously typed appears at the prompt. At this point, you
could edit this form and press Return to evaluate the edited form. For
the moment, just carry on with the next instruction.

3. Press Meta+P again, and then press Return.

PROMPT > (+ val val val)
3

PROMPT >

Pressing Meta+P a second time displayed the second to last form that you
evaluated. This time, pressing Return immediately afterwards simply re-eval-
uates the form. Note that you could have edited the recalled form before eval-
uating it. You can use Meta+P repeatedly, recalling any form that you have
evaluated in the current session.

This time the form evaluates to the number 3, because the value of val was
changed in the interim.

21.4 The debugger prompt and debugger level
When you get an error by evaluating a form in the Listener, LispWorks enters
the debugger. The first debugger prompt contains a colon followed by the
integer 1, indicating that Lisp is 1 level deep in the debugger.

Subsequent errors in the debugger increment the debugger level:
 329

21 The Listener

330
CL-USER 57 > (/ 1 0)

Error: Division-by-zero caused by / of (1 0).
 1 (continue) Return a value to use.
 2 Supply new arguments to use.
 3 (abort) Return to level 0.
 4 Return to top loop level 0.

Type :b for backtrace or :c <option number> to proceed.
Type :bug-form "<subject>" for a bug report template or :? for
other options.

CL-USER 58 : 1 > (/ 2 0)

Error: Division-by-zero caused by / of (2 0).
 1 (continue) Return a value to use.
 2 Supply new arguments to use.
 3 (abort) Return to level 1.
 4 Return to debug level 1.
 5 Return to level 0.
 6 Return to top loop level 0.

Type :b for backtrace or :c <option number> to proceed.
Type :bug-form "<subject>" for a bug report template or :? for
other options.

CL-USER 59 : 2 >

After fixing the cause of an error you should exit from the debugger, for exam-
ple by entering :a to invoke the abort restart. If you do not exit, then the next
time you get an error you will be nested more deeply in the debugger, which
is usually not desirable. Try to avoid this.

Note: If you reach debugger level 9 then LispWorks opens a console window
to run the debugger (because it assumes that the IDE is broken). In this situa-
tion you can enter the :top command and then minimize the console window
to restore the IDE Listener.

21.5 Interrupting evaluation
The button interrupts evaluation in the Listener. The break gesture key
stroke Alt+Ctrl+C (and the Interrupt Lisp button, in the GC Monitor window
in the Motif IDE only) can also be used.

21.6 The History menu
This is useful for stopping execution in the middle of a loop, or for debugging.
When the interrupt is processed, the debugger is entered, with a continue
restart available.

21.6 The History menu
The forms and commands typed at previous prompts are stored in the history
list of the Listener. It is so named because it records all the forms and com-
mands you have typed into the Listener. Many other command line systems
have a similar concept of a history. Each form or command in the history is
known as an event.

You can obtain a list of up to the last ten events in the history by displaying
the History > Items menu. To bring a previous event to the prompt, choose it
from this menu.

For more information about history lists in the LispWorks IDE, see “The his-
tory list” on page 43.

21.7 The Expression menu
The Expression menu lets you perform operations on the current expression,
that is, the symbol in which the cursor currently lies. It behaves in exactly the
same way as the Expression menu in the Editor tool. See “Current buffers, def-
initions and expression” on page 202 for details.

Choose Expression > Class to look at the class of the current expression in a
Class Browser. See Chapter 8, “The Class Browser” for full details about this
tool.

Choose Expression > Find Source to search for the source code definition of the
current expression. If the definition is found, the file is displayed in the editor
and the definition is highlighted. See Chapter 13, “The Editor” for an intro-
duction to the editor. Note that you can find only the definitions of symbols
you have defined yourself — those for which you have evaluated or compiled
the source code — not those provided by the system.

Choose Expression > Documentation to display the Common Lisp
documentation (that is, the result of the function documentation) for the cur-
rent expression. If such documentation exists, it is printed in a help window.
 331

21 The Listener

332
Choose Expression > Arguments to print the lambda list of the current expres-
sion in the echo area, if it is a function, generic function or method. This is
similar to using the keystroke Meta+=, except that the current expression is
automatically used.

Choose Expression > Value to display the value of the current expression in the
echo area.

Choose Expression > Inspect Value to inspect the value of the current expres-
sion in the Inspector tool. If the value is nil, a message is printed in the echo
area.

Choose Expression > Toggle Breakpoint to add or remove a stepper breakpoint
on the current expression. See for information about using the Stepper tool.

Choose Expression > Evaluate Region to evaluate the Lisp code in the current
region. You must make sure you have marked a region before choosing this
command; see “Marking the region” on page 194. Whether you use the mouse
or keyboard commands to mark a region does not matter.

Choose Expression > Compile Region to compile the Lisp code in the current
region.

Choose Expression > Macroexpand to macroexpand the current form. The mac-
roexpansion is printed in the output view, which is displayed automatically.
Click the Output tab to redisplay the output at any time.

Choose Expression > Walk to walk the current form. This performs a recursive
macroexpansion on the form. The macroexpansion is printed in the output
view, which is displayed automatically. Click the Output tab to redisplay the
output at any time.

Choose Expression > Trace to display a menu of trace commands which can be
applied to the current expression. See “Tracing symbols from tools” on page
55 for full details.

Choose Expression > Function Calls to browse the current expression in a Func-
tion Call Browser. See Chapter 14, “The Function Call Browser” for more
details.

Choose Expression > Generic Function to browse the current expression in a
Generic Function Browser. This command is only available if the current

21.8 The Values menu
expression is a generic function. See Chapter 15, “The Generic Function
Browser” for more details.

Choose Expression > Browse Symbols Like to view symbols containing the cur-
rent expression in a Symbol Browser. This command is analogous to cl:apro-
pos. See “The Symbol Browser” on page 273for more details.

21.8 The Values menu
The Values menu lets you perform operations on the results of the last expres-
sion entered at the Listener prompt. The values returned from this expression
are referred to as the current values.

The menu is not available if the most recent input was not a Common Lisp
form. This is because the evaluation of the last expression entered must have
produced at least one value to work on.

The Values menu gives you access to the standard action commands described
in “Performing operations on selected objects” on page 48.

Note that the most commonly used of the standard action commands are
available from the toolbar. For instance, to inspect the current values, click the

 button.

21.9 The Debug menu
This menu allows you to perform command line debugger operations upon
the current stack frame. The menu is only available when the debugger has
been invoked by some activity within the Listener.

Some of the most commonly-used command line debugger commands are
available from the Debug menu. You can also invoke the debugger tool from
this menu.

Choose Debug > Restarts to display a submenu containing all the possible
restarts for the debugger, including the abort and continue restarts. Choose
any of the commands on this submenu to invoke the appropriate restart. Note
that the continue and abort restarts are also available on the toolbar.

Choose Debug > Listener > Backtrace to produce a backtrace of the error.
 333

21 The Listener

334
Choose Debug > Listener > Bindings to display information about the current
stack frame.

Choose Debug > Frame > Find Source to find the source code definition of the
function at the current call frame and display it in an editor.

Choose Debug > Listener > Next to move to the next call frame in the stack.

Choose Debug > Listener > Previous to move to the previous call frame in the
stack.

Choose Debug > Start GUI Debugger to invoke a debugger tool on the current
error. See Chapter 11, “The Debugger Tool”, for full details about using this
tool.

Choose Debug > Report Bug to report a bug in LispWorks.

You can also invoke any of the commands from this menu by typing keyboard
commands into the Listener itself. See the LispWorks User Guide and Reference
Manual for more details.

21.10 Execute mode
The Listener is actually a special type of editor window, which is run in a
mode known as execute mode. This means that, as well as the normal keyboard
commands available to the editor, a number of additional commands are
available which are especially useful when working interactively.

21.10.1 History commands

These commands are useful in the common situation where you need to
repeat a previously entered command, or enter a variant of it.

History First Editor Command

Emacs Key Sequence: Ctrl+C <

Replaces the current command by the first command.

21.10 Execute mode
History Kill Current Editor Command

Emacs Key Sequence: Ctrl+C Ctrl+K

Kills the current command when in a listener.

History Last Editor Command

Emacs Key Sequence: Ctrl+C >

Replaces the current command by the last command.

History Next Editor Command

Emacs Key Sequence: Meta+N or Ctrl+C Ctrl+N

Displays the next event on the history list. That is, it replaces the current
command by the next one. This is not available if you are at the end of
the history list. In KDE/Gnome editor emulation, this History Next
command is bound to Ctrl+Down.

History Previous Editor Command

Emacs Key Sequence: Meta+P or Ctrl+C Ctrl+P

Displays the previous event on the history list: that is, it replaces the cur-
rent command by the previous one. In KDE/Gnome editor emulation,
this History Previous command is bound to Ctrl+Up.

History Search Editor Command

Emacs Key Sequence: Meta+R or Ctrl+C Ctrl+R

Searches for a previous command containing a given string, which it
prompts for, and replaces the current command with it.

History Search From Input Editor Command

Emacs Key Sequence: None
 335

21 The Listener

336
Searches the history list using current input. That is, it searches for a pre-
vious command containing the string entered so far, and replaces the
current command with it.

Repeated uses step back to previous matches.

History Select Editor Command

Emacs Key Sequence: Ctrl+C Ctrl+F

Presents a list of items in the command history, and replaces the current
command with the selection.

History Yank Editor Command

Emacs Key Sequence: Ctrl+C Ctrl+Y

Inserts the previous command into the current one, when in a listener.

21.10.2 Debugger commands

These commands are useful when in the debugger in the Listener:

Debugger Backtrace Editor Command

Emacs Key Sequence: Meta+Shift+B

Gets a backtrace when in the debugger.

Debugger Abort Editor Command

Emacs Key Sequence: Meta+Shift+A

Aborts in the debugger.

Debugger Continue Editor Command

Emacs Key Sequence: Meta+Shift+C

Continues in the debugger.

21.10 Execute mode
Debugger Previous Editor Command

Emacs Key Sequence: Meta+Shift+P

Displays the previous frame in the debugger.

Debugger Next Editor Command

Emacs Key Sequence: Meta+Shift+N

Displays the next frame in the debugger.

Debugger Edit Editor Command

Emacs Key Sequence: Meta+Shift+E

Edits the current frame in the debugger.

Debugger Print Editor Command

Emacs Key Sequence: Meta+Shift+V

Prints the variables of the current frame in the debugger.

21.10.3 Miscellaneous Listener commands

Here are more commands, with their Execute mode key bindings, which are
useful in the Listener

Inspect Star Editor Command

Emacs Key Sequence: Ctrl+C Ctrl+I

Inspects the current value (that is, the value of the Common Lisp vari-
able *).

Inspect Variable Editor Command

Emacs Key Sequence: None

Inspects the value of an editor variable, which is prompted for.
 337

21 The Listener

338
Throw To Top Level Editor Command

Emacs Key Sequence: Meta+K

Abandons the current input.

For more details about other keyboard commands available in the editor, see
Chapter 13, “The Editor”, and the LispWorks Editor User Guide.

21.11 Setting Listener preferences
To set options for the Listener tool choose Works > Tools > Preferences... or click

, and select Listener in the list on the left side of the Preferences dialog.

Figure 21.2 The Listener tab of the Listener Preferences

The Listener tab allows you to set the size of the stack used in the Listener’s
evaluation process. By default, this process has a stack of size determined by
the value of the variable system:*sg-default-size*. If you find you are
getting stack overflow errors in correct code that you enter at the Listener
prompt, then increase the stack size. This setting takes effect for subsequently
created Listener windows and LispWorks sessions.

21.12 Running Editor forms in the Listener
The other configurable aspects of the Listener are shared with the Editor and
other tools, including:

• emulation, including key input and cursor styles

• font

• the text styles used to highlight selected text, color code and input, and
so on

To alter these, raise the Preferences dialog, select Environment in the list on the
left side, and choose the Emulation or Styles tab. See “Setting preferences” on
page 28 for a description of these options.

21.12 Running Editor forms in the Listener
Suppose that you have code displayed in an Editor tool and you want a con-
venient way to run it in the Listener. Perhaps you need to capture the return
value, or perhaps ou want to test several variants by evaluating edited ver-
sions of that code. The editor command Evaluate Last Form in Listener
is useful in these cases.

21.13 Help with editing in the Listener
Two help commands are available to provide you with more information
about editor commands which can be used in the Listener.

Choose Help > Editing > Key to Command and type a key sequence to display a
description of the extended editor command it is bound to, if any.

Choose Help > Editing > Command to Key and supply an extended editor com-
mand to see the key sequence it is bound to, if any.

For more details about the keyboard commands and extended editor com-
mands available, see Chapter 13, “The Editor”.
 339

21 The Listener

340

22

22 The Output Browser
The Output Browser is a simple tool that displays the output generated by
your programs, and by operations such as macroexpansion, compilation and
tracing. You can create one by choosing Works > Tools > Output Browser or
341

22 The Output Browser

342
clicking in the Podium or as described in “Displaying tools using the key-
board” on page 23. Figure 22.1 shows the Output Browser.

Figure 22.1 The Output Browser

The Output Browser has one main area that displays the output from the
environment. Output usually consists mostly of compilation, trace and mac-
roexpansions, but can also include compiler explanations and output from
other tools, such as the Profiler. The main area is actually an editor window, so
all the usual editor keyboard commands can be used in it. See Chapter 13,
“The Editor” for more details about these operations.

The Output Browser is invaluable when you are developing code, because it
collects any output generated by your code. An example of how to do this is
given in “Viewing output” on page 12.

22.1 Interactive compilation messages
Many other tools in the LispWorks IDE contain an output view, which you can
display by clicking their Output tab. The Output tab collects all the output gen-
erated by that tool. For instance, the System Browser has an Output tab that
displays compilation messages. The Editor tool’s Output tab additionally dis-
plays macroexpansions. Note that the Output Browser is the only tool which
displays any output from your own code without any need for further action
on your part.

Note: The Output Browser (and the Output tab of some tools) displays only the
output from . By default, processes not associated with the tools write their
output to the terminal stream.

22.1 Interactive compilation messages
Compilation messages are highlighted in the output, with errors, warnings
and optimization hints each displayed in a unique style. When the editor's
cursor is within a compilation message, choose Find Source in the context
 343

22 The Output Browser

344
menu to display the source code where the condition occurred, in an Editor
tool.

Figure 22.2 Compilation messages and the use of the context menu

You can also raise a Compilation Conditions Browser tool to view the errors
and warnings directly from the output view, by pressing Return as mentioned
in the output shown above.

22.1 Interactive compilation messages
Another way to visit the source code where the condition occurred is the edi-
tor's Edit Recognized Source command which is bound to Ctrl+X ,
(comma) in Emacs emulation.

22.1.1 Compilation message styles

The text styles used to highlight compilation messages in the output have
these meanings and default appearance:

Compiler explanations are optimization hints generated by compiling code
with the :explain declaration. See the LispWorks User Guide and Reference
Manual for a description of the :explain declaration.

Note: You can changes the styles used to display compilation messages via
Preferences... > Environment > Styles > Colors And Attributes.

Table 22.1 Compilation message styles

Style Name Use Default appearance

Compiler Note Optimization hints
:magenta
foreground

Compiler Warning
Warnings and other
messages

:orange3
foreground

Compiler Error Errors :red foreground
 345

22 The Output Browser

346

23

23 The Process Browser
The Process Browser allows you to view and control the processes in the Lisp-
Works multiprocessing model. See the LispWorks User Guide and Reference
Manual for more information about multiprocessing.

Note: Each individual window in the LispWorks IDE runs as a distinct process
in the LispWorks multiprocessing model. The whole of LispWorks runs in a
single system process. On Linux, x86/x64 Solaris and FreeBSD each Lisp-
Works process corresponds to a single system thread.
347

23 The Process Browser

348
To create a Process Browser, choose Works > Tools > Process Browser or click
 in the Podium.

Figure 23.1 The Process Browser

The Process Browser consists of a main area in which all the current processes
in the environment are listed, and a Filter area which you can use to restrict
the information displayed in the main area.

Like other filter areas, you can enter a string or a regular expression in the Fil-
ter to limit the display to only those items which match your input, or the

complement of this. See “Filtering information” on page 56 for more informa-
tion about using the Filter area.

Figure 23.2 Process browser

The tool bar buttons are labelled in Figure 23.2. These buttons provide the
same actions as the Process context menu: Break, Stop, Unstop, Kill, Debug,
Inspect and Listen.

Break

Kill processes

Listen

Stop
processes

Unstop

processes

Inspect

Debug
process
 349

23 The Process Browser

350
23.1 The process list
The main area contains a list of all the current processes in the Lisp image.
Properties of each process are shown in the columns Name, Priority and Status.

If you have many processes running, you can use the filter area to only list
processes containing a given string. For example, if you enter “Running” in
the filter area, and click on then only processes that have the word “Run-
ning” in their description will be shown.

The processes displayed in the main area can be sorted by clicking the rele-
vant button above each column. For example, to sort all listed processes by
process priority, click on the Priority title button.

23.2 Process control
The Processes menu contains commands that let you control the execution of
processes in the Lisp image. These same commands are available using the
toolbar buttons at the top of the Process Browser window or by using the con-
text menu. (Use the left mouse button or the arrow keys to select a process; the
context menu is usually accessed by the right mouse button.) Process com-
mands act on the process that has been selected in the process list. You can
select a process by clicking on the line in the process list that contains the pro-
cess name and status information or by using Tab and the arrow keys to navi-
gate to that line.

Choose Processes > Break to break the selected process. This breaks Lisp and
gives you the opportunity to follow any of the normal debugger restarts.

Choose Processes > Kill to kill the selected process.

Choose Processes > Stop to stop the selected process. The process can be
started again by choosing Processes > Unstop, and thus is similar to the use of
Ctrl+Z in a UNIX session.

Choose Processes > Unstop to restart a process which has been stopped using
Processes > Stop. This is similar to the use of the UNIX command fg.

Choose Process > Inspect to call up an Inspector tool to inspect the selected
process. See Chapter 17, “The Inspector” for more information on inspecting
objects and processes.

23.3 Other ways of breaking processes
Choose Process > Listen to make the selected process be the value of * in a Lis-
tener tool. See Chapter 21, “The Listener” for more information on using the
Listener tool.

Choose Processes > Remote Debug to debug the current process in a Debugger
tool.See Chapter 11, “The Debugger Tool” for more information on using the
Debugger tool.

Note: do not attempt to break, kill, stop or debug system processes. This may
make your environment unusable.

Note: you cannot control the GC monitor (available in the Motif IDE only)
from the Process Browser, since this runs as a separate UNIX process.

23.3 Other ways of breaking processes
In the Listener tool, you can break the evaluation process as described in
“Interrupting evaluation” on page 330.

You can break a process by calling the function mp:process-break.

Alternatively, click the Interrupt Lisp button on the GC Monitor window (avail-
able in the Motif IDE only).

23.4 Updating the Process Browser
The Process Browser updates itself automatically when a new process is cre-
ated and when a process terminates.

In the initial configuration the Process Browser does not automatically update
on any other event, so changes such as processes sleeping and waking are not
noticed immediately. There are two ways to ensure such changes are visible in
the Process Browser:

• You can do Works > Refresh to view the latest status displayed for each
process, or

• The Process Browser can be made to update automatically, as described
in “Process Browser Preferences” on page 352.
 351

23 The Process Browser

352
23.5 Process Browser Preferences
To display the Process Browser preferences, choose Works > Tools > Prefer-
ences... or click , and select Process Browser in the list on the left side of the
Preferences dialog.

You can control whether the Process Browser displays the process operations
toolbar by the option Show Toolbar on the General tab, as described in “Toolbar
configurations” on page 26.

You can make the Process Browser update automatically at a predetermined
frequency by setting the option Update Frequency, as illustrated in the figure
below. The update periods are in seconds.

Figure 23.3 Configuring the Process Browser to update automatically

The option Automatic Update Delay determines a delay period (in seconds)
after each automatic update of the Process Browser. Any automatic update
during this time is delayed until the end of the delay period.

Automatic updates occur when process are created, die or stop and when the
scheduler affects the status of a process. That is quite often too frequent to be
useful. Automatic Update Delay limits the update to a reasonable frequency. To

23.5 Process Browser Preferences
see the effect, make sure the Process Browser is visible and run the following
form with different settings of the delay:

(dotimes (x 1000)
 (mp:process-run-function
 (format nil "Process ~d" x)
 ()
 'sleep
 (/ x 200)))
 353

23 The Process Browser

354

24

24 The Profiler
24.1 Introduction
The Profiler provides a way of monitoring Lisp functions during the execution
of your code. It is likely that you can make your code more efficient using the
data that the Profiler displays.

The Profiler helps you to identify functions which are called frequently or are
particularly slow. You should concentrate your optimization efforts on these
routines.

The Profiler gives you an easy way of choosing which functions you wish to
profile, which code you want to run while profiling, and provides you with a
straightforward display of the results of each profile.

To create a Profiler, choose Works > Tools > Profiler or click in the Podium.

In the next two sections we assume you are profiling a call to the function foo
defined as follows:
355

24 The Profiler

356
(in-package "CL-USER")

(defun baz (l)
 (dotimes (i l)))

(defun quux (l)
 (dotimes (i l)))

(defun bar (n l)
 (dotimes (i n)
 (baz l))
 (dotimes (i n)
 (quux (floor l 2))))

(defun foo (n l)
 (bar n l))

24.1 Introduction
Figure 24.1 The Profiler

The Profiler has five areas:

The Code To Profile panel lets you set up and profile any amount of Lisp
source code.

• Use the large text box to enter the Lisp source code that you wish to
profile. This text area is actually an editor window, similar to those
described in “Basic Editor commands” on page 187.

• The Symbols... and Packages... buttons let you choose which symbols
and packages you want to profile.

• The Profile button runs and profiles the source code you entered.
 357

24 The Profiler

358
The Results area is used to display the results of a profile, described in detail in
“Display of Profiler Data” on page 358.

The Description area optionally shows a description of a function in the pro-
file data. You can show the description by clicking on the Description >> but-
ton. The name, function object, lambda list, documentation string and source
files of the selected function are displayed. The context menu in the descrip-
tion area allows further operations. Hide the description area if you wish by
clicking on the Description << button.

The Echo area allows interaction with editor commands, as in other tools.

The bottom pane of the Profiler displays a summary of the last profile per-
formed.

24.2 Display of Profiler Data
There are two tabs in the results area of the Profiler. These tabs display two
sorts of data collected during profiling.

24.2.1 Call Tree

The Call Tree tab shows a graph of functions called by the top level function
call that was profiled. Each node represents a function call. The graph edges
are labelled according to the proportion of time spent in each function call. For
example in Figure 24.1, of all the time spent in function bar, most was spent in
baz and the rest in quux. This allows you to see which branches of the code
dominate the total time spent.

When optimizing your code you will want to concentrate on the calls which
take a large proportion of the time. The least significant parts of the graph are
removed from the display according to the percentage in the Hide calls below
(%) box. You can adjust this percentage simply by entering an integer and
pressing Return.

When analysing the call tree to find the most significant branches, single
callees (that is, functions which account for all of the time spent by their caller)

24.2 Display of Profiler Data
are not interesting. You can adjust the call tree to omit these functions from the
displayed graph by checking the Collapse singletons box.

Figure 24.2 The Profiler’s Call Tree adjusted

You can also change the root of the graph displayed. This option is useful
when you have a large call tree. To do this, select the node that you wish to
make the root, and raise the context menu, and choose the Set As Root com-
mand. To display the entire call tree again, choose the Show Whole Tree com-
mand from the graph’s context menu.
 359

24 The Profiler

360
24.2.2 Cumulative Results

Figure 24.3 The Profiler’s Cumulative Results view

• The main list displays the functions called during the last profile. For
each function, the list displays the number of times it was found on the
stack and the number of times it was found at the top of the stack.

• The Filter box lets you restrict the display of information in the Results
area.

24.3 A description of profiling
24.3 A description of profiling
When code is being profiled, the Lisp process running that code is interrupted
regularly at a specified time interval. At each interruption, the Profiler scans
the execution stack and records the name of every function found, including a
note of the function at the top of the stack. Moreover, a snapshot of the stack is
recorded at each interruption, so we know not merely how many times we
reach a function call, but also how we reached that call.

When profiling stops (that is, when the code being profiled has stopped exe-
cution) the Profiler presents the data in two tabs.

Note: The Profiler tool only shows the thread running code in the Code To Pro-
file box. It does not profile other threads. To profile multiple threads in the Lis-
tener, see "Running the profiler" in the LispWorks User Guide and Reference
Manual.

24.3.1 Description of call tree data

The Call Tree is collated from all the stack snapshots taken during profiling.
The Call Tree tab shows a graph in which:

• The graph nodes represent function calls

• The graph edges show the proportion of time spent in each call.

Each parent node represents the caller function, so that the ancestors of each
leaf node represent the entire stack. The graph edges are labelled with the time
spent in the child call as a percentage of the time spent in the parent call, these
times averaged over all the profile data collected.

24.3.2 Description of cumulative data

The Cumulative tab shows aggregated information about each function that
includes the following information:

• The number of times each function was found on the stack by the pro-
filer, both in absolute terms and as a percentage of the total number of
scans of the stack.
 361

24 The Profiler

362
• The number of times each function was found on the top of the stack,
both in absolute terms and as a percentage of the total number of scans
of the stack.

With a suitable profiler setup it also shows:

• The number of times each function being profiled was called.

Note: by default the Profiler does not count function calls, because this can
distort results significantly in SMP LispWorks. Therefore the Call# column
shows 0 for each function. To make the Profiler count calls, evaluate this:

(set-up-profiler :call-counter t)

24.4 Steps involved in profiling code
Each time you profile code, you first need to set up the profiler to ensure that
you find out the sort of information you are interested in. This section gives
you details about how to go about this.

The steps that you need to take when profiling code are as follows:

1. Choose which functions you want to profile.

2. Specify the code that you want to run while profiling.

3. Perform the profile.

Note: You do not have to adhere strictly to the sequence shown above, but this
is the order that you should usually follow.

See the chapter on the Profiler in the LispWorks User Guide and Reference Man-
ual for information on advanced configuration of the profiler.

24.4.1 Choosing the functions to profile

It is possible to keep track of every function called when running code, but
this involves significant effort in determining which functions are suitable for
profiling and in keeping track of the results. To minimize this effort you
should specify which functions you want to profile. The profiler checks that
these functions have indeed got function definitions and are therefore suitable
for profiling. For more information on the types of function that can be pro-
filed, see “Profiling pitfalls” on page 370.

24.4 Steps involved in profiling code
There are two ways of specifying functions that you want to profile:

• Choose which individual functions you want to profile.

• Choose whole packages, all of whose functions are profiled.
 363

24 The Profiler

364
24.4.1.1 Choosing individual functions

Click Symbols... to specify a list of Lisp functions that you want to profile. The
dialog shown in Figure 24.4 appears.

Figure 24.4 Select Symbols to Profile dialog

This dialog displays the list of functions to be profiled.

24.4 Steps involved in profiling code
• To add a function to the list, enter its name in the New Symbol text box
and click .

• To remove a function from the list, select it from the list and click
Remove.

• To remove several functions, select them all before clicking Remove.

Click OK when you have finished choosing symbols.

Note: whilst entering the function name in the New Symbol text box you can
click click to use completion. This allows you to select from a list of all
symbol names which begin with the partial input you have entered. See
“Completion” on page 61 for detailed instructions.
 365

24 The Profiler

366
24.4.1.2 Choosing packages

You may often want to profile every function in a package. Click Packages... to
specify a list of packages whose functions you want to profile. The dialog
shown in Figure 24.5 appears.

Figure 24.5 Select Packages to Profile dialog

24.4 Steps involved in profiling code
The main part of this dialog consists of two lists:

• The Unselected Packages list shows packages in the Lisp image whose
functions are not to be profiled.

• The Selected Packages list shows packages in the Lisp image whose
functions are to be profiled.

A global function will be profiled if its symbol is visible in one of the selected
packages.

To modify the Selected Packages list:

1. Consider whether one of these buttons offers what you need, or close to
it:

All Adds all packages.

Note: There are significant processing overheads when
profiling all functions in all packages, and the results
you get may include much unwanted information.

User Only Adds the CL-USER package.

User and CL Adds the CL-USER and CL packages.

User and Standard

Adds the CL-USER package along with those packages
that you have defined.

Note: The Profiler tool assumes that packages not
named in the value of *packages-for-warn-on-
redefinition* are user-defined.

2. Add to your Selected Packages list if necessary. You can add a single
package in one of three ways:

• Type the package name in the Select Package box and press Return or
click , or

• Select the package in the Unselected Packages list and click on the >>>
button, or

• Double-click on the package in the Unselected Packages list.
 367

24 The Profiler

368
3. Remove packages from the Selected Packages list if necessary. You can
remove a single package in one of two ways:

• Select the package in the Selected Packages list and click on the <<< but-
ton, or

• Double-click on the package in the Selected Packages list.

Also you can click the None button to clear the list of selected packages.
This is useful is you only want to profile a few functions, which you can
specify easily using the Symbols... button on the Profiler tool itself.

4. Finally, click OK to dismiss the dialog when you have finished selecting
the packages whose functions you want to profile, or click Cancel to can-
cel the operation. This also dismisses the dialog.

24.4.2 Choosing the time interval

See the chapter on the profiler in the LispWorks User Guide and Reference Man-
ual for information on how to set the time interval at which you want the Lisp
process to be interrupted.

24.4.3 Specifying the code to run while profiling

Code which is to be executed during profiling should be entered in the Code
to Profile area. This is actually an editor window, and so you can use all the
keyboard commands which can be used in the editor.

Code may be placed in this window in three ways:

• Type it directly into the window

• Paste it in from other editor windows in the environment

• Paste it in from other applications

Specify the package in which you want to run the code to be profiled using the
Package box in the General tab of the Profiler Preferences. To see this, choose
Works > Tools > Preferences... or click , and select Profiler in the list on the
left side of the dialog. If you are unsure, full details on how to do this can be
found in “Specifying a package” on page 47. Like all other tools in the Lisp-
Works IDE, the Profiler can have a particular package associated with it; the
default package is CL-USER.

24.5 Format of the cumulative results
24.4.4 Performing the profile

Once you have set up the profile as described above, perform the profile itself
by clicking on the Profile button in the Profiler.

24.5 Format of the cumulative results
After you have run the profile, a four column table is printed in the large list
in the Cumulative tab of the Results area. These columns are laid out as follows:

Call# The call count of each function, that is, the number of
times it was called during execution of the code.

Stack#(%) The number of times the function was found on the
stack when the Lisp process was interrupted. The
parenthesized figure shows the percentage of time the
function was found on the stack.

Top#(%) The number of times the function was found on the top
of the stack when the Lisp process was interrupted.
Again, the figure in brackets shows the percentage of
time the function was found on top of the stack.

Name The name of the function.

You can order the items in the list by clicking on the relevant heading button.

Selecting any item in the list displays a description of that function in the
Description area. In addition, an item selected in the main list can be acted
upon by any relevant commands in the Function menu. For instance, if you
select a generic function in the main list and choose Function > Generic Func-
tion, you can view the generic function in a Generic Function Browser. This is
consistent with many of the other tools in the environment.

Double-clicking on an item in the Description list invokes an Inspector on the
selected item. In addition, an item selected in this area may be acted on by any
relevant commands in the Description menu, as is the case with many other
tools in the environment. For instance, choose Description > Copy to copy the
item selected in the Description list to the clipboard. See “Performing opera-
tions on selected objects” on page 48 for details on the commands available.
 369

24 The Profiler

370
24.6 Interpreting the cumulative results
The most important columns in the Cumulative tab are those showing call
count (Call#) and number of times on the top of the stack (Stack#). Looking
solely at the number of times a function is found on the stack (Stack#) can be
misleading, because functions which are on the stack are not necessarily using
up much processing time. However, functions which are consistently found
on the top of the stack are likely to have a significant execution time. Similarly
the functions that are called most often are likely to have the most significant
effect on the program as a whole.

24.7 Profiling pitfalls
It is generally only worth profiling code which has been compiled. If you pro-
file interpreted code, the interpreter itself is profiled, and this skews the
results for the actual Lisp program.

Macros cannot be profiled because they are expanded during the compilation
process.

24.7.1 Effects of random sampling

Always bear in mind that the numbers produced are from random samples, so
you should be careful when interpreting their meaning. The rate of sampling
is always coarse in comparison to the function call rate, so it is possible for
strange effects to occur and significant events to be missed. For example, reso-
nance may occur when an event always occurs between regular sampling
times. In practice, however, this is not usually a problem.

24.7.2 Recursive functions

Recursive functions need special attention. A recursive function may well be
found on the stack in more than one place during one interrupt. The profiler
counts each occurrence of the function, and so the total number of times a
function is found on the stack may be greater than the number of times the
stack is examined.

24.7 Profiling pitfalls
24.7.3 Structure accessors

You must take care when profiling structure accessors. These compile down
into a call to a closure, of which there is one for all structure setters and one for
all structure getters. Therefore it is not possible to profile individual structure
setters or getters by name.

24.7.4 Consequences of restricted profiling

Even if you configure the Profiler to profile all the known functions of an
application, it is possible that less than 100% of the time is spent monitoring
the top function. This is because an internal system function could be on the
top of the stack at the time of the interrupt.

If you configure the Profiler to omit certain functions then these will not be
displayed in the Results area, and so the display may not match what you
expect from your source code.

24.7.5 Effect of compiler optimizations

With certain compiler settings code can be optimized such that the Profiler
data does not appear to match your source code. For example when a tail call
is optimized, the tail-called function appears in the call tree as a child of the
parent of the caller, rather than as a child of its caller (just as in the debugger
stack). Similarly code using funcall or apply may yield confusing results. To
prevent tail-call optimization, use compiler setting debug 3.

24.7.6 Effect of compiler transforms

The compiler may transform some functions such that they are present in the
source code but not in the compiled code.

For example, the compiler transforms this source expression:

(member 'x '(x y z) :test #'eq)

into this compiled expression:

(memq 'x '(x y z))

Therefore function memq will appear instead of member in the profile results.
 371

24 The Profiler

372
Similarly, you cannot profile inlined functions.

24.8 Some examples
The examples below demonstrate different ways in which the profiler can be
configured and code profiled so as to produce different sets of results. In each
example, the following piece of code is profiled:

(dotimes (x 1000)
 (capi:make-container
 (make-instance 'capi:title-pane
 :text "Title")))

This is a simple piece of code which makes some CAPI objects.

1. Create a Profiler tool if you have not already done so.

2. Copy the code above into the box in the Code to Profile panel.

3. Choose Works > Tools > Preferences... or click , select Profiler in the list
on the left side of the dialog, and then select the General tab. Now you
can change the package of the Profiler.

Figure 24.6 Profiler Preferences

4. In the Profiler Preferences, replace the default package in the Package
text box with CAPI and click .

24.8 Some examples
5. Click OK to dismiss the Preferences dialog and apply the change you
have made.

6. Click on Profile.

This profiles the functions in the COMMON-LISP, CL-USER and LISPWORKS pack-
ages.

Next, add the CAPI package to the list of packages whose functions are pro-
filed.

7. Click Packages.

8. In the dialog, double-click on CAPI in the Unselected Packages list, and
click on OK.

9. Click on Profile to profile the code again.

Notice that this time there are many more functions which appear in the
profile results.

10. Select a few of the functions listed at the top of the Results area, and look
at their function descriptions.

Add the Description area by clicking the Description >> button if you
have not already done so.

Notice that most of the functions appearing on the stack are in the CAPI
package. It is worth profiling a few functions explicitly, and removing
unwanted packages from the list of packages to profile.

11. Click Symbols..., and add the following four functions to the list in the
dialog:

merge find-class make-char functionp

Type the name of each function and press Return or click to add it to
the list.

12. Click OK when you have finished adding to this list.

Now remove the unwanted packages from the list of packages to profile,
as follows:

13. Click Packages....
 373

24 The Profiler

374
14. In the dialog click on None to remove all items in the Selected Packages
list

15. Click on OK, and profile the code again by clicking on Profile.

Notice that the four functions in the COMMON-LISP package are still being pro-
filed, even though you are no longer profiling all functions from that package
by default.

25

25 The Shell and Remote Shell
Tools
25.1 Introduction
You can run a UNIX command line session from within the LispWorks IDE by
using the Shell tool. The Shell tool automatically runs on your current host.

Also available is a Remote Shell tool which runs a session on another UNIX
machine on your network.

25.2 The Shell tool
You can create a Shell tool in one of two ways:

• Choose Works > Tools > Shell or click in the Podium.
375

25 The Shell and Remote Shell Tools

376
• Type the extended command Meta+X Shell in any Editor window (or
any other window based on an editor, such as the Listener).

Figure 25.1 The Shell tool

The Operations menu contains the following commands which send UNIX sig-
nals to the shell process. These only work on UNIX and UNIX-based systems,
including Mac OS X.

Choose Operations > Interrupt to send a break signal to the shell process. This
stops the current task and returns control to the UNIX command line in the
Shell tool, if necessary.

Choose Operations > Suspend to send a suspend signal to the shell process.
This suspends the current task so that you can continue entering commands at
the UNIX command line. To resume the task, type fg at the UNIX command
line in the Shell tool. Alternatively, type bg at the command line to force a task
to run in the background.

Choose Operations > Eof to send an EOF signal to the process.

25.3 Command history in the shell
25.3 Command history in the shell
The Shell tool is another example of a tool which is based on an editor, and
thus many of the keys available in the editor are also available in the Shell
tool.

Like the Listener, the Shell tool is run in execute mode, which means that sev-
eral additional keystrokes are available in Emacs emulation, as follows:

Press Meta+P or Ctrl+C Ctrl+P to display the previous command
entered in the shell.

Press Meta+N or Ctrl+C Ctrl+N to display the next command in the his-
tory.

Press Meta+R or Ctrl+C Ctrl+R to perform a search of the command
history.

25.4 Configuring the shell to run
This section applies only on UNIX and UNIX-based systems, including Mac
OS X.

By default, the Shell tool runs the UNIX command shell known as bash. If you
would rather use a different shell (such as csh, tcsh, ksh, etc.), or if you do
not have bash available on your UNIX system, then change the value of the
variable editor:*shell-shell*, which has the value nil by default. This
means that the Shell tool will use the value of the variable ESHELL or SHELL if
set, or one of "/bin/sh" (system V) and "/bin/csh" (otherwise).

25.5 The Remote Shell tool
This looks similar to the Shell Tool, but you must specify which host to run the
remote shell on when you start it up.

To start a Remote Shell tool, enter Meta+X Remote Shell in the Editor or Lis-
tener tool, and supply the hostname of the remote machine when prompted.

The tool runs an appropriate UNIX command (rsh or remsh) with the host-
name which you specify.
 377

25 The Shell and Remote Shell Tools

378

26

26 The Stepper
26.1 Introduction
The Stepper tool allows you to follow the execution of your program, display-
ing the source code as it executes. While stepping, you can see the evaluation of
each subform, function call and the arguments and return values in each call.
At every call to one of your functions, you have the option of stepping into
that function, that is stepping the source code definition of the function.

Where a macro appears in stepped code, the Stepper can macroexpand the
form and step the resulting expansion, or simply step the visible inner forms
of the macro form. Where a special form such as if appears in stepped code,
the Stepper processes it according to the execution order in that special form.

The system creates a Stepper tool automatically when your code reaches a
breakpoint

Other ways to start a Stepper tool are:

• Choose Works > Tools > Stepper or click on in the Podium and enter
a single form
379

26 The Stepper

380
• Choose Frame > Restart Frame Stepping in a Debugger tool

Figure 26.1 The Stepper

The Stepper has four areas:

26.1.1 Stepper toolbar

The commands on the stepper toolbar allow you to step to various points in
the code, set breakpoints and perform macroexpansions.

26.1.2 Source area

This is an editor window where you should enter the initial form to step.

When you step into a function, a read-only copy of its definition is shown in
the Source: area.

Notice that the editor cursor is an underline in the Source: area. This is
because the normal cursor styles are not visible where the Stepper is high-
lighting a form.

26.1 Introduction
26.1.3 Backtrace area

The Backtrace tab displays the function calls on the execution stack in the code
being stepped.

The topmost item in the backtrace area shows the next step, known as the sta-
tus. When calling a function, the status item is represented by a icon and
contains the arguments represented as subnodes with a yellow disc icon.
When returning from any form, the status item is represented by a icon
and contains the return values. When evaluating a form, the status item is rep-
resented by a icon. You can see the contents of the status item by expand-
ing it. You can make the status item expand automatically if you wish, as
described in “Backtrace preferences” on page 401.

The second topmost item in the backtrace area is the active frame represented
by a icon. This shows the function executing when the breakpoint was
reached, and its arguments which are represented as subnodes with a yellow
disc icon.

Other call frames on the stack are represented in the same way, below.

A subnode with a cyan disc icon represents some other frame.

For function calls, arguments and local variables can be seen by expanding the
item. You can make the active frame expand automatically if you wish, as
described in “Backtrace preferences” on page 401. Just as in the Backtrace area
of the Debugger tool, these stack frames and variables can be operated on
using the Frame and Variables menus. For details, see “Backtrace area” on page
144.

Double-click on a status or call frame node to show the source of that function,
if available, in the Editor. Double-click on the disc icons to show that variable
in the Inspector.

26.1.4 Listener area

The Listener tab provides a Listener in which the execution steps are indicated.
Commands can be entered here as an alternative to using the buttons on the
“Stepper toolbar” on page 380.

Any form entered here is evaluated on the dynamic environment of the func-
tion being stepped.
 381

26 The Stepper

382
Moreover, you can use the debugger commands such as :v, which prints the
local variables in the current frame. You can use the value of a local variable
simply by entering its name as shown. See the LispWorks User Guide and Refer-
ence Manual for more details about the debugger commands.

See “Listener area” on page 398 for more details.

26.2 Simple examples
There are two ways to enter the Stepper tool:

26.2.1 Standalone use of the stepper

1. Compile and load the demo system defined in the LispWorks library file
examples/tools/demo-defsys.lisp. First, load this file to define the
system. Then evaluate in the Listener:
(compile-system "demo" :load t)

Note: for another way to compile and load a system, see Chapter 27,
“The System Browser”.

2. Create a Stepper tool by choosing Works > Tools > Stepper or pressing
in the Podium.

3. Enter this form in the Source area of the Stepper tool:
(my-function 3)

4. Choose the menu command Stepper > Step. The open parenthesis is
highlighted orange, indicating that the next step is to evaluate the form.

5. Choose Stepper > Step again. The symbol my-function is now high-
lighted orange, indicating that the next step is to call this function.
Notice how the current stepping position is always highlighted orange.

26.2 Simple examples
6. Notice how the topmost item in the Backtrace area always indicates the
next step. Expand this item to show the arguments.

Figure 26.2 Stepper backtrace showing the next step

7. At this point we have the option to step my-function itself, but for the
moment simply choose Stepper > Step again, which steps to the point
where the function call returns. The Backtrace area shows the return
value, 12, when you expand the status item.

Note how the Step command always steps only inside the current form, and
does not step into other functions.

26.2.2 Invoking the Stepper via a breakpoint

1. Compile and load the code in the system demo defined in the LispWorks
library file examples/tools/demo-defsys.lisp
 383

26 The Stepper

384
2. Open the file examples/tools/demo-utils.lisp in an Editor and set a
breakpoint at the call to + as described in “Setting breakpoints” on page
205.

3. Evaluate (my-useful-function 42) in a Listener.

4. A Stepper tool appears, with the current stepping position at the break-
point.

Figure 26.3 Stepper invoked by reaching a breakpoint

5. You can now step this code, just as in standalone mode.

26.3 The implementation of the Stepper
6. When you choose Stepper > Continue, or otherwise finish stepping, my-
useful-function returns, the Stepper is hidden and the Listener tool
becomes active again.

26.3 The implementation of the Stepper
It is important to understand the following points about the implementation
of the Stepper.

26.3.1 Requirements for stepping

The code you step must have been compiled, evaluated or loaded in the Lisp
image.

26.3.2 Editing source code

While the Stepper is running, it displays a read-only copy of the source in the
source area. Therefore, you cannot edit the code in the source area, other than
when the status is "Enter a form to step in the pane above.".

If you step a function for which the source has been edited since it was com-
piled, then the Stepper uses a copy of the compile-time source, not the edited
source.

This copy is stepped in a new editor buffer created specially for it and this is
displayed in the source area.

26.3.3 Side-effects of stepping

When the Stepper steps a definition for the first time, it evaluates it.

This will not normally alter the behavior of your program, but there are three
situations where this will cause unexpected behavior:

• The code is loaded from a fasl file which is not compatible with the
corresponding source file.

• The source relies on compile-time side-effects of forms preceding it in
the file.
 385

26 The Stepper

386
• The defining form has other side effects. This is unlikely to matter for
simple definers such as defun and defmethod.

26.3.4 Atomic and constant forms

It is not possible to step to atomic forms or constant forms.

26.4 Stepper controls
The Stepper menu offers fine control over the next step.

It also includes commands for setting breakpoints, displaying the source code,
macroexpansion, and aborting from the current step.

26.4 Stepper controls
All these commands are also available on the Stepper toolbar as shown in Fig-
ure 26.4.

Figure 26.4 The Stepper controls

The Stepper controls operate as described below. Recall that the current posi-
tion is always highlighted in orange:

Step

Step Step To
Value

Step
Through

Call

Step To
Call

Next

Step To
End

Step To
Cursor

Continue

Breakpoint

Show Current Source

Macro-
expand

Undo

Abort
Macro-

expand

Breakpoint Options
 387

26 The Stepper

388
Steps once, remaining inside the current form. At the
start of the current form, this steps the first inner form.
At a function call, it steps to the value. At the form
value, it steps the next form or value.

Step Through Call

Steps once. This is the same as Step above, except that
at a function call, it steps that function if the source is
known.

Step To Call

At the start of a form, steps to the function call of that
form after evaluation of the arguments. At a function
call or at the end of a form, steps to the function call of
the enclosing form.

Step To Value

At the start or function call of a form, steps to the value
of that form. At the end of a form, steps to the value of
the enclosing form.

Next

Steps to the start of the next form, or behaves like Step if
there is no next form.

Step To End

Steps to the value of the current function.

Step To Cursor

Steps to the cursor position, or displays a message if
that position is not steppable.

Continue

Runs the code until a breakpoint is reached.

Breakpoint

Sets a breakpoint at the position of the cursor if there is
no breakpoint there already and the position is steppa-
ble. If there is a breakpoint under the cursor, this com-

26.4 Stepper controls
mand removes it. Note that breakpoints are highlighted
red, though the orange highlight on the current step-
ping position overrides any breakpoint highlight..

Show Current Source

Moves the editor buffer in the source area so that the
definition at the top of the backtrace area, and the active
form within it, is visible.

Macroexpand

Macroexpands the form under the cursor.

Undo Macroexpand

Collapses the macroexpansion under the cursor.

Abort

Aborts the execution and returns to the form which you
first stepped, allowing you to repeat the execution or
edit the form. This command is available only when
using the Stepper in standalone mode.

Breakpoint Options

The Breakpoint Options menu allows you to set proper-
ties of a breakpoint as described in “Breakpoints” on
page 390.

26.4.1 Shortcut keys for the Stepper

The following Editor commands run the corresponding Stepper command in
the current stepper:

Stepper Breakpoint
Stepper Continue
Stepper Macroexpand
Stepper Next
Stepper Restart
Stepper Show Current Source
Stepper Step
Stepper Step Through Call
Stepper Step To Call
Stepper Step To Cursor
 389

26 The Stepper

390
Stepper Step To End
Stepper Step To Value
Stepper Undo Macroexpand

These commands can be bound to keys in the LispWorks editor, which makes
those keys invoke the command in a Stepper tool. For example:

(editor:bind-key "Stepper Step" #("Control-S" Control-s"))

Note: the editor key binding only takes effect when the input focus is in the
Source or Listener panes of the Stepper tool.

For more information about Editor key bindings, see the LispWorks Editor User
Guide.

26.5 Stepper restarts
The Restarts menu lists a number of restart options, which offer ways to con-
tinue execution.

This works the same as described for the Debugger tool in “Simple use of the
Debugger tool” on page 149.

26.6 Breakpoints
You can set a breakpoint in any form which might be evaluated, except for

• atomic and constant forms

• forms which are called whilst the file is loaded

• locatable defining forms (see below)

The breakpoint can be at the start, function call or return point of the form.

For each of the load source, load fasl, compile defun and compile buffer oper-
ations, breakpoints are activated only after the operation has finished.

A locatable defining form is a named defining form that can be located by the
Dspec system (for example by the Find Dspec editor command). This
includes defun, defmethod and all the standard Common Lisp definers. For
more information about the Dspec system, see the LispWorks User Guide and
Reference Manual.

26.6 Breakpoints
When not at the current stepping position, a breakpoint is highlighted red in
the Stepper source area. When the same source code is also visible in an Editor
tool, the breakpoint is visible there too.

26.6.1 Setting breakpoints

To set a breakpoint from the Stepper, position the cursor where you want the
breakpoint and choose Stepper > Breakpoint or click in the Stepper toolbar.

Figure 26.5 A breakpoint on the function call +

When you run code, or choose Stepper > Continue, execution stops if a break-
point is reached. The Stepper will show the form in the source area with the
breakpoint highlighted in yellow.
 391

26 The Stepper

392
In the picture above, execution has stopped at the start of the print form and
we have just set a breakpoint on the call to +. Continuing from this point will
cause execution to stop just before it calls +, and the Stepper will display the
arguments that are about to be passed to +.

If you set a breakpoint on the closing parenthesis of a form, then it will cause
execution to stop when the form returns and the top backtrace frame will dis-
play the values of that form.

To set a breakpoint from the Editor, see “Breakpoints” on page 204.

26.6.2 Conditional breakpoints

A breakpoint can be modified to make it effective only when a condition is
true.

Suppose that you have reached a breakpoint on the call to + as set in the exam-
ple above. To make this breakpoint conditional on a variable *use-my-break-

26.6 Breakpoints
points* (which you should define with defvar), choose Conditional... from
the Breakpoint Options menu:

Figure 26.6 The Breakpoint Options menu
 393

26 The Stepper

394
Select the Condition radio button in the Conditional tab of the Edit Breakpoint
dialog, then enter *use-my-breakpoints* in the condition area and click OK.

Figure 26.7 The Edit Breakpoint dialog

The form defining the breakpoint condition is evaluated in the package where
the stepped function was defined. Note that this package is displayed in the
Conditional tab of the Edit Breakpoint dialog. Therefore, after confirming the
dialog shown above, your code breaks at the breakpoint depending on the
value of common-lisp-user::*use-my-breakpoints*.

To make a breakpoint unconditional, select Unconditional in the dialog shown
above.

Note: you cannot currently access the values of local variables in the condition
expression.

26.6 Breakpoints
26.6.3 Printing breakpoints

A breakpoint can be modified to make it print an expression and its value
when it is reached.

Again suppose that you have reached a breakpoint on the call to + as set in the
example above. To make this breakpoint print, choose Printing... from the
Breakpoint Options menu, and enter a valid Lisp expression in the Printing tab
of the Edit Breakpoint dialog, and click OK.

When the breakpoint is reached, the expression and its value are printed like
this:

Stepper value (+ 4 4 4 4): 16

The Lisp expression is evaluated in the package where the stepped function
was defined. Note that this package is displayed in the Printing tab of the Edit
Breakpoint dialog.

If you check the Print without stopping option, then the above line is printed
but the code continues to execute and does not stop at the breakpoint.

Note: you cannot currently access the values of local variables in the printed
expression.

26.6.4 Editing breakpoints

To edit the Conditional or Printing properties of a breakpoint visible in the
source, position the cursor on the breakpoint and proceed as described in
“Conditional breakpoints” on page 392 or “Printing breakpoints” on page 395.

Where you wish to change the Conditional or Printing properties of a break-
point without finding it in the source, choose Edit... from the Breakpoint
Options menu or the menu command Stepper > Edit Breakpoints.... Select a
breakpoint in the Breakpoints list and click the Edit... button. Choose the Condi-
tional or Printing tab as appropriate and proceed as described in “Conditional
breakpoints” on page 392 and “Printing breakpoints” on page 395.

To visit the source code where a breakpoint was set, choose Edit... from the
Breakpoint Options menu or the menu command Stepper > Edit Breakpoints....
Select a breakpoint in the Breakpoints list and click the Goto Source button.
 395

26 The Stepper

396
This cancels the dialog and then displays the source containing the break-
point.

26.6.5 Removing breakpoints

To remove a breakpoint under the cursor, click in the toolbar. Equivalently
you can choose Stepper > Breakpoint.

Where you wish to remove one or more breakpoints without finding them in
the source, choose Edit... from the Breakpoint Options menu or the menu com-
mand Stepper > Edit Breakpoints..., select a breakpoint or breakpoints in the
Breakpoints list, and click Remove.

If you remove all breakpoints, then the breakpoints dialog is closed.

26.7 Stepping macro forms
Where your code contains a macro, you can step the macroexpansion or sim-
ply step the macro form as-is.

26.7.1 Interactive macroexpansion

When the Stepper reaches code for which the source contains an unexpanded
macro form, by default it offers you the option of macroexpanding that form.

To see this, follow the example in “Standalone use of the stepper” on page 382
and when your reach my-function choose Stepper > Step Through Call or click

 in the Stepper toolbar.

The source code for my-function is shown in the Source area of the Stepper.
Choose Stepper > Step or click in the Stepper toolbar.

26.7 Stepping macro forms
Click Yes on the dialog asking "Expand MY-MACRO form?". The macroex-
pansion replaces the macro form:

Figure 26.8 Stepping a macroexpansion

Now you can Step into the macroexpansion of my-macro.

26.7.2 Macroexpansion in the stepper

To macroexpand a macro form before reaching it in the Stepper, position the
cursor at the start of the macro form and choose the menu command Stepper >
Macroexpand or click in the Stepper toolbar. You can only this when the
Stepper has already stepped the function.

Sometimes it is useful to expand macros in outer forms, to allow the more
detailed stepping of their expansions. For example, for a definition such as

(defstruct foo (x (print 10)) y)

when stepping
 397

26 The Stepper

398
(make-foo)

expanding the defstruct form allows you to step more of the constructor.

26.7.3 Collapsing macroexpansions

To collapse a macroexpansion in the Stepper, position the cursor at the start of
the macroexpansion and choose the menu command Stepper > Undo Macroex-
pand or click in the Stepper toolbar.

26.7.4 Controlling macroexpansion

You can alter the way the Stepper handles macro forms on a per-symbol or
per-package basis. For instance, you can specify that the Stepper always
expands your macros automatically, without prompting. For details, see
“Operator preferences” on page 399.

26.8 Listener area
Select the Listener tab of the Stepper tool to display a Listener.

This area offers all the usual Listener and Debugger commands. Moreover, the
execution environment is that of the function currently being stepped, and
contains the variables of each frame on the stack.

The Stepper listener also offers the following listener commands to control
stepping.

:s, :step Step

:st, :step-through-call

Step Through Call

:sc, :step-to-call

Step To Call

:sv, :step-to-value

Step To Value

:sn, :next Next

:se, :step-to-end

26.9 Configuring the Stepper
Step To End

:c, :continue Continue

:sm, :macroexpand

Macroexpand

:restart Abort

See “Stepper controls” on page 386 for a full description of these controls.

26.9 Configuring the Stepper
To configure the Stepper tool, raise the Preferences dialog, by choosing Works
> Tools > Preferences... or clicking . Then select Stepper in the list on the left
side of the Preferences dialog.

The Stepper Preferences have three tabs:

• The General tab controls display of the Stepper toolbar, as described in
“Toolbar configurations” on page 26.

• The Operators tab contains options controlling the behavior when the
stepper sees functions or macros in the source.

• The Backtrace tab controls the amount of information shown automati-
cally in the Backtrace area.

26.9.1 Operator preferences

Figure 26.9 Stepper Preferences
 399

26 The Stepper

400
When reaching a function call you can use the Step Through Call command to
step through the call into its definition. You can configure the Stepper to do
this automatically, never do this or ask you which action to take.

Similarly when reaching a macro form you can macroexpand it (or not). You
can configure the Stepper to macroexpand automatically, never macroexpand
or ask you whether to macroexpand..

For a given symbol naming a function or macro, the action is determined by
the preferences in the Operators tab. If the symbol is listed, then the corre-
sponding action is taken. Otherwise, if the symbol’s package is listed, then the
corresponding action is taken. If neither the symbol nor its package are
shown,. then the default action is taken.

For example, the default behavior on reaching your macro forms is to prompt
for whether to macroexpand. To configure the Stepper such that macros
defined in the CL-USER package are macroexpanded automatically, click the
Add... button, enter CL-USER in the Name pane of the dialog, select Always in
the Expand macros panel, click OK and click OK to dismiss the Preferences dia-
log.

To configure the Stepper such that it never steps through my-function, raise
the Stepper preferences again, click the Add... button and select the Symbol
radio button. Enter cl-user::my-function in the Name pane of the dialog,
select Never in the Step through calls panel, click OK and click OK to dismiss the
Preferences dialog.

26.9 Configuring the Stepper
26.9.2 Backtrace preferences

To control the amount of information displayed automatically in the Backtrace
area, select the Backtrace tab of the Stepper Preferences:

Figure 26.10 Stepper Preferences Backtrace tab

By default the status item in the Backtrace area automatically expands to show
the arguments or return values. To change this behavior, select No against
Expand status automatically.

By default the active frame in the Backtrace area automatically expands to
show the local variables and arguments. To change this behavior, select No
against Expand active frame automatically.

Compatibility Note: in LispWorks 5.0 these Backtrace options have the oppo-
site default values. This is changed in LispWorks 5.1 and later versions.
 401

26 The Stepper

402

27

27 The System Browser
27.1 Introduction
When an application becomes large, it is usually prudent to divide its source
into separate files. This makes the individual parts of the program easier to
find and speeds up editing and compiling. When you make a small change to
one file, just recompiling that file may be all that is necessary to bring the
whole program up to date.

The drawback of this approach is that it is difficult to keep track of many sep-
arate files of source code. If you want to load the whole program from scratch,
you need to load several files, which is tedious to do manually, as well as
prone to error. Similarly, if you wish to recompile the whole program, you
must check every file in the program to see if the source file is out of date with
respect to the object file, and if so re-compile it.

To make matters more complicated, files often have interdependencies; files
containing macros must be loaded before files that use them are compiled.
Similarly, compilation of one file may necessitate the compilation of another
file even if its object file is not out of date. Furthermore, one application may
consist of files of more than one source code language, for example Lisp files
and C files. This means that different compilation and loading mechanisms
are required.
403

27 The System Browser

404
The System Browser tool is designed to take care of these problems, allowing
consistent development and maintenance of large programs spread over
many files. A system is basically a collection of files that together constitute a
program (or a part of a program), plus rules expressing any interdependencies
which exist between these files.

You can define a system in your source code using the defsystem macro. See
the LispWorks User Guide and Reference Manual for more on the use of defsys-
tem. Once defined, operations such as loading, compiling and printing can be
performed on the system as a whole. The system tool ensures that these oper-
ations are carried out completely and consistently, without doing unnecessary
work, by providing you with a GUI front end for defsystem.

A system may itself have other systems as members, allowing a program to
consist of a hierarchy of systems. Each system can have compilation and load
interdependencies with other systems, and can be used to collect related
pieces of code within the overall program. Operations on higher-level systems
are invoked recursively on member systems.

27.2 A brief introduction to systems
A system is defined with a defsystem form in an ordinary Lisp source file.
This form must be evaluated in the Lisp image in order to use the system.

Once defined, operations can be carried out on the system by invoking Lisp
functions.

For example, the expression:

CL-USER 5 > (compile-system 'debug-app :force t)

would compile every file in a system called debug-app.

Note: When defining a hierarchy of systems, the leaf systems must be defined
first—that is, a system must be defined before any systems that include it.

By convention, system definitions are placed in a file called defsys.lisp
which usually resides in the same directory as the members of the system.

27.2 A brief introduction to systems
27.2.1 Examples

Consider an example system, demo, defined as follows:

(defsystem demo (:package "USER")
 :members ("macros"
 "demo-utils"
 "demo-functions")
 :rules ((:in-order-to :compile ("demo-utils" "demo-functions")
 (:caused-by (:compile "macros"))
 (:requires (:load "macros")))))

This system compiles and loads members in the USER package if the members
themselves do not specify packages. The system contains three members—
macros, demo-utils, and demo-functions—which may themselves be either
files or other systems. There is only one explicit rule in the example. If macros
needs to be compiled (for instance, if it has been changed), then this causes
demo-utils and demo-functions to be compiled as well, irrespective of
whether they have themselves changed. In order for them to be compiled,
macros must first be loaded.

Implicitly, it is always the case that if any member changes, it needs to be com-
piled when you compile the system. The explicit rule above means that if the
changed member happens to be macros, then every member gets compiled. If
the changed member is not macros, then macros must at least be loaded
before compiling takes place.

The next example shows a system consisting of three files:

(defsystem my-system
 (:default-pathname "~/junk/")
 :members ("a" "b" "c")
 :rules ((:in-order-to :compile ("c")
 (:requires (:load "a"))
 (:caused-by (:compile "b")))))

What plan is produced when all three files have already been compiled, but
the file b.lisp has since been changed?

First, file a.lisp is considered. This file has already been compiled, so no
instructions are added to the plan.

Second, file b.lisp is considered. Since this file has changed, the instruction
compile b is added to the plan.
 405

27 The System Browser

406
Finally file c.lisp is considered. Although this has already been compiled,
the clause

(:caused-by (:compile "b"))

causes the instruction compile c to be added to the plan. The compilation of
c.lisp also requires that a.lisp is loaded, so the instruction load a is added
to the plan first. This gives us the following plan:

1. Compile b.lisp.

2. Load a.lisp.

3. Compile c.lisp.

27.3 The System Browser
The System Browser provides an intuitive graphical way to examine and
operate on systems and their members.

For example, the operation outlined in “A brief introduction to systems” on
page 404 would be performed by the System Browser menu commands Sys-
tems > Compilation options > Force followed by Systems > Compile.

To create a System Browser, choose Works > Tools > System Browser or press
 in the Podium. Alternatively, choose File > Browse Parent System from any

appropriate tool in the environment or execute Meta+X Describe System in
an editor, to display the parent system for the selected or current file in the
System Browser. See “Operating on files” on page 44 for details.

In order to browse a system, first ensure it is defined. To define a system, load
the Lisp source code containing the defsystem form into the Lisp image. For
instance, open the file in an Editor and choose File > Load. Alternatively,
choose File > Load... from the System Browser and choose a file to load in the
dialog that appears.

27.4 A description of the System Browser
The System Browser has four views:

• The Tree view displays a tree of all the systems defined in the image,
together with their members.

27.5 Examining the system tree
• The Text view lists the systems defined in the image together with the
members of the current system.

• The Preview view provides a powerful way of generating and executing
systems plans.

• The Output view is used to display any output messages which have
been created by the System Browser as a result of executing plans.

27.5 Examining the system tree
When you first invoke the System Browser, the Tree view is the default view.
You can also switch to it from another view by choosing the relevant tab above
the main view. The Tree view is shown in Figure 27.1 below.

Figure 27.1 Displaying loaded systems using the Tree view
 407

27 The System Browser

408
The System Browser window has four areas, described below.

27.5.1 System area

The System area is used to enter and display in the name of the system.

You can browse a system by entering its name into the System: area. Whilst
doing this you can press Up, Down or click to complete a partially specified
name. This allows you to select from a list of all system names which begin
with the partial input you have entered. See “Completion” on page 61 for
detailed instructions.

The members of the system are displayed in the tree area.

27.5.2 Tree area

The Tree area produces a tree of the current system, together with all its mem-
bersThe generic facilities available to all tree views throughout the environ-
ment are available here; see Chapter 6, “Manipulating Graphs” for details.

• Double-click on a filename to display the file in the editor.

• Click on an unfilled circle alongside a system name to display its mem-
bers.

• Click on a filled circle alongside a system name to hide its members.

• Select either a system name or a file name to display details in the
Description area.

You can operate on systems and files via the context menu, which offers com-
mands such as Concatenate... and Search Files... for systems, and Compile and
Print... for files. The system commands are also available in the Systems menu.
If no items are selected, the commands apply to the current system, whose
name is printed in the System area.

To traverse the system hierarchy, expand a system node in the tree. If the des-
tired parent node is not in the tree, choose Systems > Browse All Systems. The
parent of all systems defined in the image at any time is called ALL-SYSTEMS.

To see the souce code definition of a system, double-click its node in the tree or
do Systems > Find Source or click .

27.5 Examining the system tree
27.5.3 Description area

The Description area shows details about any system member selected in the
Tree area. The following items of information are shown:

Module The name of the selected member. This is either the file-
name (if the member is a file of source code) or the sys-
tem name (if the member is a subsystem).

Pathname The directory pathname of the selected member. This is
the full pathname of the file, if the selected member is a
file of source code, or the default directory of the sys-
tem, if the selected member is a subsystem.

Flags This lists any keyword flags which have been set for the
selected member in the system definition, such as the
:source-only flag.

To operate on any of the items displayed in this area, select them and choose a
command from the Description menu, which contains the standard actions
described in “Performing operations on selected objects” on page 48. By mak-
ing multiple selections, you can operate on as many of the items as you like.

27.5.4 Performing operations on system members

A variety of operations can be performed on any number of nodes selected in
the Tree area. If no system nodes are selected, or if you are in another view, the
commands are performed on the current system, whose name is printed in the
System area.

The Systems menu gives you access to the standard actions described in “Per-
forming operations on selected objects” on page 48.

• Systems > Browse All Systems causes the System Browser to display the
root node, whose children include all loaded systems.

• Systems > Browse Systems For Directory causes the System Browser to
display all systems that have files in a given directory or one of its sub-
directories.

• Choose Systems > Compile and Load, Systems > Compile, or Systems >
Load to compile or load the selected systems.
 409

27 The System Browser

410
• Choose Systems > Concatenate... to produce a single fasl file from a sys-
tem. You will need to supply the name of the fasl file, when prompted.

• Choose Systems > Search Files... to search the files of the selected sys-
tems (and any subsystems) for a given regular expression. A dialog
prompts for the regular expression, and then a Search Files tool is raised
in System Search mode, displaying the results of the search. The Search
Files tool is described in “The Search Files tool” on page 233.

• Choose Systems > Hide Files, to remove system member files from the
tree and display only systems. Choose Systems > Show Files to reverse
this effect.

• Choose Systems > Replace to search all the files in the selected members
(and any subsystems) for a given string and replace it with another
string. You are prompted for both strings in the echo area.

You need to save the buffers to actually save the changes on disk, this is
easily done using the Editor tool - see “Buffers area” on page 178 for
details.

27.6 Examining systems in the text view
The text view allows you to list the parent system, subsystems and files in the
current system in one view, and gives you an easy way of changing the cur-

27.6 Examining systems in the text view
rent system. Choose the Text tab to display this view. The System Browser
appears as shown in Figure 27.2 below.

Figure 27.2 Displaying loaded systems using the text view

The System Browser contains the areas described below when in the text view.

27.6.1 System area

As with the tree view, the current system is shown here. See “System area” on
page 408 for details about this area.
 411

27 The System Browser

412
27.6.2 Parent system area

This area lists any parent systems of the current system. Note that every sys-
tem apart from ALL-SYSTEMS must have at least one parent.

Double-click on any item in this list to make it the current system. Its name is
printed in the System area.

27.6.3 Subsystems area

This area lists any systems which are subsystems of the current system.

Double-click on any item in this list to make it the current system. Its name is
shown in the System area.

27.6.4 Files area

This area lists any files which are members of the current system. Source files
containing either Lisp or non-Lisp code (such as C code which is loaded via
the Foreign Language Interface) are listed in this area.

• Select a file to display its description in the Description area.

• Double-click on a file to display it in the editor.

27.6.5 File description area

The Description: area displays information about any system member selected
in the Files area. If no such member is selected, information about the current
system (the one named in the System area) is shown instead. The same pieces
of information are shown as in the tree view. See “Description area” on page
409 for details. As with other views, items selected in this area can be operated
on using commands in the Description menu.

27.7 Generating and executing plans in the preview view
The preview view allows you to generate different system plans automatically
based on three things:

• The current compilation and load status of each member of a system.

• The rules specified in the system definition.

27.7 Generating and executing plans in the preview
view
• The specific actions that you wish to perform.

You can use this view to browse the plan and to execute all or any part of it, as
well as generate it.

Click on the Preview tab to switch to the preview view in the System Browser.
The System Browser appears.

Figure 27.3 Previewing system plans using the Preview view

Click Recompute Events or the menu command Works > Refresh and expand
nodes in the tree to make the plan fully visible as in Figure 27.3.

The System Browser has the areas described below.
 413

27 The System Browser

414
27.7.1 System area

As with the tree view, the current system is shown here. See “System area” on
page 408 for details about this area.

27.7.2 Actions area

The Actions area contains a number of options allowing you to choose which
actions you want to perform, thereby allowing you to create system plans.

The Compile, Load and Force check buttons can be selected or deselected as
desired. Note that at least one of Compile and Load must always be selected.

• Select Compile to create a plan for system compilation. The plan dis-
plays what actions need to be performed in order to update the fasls for
the entire system.

• Select Load to create a plan for loading the system. The plan displays a
list of the actions required to load the system.

• Select Force if you want to force compilation or loading of all system
members, whether it is necessary or not.

Click Recompute Events to create a new plan for the specified options. You
should click this button whenever you change the Compile, Load, or Force
options, or whenever you change any of the files in the system or any of its
subsystems.

Click Execute Events is used to execute the events currently selected in the
main area. Notice that this button is only enabled.when some event is selected
in the plan. See “Executing plans in the preview view” below for details.

27.7.3 Filter area

As with other tools, you can use the Filter area to restrict the output in the
plan area to just those actions you are interested in. This may be useful, for
instance, if you want to see only compile actions, or only load actions, or if
you are only interested in the actions that need to be performed for a particu-
lar file.

27.7 Generating and executing plans in the preview
view
27.7.4 Plan area

The Plan area lists the actions in the current plan. Items are indented to indi-
cate groups of related actions. Thus, if a subsystem needs to be loaded, the
individual files or subsystems that comprise it are listed underneath, and are
indented with respect to it.

27.7.5 File description area

The File Description area displays information about any system member
selected in the Plan area. If no such member is selected, information about the
current system (the one named in the System area) is shown instead. The same
pieces of information are shown as in the tree view. See Section 27.5.3 on page
409 for details. As with other views, items selected in this area can be operated
on using commands in the Description menu.

27.7.6 Executing plans in the preview view

Once you have created a plan in the preview view, there are a number of ways
that you can execute either the whole plan, or individual actions within that
plan.

As already mentioned, to execute individual actions in the plan, select them in
the main area and then click the Execute Events button.

To execute the whole plan, just choose the relevant command:

• Choose the menu command Systems > Load or click the button to
execute a plan for loading the system.

• Choose the menu command Systems > Compile or click the button to
execute a plan for compiling the system.

• Choose the menu command Systems > Compile and Load or click the
button to execute a plan for both compiling and loading the system.

Note that you can also execute the whole plan by choosing Edit > Select All and
then clicking Execute Events.
 415

27 The System Browser

416
27.8 Examining output in the output view
The output view can be used to view and interact with messages that have
been generated as a result of actions performed in the System Browser. This
largely consists of compilation and load messages that are generated when
system plans or individual actions in a plan are executed.

Click on the Output tab to switch to the output view. The System Browser
appears as in Figure 27.4.

Figure 27.4 Viewing output in the System Browser

The output view has the areas described below.

27.8.1 System area

As with the tree view, the current system is shown here. See “System area” on
page 408 for details about this area.

27.9 ASDF Integration
27.8.2 Output area

The largest area in this view is used to display all the output messages which
have been generated by the System Browser. This area has the same properties
as the Output Browser described in Chapter 22, “The Output Browser”. In
particular you can interact with highlighted compiler warnings and notes in
the same way as in any output tab in the IDE.

27.9 ASDF Integration
The System Browser tool allows integration of source code managers.

There is an example for integrating ASDF in

(lw:example-file "misc/asdf-integration.lisp")

The interface is described in some detail in the remainder of this section, but
the example above is sufficient to allow you to use ASDF in the LispWorks
IDE.

27.9.1 Interface to source code managers

The interface comprises a function scm:add-system-namespace which must
be called, and a set of generic functions for which methods need to be defined.

scm:add-system-namespace adds a namespace of "systems", which:

• are objects that may have children

• themselves may be "systems"

• are associated with pathnames

• have operations :load and :compile defined for them

LispWorks has its own built-in source code manager (lw:defsystem, lw:com-
pile-system, lw:load-system, lw:concatenate-system and related func-
tions). A widely-used source code manager is ASDF.

In the LispWorks IDE tools, a system name that contains a colon is interpreted
as

namespace:systemname
 417

27 The System Browser

418
To find the system LispWorks applies the finder specified in scm:add-system-
namespace to the string systemname. A system name without a colon is
searched (using the finder) in all the known namespaces. Note that this means
that a system name without a colon may match several systems in different
namespaces.

In addition to the integration interface, there are new functions which look at
the namespaces and systems.

The most important symbols in the integration interface are described in the
remainder of this section. "module" means one of the objects that is returned
by the finder in scm:add-system-namespace or by the system-lister in
scm:add-system-namespace or by scm:module-children. A "system" is a
module for which scm:module-is-system-p returns true.

scm:add-system-namespace Function

add-system-namespace name &key finder system-lister name-lister

The function scm:add-system-namespace tells LispWorks about another sys-
tem namespace.

name must be a string. It is compared case-insensitively. The name must be dif-
ferent from "LW", which is the namespace for the LispWorks built-in lw:def-
system systems.

finder must be supplied as a function or symbol which takes one argument, a
string. If there is an exact match (case-insensitive) it returns a module object or
a list of module objects. The finder needs to be error-free when called with a
string.

system-lister must be a designator for a function which takes no argument, and
returns a list of the known systems in the namespace.

name-lister is optional. If supplied, it must be a designator for a function which
takes no argument and returns a list of the names of the systems in the
namespace. If it is not supplied, the system uses system-lister and maps
scm:module-name on the result.

27.10 Configuring the display
scm:module-name Generic Function

module module => name

The function scm:module-name must be defined for any module. It takes a
module and returns its name.

scm:module-is-system-p Generic Function

scm:module-is-system-p module => boolean

The generic function scm:module-is-system-p returns true if the module is
a "system". That is, it has children. The default method returns false.

scm:module-children Generic Function

scm:module-children module => list-of-modules

The generic function scm:module-children returns the children of the mod-
ule, if any. The default method returns nil. This generic function is called
only on "systems", that is after checking that scm:module-is-system-p
returned true.

27.10 Configuring the display
The System Browser allows you to configure the display so that it best suits
your needs. The commands available for this are described below.

27.10.1 Sorting entries

Entries in the System Browser can be sorted in a number of ways. To change
the sorting, choose Works > Tools > Preferences... or click to display the
Preferences dialog, and then select System Browser in the list on the left side of
the dialog. Click on the General tab to view the sorting options.

By Name Sorts entries in the main area of the current view (the
tree in the tree view and the Files area in the text view)
according to the symbol name.

By Package Sorts entries in the main area according to their pack-
age.
 419

27 The System Browser

420
Unsorted Leave entries in the main area unsorted. This is the
default setting.

27.10.2 Displaying package information

As with other tools, you can configure the way package names are displayed
in the System Browser, using the Package box. See “Displaying packages” on
page 45 for full details.

27.10.3 Display of the toolbar

You can control whether the System Browser displays the compile/load and
history toolbars by the option Show Toolbar, as described in “Toolbar configu-
rations” on page 26.

27.11 Setting options in the system browser
The Systems > Compilation Options menu allows you to set options which
apply whenever you compile or load system members. Each of the commands
described below toggles the respective option.

Choose Systems > Compilation Options > Force to force the compile or load
operation to be performed. If you are operating on a whole system (as
opposed to system members which are files) this means that actions for all the
members are added to the plan.

Choose Systems > Compilation Options > Source to force the use of Lisp source
rather than fasls in operations on the system.

Choose Systems > Compilation Options > Preview to automatically preview the
plan prior to execution of a compile or load instruction chosen from the Sys-
tems menu. This switches the System Browser to the preview view and allows
you to see what operations are going to be performed, and to change them if
you want. See “Generating and executing plans in the preview view” on page
412 for full details about previewing plans.

Choose Systems > Concatenate... to concatenate the selected system into a sin-
gle fasl after compiling it. You will need to supply the name of the single fasl
file, when prompted.

28

28 The Window Browser
28.1 Introduction
The Window Browser lets you examine any windows that have been created
in the environment. You can examine not only the environment windows
themselves, but also more discrete components of those windows, such
menus and menu commands. To create a Window Browser, choose Works >
Tools > Window Browser or click in the Podium.
421

28 The Window Browser

422
The Window Browser only has one view, shown in Figure 28.1.

Figure 28.1 The Window Browser

The Window Browser has three sections.

28.1.1 Graph box

The Graph: text box shows the window object that is being examined; that is,
the the window at the root of the graph.

28.1 Introduction
28.1.2 Window graph

The window graph displays the current window and all its subwindows. The
generic facilities available to all graphs throughout the LispWorks IDE are
available here; see Chapter 6, “Manipulating Graphs” for details.

When you first create a Window Browser, it automatically browses the parent
window of the whole environment. A graph of the parent window together
with its children—each individual window that has been created—is drawn in
the main area.

Select any item in the graph to display its description in the Description: area.

To see the children of an unexpanded node in the graph, click on the unfilled
circle to its right. To make one of the child windows be the root of the graph,
select it and choose Windows > Browse - Window.

Any items selected in the graph can be operated on using commands in the
Windows menu. If no items are selected, the commands in this menu apply to
the root window of the graph. See Section 28.3 on page 427 for details.

28.1.3 Description list

The Description: are gives a description of the item selected in the Graph: area.
If nothing is selected, a description of the window at the root of the graph is
shown. The following information is listed:

Window The object which represents the selected window

Class The class of the window object.

Name The name of the selected window.

Representation The CAPI representation of the selected window.

Interface The underlying native window system object which
represents the selected window.

Screen The name of the screen on which the selected window
is displayed.

Any item selected in the Description list can be operated on by using com-
mands under the Description menu. This menu gives you access to the stan-
dard actions commands described in Section 3.8 on page 48.
 423

28 The Window Browser

424
28.2 Configuring the Window Browser
You can configure the Window Browser using the Preferences dialog. To do
this, choose Works > Tools > Preferences.... or click to display this dialog,
and then select Window Browser in the list on the left side of the dialog.

Figure 28.2 Window Browser Preferences

The Window Browser Preferences has three tabs:

• The General tab contains options for configuring general properties of
the Window Browser.

• The Graph Layout tab contains options for configuring options specific to
the graph. See Section 6.6 on page 91 for a description of these options.

• The Components tab contains options for configuring properties unique
to the Window Browser.

28.2 Configuring the Window Browser
28.2.1 Sorting entries

Entries in the Window Browser can be sorted using the Sort panel in the Gen-
eral tab in the Preferences dialog. Choose the sort option you require from the
list available.

By Name Sorts items alphabetically by name.

By Package Sorts items alphabetically by package name.

Unsorted Displays items in the order they are defined in. This is
the default setting.

28.2.2 Displaying package information

As with other tools, you can configure the way package names are displayed
in the Window Browser using options available in the General tab.

Check or un-check Show Package Names to turn the display of package names
in the Window Browser on and off.

Specify the process package of the Window Browser in the Package text box.

28.2.3 Displaying the toolbar

You can control whether the Window Browser displays its history toolbar by
the option Show Toolbar in the General tab of the Preferences, as described in
“Toolbar configurations” on page 26.

28.2.4 Displaying different types of window

There are several types of window object which can be displayed in the Win-
dow Browser, and you can configure which types are displayed using the Dis-
play Component panel of the Components tab in the Preferences dialog. Six
options are available; select whichever ones you want to display.

Below, the current window means the window that is at the root of the graph.
 425

28 The Window Browser

426
Layouts Displays the major layouts available to the current win-
dow. For the parent window of the environment, this
means all the windows that have been created. For an
individual window, this means the configuration of the
different panes in that window.

Panes Displays CAPI panes in the current window.

Pinboard ObjectsDisplays any pinboard objects in the current window.
See the CAPI User Guide for a full description of pin-
board objects.

Menus Displays any menus available to the current window.

Menu Items Displays any menu items available to the current win-
dow. This option only takes effect if Menus is selected
as well.

Graph Objects Displays any graph objects in the current window. See
the CAPI User Guide for a full description of graph
objects.

Toolbar Items Displays any toolbar items available to the current win-
dow.

By default, all these options are selected in the Window Browser.

28.2.5 Displaying short or long names

By default, the Window Browser gives each item in the graph a short name.
You can also display the complete symbol name for each item if you wish, as
displayed in the Window line of the Description list. You can configure this
option from the Components tab of the Preferences.

Select Long Names in the Print Using panel to display the complete symbol
name of each item in the graph.

Select Short Names in the Print Using panel to display the short name for each
item in the graph. This is the default setting.

Bear in mind that graphs are larger when you display them using long names,
and can therefore be more difficult to examine.

28.3 Performing operations on windows
28.3 Performing operations on windows
You can perform a number of operations on any windows selected in the
Graph area using the commands in the Windows menu. If no items are selected
in the Graph area, the commands in this menu apply to the root window of the
graph.

The Windows menu gives you access to the standard actions commands
described in Section 3.8 on page 48.

28.3.1 Navigating the window hierarchy

Choose Windows > Browse Parent to display the parent of the current window.
This takes you back up one level in the window hierarchy.

Choose Windows > Browse Screens to examine the parent window of the envi-
ronment once again—this takes you back up to the root of the window hierar-
chy.

28.3.2 Window control

There are several commands which give you control over the current window.

Choose Windows > Lower to push the current window to the bottom of the pile
of windows on-screen.

Choose Windows > Raise to bring the current window to the front of your
screen.

Choose Windows > Quit to quit any windows selected in the graph.

Choose Windows > Destroy to destroy any windows which are selected in the
graph. You are prompted before the windows are destroyed.
 427

28 The Window Browser

428

29

29 The Application Builder
29.1 Introduction
The Application Builder makes it easier to create applications, typically by
calling deliver. It helps you to control and debug the delivery process. On
Intel Macintosh computers, it also eases the building of universal binaries. On
all platforms it can also be used to save a development image, calling save-
image.

To create an Application Builder, choose Works > Tools > Application Builder or
click in the Podium.

Note: the Application Builder needs deliver (or save-image) functionality
and therefore it is not available in LispWorks Personal Edition.
429

29 The Application Builder This chapter does not apply to the Personal Edition

430
On first use the Application Builder appears all set to build the CAPI example
Hello World, as shown in Figure 29.1 below.

Figure 29.1 The Application Builder with the Hello World example

Choose Build > Build or click to build the Hello World example.

Then choose Build > Run or click to run the Hello World example that you
just built.

Note that these Application Builder commands are also available on the Build
menu.

29.1.1 What the Application Builder does

This tool helps to control and debug the delivery process.

To use the Application Builder, you need to configure it to know about it your
delivery script, and then invoke the Build command. This runs LispWorks in a

This chapter does not apply to the Personal Edition 29.2 Preparing to build your application
subprocess with the script. The Application Builder displays the output, and
reports on the progress of Delivery. It also allows you to edit the script, and to
run the built application.

Note: the Application Builder runs the build in a subprocess. It does not save
the LispWorks IDE image containing the Application Builder tool. The built
application contains code loaded by the delivery script, but does not inherit
any settings you have made in the LispWorks IDE image.

Note: The Application Builder does not help you in writing your application.

Note: In LispWorks 4.4 and previous versions, you would generally need to
write a shell script which runs LispWorks with the appropriate command
arguments for delivery. The Application Builder obviates the need for such a
script, allowing you to complete the delivery process entirely within the Lisp-
Works IDE.

29.2 Preparing to build your application
First you will need a script which loads your application code and then calls
deliver. Delivery scripts are described in detail in the LispWorks Delivery User
Guide. If you do not already have a delivery script, the Application Builder can
help you to create a simple script, which you can modify as needed.

It is also possible to use the Application Builder with a script that calls save-
image rather than deliver.

29.2.1 The script

The delivery script is a Lisp source file, which at a minimum loads patches
and your application code, and then calls deliver. The script may do other
things, such as configuring your application, though in general you should try
to keep it as simple as possible.

29.2.1.1 Using your existing delivery script

If you already have an appropriate delivery script (because you already deliv-
ered your application before), click the button to the right of the Build
script pane and select your script file. The Application Builder now displays
the path to your script in its Build script pane.
 431

29 The Application Builder This chapter does not apply to the Personal Edition

432
29.2.1.2 Creating a new delivery script

Suppose that you already have a file compile-and-load-my-app.lisp that
you use to compile and load your application. Then you can create a suitable
delivery script with the help of the Application Builder.

To create the new delivery script:

1. Choose Build > Make a New Script or click in the Application Builder
toolbar.

This displays a dialog as shown in Figure 29.2, page 433.

2. Enter the path to compile-and-load-my-app.lisp in the Loading
script pane. You can use the button to locate the file.

3. Enter the deliver arguments.

Note: Level defaults to 0, which is a good choice the first time you
deliver your application. You will probably want to increase the Deliv-
ery level later, for reasons explained in the LispWorks Delivery User Guide.

This chapter does not apply to the Personal Edition 29.2 Preparing to build your application
4. Check the calculated Script Name (and modify it if desired), and click OK.

Figure 29.2 The New Delivery script dialog

The Application Builder now displays the path to the new script in its Build
script pane. The new script will load patches, load your file, and then call
deliver, something like this:

 (in-package "CL-USER")
 (load-all-patches)
 (load "compile-and-load-my-app")
 (deliver 'my-start-function "my-app" 0)

Note: your delivery script should load all the code needed for the application.
Do not rely on your personal initialization or siteinit files (which are ordi-
narily loaded into LispWorks), because these initialization files will not be
used when building the application.
 433

29 The Application Builder This chapter does not apply to the Personal Edition

434
29.3 Building your application
Once you have a script name in the Build script pane, build your application
by choosing Build > Build or clicking the toolbar button. The Application
Builder invokes LispWorks in a subprocess, with the script as its -build argu-
ment.

If desired, you can abort the build process by pressing the Abort button.

The State pane displays the status of the building operation. After a successful
build, the status changes to "Done" and the tool displays the name and size of
the saved image in the Saved Image and Size panes, as shown in Figure 29.3
below.

Figure 29.3 The Application Builder after a successful build

This chapter does not apply to the Personal Edition 29.4 Editing the script
29.4 Editing the script
The Application Builder makes it easy to find the script. Choose Build > Edit
Script or click the toolbar button. Edit the script using the Editor tool that
this displays. See “The Editor” on page 169 for more information about using
the Editor tool.

Before it starts a build, the Application Builder saves the editor buffer display-
ing the script if you have modified that buffer. This behavior can be switched
off - for the details, see “Configuring the Application Builder” on page 438.

29.5 Troubleshooting
During the build, the output is displayed in the Application Build output
pane. This is a normal editor text box which you can search and edit in the
usual way.

If there is an error during the build, a backtrace is generated and the subpro-
cess image exits.

29.5.1 Viewing errors

To view the error message choose Build > Display Error or click the toolbar
button.

To view the error message and the backtrace in an Editor tool choose Build >
Display Backtrace or click the toolbar button. Most errors can be resolved
after checking the backtrace.

29.5.2 Clearing the output

To clear the Application Build output pane choose Build > Clear Output or click
the toolbar button.

You can set the tool to do this automatically - for the details see “Configuring
the Application Builder” on page 438.
 435

29 The Application Builder This chapter does not apply to the Personal Edition

436
29.6 Running the saved application
Once you have successfully built your application, you can run it from the
Application Builder.

If the application can run without arguments you can run it by choosing Build
> Run or clicking the toolbar button.

29.6.1 Passing arguments and redirecting output

If the application requires command line arguments, or you want to see what
it writes to the standard output, or you need some other setups, choose Build >
Run With Arguments or click the toolbar button. This raises a dialog, shown
in Figure 29.4 below.

Figure 29.4 The Run With Arguments dialog

To pass one or more command line arguments to your application, enter these
in the Arguments pane.

To redirect the output of your application, select an option in the Output area.

This chapter does not apply to the Personal Edition 29.7 Using the Application Builder to save a develop-
ment image
Click OK to run your application with the settings you specified. The State
pane shows when the application is running and reports when it has finished.

29.6.2 Executing a different file

The Run With Arguments dialog also allows you to set a different file to exe-
cute, rather than the saved image. This is useful if your application needs
some setups, or if it needs to be invoked by some other program (for example,
when it is a dynamic library).

To execute a different file from the one you built, enter the path in the Execute
pane.

29.6.3 Killing application processes

Application processes that were invoked by the Application Builder can con-
veniently be killed if needed.

To kill all such processes, choose Build > Kill All or click the button.

To kill just one such process choose Build > Kill Application or click the drop-
down to the right of the button. This raises a menu listing the invoked
applications that are still running in the chronological order in which they
were invoked. Select one item from the menu to kill that process.

29.7 Using the Application Builder to save a development
image
To use the Application Builder to save a development image you first config-
ure it to know about it your save-image script, which you must write by
hand. Then you invoke the Build command.

For example, you can use the Application Builder to save a console develop-
ment image. We assume that you have the script in the file /tmp/
resave.lisp as described under "Saving a non-GUI image with multipro-
cessing enabled" in the LispWorks User Guide and Reference Manual. Enter /
tmp/resave.lisp in the Build script: area, and then press the Build the applica-
tion using the script toolbar button. Then you can run the new image ~/lw-
console.
 437

29 The Application Builder This chapter does not apply to the Personal Edition

438
Note: The Application Builder runs the build in a subprocess. It does not save
the current LispWorks IDE image in which you are running the Application
Builder tool, and your saved image does not inherit any settings you have
made in the current LispWorks IDE image. For that functionality, see “Session
Saving” on page 75.

29.8 Configuring the Application Builder
You can configure the tool to suit your needs using the Preferences dialog. To
do this, choose Works > Tools > Preferences.... or click , and then select Appli-
cation Builder in the list on the left side of the Preferences dialog.

Figure 29.5 Application Builder Preferences

To make the Application Builder clear the output before each build, select the
Clear output before doing build option.

To prevent automatic saving of your edited script before a build, deselect the
Save the build script before doing build option.

To make the Application Builder ensure that the cursor is at the end of the cur-
rent output before each build, select the Move to the end of the output when start
building option.

You can control whether the Application Builder displays its toolbar by the
option Show Toolbar on the General tab, as described in “Toolbar configura-
tions” on page 26.

Click OK in the Preferences dialog to confirm your options and save them for
future use.

Index
Symbols
$ variable 267
* variable 13, 18, 262, 328
** variable 13
*** variable 13
package variable 206
.lispworks file 31

A
aborting commands in the editor 192
accelerators

for tools 23
action callbacks 318
Actions menu 48–51
active-finders variable 240
add-system-namespace function 418
Alt key

use of 174
application builder 429–438
Arguments command 209, 332
ASDF 239, 417
Attributes command 300, 303
Attributes menu 259

Clip 263
Copy 263
Inspect 259

B
Backtrace command 333
backtraces 151

binding $ to the current inspector object 267
binding frames 156
Bindings button 156
Bindings command 334
Break command 350
Break on Access command 259
Break on Read command 259
Break On Return from Frame command 155
Break on Write command 259
breaking a process 350
breaking processes 42
breakpoints

in the editor 205
Browse All Systems command 408, 409
Browse command 49, 67, 423

variations in name 50
Browse Metaclass command 109, 112, 114,

118, 122, 124
Browse Parent command 427
Browse Parent System command 45, 208, 406
Browse Screens command 427
Browse Symbols Like command 51, 333
Browse Systems For Directory command 409
browser-location variable 72
browsers 69
browsing

Common Lisp classes 99–124
compilation conditions 135–140
errors 135
function calls 211–220
generic functions 221–231
HTML documentation 69
online manuals 69
output 12, 341–345
selected object, class of the 50, 331
symbols 273–280

439

440
systems 45, 406–420
window definitions 421–427

Buffer Changed Definitions
editor command 183

buffers
closing 190
swapping between 190

Buffers menu 178, 201
Compile 203
Evaluate 202
Trace. See Trace menu
Undefine 208

bugs, reporting 334
Build command 430, 434
Build menu

Build 430, 434
Clear Output 435
Display Backtrace 435
Display Error 435
Edit Script 435
Kill All 437
Kill Application 437
Make a New Script 432
Run 436
Run With Arguments 436

building
applications 429–438

By Name option 54
By Package option 54

C
call frames 150, 156
callbacks

action 318
extend 318
retract 318
selection 318
specifying 317–319

catch frames 156
Catchers button 156
:center keyword 314
check components 293
choosing menu commands xiv
class browser 99–124

Class area 108
current class, operations specific to

the 109, 112, 114, 118, 122, 124
description 3
Description area 111, 114, 121
examining a class 105
Filter area 108
filtering information 103
Function description area 117
functions list 117
functions view 116–118
generic functions, operating on 118
Graph area 114
graph view 112–115
hierarchy view 105
Include Accessors button 117
Include Inherited button 117
inherited slots 102
Initargs area 121
initargs view 120
invoking on the current expression 331
invoking on the selected object 50
menu commands, see menu or command

name
methods list 117
overview of the 99
Precedence area 124
precedence view 122
Slot description area 109
slot information 102–104
Slots area 108
slots view 102–104
sorting information 106
tracing classes from the 119
undefining functions and methods 118
See also classes

Class command 16, 50, 100, 103, 108, 331
classes 99–124

changing slot values in the inspector 260–
263

column-layout 289
displaying graphs of 112–115
examining 105
examining functions and methods defined

on 116–118
inherited slots in 102
initargs 120
inspecting local slots 257
interface 283
list-panel 103
operations specific to the current class 109,

112, 114, 118, 122, 124
precedence list 122
push-button-panel 105
row-layout 289
tracing 119
See also class browser

Classes menu
Browse Metaclass 109, 112, 114, 118, 122,

124

objects operated on by the 109, 112, 114,
118, 122, 124

Clear Output command 435
Clip command 128
clipboard

general use 40–41
interaction with UNIX clipboard 41
usage in editor 193
See also clipboard, kill ring, UNIX clipboard

Clone command 27, 56, 191
Close command 190

interface builder 297
closing

editor buffers 190
Collapse Nodes command 88
collapsing graphs 87
colors

of code in Lisp mode 36
column-layout class 289
command line arguments
-build 82
-eval 82
-init 82
-load 82
-lw-no-redirection 82
-siteinit 82

Command to Key command 209, 339
commands

completion of 173
repeating 43

common features in the environment 21–67
common features in the IDE

See also under graphs
Common Lisp

classes. See classes
debugging 141–160
displaying documentation for

expressions 331
displaying documentation for selected

object 50, 154
evaluating forms 327–328
file extension 187
indentation of forms in source code 208
prompt 327
systems. See system

Common Lisp symbols 35
Common LispWorks podium 97–98
compilation conditions browser 135–140

pathnames 140
preference dialog 138

Compilation Options menu
Force 420

Preview 420
Source 420

Compile and Load command 45, 151, 204, 409,
415

Compile and Load... command 204
Compile command 45, 203, 204, 409, 415
Compile Region command 332

in editor 203
Compile... command 204
compiler output 203
compile-system function 404
compiling code

editor 203–204
compiling files in the listener 45
completion 61, 173

in class browser 105, 157
dynamic 36
in generic function browser 223
in-place 30, 36
using Tab 61

Concatenate... command 410, 420
Condition menu

Actions. See Actions menu
Report Bug 153

confirmer
description 304

consistency in the IDE. See common features in
the IDE

contain function 14, 103, 263
Contents radio button 71
Control key, use of xv, 174
controls

choosing xiv
conventions used in the manual xi–xv
Copy command 50, 193, 194, 262

in Actions menu 369
interface builder 299
standard action command 50

Copy Object command 40–41
copying windows 27
create snapshot 75–83
creating new files 44, 187
current

object. See selected object
package of any tool 47
prompt 327
value, operating on 333

current buffer 202
current class, operations specific to the 109,

112, 114, 118, 122, 124
current definition 202
current expression 202

 441

442
displaying lambda list for 209, 332
displaying value 209, 332
stepper breakpoint 332
toggling stepper breakpoint 332
tracing 332

current form
macroexpanding 332
walking 332

Customize menu
Reusable 26, 179

Cut command 193, 194
interface builder 287, 289, 294, 299, 310

Cut Object command 40–41

D
Debug command 351
Debug menu

Debugger 10, 141, 142, 149, 151, 153
Listener 10
Restarts 333

debugger 141–160
abort restart 149
backtrace tree 145
binding frames 156
call frame 145
call frames 150, 156
catch frames 156
closure variable 145
colors of variables 145
continue restart 149
controlling from the listener 333–334
debugger tool 334
description 148
displaying documentation for object in

current frame 154
example session 151–153
finding source code for object in current

frame 154
handler frames 156
invisible frames 157
invoking 143
invoking from the process browser 351
invoking from the tracer 55
lexical variable 145
menu commands in the listener 333
other frame 146, 381
restart frames 156
restart options 149–150
special variable 146
stack 150
stack frames 150
See also debugger tool
Debugger command 10, 142, 142, 149, 151,
334

debugger level 329
debugger prompt

colon 329
debugger tool 141–160

Backtrace area 144
buttons 148
Condition area 144
invoking 141
invoking from notifier 143
package information 157
types of frame, displaying 156
See also debugger

debugging a process 351
defclass macro 117
Definitions menu 180, 181, 201

Compile 203
Evaluate 203
Generic Function 208
Trace. See Trace menu
Undefine 208

defsystem macro 239, 406
examples of use 405

deleting text in the editor 189–190
See also kill ring

Describe Generic Function editor
command 221

Describe System editor command 406
description

of compilation conditions 138
Description menu 138, 216, 224

Listen 279
Deselect All command 41, 162, 193
Destroy command 427
Display as Confirmer command 304
Display as Dialog command 304
Display Backtrace command 435
Display Borders command 305
Display Error command 435
display function 322
DISPLAY UNIX environment variable 5
displaying

package information 45–48
windows 22

display-message function 321
Documentation command 50, 154, 331
documentation, online. See online help
$ variable 267
dynamic library 437

E
Edit > Object menu

Copy Object 40
Cut Object 40
Paste Object 40

Edit menu 39
Copy 39, 50, 193, 194, 299
Cut 39, 193, 194, 287, 289, 294, 299, 310
Deselect All 41, 162, 193
Find 197, 201
Find Next 42, 199
Find Next, for graph view 87
Find, for graph view 87
Find... 42
interface builder 298
Link. See Link Menu
Paste 39, 108, 193, 223, 299, 310
Replace 200, 201
Replace... 42
Search Files... 233
Select All 41, 162, 193, 415
Undo 39, 192

Edit Script command 435
Editing menu

Command to Key 209, 339
Key to Command 209, 339

editing the history list 44
editor

aborting commands 192
breakpoints 205
buffers view 177, 190
buffers. See buffers
changed definitions list 181
closing buffers 190
compiling source code 203–204
creating a new window 191
creating files 44, 187
current expression, displaying value 209
current package and displayed package 186
definitions list 179
definitions, operating on 208–209
deleting text 189–190
Emacs, comparison with 169
evaluating source code 202–203
expressions, operating on 208–209
History menu 190, 191
indenting forms 208
inserting files into the current buffer 190
inserting text 189–190
invoking 170
keyboard commands, use of 174
kill ring. See kill ring

Lisp-specific commands 201–209
macroexpanding forms in the 209
menu and keyboard commands,

distinctions 187
menu commands. See menu or command

name
moving around in the buffer 188–189
new files 44, 187
online help 209, 339
opening files 45, 170, 187
opening recent files 45
output view 175
overview 3
package information 186
package usage 207
repeating commands 192
replacing text 200–201
reverting to last saved version 187
saving files 187, 191
saving text regions 187
scrolling text 189
searching 197–200
sorting entries 185
swapping between buffers 190
tracing 206
undefining symbols 208
undoing commands 192
using the clipboard 193
viewing two sections of the same file 191
views available 170
walking forms 209

editor commands
Buffer Changed

Definitions 183
Describe Generic

Function 221
Describe System 406
Find Dspec 390
finding keyboard command for 339
Indent Selection or Com-

plete Symbol 61
Search Files 233
Shell 376
View Source Search 184
Visit Tags File 174

Emacs 32
comparison with built-in editor 169

encoding 38
Enter Search String dialog 70
environment

common features 21–67
quitting 30

 443

444
EOF command 376
error conditions 138
Escape key, use of xv, 174
Evaluate command

in editor 202, 203
Evaluate Last Form in Lis-

tener editor command 339
Evaluate Region command

in editor 203
in listener 332

evaluating
code in the editor 202–203
forms 327–328

event
next 335
previous 335
repeating 44

examining objects 257
execute mode 334
Exit command 7, 30
Expand Nodes command 88
expanding graphs 87
Expression menu 201

Arguments 209, 332
Browse Symbols Like 333
Class 331
Compile Region 203, 332
Documentation 331
Evaluate Region 203, 332
Find Source 31, 331
Function Calls 332
Generic Function 332
Inspect Value 332
Macroexpand 209
Macroexpand Form 332
Toggle Breakpoint 332
Trace. See Trace menu
Value 209, 332
Walk 209
Walk Form 332

expressions
browsing the class of 331
displaying documentation 331
finding source code 331

extend callbacks 318
extended editor commands, finding keyboard

command for 339
:extended-selection

keyword 313
external format 38
F
fg UNIX command 376
File menu 7, 98, 179

Browse Parent System 45, 208, 406
Close 175, 190, 297
Compile 45, 204
Compile and Load 45, 151, 204, 206
description 44–45
Insert 190
Load 45, 203, 204, 206, 406
New 44, 187, 283, 309, 323
Open 45, 170, 175, 187
Open... 284
Print 45, 188
Recent Files 45, 170
Revert to Saved 187, 297
Save 175, 179, 187, 297, 319, 323
Save All 191, 297
Save As 187
Save As... 297
Save Region As 188

filenames
completion of 173
extensions for CL files 187

files
compiling in listener 45
creating new 44, 187
inserting one into another 190
loading 45
navigating in the editor 188–189
opening 45, 170, 187
opening recent 45
printing 45
reverting to last saved version 187
saving 187
saving all 191

filtering information 56–59, 103, 414
in inspector 255

filtering results 56
filters 56
Find command 42

in editor 201
in graph view 87

Find Dspec editor command 390
Find Next command 42, 199

in graph view 87
Find Source command 31, 50, 154, 170, 331

in Debug menu 334
displaying list of results 31
shortcut in debugger tool 152

Find... command 42
in editor 197

Force command 420
forms

compiling in editor 203–204
evaluating 327–328
evaluating in editor 202–203
indentation of 208
re-evaluating 329–331

Frame menu
Break On Return From Frame 155
Documentation 154
Find Source 152, 154, 170
Inspect Function 154
Method Combination 154, 225
Restart Frame 154, 156
Restart Frame Stepping 154, 380
Return from Frame 154
Trace. See Trace menu

function call browser 211–220
By Name command 218
By Package command 218
Callees area 217
Callers area 218
description 211
Documentation area 216
Function area 213
Function description area 216
Function menu 220

Trace submenu 220
Graph area 213
graphing callers and callees 213
invoking on selected object 51, 332
menu commands, see menu or command

name
operating on functions 220
package information 219
Show Package Names command 219
sorting entries 218
text view 216
tracing from 220
Unsorted command 218
views available 211

Function Calls command 51
Function menu 223

in the profiler 369
Trace. See Trace menu

functions
apropos 273
compile-system 404
contain 14, 103, 263
deliver 429
display 322
display-message 321

save-image 75, 429, 431, 437
undefining 118

Functions menu
in the class browser 118
in the function call browser 220

G
generic function browser 221–231

Arguments types area 228
description 221
Description area 224
displaying signatures 229
Filter area 224
Function area 223
invoking on selected object 51, 208
menu commands. See menu or command

name
Method combination list 228
method combinations, viewing 225
methods list 224
operating on signatures 229
Signatures area 227

Generic Function command 51, 208, 273, 332,
369

generic functions
browsing from listener 332
in class browser 118
defined on selected object 51, 208

get-inspector-values 267
global preferences

When modified buffers 30
graph layout menu 85

Collapse Nodes 88
Expand Nodes 88
Preferences 91
Reset Graph Layout 89

graph view
system browser 407–409

graphical user interface. See interfaces
graphs 75–??, 85–96

altering breadth 92
altering depth 92
children function 319, 322
different layouts 94–96
expanding and collapsing nodes 87
menu commands. See menu or command

name
searching 87
sorting items 52

GUI. See interfaces

 445

446
H
handler frames 156
Handlers button 156
Help menu 69, 98

Editing. See Editing menu
Lisp Knowledgebase 71, 72
LispWorks Patches 71, 72
Manuals 69
On Symbol 72
On Tool 71
Search 70

help. See online help
Hidden Symbols button 156
hierarchy view

in class browser 105
highlight

compiler messages 35
interactive input 35
matching parentheses 35, 201
selected text 35

history list 43
editing the 44
in the listener 331
repeating next event 44, 335
repeating previous event 44, 335
searching the 335

History menu 43
in editor 190, 191
in the listener 331
interface builder 284
in listener 331
Modify 44
Next 44
Previous 44

I
Include Inherited Slots button 102, 108
Include Inherited Slots checkbox 18
incremental search 199
Indent Selection or Com-

plete Symbol editor
command 61

Index radio button 71
init file 433
initargs of slot, displaying 109
initform of slot, displaying 109
initialization file 31
initialization files 433
in-package 206
in-place completion 30
Insert... command 190
inserting files in editor 190
inserting text in editor 189–190
Inspect command 14, 27, 51, 253, 258, 260,

278, 350
Inspect Function command 154
Inspect Value command 332
inspecting listener values automatically 267
inspector 253–271

changing values 259–263
description 254
display options 263–266
filtering display 255
inspecting selected object 51
menu commands. See menu or command

name
overview 3
simple use 257
sorting entries 264
tracing 259
tracing in the 259
viewing local class slots 257

Inspector command 253
interface builder 281–305

adding your own code 294
attribute categories 302–303
Attributes dialog box 301, 312, 315
button panels 287
Check Component button 294
code area 296
code view 296, 317
Component button 292
current interface 286
current package 288
default names of elements 289, 311
default names of menus 291
Edit menu 298
editing code 296
example of use 307–324
interface area 286
Interface menu 303–305
interfaces, creating 283–284, 309
interfaces, loading 284–286, 298
introduction 281
invoking 282
Item button 291, 315
layout hierarchy area 287, 309
layouts view 286–289, 309–311
Menu Bar button 291
Menu button 291, 315
menu hierarchy area 291, 309
menus view 289–294, 314–317
methods of use 294

operating on elements 305
Radio Component button 293
rearranging components 299–300, 310–311
saving code 297–298, 319, 323
setting attributes 300–303, 311–314
switching between interfaces 284
views, description 282
See also interfaces

interface class 283
Interface menu 66

Attributes 303
Display as Confirmer 304
Display as Dialog 304
Display Borders 305
interface builder 303–305
Raise 304
Regenerate 304

interface skeleton
default menus in 284
description 283

interfaces
callbacks 303, 317–319
confirmers 304
constructing 309–311
creating menus for 289–294
creating new 283–284, 309
default package 288
definition 283
development strategy 294
dialog boxes 304
geometry of elements 303
graph area 287
layout elements, adding 288
layout elements, removing 289
layout hierarchy 287
loading 284–286, 298
menu hierarchy 291
menu objects, removing 294
operating on the current 303–305
rearranging components 299–300, 310–311
regenerating 304
setting attributes 300–303, 311–314
titles 302, 311–313
types of attribute 302–303

interrupting evalution 330
invisible frames 157
Invisible Functions button 157
:items keyword 103

K
KDE/Gnome emulation 32, 184
key input 32

Key to Command command 209, 339
keyboard commands

comparison with menu commands 187
finding editor command for 339
in the editor 174

keyboard conventions xiv–xv
keywords
:center 314
:extended-selection 313
:items 103

Kill All command 437
Kill Application menu 437
Kill command 350
kill ring 193–197

copying text from 195–197
marking the region 194
putting text into 194
rotating 196
summary of use 197

killing a process 350

L
lambda list, displaying 209, 332
layouts

adding to an interface 309–311
pinboard 304
rearranging 299–300, 310–311
specifying callbacks 317–319
See also interfaces

layouts, displaying in window browser 425
Link from command 56
linking tools together 56
.lisp files 187
Lisp Knowledgebase command 72
LispWorks IDE tools

Process Browser 42
LispWorks Patches command 72
Listen command 51, 262, 278, 279, 351
listener

basic tutorial 327–331
browsing generic functions from 332
compiling files in 45
current expression, displaying value 332
current expression, stepper breakpoint 332
current expression, toggling stepper

breakpoint 332
debugger commands 336
debugging in the 333
description 326–327
evaluating forms 327–328
execute mode 334
Expression menu. See Expression menu

 447

448
history commands 334
history list 331
History menu 331
loading files in 45
macroexpanding forms 332
miscellaneous commands 337
next event 335
online help 339
operating on expressions 331
overview 3
pasting selected object into 51
previous event 335
prompt 327
re-evaluating forms 9, 329–331
searching history list 335
size of the stack 338
stack size 338
*** variable 13
** variable 13
* variable 13, 18, 262, 328
tracing current expression 332
Values submenu. See Values menu
walking forms 332

Listener Bind $ command 267
Listener command 326
list-panel class 103
Load command 45, 203, 406, 409, 415
Load... command 203, 406
loading files 45
loading tools into the environment 23
local slots, inspecting 257
Long Names button 426
Lower command 299, 427

M
Macroexpand command 209
Macroexpand Form command 332
macros
defclass 117
defsystem 239, 406
trace 55, 161

major tools, overview 2–4
Make a New Script command 432
manipulating values with inspector 259–263
Manuals command 69
manuals, online. See online help
menu commands

check components 293
choosing xiv
comparison with keyboard commands in

editor 187
creating with the interface builder 289–
294
debugger commands 333
names, specifying 316
radio components 293
rearranging 299–300
specifying callbacks 319
See also interface

menu components 292–294
check 293
radio 293

menus
creating with the interface builder 289–294,

314–317
rearranging 299–300
See also interface

Meta key
use of xv

Meta+Ctrl+C, break gesture 42
Method Combination command 154, 226
methods

displaying signatures 229
operating on signatures 229
undefining 118
viewing method combinations 225

Methods menu 117, 224
Trace. See Trace menu
Trace submenu. See Trace menu
Undefine 118

Modify command 44
module-children generic function 419
module-is-system-p generic

function 419
module-name generic function 419

N
navigating within files in the editor 188–189
New command 44, 187, 323

interface builder 283, 309
new files, creating 44, 187
New in LispWorks 6.1

add row and column dividers with the Inter-
face Builder 287

Compilation Conditions Browser supports
displaying errors only 135

Editor tool solely as buffers list 179
Help > Manuals raises a submenu 69
Interface Builder supports in-place

completion 287
Saved Sessions controller is an ordinary win-

dow, not a dialog 77
Search Match style 36
Searching editor buffers with the Search Files

tool 241
Use separate Editor windows for each file 29

Next command
command line debugger 334
history list 44

next event
repeating 44, 335

Notifier window 142, 158

O
object clipboard

menu commands, see menu or command
name

Object menu 49
Actions. See Actions menu
Attributes 300
Clip 263
Copy 263
interface builder 287, 288, 305
Lower 299
Raise 299

objects
inspecting 257
operating on 48–51
searching for 42
selecting 41
See also selected object

On Symbol command 72
On Tool command 71
online help 69–73

browsing manuals 69
current symbol 72
current tool 71
packages, searching 71
searching 70–71

Open command 45, 170, 187, 190
Open... command

interface builder 284
opening files 45, 170, 187
opening recent files 45
operating on objects 48–51

See also objects
Operations menu

Break 376
EOF 376
Suspend 376

output
compiler 203
editor 175
standard 341–345

output browser 12, 341–345
menu commands. See menu or command

name
overview 3

overview of major tools 2–4
overview of profiling 361

P
Package command

interface builder 288
packages

current package 47
display of 45–48
in editor 207
searching for documentation 71

Packages button 373
Packages... button 366, 373
Page Down key 189
Page Up key 189
Partial Search radio button 71
Paste command 193

in class browser 108
in generic function browser 223
in inspector 260, 262
interface builder 299, 310

Paste Object command 40–41
pinboard objects

moving and resizing 304
podium. See Common LispWorks podium
preferences

setting 28
Preferences command 66, 184, 185, 246, 338
Preferences... command 91, 231, 260, 279,

352, 368, 372, 399, 419, 424, 438
Preview command 420
previewing a system plan 412–415, 420
Previous command

command line debugger 334
history list 44

previous event
repeating 44, 335

primary package in editor 207
Print command 45
Print... command 188
printing files 45
process

breaking 42
process browser 347–353

menu commands. See menu or command
name

sorting processes 350
Process Browser tool 42
process-break function 351
processes

 449

450
breaking 42
inspecting 350
killing 350
sorting 350

Processes menu 350
profiler 355–374

choosing packages 366–368
choosing symbols 362–368
description 357–358
example of use 372–374
information returned 361, 369
interpreting results 370
menu commands. See menu or command

name
overview of profiling 361
pitfalls 370
running a profile 369
sorting results 369
specifying code to run 368
symbols that can be profiled 370

prompt in the listener 327
push-button-panel class 105

Q
Quit command 427
quitting the environment 30

R
radio components 293
Raise command 299, 304, 427
readers of a slot, displaying 109
Recent Files command 45, 170
Recompute Events button 414
recursive macroexpansion 332
re-evaluating forms in listener 9, 329–331
Refresh command 15, 27
Regenerate command 304
regexp 59

syntax 59
regular expressions 59

syntax 59
Remote Shell tool 377
repeating commands 43

in the editor 192
repeating the next event 44
repeating the previous event 44
Replace command 42, 200, 201, 410
Replace... command 42, 200
replacing text 200–201
Report Bug command 153, 334
reporting bugs 153, 334
Restart Frame command 154, 156
Restart Frame Stepping command 154, 380
restart frames 156
Restarts button 156
Restarts menu 149, 390
Restarts submenu 333
retract callbacks 318
Return from Frame command 154
re-using windows 25
Revert to Saved command 187

interface builder 297
reverting a file to the version stored on disk 187
row-layout class 289
Run command 436
Run With Arguments command 436

S
Save All command

interface builder 297
Save All... command 191
Save As... command 187

interface builder 297
Save command 187, 323

interface builder 297, 319
Save Region As... command 188
saving all files 191
saving files 187

interface builder 297–298
saving regions of text 187
scrolling text in editor 189
Search command 70
Search Files editor command 233
Search Files... command 410
searching

for objects 42
for text 42, 197–200
history list 335
online manuals 70

Select All command 41, 162, 193, 415
selected object

browsing 49
browsing the class of 50
copying 50
displaying documentation 50
finding source code 50
inspecting 51
pasting into listener 51
placing on object clipboard 50
showing function calls 51, 332
showing generic functions 51, 208
showing similar symbols 51

selection callbacks 318

sessions
saving 75–83

Set command 260, 261
debugger 155

set-interactive-break-ges-
tures function 42

Shell editor command 376
Shell tool 375
shell tool 375–377

break signal, sending 376
creating 375
EOF signal, sending 376
menu commands. See menu or command

name
recalling commands 377
suspend signal, sending 376
type of shell 377

shell-shell variable 377
Shift key, use of xv, 174
Short Names button 426
Show in Tracer command 55, 161
Show Package Names button 47, 157, 265, 425
Show Toolbar button 26
Signature menu 229–230
signatures

displaying 229
operating on 229

simple-pane-foreground reader 18
siteinit file 433
Slots menu 49, 108, 121

Clip 263
Copy 263
Inspect 258
Paste 260, 262
Set 260, 261

snapshot
of running image 75–83

snapshot Debugger 159
sort options

By Name 54
By Package 54
Unsorted 54

sorting
in class browser 106
in editor 185
in inspector 264
in process browser 350
views 52
in window browser 425

source code
debugging 141–160
for current expression 331

for object in current frame of debugger 154
for selected object 50

Source command 420
stack frames in the debugger 150
stack overflow 338
standard action command

Browse 49
Browse Symbols Like 273, 333
Class 50
Copy 50
Documentation 50
Find Source 50
Function Calls 332
Generic Function 51, 208, 332
Inspect 51
Listen 51

standard output 341–345
standard-output variable 12
*** variable 13
** variable 13
* variable 13, 18, 262, 328
stepper

active frame 381
backtrace tree 381
call frame 381
calling a function 381
evaluating a form 381
returning from a form 381
status item 381

stepping through code 379–401
Stop command 350
stopping a process 350
Suspend command 376
swapping editor buffers 190
Symbol Browser 273–280
symbol browser

invoking on selected object 51
Symbol menu

Inspect 278
Listen 278
Unintern... 278

symbols
interface builder 305
online help for 72
tracing 206
undefining 208

Symbols... button 364, 373
syntax coloring 35, 36, 201
syntax styles 36
system
ALL-SYSTEMS 408
browsing 406

 451

452
compiling and loading 409
concatenating 410
creating plans for 414
defining 323, 404–406
executing plans for 414
forcing compilation and loading of

members 420
introduction to 403–404
parent system, browsing 408
plan 412
previewing a plan 412–415, 420
searching 410
using source files 420

system browser 403–420
Actions area 414
compiling and loading systems 409
creating plans 414
description 406
executing plans 414
File description area 409
Filter area 414
forcing compilation and loading 420
Graph area 408
graph view 407–409
menu commands. See menu or command

name
output view 416–417
package information 420
parent system, browsing 408
Plan area 415
previewing the plan 412–415
sorting information 419
System area 408
system plan, previewing 412–415, 420
text view 410–412
using 406–409
using source files 420
views available 406

Systems menu 409
Browse All Systems 409
Browse Systems For Directory 409
Compile 409, 415
Compile and Load 409, 415
Concatenate... 410
Hide Files 410
Load 409, 415
Parent 408
Replace 410
Search Files 410
Show Files 410
T
Tab completion 61
tabs

choosing xiv
text

deleting 189–190
inserting 189–190
replacing 200–201
saving regions of 187
scrolling in editor 189
searching for 42, 197–200
selecting 41
See also under editor

text view
in editor 171
in function call browser 216
in system browser 410–412

The Break gesture 42, 330
Toggle Breakpoint command 332
Toggle Tracing command 55
toolbar

customizing 26
hiding 26

toolbar buttons
size 26
text labels 26

toolbars
hiding 26
removing 26

tools
current package of 47
linking together 56
loading into the environment 23
online help for 71
overview of major 2–4
reusing 29
tracing from 55

Tools menu 2, 7, 23, 98
accelerators 23
Application Builder 429
Class Browser 100, 126, 136, 170, 221
Editor 170
Inspector 253
Interface Builder 282
Listener 326
Object Clipboard 126, 136, 211
Output Browser 341
Preferences 26, 28, 30, 62, 66, 184, 185, 246,

338
Preferences... 231, 260, 279, 352, 368, 372,

399, 419, 424, 438
Process Browser 348

Profiler 355
Saved Sessions... 77
Search Files 233
Shell 375
Stepper 379, 382
Symbol Browser 273
System Browser 406
Tracer 161
Window Browser 421

Trace command 55, 206, 332
Trace Inside command 55
trace macro 55, 161
Trace menu

Break on Access 259
Break on Read 259
Break on Write 259
Show in Tracer 55, 161
Trace 55
Trace Inside 55
Trace Read 259
Trace with Break 55
Tracing 55
Untrace 55, 259
Untrace All 55

Trace with Break command 55
Tracer 161–168

Function menu 162
tracing 161–168

classes 119
in function call browser 220
in the inspector 259
in inspector 259

U
Undefine command 118, 208
Undefine... command 208, 225
undefining

current definition 208
functions 118
generic functions 225
methods 118

Undo command 39
editor 192

Unintern... command 278
UNIX clipboard 108, 223

interaction with Common LispWorks
clipboard 41

usage in editor 195
Unsorted option 54
Unstop command 350
unstopping a process 350
Untrace All command 55

Untrace command 55, 259
updating windows 27
using the clipboard 40–41

See also kill ring
using the keyboard xiv–xv
using the mouse xi–xiv

V
Value command 209, 332
Value menu

Listen 262
values

changing in inspector 259–263
Values menu

Class 16, 100, 103
Copy 262
Inspect 27, 253, 258, 260

variables
* 337
$ 267
* 13, 18, 262, 328
** 13
*** 13
active-finders 240
browser-location 72
*enter-debugger-

directly* 159
grep-command 252
grep-command-format 252
grep-fixed-args 252
*packages-for-warn-on-

redefinition* 367
shell-shell 377
standard-output 12
trace-verbose 166

Variables menu
Set 155

View Source Search editor
command 184

views
in class browser 99
description ??–55
in editor 170
in function call browser 211
in generic function browser 221
graph 85–96, 407–409
hierarchy 105
in inspector 263
output 175, 341–345, 416–417
slots 102–104
sorting items in 52
in system browser 406

 453

454
text 216, 410–412
Visit Tags File editor

command 174

W
Walk command 209
Walk Form command 332
web browsers 69
Whole Word radio button 71
window browser 421–427

changing root of graph 423
complete window names, displaying 426
destroying a window 427
different types of window 425
lowering a window 427
menu commands. See menu or command

name
moving around different windows 427
package information 425
quitting a window 427
raising a window 427
sorting entries 425
using 423
whole environment 427

window colors 36
windows

displaying 22
making copies of 27
re-using 25
updating 27

Windows menu 15, 22, 98, 427
Actions. See Actions menu
Browse 423
Browse Parent 427
Browse Screen 427
Destroy 427
Lower 427
Quit 427
Raise 427
in window browser 427

Works menu 98
Clone 27, 56
Exit 7, 30
Exit Window 175
Object submenu. See Object menu
Packages submenu. See Packages menu
Symbols submenu. See Symbols menu
See also individual entries for each sub-

menu
writers for a slot, displaying 109

	LispWorks® IDE User Guide
	Copyright and Trademarks
	Contents
	Preface
	1 Introduction
	1.1 Major tools
	1.1.1 The Listener
	1.1.2 The Editor
	1.1.3 The Class Browser
	1.1.4 The Output Browser
	1.1.5 The Inspector
	1.1.6 The Object Clipboard

	2 A Short Tutorial
	2.1 Starting the environment
	2.1.1 The Lisp Monitor

	2.2 Creating a Listener
	2.3 Using the Debugger
	2.4 Viewing output
	2.5 Inspecting objects using the Inspector
	2.6 Examining classes in the Class Browser
	2.7 Summary

	3 Common Features
	3.1 Displaying tool windows
	3.1.1 Displaying existing windows
	3.1.2 Iconifying existing windows
	3.1.3 Displaying tools using the mouse
	3.1.4 Displaying tools using the keyboard
	3.1.4.1 Tool accelerator modifier keys
	3.1.4.2 Tool accelerator keys
	3.1.4.3 Special considerations when using tool accelerators

	3.1.5 Re-using tool windows
	3.1.5.1 Global control of re-use
	3.1.5.2 Per-window control of re-use

	3.1.6 Toolbar configurations
	3.1.7 Copying windows
	3.1.8 Closing windows
	3.1.9 Updating windows

	3.2 Setting preferences
	3.2.1 General options
	3.2.1.1 The window options
	3.2.1.2 Controlling completion behavior
	3.2.1.3 Quitting the environment
	3.2.1.4 Automatic filters on dialogs
	3.2.1.5 Automatic use of Find Definitions view
	3.2.1.6 Initialization file

	3.2.2 Configuring the editor emulation
	3.2.2.1 Choosing the key input style
	3.2.2.2 Setting the cursor blink rate

	3.2.3 Setting the editor font, color and other style attributes
	3.2.3.1 Setting the text style attributes
	3.2.3.2 Controlling parenthesis coloring

	3.2.4 Setting the default encodings

	3.3 Performing editing functions
	3.3.1 Undoing changes
	3.3.2 Using the clipboard
	3.3.3 Using the Object operations with the clipboard
	3.3.4 Selecting text and objects
	3.3.5 Searching for text and objects

	3.4 The Break gesture
	3.5 The history list
	3.5.1 Repeating events from the history list
	3.5.2 Editing the history list

	3.6 Operating on files
	3.7 Displaying packages
	3.7.1 Specifying a package

	3.8 Performing operations on selected objects
	3.8.1 Operations available

	3.9 Using different views
	3.9.1 Sorting items in views

	3.10 Tracing symbols from tools
	3.11 Linking tools together
	3.12 Filtering information
	3.12.1 Plain Filtering
	3.12.2 Advanced Filtering

	3.13 Regexp matching
	3.13.1 Regular expression syntax
	3.13.2 Regexp and plain string matching

	3.14 Completion
	3.14.1 Invoking completion
	3.14.2 Selecting the completed input
	3.14.2.1 In-place completion
	3.14.2.2 Filtering in-place completion

	3.14.3 Completion dialog
	3.14.3.1 Filtering modal dialog completion

	3.15 Examining a window

	4 Getting Help
	4.1 Online manuals in HTML format
	4.1.1 Browsing manuals online
	4.1.2 Searching the online manuals
	4.1.3 Getting help on the current tool
	4.1.4 Getting help on the current symbol
	4.1.5 Getting help from the LispWorks website
	4.1.6 Getting patches from the LispWorks website
	4.1.7 Configuring the browser used

	4.2 Online help for editor commands
	4.3 Browsing manuals online using Adobe Reader
	4.4 Reporting bugs

	5 Session Saving
	5.1 What session saving does
	5.2 The default session
	5.3 What is saved and what is not saved
	5.4 Saving sessions
	5.4.1 Scheduling automatic session saving
	5.4.2 The Save Session dialog and actual saving
	5.4.3 Saving a session interactively

	5.5 Redirecting images to a Saved Session image
	5.6 Non-IDE interfaces and session saving

	6 Manipulating Graphs
	6.1 An overview of graphs
	6.2 Searching graphs
	6.3 Expanding and collapsing graphs
	6.3.1 Expanding and collapsing by clicking
	6.3.2 Expanding and collapsing by menu commands

	6.4 Moving nodes in graphs
	6.5 Displaying plans of graphs
	6.6 Preferences for graphs
	6.6.1 Altering the depth and breadth of graphs
	6.6.2 Displaying different graph layouts

	6.7 Using graphs in your programs

	7 The Podium
	7.1 The podium window
	7.2 Specifying the initial tools

	8 The Class Browser
	8.1 Simple use of the Class Browser
	8.1.1 Examining slots
	8.1.2 Examining inherited slots
	8.1.3 Filtering slot information
	8.1.4 Examining other classes
	8.1.5 Sorting information

	8.2 Examining slot information
	8.2.1 Class box
	8.2.2 Filter area
	8.2.3 Slots list
	8.2.4 Description list
	8.2.5 Performing operations on the current class

	8.3 Examining superclasses and subclasses
	8.3.1 Class box
	8.3.2 Superclasses list
	8.3.3 Subclasses list
	8.3.4 Description list
	8.3.5 Performing operations on the selected classes or the current class

	8.4 Examining classes graphically
	8.4.1 Class box
	8.4.2 Subclasses and superclasses graphs
	8.4.3 Description list
	8.4.4 Performing operations on the selected classes or the current class
	8.4.5 An example

	8.5 Examining generic functions and methods
	8.5.1 Class box
	8.5.2 Filter box
	8.5.3 List of functions or methods
	8.5.4 Description list
	8.5.5 Performing operations on the current class
	8.5.6 Operations specific to the current function or method

	8.6 Examining initargs
	8.6.1 Class box
	8.6.2 Filter box
	8.6.3 List of initargs
	8.6.4 Description list
	8.6.5 Performing operations on the current class

	8.7 Examining class precedences
	8.7.1 Class box
	8.7.2 Filter box
	8.7.3 List of precedences
	8.7.4 Description list
	8.7.5 Performing operations on the selected classes or the current class

	9 The Object Clipboard
	9.1 Placing objects on the Object Clipboard
	9.1.1 The Listener
	9.1.2 The Class Browser
	9.1.3 The Inspector
	9.1.4 The Function Call Browser
	9.1.5 The Generic Function Browser
	9.1.6 The Debugger
	9.1.7 The Stepper
	9.1.8 The System Browser
	9.1.9 General clipping

	9.2 Browsing clipped objects
	9.2.1 The Inspector
	9.2.2 The Class Browser
	9.2.3 The Listener
	9.2.4 General browsing
	9.2.5 Pasting of clipped objects

	9.3 Removing objects
	9.4 Filtering
	9.5 Using the Object Clipboard with a Listener

	10 The Compilation Conditions Browser
	10.1 Introduction
	10.2 Examining conditions
	10.3 Configuring the display
	10.3.1 Display preferences

	10.4 Access to other tools

	11 The Debugger Tool
	11.1 Description of the Debugger
	11.1.1 Condition box
	11.1.2 Backtrace area
	11.1.2.1 Frames and Variables in a tree
	11.1.2.2 Frames and Variables in two lists

	11.1.3 Toolbar buttons

	11.2 What the Debugger tool does
	11.3 Simple use of the Debugger tool
	11.4 The stack in the Debugger
	11.5 An example debugging session
	11.6 Performing operations on the error condition
	11.7 Performing operations on stack frames
	11.7.1 Source location, documentation, inspect and method combination for the current frame
	11.7.2 Restarts and returning from the frame
	11.7.3 Tracing the function in the frame

	11.8 Performing operations on frame variables
	11.9 Configuring the debugger tool
	11.9.1 Configuring the call frames displayed
	11.9.2 Displaying package information
	11.9.3 Behavior on closing the Debugger
	11.9.4 Frames and variables display

	11.10 The Notifier window
	11.10.1 Bypassing the Notifier window

	11.11 Errors in CAPI display callbacks

	12 The Tracer
	12.1 Introduction
	12.2 Tracing and Untracing functions
	12.2.1 Tracing methods

	12.3 Examining the output of tracing
	12.3.1 The Output Data view
	12.3.2 The Output Text view

	12.4 Example

	13 The Editor
	13.1 Displaying and editing files
	13.1.1 The toolbar
	13.1.2 The editor window
	13.1.3 The echo area
	13.1.4 Using keyboard commands

	13.2 Displaying output messages in the Editor
	13.3 Displaying and swapping between buffers
	13.3.1 Filter area
	13.3.2 Buffers area
	13.3.3 Editor tool solely as buffers list

	13.4 Displaying Common Lisp definitions
	13.4.1 Filter box
	13.4.2 Definitions area

	13.5 Changed definitions
	13.5.1 Setting the reference point for changed definitions

	13.6 Finding definitions
	13.7 Setting Editor preferences
	13.7.1 Controlling other aspects of the Editor
	13.7.2 Controlling options specific to the Editor
	13.7.2.1 Sorting items in lists
	13.7.2.2 Displaying package information
	13.7.2.3 Controlling toolbar display

	13.8 Basic Editor commands
	13.8.1 Opening, saving and printing files
	13.8.2 Moving around files
	13.8.3 Inserting and deleting text
	13.8.4 Using several buffers

	13.9 Other essential commands
	13.9.1 Aborting commands
	13.9.2 Undoing commands
	13.9.3 Repeating commands

	13.10 Cutting, copying and pasting using the clipboard
	13.11 Cutting, copying and pasting using the kill ring
	13.11.1 Marking the region
	13.11.2 Cutting or copying text
	13.11.3 Pasting text

	13.12 Searching and replacing text
	13.12.1 Searching for text
	13.12.2 Incremental searches
	13.12.3 Replacing text

	13.13 Using Lisp-specific commands
	13.13.1 Lisp mode
	13.13.2 Current buffers, definitions and expression
	13.13.3 Evaluating code
	13.13.4 Compiling code
	13.13.4.1 Compiling in memory
	13.13.4.2 Compiling to a file

	13.13.5 Argument list information
	13.13.6 Breakpoints
	13.13.6.1 Setting breakpoints
	13.13.6.2 Editing breakpoints
	13.13.6.3 Removing breakpoints
	13.13.6.4 Reloading code with breakpoints

	13.13.7 Tracing symbols and functions
	13.13.8 Packages
	13.13.8.1 The primary package
	13.13.8.2 The current package for Lisp operations

	13.13.9 Indentation of forms
	13.13.10 Other facilities

	13.14 Help with editing

	14 The Function Call Browser
	14.1 Introduction
	14.2 Examining functions using the graph views
	14.2.1 Function area
	14.2.2 Show functions control
	14.2.3 Graph area
	14.2.4 Echo area
	14.2.5 The function description button
	14.2.5.1 Function description area
	14.2.5.2 Documentation area

	14.3 Examining functions using the text view
	14.3.1 Called By area
	14.3.2 Calls Into area

	14.4 Configuring the function call browser
	14.4.1 Sorting entries
	14.4.2 Displaying package information

	14.5 Configuring graph displays
	14.5.1 Graph layout settings
	14.5.2 Graph expansion settings
	14.5.3 Plan mode settings

	14.6 Performing operations on functions

	15 The Generic Function Browser
	15.1 Examining information about methods
	15.1.1 Function area
	15.1.2 Filter area
	15.1.3 Methods list
	15.1.4 Description list
	15.1.5 Performing operations on the current function or selected methods

	15.2 Examining information about combined methods
	15.2.1 Function box
	15.2.2 Signatures button
	15.2.3 Arguments types box
	15.2.4 List of method combinations
	15.2.5 Description list
	15.2.6 Restricting displayed signatures by class

	15.3 Configuring the Generic Function Browser

	16 The Search Files tool
	16.1 Introduction
	16.2 Performing searches
	16.2.1 Entering Search Specifications directly
	16.2.1.1 Plain Directory searches
	16.2.1.2 Root and Patterns searches
	16.2.1.3 System Search
	16.2.1.4 Known definitions searches

	16.2.2 Searching editor buffers
	16.2.2.1 Grep searches

	16.2.3 Using context-dependent searches
	16.2.3.1 Context-dependent searches using Editor commands
	16.2.3.2 Context-dependent searches using menu commands
	16.2.3.3 Search History

	16.3 Viewing the results
	16.3.1 Displaying in an Editor
	16.3.2 Linking to an Editor
	16.3.3 Filtering the results
	16.3.4 Hiding certain results

	16.4 Modifying the matched lines
	16.5 Configuring the Search Files tool
	16.5.1 Search Parameters
	16.5.2 Display
	16.5.3 File Types
	16.5.4 The External Grep Program

	17 The Inspector
	17.1 Inspecting the current object
	17.2 Description of the Inspector tool
	17.2.1 Adding a Listener to the Inspector

	17.3 Filtering the display
	17.3.1 Updating the display

	17.4 Examining objects
	17.5 Operating upon objects and items
	17.5.1 Examination operations
	17.5.1.1 Example
	17.5.1.2 Recursive inspection

	17.5.2 Examining attributes
	17.5.3 Tracing slot access
	17.5.4 Manipulation operations
	17.5.4.1 Example

	17.5.5 Copying in the Inspector

	17.6 Configuring the Inspector
	17.7 Customizing the Inspector
	17.8 Creating new inspection formats
	17.8.1 Example

	18 The Symbol Browser
	18.1 Introduction
	18.2 Description of the Symbol Browser
	18.2.1 Search Settings
	18.2.1.1 Packages
	18.2.1.2 Type
	18.2.1.3 Accessibility

	18.2.2 Filter area
	18.2.3 Symbols list
	18.2.4 Description area
	18.2.5 Documentation area

	18.3 Configuring the Symbol Browser

	19 The Interface Builder
	19.1 Description of the Interface Builder
	19.2 Creating or loading interfaces
	19.2.1 Creating a new interface
	19.2.2 Loading existing interfaces

	19.3 Creating an interface layout
	19.3.1 Interface box
	19.3.2 Graph area
	19.3.3 Button panels
	19.3.4 Adding new elements to the layout
	19.3.5 Removing elements from a layout

	19.4 Creating a menu system
	19.4.1 Interface box
	19.4.2 Graph area
	19.4.3 Adding menu bars
	19.4.4 Adding menus
	19.4.5 Adding menu items
	19.4.6 Adding menu components
	19.4.6.1 Standard menu components
	19.4.6.2 Radio components
	19.4.6.3 Check components

	19.4.7 Removing menu objects

	19.5 Editing and saving code
	19.5.1 Integrating the design with your own code
	19.5.2 Editing code
	19.5.3 Saving code

	19.6 Performing operations on objects
	19.6.1 Editing the selected object
	19.6.2 Browsing the selected object
	19.6.3 Rearranging components in an interface
	19.6.4 Setting the attributes for the selected object
	19.6.4.1 Basic attributes
	19.6.4.2 Advanced attributes
	19.6.4.3 Title attributes
	19.6.4.4 Callbacks attributes
	19.6.4.5 Geometry attributes
	19.6.4.6 Style attributes

	19.7 Performing operations on the current interface
	19.7.1 Setting attributes for the current interface
	19.7.2 Displaying the current interface
	19.7.3 Arranging objects in a pinboard layout

	19.8 Performing operations on elements

	20 Example: Using The Interface Builder
	20.1 Creating the basic layout
	20.2 Specifying attribute values
	20.3 Creating the menu system
	20.4 Specifying callbacks in the interface definition
	20.4.1 Specifying layout callbacks and other callback information
	20.4.2 Specifying menu callbacks

	20.5 Saving the interface
	20.6 Defining the callbacks
	20.6.1 Callbacks to update the display pane
	20.6.2 Callbacks to display data in a dialog
	20.6.3 Callbacks for menu items
	20.6.4 Other miscellaneous functions

	20.7 Creating a system
	20.8 Testing the example interface

	21 The Listener
	21.1 The basic features of a Listener
	21.2 Evaluating simple forms
	21.3 Re-evaluating forms
	21.4 The debugger prompt and debugger level
	21.5 Interrupting evaluation
	21.6 The History menu
	21.7 The Expression menu
	21.8 The Values menu
	21.9 The Debug menu
	21.10 Execute mode
	21.10.1 History commands
	21.10.2 Debugger commands
	21.10.3 Miscellaneous Listener commands

	21.11 Setting Listener preferences
	21.12 Running Editor forms in the Listener
	21.13 Help with editing in the Listener

	22 The Output Browser
	22.1 Interactive compilation messages
	22.1.1 Compilation message styles

	23 The Process Browser
	23.1 The process list
	23.2 Process control
	23.3 Other ways of breaking processes
	23.4 Updating the Process Browser
	23.5 Process Browser Preferences

	24 The Profiler
	24.1 Introduction
	24.2 Display of Profiler Data
	24.2.1 Call Tree
	24.2.2 Cumulative Results

	24.3 A description of profiling
	24.3.1 Description of call tree data
	24.3.2 Description of cumulative data

	24.4 Steps involved in profiling code
	24.4.1 Choosing the functions to profile
	24.4.1.1 Choosing individual functions
	24.4.1.2 Choosing packages

	24.4.2 Choosing the time interval
	24.4.3 Specifying the code to run while profiling
	24.4.4 Performing the profile

	24.5 Format of the cumulative results
	24.6 Interpreting the cumulative results
	24.7 Profiling pitfalls
	24.7.1 Effects of random sampling
	24.7.2 Recursive functions
	24.7.3 Structure accessors
	24.7.4 Consequences of restricted profiling
	24.7.5 Effect of compiler optimizations
	24.7.6 Effect of compiler transforms

	24.8 Some examples

	25 The Shell and Remote Shell Tools
	25.1 Introduction
	25.2 The Shell tool
	25.3 Command history in the shell
	25.4 Configuring the shell to run
	25.5 The Remote Shell tool

	26 The Stepper
	26.1 Introduction
	26.1.1 Stepper toolbar
	26.1.2 Source area
	26.1.3 Backtrace area
	26.1.4 Listener area

	26.2 Simple examples
	26.2.1 Standalone use of the stepper
	26.2.2 Invoking the Stepper via a breakpoint

	26.3 The implementation of the Stepper
	26.3.1 Requirements for stepping
	26.3.2 Editing source code
	26.3.3 Side-effects of stepping
	26.3.4 Atomic and constant forms

	26.4 Stepper controls
	26.4.1 Shortcut keys for the Stepper

	26.5 Stepper restarts
	26.6 Breakpoints
	26.6.1 Setting breakpoints
	26.6.2 Conditional breakpoints
	26.6.3 Printing breakpoints
	26.6.4 Editing breakpoints
	26.6.5 Removing breakpoints

	26.7 Stepping macro forms
	26.7.1 Interactive macroexpansion
	26.7.2 Macroexpansion in the stepper
	26.7.3 Collapsing macroexpansions
	26.7.4 Controlling macroexpansion

	26.8 Listener area
	26.9 Configuring the Stepper
	26.9.1 Operator preferences
	26.9.2 Backtrace preferences

	27 The System Browser
	27.1 Introduction
	27.2 A brief introduction to systems
	27.2.1 Examples

	27.3 The System Browser
	27.4 A description of the System Browser
	27.5 Examining the system tree
	27.5.1 System area
	27.5.2 Tree area
	27.5.3 Description area
	27.5.4 Performing operations on system members

	27.6 Examining systems in the text view
	27.6.1 System area
	27.6.2 Parent system area
	27.6.3 Subsystems area
	27.6.4 Files area
	27.6.5 File description area

	27.7 Generating and executing plans in the preview view
	27.7.1 System area
	27.7.2 Actions area
	27.7.3 Filter area
	27.7.4 Plan area
	27.7.5 File description area
	27.7.6 Executing plans in the preview view

	27.8 Examining output in the output view
	27.8.1 System area
	27.8.2 Output area

	27.9 ASDF Integration
	27.9.1 Interface to source code managers

	27.10 Configuring the display
	27.10.1 Sorting entries
	27.10.2 Displaying package information
	27.10.3 Display of the toolbar

	27.11 Setting options in the system browser

	28 The Window Browser
	28.1 Introduction
	28.1.1 Graph box
	28.1.2 Window graph
	28.1.3 Description list

	28.2 Configuring the Window Browser
	28.2.1 Sorting entries
	28.2.2 Displaying package information
	28.2.3 Displaying the toolbar
	28.2.4 Displaying different types of window
	28.2.5 Displaying short or long names

	28.3 Performing operations on windows
	28.3.1 Navigating the window hierarchy
	28.3.2 Window control

	29 The Application Builder
	29.1 Introduction
	29.1.1 What the Application Builder does

	29.2 Preparing to build your application
	29.2.1 The script
	29.2.1.1 Using your existing delivery script
	29.2.1.2 Creating a new delivery script

	29.3 Building your application
	29.4 Editing the script
	29.5 Troubleshooting
	29.5.1 Viewing errors
	29.5.2 Clearing the output

	29.6 Running the saved application
	29.6.1 Passing arguments and redirecting output
	29.6.2 Executing a different file
	29.6.3 Killing application processes

	29.7 Using the Application Builder to save a development image
	29.8 Configuring the Application Builder

	Index

