
LispWorks® for Macintosh

Editor User Guide
Version 6.1

Copyright and Trademarks
LispWorks Editor User Guide (Macintosh version)

Version 6.1

May 2011

Copyright © 2011 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be construed as a
commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or inaccuracies that may appear in this
publication. The software described in this book is furnished under license and may only be used or copied in accordance with the terms of
that license.

LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the registered trade-
marks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986, 1987, 1988 Xerox
Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, pro-
vided that this copyright and permission notice appear in all copies and supporting documentation, and that the name of M.I.T. not be used
in advertising or publicity pertaining to distribution of the software without specific, written prior permission. M.I.T. makes no representa-
tion about the suitability of this software for any purpose. It is provided “as is” without express or implied warranty. M.I.T. disclaims all war-
ranties with regard to this software, including all implied warranties of merchantability and fitness. In no event shall M.I.T. be liable for any
special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of con-
tract, negligence or other tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of ICU software obtained from http://source.icu-project.org and which bears the following copyright and permis-
sion notice:
ICU License - ICU 1.8.1 and later
COPYRIGHT AND PERMISSION NOTICE
Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Soft-
ware"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright
notice(s) and this permission notice appear in all copies of the Software and that both the above copyright notice(s) and this permission
notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIM-
ITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF
THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or
other dealings in this Software without prior written authorization of the copyright holder. All trademarks and registered trademarks men-
tioned herein are the property of their respective owners.

US Government Restricted Rights
The LispWorks Software is a commercial computer software program developed at private expense and is provided with restricted rights.
The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth in the accompanying End User
License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR 12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14
Alt III, as applicable. Rights reserved under the copyright laws of the United States.

Address

LispWorks Ltd
St. John’s Innovation Centre
Cowley Road
Cambridge
CB4 0WS
England

Telephone

From North America: 877 759 8839
(toll-free)

From elsewhere: +44 1223 421860

Fax
From North America: 617 812 8283
From elsewhere: +44 870 2206189

www.lispworks.com

http://www.lispworks.com

Contents
1 Introduction 1

Using the editor within LispWorks 2

2 General Concepts 5

Window layout 5
Buffer locations 7
Modes 8
Text handling concepts 8
Executing commands 9
Basic editing commands 11

3 Command Reference 15

Aborting commands and processes 16
Executing commands 17
Help 18
Prefix arguments 23
File handling 25
Movement 37
Marks and regions 43
Locations 47
Deleting and killing text 48
Inserting text 53
Delete Selection 56
Undoing 56

iii

Contents

iv
Case conversion 57
Transposition 59
Overwriting 60
Indentation 61
Filling 64
Buffers 68
Windows 72
Pages 75
Searching and replacing 77
Comparison 91
Registers 92
Modes 94
Abbreviations 98
Keyboard macros 104
Echo area operations 105
Editor variables 109
Recursive editing 110
Key bindings 111
Running shell commands from the editor 112
Buffers, windows and the mouse 116
Miscellaneous 117

4 Editing Lisp Programs 121

Automatic entry into lisp mode 122
Syntax coloring 122
Functions and definitions 123
Forms 140
Lists 143
Comments 145
Parentheses 147
Documentation 149
Evaluation and compilation 151
Breakpoints 160
Removing definitions 161

5 Emulation 163

Using Mac OS editor emulation 163

Contents
Key bindings 164
Replacing the current selection 165
Emulation in Applications 165

6 Advanced Features 167

Customizing default key bindings 168
Customizing Lisp indentation 170
Programming the editor 170
Editor source code 199

Glossary 201

Index 211

 v

Contents

vi

1

1 Introduction
The LispWorks editor is built in the spirit of Emacs. As a matter of policy, the
key bindings and the behavior of the LispWorks editor are designed to be as
close as possible to the standard key bindings and behavior of GNU Emacs.

For users more familiar with Mac OS keys, an alternate keys and behaviour
model is provided. This manual however, generally documents the Emacs
model.

The LispWorks editor has the following features:

• It is a screen editor. This means that text is displayed by the screenful, with
a screen normally displaying the text which is currently being edited.

• It is a real-time editor. This means that modifications made to text are
shown immediately, and any commands issued are executed likewise.

• An on-line help facility is provided, which allows the user quick and easy
access to command and variable definitions. Various levels of help are
provided, depending on the type of information the user currently pos-
sesses.

• It is customizable. The editor can be customized both for the duration of an
editing session, and on a more permanent basis.

• A range of commands are provided to facilitate the editing of Lisp pro-
grams.
1

1 Introduction

2

• The editor is itself written in Lisp.

1.1 Using the editor within LispWorks
The LispWorks editor is fully integrated into the LispWorks programming envi-
ronment. If you don’t currently have an Editor (check the Window menu), start one by
choosing Window > Tools > Editor or clicking on in the LispWorks toolbar.

There are a number of editor operations which are only available in Listener
windows (for example, operations using the command history). These opera-
tions are covered in the LispWorks IDE User Guide.

1.1.1 About this manual

The LispWorks Editor User Guide is divided into chapters, as follows:

Chapter 2, “General Concepts”, provides a brief overview of terms and con-
cepts which the user should be familiar with before progressing to the rest of the
manual. The section ‘Basic editing commands’ provides a brief description of
commands necessary to edit a file from start to finish. If you are already familiar
with Emacs, you should be familiar with most of the information contained in
this chapter.

Chapter 3, “Command Reference”, contains full details of most of the editor
commands. Details of editor variables are also provided where necessary. Not
included in this chapter are commands used to facilitate the editing of Lisp pro-
grams.

Chapter 4, “Editing Lisp Programs”, contains full details of editor commands
(and variables where necessary) to allow for easier editing of Lisp programs.

Chapter 5, “Emulation”, describes use of Mac OS style key bindings rather than
Emacs style.

Chapter 6, “Advanced Features”, provides information on customizing and
programming the editor. The features described in this chapter allow permanent
changes to be made to the editor.

A “Glossary” is also included to provide a quick and easy reference to editor
terms and concepts.

1.1 Using the editor within LispWorks
Each editor command, variable and function is fully described once in a rele-
vant section (for example, the command Save File is described in “File han-
dling” on page 12). It is often worthwhile reading the introductory text at the
start of the section, as some useful information is often provided there. The
descriptions all follow the same layout convention which should be self-explan-
atory.

Command description layouts include the name of the command, the default
Emacs binding, details of optional arguments required by the associated defin-
ing function (if any) and the mode in which the command can be run (if not glo-
bal).
 3

1 Introduction

4

2

2 General Concepts
There are a number of terms used throughout this manual which the user
should be familiar with. Definitions of these terms are provided in this chapter,
along with a section containing just enough information to be able to edit a doc-
ument from start to finish.

This chapter is not designed to provide precise details of commands. For these
see the relevant sections in the following chapters.

2.1 Window layout

2.1.1 Windows and panes

When the editor is called up an editor window is created and displayed (for
those already familiar with Emacs running on a tty terminal, note that in this
context a window is an object used by the window manager to display data, and
not a term used to describe a portion of the editor display). The largest area of
the editor window is taken up by an editor pane. Each window contains a single
pane and therefore the term window is used throughout this manual as being
synonymous with pane, unless more clarification is required.

Initially only one editor window is displayed. The corresponding editor pane is
either blank (ready for text to be entered) or contains text from a file to be
5

2 General Concepts

6

edited. The editor window displays text using the font associated with the edi-
tor pane.

2.1.2 Files and buffers

It is not technically correct to say that a window displays the contents of a file,
rather that each window displays the contents of a buffer. A buffer is an object
that contains data from the point of view of the editor, whereas a file contains
data from the point of view of the operating system. A buffer is a temporary
storage area used by the editor to hold the contents of a file while the process of
editing is taking place. When editing has finished the contents of the buffer can
then be written to the appropriate file. When the user exits from the editor, no
information concerning buffers or windows is saved.

A buffer is often displayed in its own window, although it is also possible for
many buffers to be associated with a single window, and for a single buffer to be
displayed in more than one window.

In most cases, there is one buffer for each file that is accessed, but sometimes
there is more than one buffer for a single file. There are also some buffers (such
as the Echo Area, which is used to communicate with the user) that are not nec-
essarily associated with any file.

2.1.3 The mode line

At the bottom of each editor window is a mode line that provides information
concerning the buffer which that window is displaying. The contents of the
mode line are as follows:

• "LATIN-1" or "MACOS-ROMAN" or "UNICODE", or other encoding
name, indicating the encoding of any file associated with the buffer.

• "----" or "-**-" or "-%%-": the first indicates that the buffer is unchanged
since it was last saved; the second that it has been changed; and the third
that it is read only.

• the name of the buffer (the name of a buffer originating from a file is usually
the same as the name of that file).

• the package of the current buffer written within braces.

2.2 Buffer locations
• a major mode (such as Fundamental or Lisp). An buffer always operates in
a single major mode.

• a minor mode (such as Abbrev or Auto-Fill). If no minor mode is in opera-
tion then this element is omitted from the mode line. An editor can oper-
ate in any number of minor modes.

• a position indicator showing the line numbers of the topmost and bottom-
most lines displayed in the window, and the total number of lines in the
buffer. The editor can be changed to count characters rather than lines,
and then displays percentages rather than line numbers.

• the pathname with which the buffer is associated.

2.2 Buffer locations

2.2.1 Points

A point is a location in a buffer where editor commands take effect. The current
point is generally the location between the character indicated by the cursor and
the previous character (that is, it actually lies between two characters). Many
types of commands (that is, moving, inserting, deleting) operate with respect to
the current point, and indeed move that point.

Each buffer has a current point associated with it. A buffer that is not being dis-
played remembers where its current point is and returns the user to that point
when the buffer is redisplayed.

If the same buffer is being displayed in more than one window, there is a point
associated with the buffer for each window. These points are independent of
each other.

2.2.2 Marks

The location of a point can be saved for later reference by setting a mark. Marks
may either be set explicitly or as side effects of commands. More than one mark
may be associated with a single buffer and saved in what is known as a mark
ring. As for points, the positions of marks in a buffer are remembered even if
that buffer is not currently being displayed.
 7

2 General Concepts

8

2.2.3 Regions

A region is the area of text between the mark and the current point. Many editor
commands affect only a specified region.

2.3 Modes
Each buffer can be in two kinds of mode: a major mode, such as Lisp mode, or
Fundamental mode (which is the ordinary text processing mode); and a minor
mode, such as Abbrev mode or Auto-Fill mode. A buffer always has precisely
one major mode associated with it, but minor modes are optional. Any number
of minor modes can be associated with a buffer.

The major modes govern how certain commands behave. For example, the con-
cept of indentation is radically different in Lisp mode and in Fundamental
mode. When a file is loaded into a new buffer, the default mode of that buffer is
determined by the file name. For example, a buffer into which a file name that
has a .lisp suffix is loaded defaults to Lisp mode.

The minor modes determine whether or not certain actions take place. For
example, when Auto-Fill mode is on lines are automatically broken at the right
hand margin, as the text is being typed, when the line length exceeds a pre-
defined limit. Normally the newline has to be entered manually at the end of
each line.

2.4 Text handling concepts

2.4.1 Words

A word is defined as a continuous string of alphanumeric characters. These are
the letters A-Z, a-z, numbers 0-9, and the Latin-1 alphanumeric characters). In
most modes, any character which is not alphanumeric is treated as a word
delimiter.

2.4.2 Sentences

A sentence begins wherever a paragraph or previous sentence ends. The end of a
sentence is defined as consisting of a sentence terminating character followed
by two spaces or a newline. Two spaces are required to prevent abbreviations

2.5 Executing commands
(such as Mr.) from being taken as the end of a sentence. Such abbreviations at
the end of a line are taken as the end of a sentence. There may also be any num-
ber of closing delimiter characters between the sentence terminating character
and the spaces or newline.

Sentence terminating characters include: . ? !

Closing delimiter characters include:)] > / | " ’

2.4.3 Paragraphs

A paragraph is defined as the text within two paragraph delimiters. A blank line
constitutes a paragraph delimiter. The following characters at the beginning of a
line are also paragraph delimiters:

Space Tab @ - ’)

2.5 Executing commands

2.5.1 Keys — Command, Ctrl and Meta

Editor commands are initiated by one or more key sequences. A single key
sequence usually involves holding down one of two specially defined modifier
keys, while at the same time pressing another key which is usually a character
key.

Mac OS users will be familiar with the use of the Command key in key sequences
such as Command+C. These keys always work in the standard Mac OS way in the
LispWorks editor. The remainder of this section describes the use of other modi-
fier key.

The two modifier keys referred to are the Control (Ctrl) key and the Meta key .

When using Emacs emulation on a keyboard without a Meta key, the Escape
(Esc) key can be used instead. Note that Esc must be typed before pressing the
required character key, and not held down.

When using Mac OS editor emulation, Esc is the cancel gesture and you may
not have an Emacs Meta key. Therefore LispWorks provides an alternate gesture
to access editor commands: Ctrl+M. For example, to invoke the command Find
Source for Dspec, type
 9

2 General Concepts

10
Ctrl+M X Find Source for Dspec

and press Return.

To continue the search, type Ctrl+M ,.

You can make either the Alt or the Command key act as the Emacs Meta key. This
setting is independent of whether you are using Emacs or Mac OS editor emula-
tion. See the LispWorks IDE User Guide for instructions on changing editor emu-
lation.

An example of a single key sequence command is Ctrl+A which moves the cur-
rent point to the start of the line. This command is issued by holding down the
Control key while at the same time pressing A.

Some key sequences may require more than one key sequence. For example, the
key sequence to save the current buffer to a file is Ctrl+X Ctrl+S. Another
multi-key sequence is Ctrl+X S which saves all buffers to their relevant files.
Note that in this case you do not press the Control key while pressing S.

A few commands require both the Ctrl and Meta key to be held down while
pressing the character key. Meta+Ctrl+L, used to select the previous buffer dis-
played, is one such command. If the Esc key is being used in place of the Meta
key, then this key should be pressed before the Ctrl+L part of the key sequence.

2.5.2 Two ways to execute commands

The key sequences used to execute commands, as described in the previous sec-
tion, are only one way to execute an editor command. As a general rule, editor
commands that are used frequently should involve as few key strokes as possi-
ble to allow for fast editing. The key sequences described above are quick and
easy shortcuts for invoking commands.

Most editor commands can also be invoked explicitly by using their full names.
For example, in the previous section we met the keystroke Ctrl+A which moves
the current point to the beginning of the line. This keystroke is called a key bind-
ing and is a shortcut for executing the command Beginning of Line. To exe-
cute this command by name you must type Meta+X followed by the full
command name (Meta+X itself is only a key binding for the command Extended
Command).

2.6 Basic editing commands
Even though there may seem like a lot of typing to issue the extended version of
a command, it is not generally necessary to type in the whole of a command to
be executed. The Tab key can be used to complete a partially typed in extended
command. The editor extends the command name as far as possible when Tab is
used, and if the user is not sure of the rest of the command name, then pressing
Tab again provides a list of possible completions. The command can then be
selected from this list.

The most commonly used editor commands have a default binding associated
with them.

2.5.3 Prefix arguments

Editor commands can be supplied with an integer argument which sometimes
alters the effect of that command. In most cases it means the at the command is
repeated that many times. This argument is known as a prefix argument as it is
supplied before the command to which it is to be applied. Prefix arguments
sometimes have no effect on a command.

2.6 Basic editing commands
This section contains just enough information to allow you to load a file into the
editor, edit that file as required, and then save that file. It is designed to give you
enough information to get by and no more.

Only the default bindings are provided. The commands introduced are grouped
together as they are in the more detailed command references and under the
same headings (except for “Killing and Yanking” on page 13). For further infor-
mation on the commands described below and other related commands, see the
relevant sections in Chapter 3, Command Reference.

2.6.1 Aborting commands and processes

See “Aborting commands and processes” on page 16

Ctrl+G Abort the current command which may either be running
or just partially typed in. Use Esc in Mac OS editor emu-
lation.
 11

2 General Concepts

12
2.6.2 File handling

See “File handling” on page 25.

Ctrl+X Ctrl+F file

Load file into a buffer ready for editing. If the name of a
non-existent file is given, then an empty buffer is created
in to which text can be inserted. Only when a save is done
will the file be created.

Ctrl+X Ctrl+S Save the contents of the current buffer to the associated
file. If there is no associated file, one is created with the
same name as the buffer

2.6.3 Inserting text

See “Inserting text” on page 53 for details of various commands which insert
text.

Text which is typed in at the keyboard is automatically inserted to the left of the
cursor.

To insert a newline press Return.

2.6.4 Movement

See “Movement” on page 37.

Ctrl+F Move the cursor forward one character.

Ctrl+B Move the cursor backward one character.

Ctrl+N Move the cursor down one line.

Ctrl+P Move the cursor up one line.

The above commands can also be executed using the arrow keys.

Ctrl+A Move the cursor to the beginning of the line.

Ctrl+E Move the cursor to the end of the line.

Ctrl+V Scroll one screen forward.

Meta+V Scroll one screen backward.

2.6 Basic editing commands
Meta+Shift+< Move to the beginning of the buffer.

Meta+Shift+> Move to the end of the buffer.

2.6.5 Deleting and killing text

See “Deleting and killing text” on page 48.

Delete Delete the character to the left of the cursor.

Ctrl+D Delete the current character.

Ctrl+K Kill text from the cursor to the end of the line. To delete a
whole line (that is, text and newline), type Ctrl+K twice
at the start of the line.

2.6.6 Undoing

See “Undoing” on page 56.

Ctrl+Shift+_ Undo the previous command. If Ctrl+Shift+_ is typed
repeatedly, previously executed commands are undone in
a "last executed, first undone" order.

2.6.7 Killing and Yanking

The commands given below are used to copy areas of text and insert them at
some other point in the buffer. Note that there is no corresponding "Cut and
paste" section in the command references, so direct cross references have been
included with each command.

When cutting and pasting, the first thing to do is to copy the region of text to be
moved. This is done by taking the cursor to the beginning of the piece of text to
be copied and pressing Ctrl+Space to set a mark, and then taking the cursor to
the end of the text and pressing Ctrl+W. This kills the region between the cur-
rent point and the mark but keeps a copy of the killed text. This copy can then
be inserted anywhere in the buffer by putting the cursor at the required position
and then pressing Ctrl+Y to insert the copied text.

If the original text is to be copied but not killed, use the command Meta+W
instead of Ctrl+W. This copies the text ready for insertion, but does not delete
it.
 13

2 General Concepts

14
Ctrl+Space Set a mark for a region. See “Marks and regions” on page
43.

Ctrl+W Kill the region between the mark and current point, and
save a copy of that region. See “Deleting and killing text”
on page 48.

Meta+W Copy the region between the mark and the current point.
See “Deleting and killing text” on page 48.

Ctrl+Y Insert (yank) a copied region before the current point. See
“Inserting text” on page 53.

2.6.8 Help

See “Help” on page 18.

Ctrl+H A string List all commands whose name contains string.

Ctrl+H D command

Describe command, where command is the full command
name.

Ctrl+H K key Describe the command bound to key.

3

3 Command Reference
This chapter contains full details of most of the editor commands. Details of
related editor variables have also been included alongside commands, where
appropriate. Not included in this chapter, are commands used to facilitate the
editing of Lisp programs. See Chapter 4, Editing Lisp Programs.

Commands are grouped according to functionality as follows:

• “Aborting commands and processes”

• “Executing commands”

• “Help”

• “Prefix arguments”

• “File handling”

• “Movement”

• “Marks and regions”

• “Deleting and killing text”

• “Inserting text”

• “Undoing”

• “Case conversion”
15

3 Command Reference

16
• “Transposition”

• “Overwriting”

• “Indentation”

• “Filling”

• “Buffers”

• “Windows”

• “Pages”

• “Searching and replacing”

• “Comparison”

• “Registers”

• “Modes”

• “Abbreviations”

• “Keyboard macros”

• “Echo area operations”

• “Editor variables”

• “Recursive editing”

• “Key bindings”

• “Running shell commands from the editor”

• “Buffers, windows and the mouse”

• “Miscellaneous”

3.1 Aborting commands and processes
Key Sequence

Ctrl+G

Aborts the current command. Ctrl+G (or Esc in Mac OS editor emulation)
can either be used to abandon a command which has been partially typed
in, or to abort the command which is currently running.

3.2 Executing commands
Note that, unlike most of the keys described in this manual, this cannot be
changed via editor:bind-key. Instead, use editor:set-interrupt-
keys if you wish to change this.

Key Sequence

Command+Ctrl+,

Chooses a process that is useful to break, and breaks it. The process to
break is chosen as follows:

1. It checks for a busy processes that is essential for LispWorks to work
correctly, or that interacts with the user (normally that means that
some CAPI interface uses it), or that is flagged as wanting interrupts
(currently that means a REPL). If it finds such a busy process, it breaks
it.

2. Otherwise, if the LispWorks IDE is running, activate or start the Pro-
cess Browser.

3. Otherwise, if there is a busy process break it.

4. Otherwise, just break the current process.

Note: This break gesture is supported only on Mac OS X 10.4 and later.

3.2 Executing commands
Some commands (usually those used most frequently) are bound to key combi-
nations or key sequences, which means that fewer keystrokes are necessary to
execute these commands. Other commands must be invoked explicitly, using
Extended Command.

It is also possible to execute shell commands from within the editor. See “Run-
ning shell commands from the editor” on page 112.

Extended Command Editor Command

Key sequence: Meta+X

Allows the user to type in a command name explicitly. Any editor com-
mand can be invoked in this way, and this is the usual method of invoking
 17

3 Command Reference

18
a command that is not bound to any key sequence. Any prefix argument is
passed to the command that is invoked.

It is not generally necessary to type in the whole of a command to be exe-
cuted. Completion (using Tab) can be used after the first part of the com-
mand has been typed.

3.3 Help
The editor provides a number of on-line help facilities, covering a range of
areas.

There is one main help command, accessed by Help (Ctrl+H), with many
options to give you a wide range of help on editor commands, variables and
functions.

There are also further help commands which provide information on Lisp sym-
bols (see “Documentation” on page 149).

3.3.1 The help command

Help Editor Command

Options: See below
Key sequence: Ctrl+H option

Provides on-line help. Depending on what information the user has and
the type of information required, one of the following options should be
selected after invoking the Help command. In most cases a Help com-
mand plus option can also be invoked by an extended editor command.

A brief summary of the help options is given directly below, with more
detailed information following.

? Display a list of help options.

q or n Quit help.

a string Display a list of commands whose names con-
tain string.

3.3 Help
b Display a list of key bindings and associated
commands.

c key Display the command to which key is bound.

d command Describe the editor command.

Ctrl+D command

Bring up the on-line version of this manual for
command.

g object Invoke the appropriate describe object com-
mand.

k key Describe the command to which key is bound.

Ctrl+K key Bring up the on-line version of this manual for
key.

l describe the last 60 keys typed.

v variable Describe variable and show its current value.

Ctrl+V variable Bring up the on-line version of this manual for
variable.

w command Display the key sequence to which command is
bound.

Apropos Command Editor Command

Arguments: string
Key sequence: Ctrl+H A string

Displays a list of editor commands, variables, and attributes whose names
contain string, in a Help window.

Editor command, variable and attribute names tend to follow patterns
which becomes apparent as you look through this manual. For example,
commands which perform operations on files tend to contain the string
file, that is, Find File, Save File, Print File and so forth.

Use this form of help when you know what you would like to do, but do
not know a specific command to do it.
 19

3 Command Reference

20
What Command Editor Command

Arguments: key
Key sequence: Ctrl+H C key

Displays the command to which key is bound. For a more detailed descrip-
tion of key use the command Describe Key.

Use this form of help when you know a default binding but want to know
the command name.

Note: this command is also available via the menu command Help > Edit-
ing > Key to Command.

Describe Command Editor Command

Arguments: command
Key sequence: Ctrl+H D command

Describes the editor command command. Full documentation of that com-
mand is printed in a Help window.

Use this form of help when you know a command name and require full
details of that command.

Document Command Editor Command

Arguments: command
Key sequence: Ctrl+H Ctrl+D command

Brings up the on-line version of this manual at the entry for command.

The documentation in the on-line manual differs from the editor on-line
help (as produced by Describe Command), but provides similar informa-
tion. If you are used to the layout and definitions provided in this manual
then use this help command instead of Ctrl+H D.

Generic Describe Editor Command

Arguments: object
Key sequence: Ctrl+H G object

3.3 Help
Describes object, where object may take the value command, key, attribute or
variable.

If object is command, key or variable then the command Describe Command,
Describe Key or Describe Editor Variable is invoked respectively.

There is no corresponding describe command if the object is attribute.
Attributes are things such as word delimiters, Lisp syntax and parse field
separators. If you are not sure of the attributes documented remember that
you can press Tab to display a completion list.

Describe Key Editor Command

Arguments: key
Key sequence: Ctrl+H K key

Describes the command to which key is bound. Full documentation of that
command is printed in a Help window.

Use this form of help when you know a default binding and require the
command name plus full details of that command.

Document Key Editor Command

Arguments: key
Key sequence: Ctrl+H Ctrl+K key

Brings up the on-line version of this manual at the entry for key.

The documentation in the on-line manual differs slightly from the editor
on-line help but usually provides you with the same amount of informa-
tion. If you are used to the layout and definitions provided in this manual
then use this help command instead of Describe Key.

What Lossage Editor Command

Arguments: None
Key sequence: Ctrl+H L

Displays the last 60 keys typed.
 21

3 Command Reference

22
Describe Editor Variable Editor Command

Arguments: variable
Key sequence: Ctrl+H V variable

Describes variable and prints its current value in a Help window.

Use this form of help when you know a variable name and require a
description of that variable and/or its current value.

Document Variable Editor Command

Arguments: variable
Key sequence: Ctrl+H Ctrl+V variable

Brings up the on-line version of this manual at the entry for variable.

The documentation in the on-line manual differs slightly from the editor
on-line help but usually provides you with the same amount of informa-
tion. If you are used to the layout and definitions provided in this manual
then use this help command instead of Describe Editor Variable.

Where Is Editor Command

Arguments: command
Key sequence: Ctrl+H W command

Displays the key sequence to which command is bound.

Use this form of help if you know a command name and wish to find the
bindings for that command. If no binding exists then a message to this
effect is returned.

Note: this command is also available via the menu command Help > Edit-
ing > Command to Key.

Describe Bindings Editor Command

Arguments: None
Key sequence: Ctrl+H B

3.4 Prefix arguments
Displays a list of key bindings and associated commands in a Help win-
dow. First the minor and major mode bindings for the current buffer are
printed, then the global bindings.

3.3.2 Other help commands

 Manual Entry Editor Command

Arguments: unix-command
Key sequence: None

Displays the UNIX manual page for unix-command. The UNIX utility man
is invoked and the manual page is displayed in an Editor window.

With no prefix argument, the same buffer is used each time. With a prefix
argument, a new buffer is created for each manual page accessed.

3.4 Prefix arguments
Editor Commands can be supplied with an integer argument which, in many
cases, indicates how many times a command is to be executed. This argument is
known as a prefix argument as it is supplied before the command to which it is to
be applied.

A prefix argument applied to some commands has a special meaning. Docu-
mentation to this effect is provided with the command definitions where appro-
priate in this manual. In most other cases the prefix argument repeats the
command a certain number of times, or has no effect.

A prefix argument can be supplied to a command by first using the command
Set Prefix Argument (Ctrl+U) followed by an integer. Negative prefix argu-
ments are allowed. A prefix argument between 0 and 9 can also be supplied
using Meta+digit.

Set Prefix Argument Editor Command

Arguments: [integer]
Key sequence: Ctrl+U [integer]
 23

3 Command Reference

24
Provides a prefix argument which, for many commands, indicates the
command is to be invoked integer times. The required integer should be
input and the command to which it applies invoked without an interven-
ing carriage return.

If no integer is given, the prefix argument defaults to the value of prefix-
argument-default.

If Set Prefix Argument is invoked more than once before a command,
the prefix arguments associated with each invocation are multiplied
together and the command to which the prefix arguments are to be
applied is repeated this number of times. For example, if you typed in
Ctrl+U Ctrl+U 2 before a command, then that command would be
repeated 8 times.

prefix-argument-default Editor Variable

Default value: 4

The default value for the prefix argument if no integer is provided for Set
Prefix Argument.

None Key Sequence

Key sequence: Meta+<0–9>

Provides a prefix argument in a similar fashion to Set Prefix Argument,
except that only integers from 0 to 9 can be used (unless the key bindings
are changed).

Negative Argument Editor Command

Arguments: None
Key sequence: None

Negates the current prefix argument. If there is currently no prefix argu-
ment then it is set to -1.

3.5 File handling
There is rarely any need for explicit use of this command. Negative prefix
arguments can be entered directly with Set Prefix Argument by typing
a - before the integer.

3.5 File handling
This section contains details of commands used for file handling.

The first section provides details on commands used to copy the contents of a
file into a buffer for editing, while the second deals with copying the contents of
buffers to files.

You may at some point have seen file names either enclosed in # characters or
followed by a ~ character. These files are created by the editor as backups for the
file named. The third section deals with periodic backups (producing file names
enclosed in #) and the fourth with backups on file saving (producing files fol-
lowed by ~).

There are many file handling commands which cannot be pigeon-holed so
neatly and these are found in the section “Miscellaneous file operations” on
page 34. Commands use to print, insert, delete and rename files are covered
here, along with many others.

3.5.1 Finding files

Find File Editor Command

Arguments: pathname
Key sequence: None

editor:find-file-command p &optional pathname

Finds a new buffer with the same name as pathname (where pathname is the
name of the file to be found, including its directory relative to the current
directory), creating it if necessary, and inserts the contents of the file into
the buffer. The contents of the buffer are displayed in an editor pane and
may then be edited.

The file is initially read in the external format (encoding) given by the edi-
tor variable input-format-default. If the value of this is nil, cl:open
 25

3 Command Reference

26
chooses the external format to use. The external format is remembered for
subsequent reading and writing of the buffer, and its name is displayed in
the mode line.

If the file is already being visited a new buffer is not created, but the buffer
already containing the contents of that file is displayed instead.

If a file with the specified name does not exist, an empty buffer with that
file name is created for editing purposes, but the new file is not created
until the appropriate save file command is issued.

If there is no prefix argument, a new Editor window is created for the file.
With any prefix argument, the file is shown in the current window.

Another version of this command is Wfind File which is usually used
for finding files.

Wfind File Editor Command

Arguments: pathname
Key sequence: Ctrl+X Ctrl+F pathname

editor:wfind-file-command p &optional pathname

Calls Find File with a prefix argument (that is, the new file is opened in
the existing window).

Visit File Editor Command

Arguments: pathname
Key sequence: None

editor:visit-file-command p &optional pathname buffer

Does the same as Find Alternate File, and then sets the buffer to be
writable.

Find Alternate File Editor Command

Arguments: pathname
Key sequence: Ctrl+X Ctrl+V pathname

3.5 File handling
editor:find-alternate-file-command p &optional pathname buffer

Does the same as Find File with a prefix argument, but kills the current
buffer and replaces it with the newly created buffer containing the file
requested. If the contents of the buffer to be killed have been modified, the
user is asked if the changes are to be saved to file.

The argument buffer is the buffer in which the contents of the file are to be
displayed. buffer defaults to the current buffer.

The prefix argument is ignored.

input-format-default Editor Variable

Default value: nil

The default external format used by Find File, Wfind File and Visit
File for reading files into buffers.

If the buffer already has an external format (either it has previously been
read from a file, or Set External Format has been used to specify an
external format) then input-format-default is ignored. If the value is
nil and the buffer does not have an external format, cl:open chooses the
external format to use.

The value should be nil or an external format specification. See the Lisp-
Works User Guide and Reference Manual for a description of these and of
how cl:open chooses an external format.

If you have specified an input encoding via the Editor tool’s Preferences
dialog, then input-format-default is initialized to that value on startup.

3.5.2 Saving files

Save File Editor Command

Arguments: None
Key sequence: Ctrl+X Ctrl+S

editor:save-file-command p &optional buffer
 27

3 Command Reference

28
Saves the contents of the current buffer to the associated file. If there is no
associated file, one is created with the same name as the buffer, and writ-
ten in the same encoding as specified by the editor variable output-for-
mat-default, or as defaulted by open if this is nil.

The argument buffer is the buffer to be saved in its associated file. The
default is the current buffer.

Save All Files Editor Command

Arguments: None
Key sequence: Ctrl+X S

Without a prefix argument, a Save Selected Buffers dialog is displayed
asking whether each modified buffer is to be saved. If a buffer has no asso-
ciated file it is ignored, even if it is modified. The selected buffers are
saved.

With a non-nil prefix argument, no such dialog is displayed and all buffers
that need saving are saved. You can also prevent the Save Selected Buffers
dialog from being displayed by setting the value of the editor variable
save-all-files-confirm.

save-all-files-confirm Editor Variable

Default value: t

When the value is true, Save All Files prompts for confirmation before
writing the modified buffers, when used without a prefix argument.

Write File Editor Command

Arguments: pathname
Key sequence: Ctrl+X Ctrl+W pathname

editor:write-file-command p &optional pathname buffer

Writes the contents of the current buffer to the file defined by pathname. If
the file already exists, it is overwritten. If the file does not exist, it is cre-
ated. The buffer then becomes associated with the new file.

3.5 File handling
The argument buffer is the name of the buffer whose contents are to be
written. The default is the current buffer.

Write Region Editor Command

Arguments: pathname
Key sequence: None

editor:write-region-command p &optional pathname

Writes the region between the mark and the current point to the file
defined by pathname. If the file already exists, it is overwritten. If the file
does not exist, it is created.

Append to File Editor Command

Arguments: pathname
Key sequence: None

Appends the region between the mark and the current point to the file
defined by pathname. If the file does not exist, it is created.

Backup File Editor Command

Arguments: pathname
Key sequence: None

Writes the contents of the current buffer to the file defined by pathname. If
the file already exists, it is overwritten. If it does not exist, it is created.

In contrast with Write File, no change is made concerning the file associ-
ated with the current buffer as this command is only intended to be used
to write the contents of the current buffer to a backup file.

Save All Files and Exit Editor Command

Arguments: None
Key sequence: Ctrl+X Ctrl+C
 29

3 Command Reference

30
A Save Selected Buffers dialog is displayed asking whether each modified
buffer is to be saved. If a buffer has no associated file it is ignored, even if it
is modified (this operates just like Save All Files). When all the
required buffers have been saved LispWorks exits, prompting for confir-
mation first.

add-newline-at-eof-on-writing-file Editor Variable

Default value: :ask-user

Controls whether the commands Save File and Write File add a new-
line at the end of the file if the last line is non-empty.

If the value of this variable is t then the commands add a newline and tell
the user. If its value is nil the commands never add a newline.

If the value is t then the commands add a newline and tell the user. If the
value is nil the commands never add a newline. If the value is :ask-
user, the commands ask whether to add a newline.

output-format-default Editor Variable

Default value: nil

The default external format used for writing buffers to files.

If the buffer already has an external format (either it has been read from a
file, or Set External Format has been used to specify an external for-
mat) then output-format-default is ignored. If the value is nil and the
buffer does not have an external format, cl:open chooses the external
format to use.

The value should be nil or an external format specification. See the Lisp-
Works User Guide and Reference Manual for a description of these and of
how cl:open chooses an external format.

If you have specified an output encoding via the Editor tool’s Preferences
dialog, then output-format-default is initialized to that value on star-
tup.

The default value of output-format-default is nil.

3.5 File handling
Set External Format Editor Command

Arguments: buffer
Key sequence: None

Prompts for an external format specification, providing a default which is
the buffer’s current external format if set, or the value of output-format-
default. Sets the buffer’s external format, so that this is used for subse-
quent file writing and reading.

If a non-nil prefix argument is supplied, the buffer’s external format is set
to the value of output-format-default without prompting.

See the LispWorks User Guide and Reference Manual for a description of
external format specifications.

Find Unwritable Character Editor Command

Arguments: None
Key sequence: None

Finds the next occurrence of a character in the current buffer that cannot
be written using the buffer external format. The prefix argument is
ignored.

List Unwritable Characters Editor Command

Arguments: None
Key sequence: None

Lists the characters in the current buffer that cannot be written with the
buffer external format. The prefix argument is ignored.

3.5.3 Auto-saving files

The auto-save feature allows for periodic backups of the file associated with the
current buffer. These backups are only made if auto-save is switched on.

This feature is useful if the LispWorks editor is killed in some way (for example,
in the case of a system crash or accidental killing of the editor process) before a
 31

3 Command Reference

32
file is explicitly saved. If automatic backups are being made, the state of a file
when it was last auto-saved can subsequently be recovered.

By default, automatic backups are made both after a predefined number of key
strokes, and also after a predefined amount of time has elapsed.

By default, auto-saved files are in the same directory as the original file, with the
name of the auto-save file (or "checkpoint file") being the name of the original
file enclosed within # characters.

Toggle Auto Save Editor Command

Arguments: None
Key sequence: None

Switches auto-save on if it is currently off, and off if it is currently on.

With a positive prefix argument, auto-save is switched on. With a negative
or zero prefix argument, auto-save is switched off. Using prefix arguments
with Toggle Auto Save disregards the current state of auto-save.

Auto Save Toggle is a synonym for Toggle Auto Save.

auto-save is initially on or off in a new buffer according to the value of the
editor variable default-auto-save-on.

default-auto-save-on Editor Variable

Default value: t

The default auto-save state of new buffers.

auto-save-filename-pattern Editor Variable

Default value: "~A#~A#"

This is a format control string used to make the filename of the checkpoint
file. format is called with two arguments, the first being the directory
namestring and the second being the file namestring of the default buffer
pathname.

3.5 File handling
The default value causes the auto-save file to be created in the same direc-
tory as the file for which it is a backup, and with the name surrounded by
characters.

auto-save-key-count-threshold Editor Variable

Default value: 256

Specifies the number of destructive/modifying keystrokes that automati-
cally trigger an auto-save of a buffer. If the value is nil, this feature is
turned off.

auto-save-checkpoint-frequency Editor Variable

Default value: 300

Specifies the time interval in seconds after which all modified buffers
which are in "Save" mode are auto-saved. If the value is nil, zero or nega-
tive, this feature is turned off.

auto-save-cleanup-checkpoints Editor Variable

Default value: t.

This variable controls whether an auto-save function will cleanup by
deleting the checkpoint file for a buffer after it is saved. If the value is true
then this cleanup will occur.

3.5.4 Backing-up files on saving

When a file is explicitly saved in the editor, a backup is automatically made by
writing the old contents of the file to a backup before saving the new version of
the file. The backup file appears in the same directory as the original file. By
default its name is the same as the original file followed by a ~ character.

backups-wanted Editor Variable

Default value: t
 33

3 Command Reference

34
Controls whether to make a backup copy of a file the first time it is modi-
fied. If the value is t, a backups is automatically made on first saving. If
the value is nil, no backup is made.

backup-filename-suffix Editor Variable

Default value: #\~

This variable contains the character used as a suffix for backup files. By
default, this is the tilde (~) character.

backup-filename-pattern Editor Variable

Default value: "~A~A~A"

This control string is used with the Common Lisp format function to cre-
ate the filename of the backup file. format is called with three arguments,
the first being the directory name-string and the second being the file
name-string of the pathname associated with the buffer. The third is the
value of the editor variable backup-filename-suffix.

The backup file is created in the same directory as the file for which it is a
backup, and it has the same name, followed by the backup-filename-suffix.

Note that the backup-suffix can be changed functionally as well as by
interactive means. For example, the following code changes the suffix to
the @ character:

(setf (editor:variable-value ‘editor:backup-filename-suffix
 :current nil) #\@)

3.5.5 Miscellaneous file operations

Print File Editor Command

Arguments: file
Key sequence: None

Prints file, using capi:print-file. See the CAPI Reference Manual for
details of this function.

3.5 File handling
Revert Buffer Editor Command

Arguments: None
Key sequence: None

If the current buffer is associated with a file, its contents revert to the state
when it was last saved. If the buffer is not associated with a file, it is not
possible for a previous state to be recovered.

If auto-save is on for the current buffer, the version of the file that is recov-
ered is either that derived by means of an automatic save or by means of
an explicit save, whichever is the most recent. If auto-save is off, the buffer
reverts to its state when last explicitly saved.

If the buffer has been modified and the value of the variable revert-
buffer-confirm is t then Revert Buffer asks for confirmation before
reverting to a previous state.

Any prefix argument forces Revert Buffer to use the last explicitly saved
version.

revert-buffer-confirm Editor Variable

Default value: t

When the command Revert Buffer is invoked, if the value of this vari-
able is t and the buffer has been modified then confirmation is requested
before the revert operation is performed. If its value is nil, no confirma-
tion is asked for.

Process File Options Editor Command

Arguments: None
Key sequence: None

The attribute line at the top of the file is reprocessed, as if the file had just
been read from disk. If no major mode is specified in the attribute line, the
type of the file is used to determine the major mode. See “Modes” on page
94.
 35

3 Command Reference

36
Insert File Editor Command

Arguments: pathname
Key sequence: Ctrl+X I pathname

editor:insert-file-command p &optional pathname buffer

Inserts the file defined by pathname into the current buffer at the current
point.

The argument buffer is the buffer in which the file is to be inserted.

Delete File Editor Command

Arguments: pathname
Key sequence: None

Deletes the file defined by pathname. The user is asked for confirmation
before the file is deleted.

Delete File and Kill Buffer Editor Command

Arguments: buffer
Key sequence: None

editor:delete-file-and-kill-buffer-command p &optional buffer

After confirmation from the user, this deletes the file associated with buffer
and then kills the buffer.

Rename File Editor Command

Arguments: file new-file-name
Key sequence: None

Changes the name of file to new-file-name.

If you are currently editing the file to be renamed, the buffer remains unal-
tered, retaining the name associated with the old file even after renaming
has taken place. If you then save the current buffer, it is saved to a file with
the name of the buffer, that is, to a file with the old name.

3.6 Movement
Make Directory Editor Command

Arguments: None
Key sequence: None

Prompts the user for a directory name and makes it in the filesystem.

The prefix argument is ignored.

3.6 Movement
This section gives details of commands used to move the current point (indi-
cated by the cursor) around the buffer.

The use of prefix arguments with this set of commands can be very useful, as
they allow you to get where you want to go faster. In general, using a negative
prefix argument repeats these commands a certain number of times in the oppo-
site logical direction. For example, the command Ctrl+U 10 Ctrl+B moves the
cursor 10 characters backwards, but the command Ctrl+U -10 Ctrl+B moves
the cursor 10 characters forward.

Some movement commands may behave slightly differently in different modes
as delimiter characters may vary.

Forward Character Editor Command

Arguments: None
Key sequence: Ctrl+F or Right Arrow on some keyboards

Moves the current point forward one character.

Backward Character Editor Command

Arguments: None
Key sequence: Ctrl+B or Left Arrow on some keyboards

Moves the current point backward one character.
 37

3 Command Reference

38
Forward Word Editor Command

Arguments: None
Key sequence: Meta+F

Moves the current point forward one word.

Backward Word Editor Command

Arguments: None
Key sequence: Meta+B

Moves the current point backward one word.

Beginning of Line Editor Command

Arguments: None
Key sequence: Ctrl+A

Moves the current point to the beginning of the current line.

End of Line Editor Command

Arguments: None
Key sequence: Ctrl+E

Moves the current point to the end of the current line.

Next Line Editor Command

Arguments: None
Key sequence: Ctrl+N or Down Arrow on some keyboards

Moves the current point down one line. If that would be after the end of
the line, the current point is moved to the end of the line instead.

Previous Line Editor Command

Arguments: None
Key sequence: Ctrl+P or Up Arrow on some keyboards

3.6 Movement
Moves the current point up one line. If that would be after the end of the
line, the current point is moved to the end of the line instead.

Goto Line Editor Command

Arguments: number
Key sequence: None

Moves to the line numbered number.

What Line Editor Command

Arguments: None.
Key sequence: None

Prints in the Echo Area the line number of the current point.

Forward Sentence Editor Command

Arguments: None
Key sequence: Meta+E

Moves the current point to the end of the current sentence. If the current
point is already at the end of a sentence, it is moved to the end of the next
sentence.

Backward Sentence Editor Command

Arguments: None
Key sequence: Meta+A

Moves the current point to the start of the current sentence. If the current
point is already at the start of a sentence, it is moved to the beginning of
the previous sentence.

Forward Paragraph Editor Command

Arguments: None
Key sequence: Meta+]
 39

3 Command Reference

40
Moves the current point to the end of the current paragraph. If the current
point is already at the end of a paragraph, then it is moved to the end of
the next paragraph.

Backward Paragraph Editor Command

Arguments: None
Key sequence: Meta+[

Moves the current point to the start of the current paragraph. If the current
point is already at the start of a paragraph, then it is moved to the begin-
ning of the previous paragraph.

Scroll Window Down Editor Command

Arguments: None
Key sequence: Ctrl+V

editor:scroll-window-down-command p &optional window

Changes the text that is being displayed to be one screenful forward,
minus scroll-overlap. If the current point is no longer included in the
new text, it is moved to the start of the line nearest to the centre of the win-
dow.

A prefix argument causes the current screen to be scrolled up the number
of lines specified and that number of new lines are shown at the bottom of
the window.

The argument window is the name of the window to be scrolled. The
default is the current window.

Scroll Window Up Editor Command

Arguments: None
Key sequence: Meta+V

editor:scroll-window-up-command p &optional window

3.6 Movement
Changes the text that is being displayed to be one screenful back, minus
scroll-overlap. If the current point is no longer included in the new
text, it is moved to the start of the line nearest to the centre of the window.

A prefix argument causes the current screen to be scrolled down the num-
ber of lines specified and that number of new lines are shown at the top of
the window.

The argument window is the name of the window to be scrolled. The
default is the current window.

scroll-overlap Editor Variable

Default value: 1

Determines the number of lines of overlap when Scroll Window Down
and Scroll Window Up are used with no prefix argument.

Line to Top of Window Editor Command

Arguments: None
Key sequence: None

Moves the current line to the top of the window.

Top of Window Editor Command

Arguments: None
Key sequence: None

Moves the current point to the start of the first line currently displayed in
the window.

Bottom of Window Editor Command

Arguments: None
Key sequence: None

Moves the current point to the start of the last line that is currently dis-
played in the window.
 41

3 Command Reference

42
Move to Window Line Editor Command

Arguments: None
Key sequence: Meta+Shift+R

Without a prefix argument, moves the current point to the start of the cen-
ter line in the window.

With a positive (negative) integer prefix argument p, moves the point to
the start of the pth line from the top (bottom) of the window.

Beginning of Buffer Editor Command

Arguments: None
Key sequence: Meta+Shift+<

Moves the current point to the beginning of the current buffer.

End of Buffer Editor Command

Arguments: None
Key sequence: Meta+Shift+>

Moves the current point to the end of the current buffer.

Skip Whitespace Editor Command

Arguments: None
Key sequence: None

Skips to the next non-whitespace character if the current character is a
whitespace character (for example, Space, Tab or newline).

What Cursor Position Editor Command

Arguments: None
Key sequence: Ctrl+X =

Displays in the echo area the character under the point and the column of
the point. Also available via the function:

3.7 Marks and regions
editor:what-cursor-position-command.

Where Is Point Editor Command

Arguments: None
Key sequence: None

Displays in the echo area the position of the current point in terms of char-
acters in the buffer, as a fraction of current point position over total buffer
length.

Goto Point Editor Command

Arguments: point
Key sequence: None

Moves the current point to point, where point is a character position in the
current buffer.

3.7 Marks and regions
The first part of this section gives details of commands associated with marking,
while the second provides details of a few commands whose area is limited to a
region. Other region specific commands are available but are dealt with in more
appropriate sections of this manual. For example, Write Region is dealt with
under the “File handling” on page 25 as it involves writing a region to a file.

Details of marks are kept in a mark ring so that previously defined marks can be
accessed. The mark ring works like a stack, in that marks are pushed onto the
ring and can only be popped off on a "last in first out" basis. Each buffer has its
own mark ring.

Note that marks may also be set by using the mouse—see “Buffers, windows
and the mouse” on page 116—but also note that a region must be defined either
by using the mouse or by using editor key sequences, as the region may become
unset if a combination of the two is used. For example, using Ctrl+Space to set
a mark and then using the mouse to go to the start of the required region unsets
the mark.
 43

3 Command Reference

44
3.7.1 Marks

Set Mark Editor Command

Arguments: None
Key sequence: Ctrl+Space or Middle Mouse Button

With no prefix argument, pushes the current point onto the mark ring,
effectively setting the mark to the current point, and makes the activates
the region.

With a prefix argument equal to the value of the prefix-argument-
default, Pop and Goto Mark is invoked.

With a prefix argument equal to the square of the prefix-argument-
default (achieved by typing Ctrl+U Ctrl+U before invoking Set
Mark), Pop Mark is invoked.

Pop and Goto Mark Editor Command

Arguments: None
Key sequence: None

Moves the current point to the mark without saving the current point on
the mark ring (in contrast with Exchange Point and Mark). After the
current point has been moved to the mark, the mark ring is rotated. The
current region is de-activated.

Pop Mark Editor Command

Arguments: None
Key sequence: Meta+Ctrl+Space

Rotates the mark ring so that the previous mark becomes the current
mark. The point is not moved but the current region is de-activated.

Exchange Point and Mark Editor Command

Arguments: None
Key sequence: Ctrl+X Ctrl+X

3.7 Marks and regions
editor:exchange-point-and-mark-command p &optional buffer

Sets the mark to the current point and moves the current point to the pre-
vious mark. This command can therefore be used to examine the extent of
the current region.

The argument buffer is the buffer in which to exchange the point and mark.
The default value is the current buffer.

Mark Word Editor Command

Arguments: number
Key sequence: Meta+@

Marks the word following the current point. A prefix argument, if sup-
plied, specifies the number of words marked.

Mark Sentence Editor Command

Arguments: None
Key sequence: None

Puts the mark at the end of the current sentence and the current point at
the start of the current sentence. The sentence thereby becomes the current
region. If the current point is initially located between two sentences then
the mark and current point are placed around the next sentence.

Mark Paragraph Editor Command

Arguments: None
Key sequence: Meta+H

Puts the mark at the end of the current paragraph and the current point at
the start of the current paragraph. The paragraph thereby becomes the
current region. If the current point is initially located between two para-
graphs, then the mark and current point are placed around the next para-
graph.
 45

3 Command Reference

46
Mark Whole Buffer Editor Command

Arguments: None
Key sequence: Ctrl+X H

Sets the mark at the end of the current buffer and the current point at the
beginning of the current buffer. The current region is thereby set as the
whole of the buffer.

A non-nil prefix argument causes the mark to be set as the start of the
buffer and the current point at the end.

3.7.2 Regions

Count Words Region Editor Command

Arguments: None
Key sequence: None

Displays a count of the total number of words in the region between the
current point and the mark.

Count Lines Region Editor Command

Arguments: None
Key sequence: None

Displays a count of the total number of lines in the region between the cur-
rent point and the mark.

region-query-size Editor Variable

Default value: 60

If the region between the current point and the mark contains more lines
than the value of this editor variable, then any destructive operation on
the region prompts the user for confirmation before being executed.

3.8 Locations
Print Region Editor Command

Arguments: None
Key sequence: None

Prints the current region, using capi:print-text. See the CAPI Reference
Manual for details of this function.

3.8 Locations
A location is the position of the current point in a buffer at some time in the
past. Locations are recorded automatically by the editor for most com-
mands that take you to a different buffer or where you might lose your
place within the current buffer (for example Beginning of Buffer). They
are designed to be a more comprehensive form of the mark ring (see Pop
and Goto Mark), but without the interaction with the selected region.

Go Back Editor Command

Arguments: None
Key sequence: Ctrl+X C

Takes you back to the most recently recorded location. If a prefix argument
count is supplied, it takes you back count locations in the location history. If
count is negative, it takes you forward again count locations in the history,
provided that no more locations have been recorded since you last went
back.

Select Go Back Editor Command

Arguments: None
Key sequence: Ctrl+X M

Takes you back to a previously recorded location, which you select from a
list.

Any prefix argument is ignored.
 47

3 Command Reference

48
Go Forward Editor Command

Arguments: None
Key sequence: Ctrl+X P

Takes you back to the next location in the ring of recorded locations. If a
prefix argument count is supplied, it takes you forward count locations in
the location history. If count is negative, it takes you back count locations in
the history.

3.9 Deleting and killing text
There are two ways of removing text: deletion, after which the deleted text is not
recoverable (except with the Undo command); and killing, which appends the
deleted text to the kill ring, so that it may be recovered using the Un-Kill and
Rotate Kill Ring commands. The first section contains details of commands
to delete text, and the second details of commands to kill text.

Note that, if Delete Selection Mode is active, then any currently selected text is
deleted when text is entered. See ‘Delete Selection’ on page 3-56 for details.

The use of prefix arguments with this set of commands can be very useful. In
general, using a negative prefix argument repeats these commands a certain
number of times in the opposite logical direction. For example, the key sequence
Ctrl+U 10 Meta+D deletes 10 words after the current point, but the key
sequence Ctrl+U -10 Meta+D deletes 10 words before the current point.

3.9.1 Deleting Text

Delete Next Character Editor Command

Arguments: None
Key sequence: Ctrl+D

Deletes the character immediately after the current point.

3.9 Deleting and killing text
Delete Previous Character Editor Command

Arguments: None
Key sequence: Delete

Deletes the character immediately before the current point.

Delete Previous Character Expanding Tabs Editor Command

Arguments: None
Key sequence: None

Deletes the character immediately before the current point, but if the pre-
vious character is a Tab, then this is expanded into the equivalent number
of spaces, so that the apparent space is reduced by one.

A prefix argument deletes the required number of characters, but if any of
them are tabs, the equivalent spaces are inserted before the deletion con-
tinues.

Delete Horizontal Space Editor Command

Arguments: None
Key sequence: Meta+\

Deletes all spaces on the line surrounding the current point.

Just One Space Editor Command

Arguments: None
Key sequence: Meta+Space

Deletes all space on the current line surrounding the current point and
then inserts a single space. If there was initially no space around the cur-
rent point, a single space is inserted.

Delete Blank Lines Editor Command

Arguments: None
Key sequence: Ctrl+X Ctrl+O
 49

3 Command Reference

50
If the current point is on a blank line, all surrounding blank lines are
deleted, leaving just one. If the current point is on a non-blank line, all fol-
lowing blank lines up to the next non-blank line are deleted.

Delete Region Editor Command

Arguments: None
Key sequence: None

Delete the current region. Also available via editor:delete-region-
command.

Clear Listener Editor Command

Arguments: None
Key sequence: None

Deletes the text in a Listener, leaving you with a prompt. Undo informa-
tion is not retained, although you are warned about this before confirming
the command.

This command is useful if the Listener session has grown very large.

Clear Output Editor Command

Arguments: None
Key sequence: None

Deletes the text in the Output tab of a Listener or Editor tool, or an Output
Browser. Undo information is discarded without warning.

This command is useful if the output has grown very large.

3.9.2 Killing text

Most of these commands result in text being pushed onto the kill ring so that it
can be recovered. There is only one kill ring for all buffers so that text can be
copied from one buffer to another.

Normally each kill command pushes a new block of text onto the kill ring. How-
ever, if more than one kill command is issued sequentially, and the text being

3.9 Deleting and killing text
killed was next to the previously killed text, they form a single entry in the kill
ring (exceptions being Kill Region and Save Region).

Append Next Kill is different in that affects where a subsequent killed text is
stored in the kill ring, but does not itself modify the kill ring.

Kill Next Word Editor Command

Arguments: None
Key sequence: Meta+D

Kills the rest of the word after the current point. If the current point is
between two words, then the next word is killed.

Kill Previous Word Editor Command

Arguments: None
Key sequence: Meta+Backspace

Kills the rest of the word before the current point. If the current point is
between two words, then the previous word is killed.

Kill Line Editor Command

Arguments: None
Key sequence: Ctrl+K

Kills the characters from the current point up to the end of the current line.
If the line is empty then the line is deleted.

Backward Kill Line Editor Command

Arguments: None
Key sequence: None

Kills the characters from the current point to the beginning of the line. If
the current point is already at the beginning of the line, the current line is
joined to the previous line, with any trailing space on the previous line
killed.
 51

3 Command Reference

52
Forward Kill Sentence Editor Command

Arguments: None
Key sequence: Meta+K

Kills the text starting from the current point up to the end of the sentence.
If the current point is between two sentences, then the whole of the next
sentence is killed.

Backward Kill Sentence Editor Command

Arguments: None
Key sequence: Ctrl+X Backspace

Kills the text starting from the current point up to the beginning of the sen-
tence. If the current point is between two sentences, then the whole of the
previous sentence is killed.

Kill Region Editor Command

Arguments: None
Key sequence: Ctrl+W

Kills the region between the current point and the mark.

Save Region Editor Command

Arguments: None
Key sequence: Meta+W

Pushes the region between the current point and the mark onto the kill
ring without deleting it from the buffer. Text saved in this way can there-
fore be inserted elsewhere without first being killed.

Append Next Kill Editor Command

Arguments: None
Key sequence: Meta+Ctrl+W

3.10 Inserting text
If the next command entered kills any text then this text will be appended
to the existing kill text instead of being pushed separately onto the kill
ring.

Zap To Char Editor Command

Arguments: None
Key sequence: Meta+Z

Prompts for a character and kills text from the current point to the next
occurrence of that character in the current buffer. If a prefix argument p is
used, then it kills to the p'th occurrence. If p is negative, then it kills back-
wards.

An editor error is signaled if the character cannot be found in the buffer.

3.10 Inserting text
This section contains details of commands used to insert text from the kill ring—
see “Deleting and killing text” on page 48—and various other commands used
to insert text and lines into the buffer.

Un-Kill Editor Command

Arguments: None
Key sequence: Ctrl+Y

Selects (yanks) the top item in the kill ring (which represents the last piece
of text that was killed with a kill command or saved with Save Region)
and inserts it before the current point. The current point is left at the end of
the inserted text, and the mark is automatically set to the beginning of the
inserted text.

A prefix argument (Ctrl+U number) causes the item at position number in
the ring to be inserted. The order of items on the ring remains unaltered.
 53

3 Command Reference

54
Rotate Kill Ring Editor Command

Arguments: None
Key sequence: Meta+Y

Replaces the text that has just been un-killed with the item that is next on
the kill ring. It is therefore possible to recover text other than that which
was most recently killed by typing Ctrl+Y followed by Meta+Y the
required number of times. If Un-Kill was not the previous command, an
error is signalled.

Note that the ring is only rotated and no items are actually deleted from the
ring using this command.

A prefix argument causes the kill ring to be rotated the appropriate num-
ber of times before the top item is selected.

New Line Editor Command

Arguments: None
Key sequence: Return

Opens a new line before the current point. If the current point is at the start
of a line, an empty line is inserted above it. If the current point is in the
middle of a line, that line is split. The current point always becomes
located on the second of the two lines.

A prefix argument causes the appropriate number of lines to be inserted
before the current point.

Open Line Editor Command

Arguments: None
Key sequence: Ctrl+O

Opens a new line after the current point. If the current point is at the start
of a line, an empty line is inserted above it. If the current point is in the
middle of a line, that line is split. The current point always becomes
located on the first of the two lines.

3.10 Inserting text
A prefix argument causes the appropriate number of lines to be inserted
after the current point.

Quoted Insert Editor Command

Arguments: args
Key sequence: Ctrl+Q &rest args

Quoted Insert is a versatile command allowing you to enter characters
which are not accessible directly on your keyboard.

A single argument key is inserted into the text literally. This can be used to
enter control keys (such as Ctrl+L) into a buffer as a text string. Note that
Ctrl is represented by ^ and Meta by ^].

You may input a character by entering its Octal Unicode code: press
Return to indicate the end of the code. For example enter

Ctrl+Q 4 3 Return

to input #.

If you have specified that Alt acts as your Meta key, you may find that
some useful Alt-modified keys are not available in the usual way from
within LispWorks. For example, Alt+3 gets interpreted as Meta-3. As a
way around this problem, Quoted Insert temporarily suspends Lisp-
Works editor processing of Alt as Meta. For example, you can input # on a
UK Macintosh keyboard by entering

Ctrl+Q Alt+3

Self Insert Editor Command

Arguments: None
Key sequence: key

editor:self-insert-command p &optional char

This is the basic command used for inserting each character that is typed.
The character to be inserted is char. There is no need for the user to use this
command explicitly.
 55

3 Command Reference

56
Dynamic Completion Editor Command

Arguments: None
Key sequence: Meta+/

Tries to complete the current word, by looking backwards for a word that
starts with the same characters as have already been typed. Repeated use
of this command makes the search skip to successively previous instances
of words beginning with these characters. A prefix argument causes the
search to progress forwards rather than backwards. If the buffer is in Lisp
mode then completion occurs for Lisp symbols as well as words.

Expand File Name Editor Command

Arguments: None
Key sequence: Meta+Tab

Expands the file name at the current point. Issuing this command twice in
succession brings up a list of possible completions in a popup window.

3.11 Delete Selection
When in Delete Selection Mode, commands that insert text into the buffer first
delete any selected text. Delete Selection Mode is a global editor setting. It is off
by default with Emacs keys, and is on by default when using Mac OS editor
emulation.

Delete Selection Mode Editor Command

Arguments: None
Key Sequence: None

Toggles Delete Selection Mode, switching it on if it is currently off, and off
if it is currently on.

3.12 Undoing
Commands that modify the text in a buffer can be undone, so that the text
reverts to its state before the command was invoked, using Undo. Details of

3.13 Case conversion
modifying commands are kept in an undo ring so that previous commands can
be undone. The undo ring works like a stack, in that commands are pushed onto
the ring and can only be popped off on a "last in first out" basis.

Un-Kill can also be used to replace text that has inadvertently been deleted.

Undo Editor Command

Arguments: None
Key sequence: Ctrl+Shift+_

Undoes the last command. If typed repeatedly, the most recent commands
in the editing session are successively undone.

undo-ring-size Editor Variable

Default value: 100

The number of items in the undo ring.

3.13 Case conversion
This section provides details of the commands which allow case conversions on
both single words and regions of text. The three general types of case conver-
sion are converting words to uppercase, converting words to lowercase and
converting the first letter of words to uppercase.

Lowercase Word Editor Command

Arguments: None
Key sequence: Meta+L

Converts the current word to lowercase, starting from the current point. If
the current point is between two words, then the next word is converted.

A negative prefix argument converts the appropriate number of words
before the current point to lowercase, but leaves the current point where it
was.
 57

3 Command Reference

58
Uppercase Word Editor Command

Arguments: None
Key sequence: Meta+U

Converts the current word to uppercase, starting from the current point. If
the current point is between two words, then the next word is converted.

A negative prefix argument converts the appropriate number of words
before the current point to uppercase, but leaves the current point where it
was.

Capitalize Word Editor Command

Arguments: None
Key sequence: Meta+C

Converts the current word to lowercase, capitalizing the first character. If
the current point is inside a word, the character immediately after the cur-
rent point is capitalized.

A negative prefix argument capitalizes the appropriate number of words
before the current point, but leaves the point where it was.

Lowercase Region Editor Command

Arguments: None
Key sequence: Ctrl+X Ctrl+L

Converts all the characters in the region between the current point and the
mark to lowercase.

Uppercase Region Editor Command

Arguments: None
Key sequence: Ctrl+X Ctrl+U

Converts all the characters in the region between the current point and the
mark to uppercase.

3.14 Transposition
Capitalize Region Editor Command

Arguments: None
Key sequence: None

Converts all the words in the region between the mark and the current
point to lowercase, capitalizing the first character of each word.

3.14 Transposition
This section gives details of commands used to transpose characters, words,
lines and regions.

Transpose Characters Editor Command

Arguments: None
Key sequence: Ctrl+T

Transposes the current character with the previous character, and then
moves the current point forwards one character.

If this command is issued when the current point is at the end of a line, the
two characters to the left of the cursor are transposed.

A positive prefix argument causes the character before the current point to
be shifted forwards the required number of places. A negative prefix argu-
ment has a similar effect but shifts the character backwards. In both cases
the current point remains located after the character which has been
moved.

Transpose Words Editor Command

Arguments: None
Key sequence: Meta+T

Transposes the current word with the next word, and then moves the cur-
rent point forward one word. If the current point is initially located
between two words, then the previous word is moved over the next word.

A positive prefix argument causes the current or previous word to be
shifted forwards the required number of words. A negative prefix argu-
 59

3 Command Reference

60
ment has a similar effect but shifts the word backwards. In both cases the
current point remains located after the word which has been moved.

Transpose Lines Editor Command

Arguments: None
Key sequence: Ctrl+X Ctrl+T

Transposes the current line with the previous line, and then moves the cur-
rent point forward one line.

A positive prefix argument causes the previous line to be shifted forwards
the required number of lines. A negative prefix argument has a similar
effect but shifts the line backwards. In both cases the current point remains
located after the line which has been moved.

A prefix argument of zero transposes the current line and the line contain-
ing the mark.

Transpose Regions Editor Command

Arguments: None
Key sequence: None

Transposes two regions. One region is delineated by the current point and
the mark. The other region is delineated by the next two points on the
mark ring. To use this command it is necessary to use Set Mark at the
beginning and end of one region and at the beginning of the other region,
and then move the current point to the end of the second region.

3.15 Overwriting
In the default mode of operation, each character that is typed is inserted into the
text, with the existing characters being shifted as appropriate. In overwrite
mode, each character that is typed deletes an existing character in the text.

When in overwrite mode, a character can be inserted without deleting an exist-
ing character by preceding it with Ctrl+Q.

3.16 Indentation
Overwrite Mode Editor Command

Arguments: None
Key sequence: Insert

Switches overwrite mode on if it is currently off, and off if it is currently
on.

With a positive prefix argument, overwrite mode is turned on. With a zero
or negative prefix argument it is turned off. Using prefix arguments with
Overwrite Mode disregards the current state of the mode.

Self Overwrite Editor Command

Arguments: None
Key sequence: key

If the current point is in the middle of a line, the next character (that is, the
character that is highlighted by the cursor) is replaced with the last charac-
ter typed. If the current point is at the end of a line, the new character is
inserted without removing any other character.

A prefix argument causes the new character to overwrite the relevant
number of characters.

This is the command that is invoked when each character is typed in over-
write mode. There is no need for users to invoke this command explicitly.

Overwrite Delete Previous Character Editor Command

Arguments: None
Key sequence: None

Replaces the previous character with space, except that tabs and newlines
are deleted.

3.16 Indentation
This section contains details of commands used to indent text. Indentation is
usually achieved by inserting tab or space characters into the text so as to indent
that text a predefined number of spaces.
 61

3 Command Reference

62
The effect of the editor indentation commands depends on the major mode of
the buffer. Where relevant, the command details given below provide informa-
tion on how they operate in Text mode and Lisp mode. The operation of com-
mands in Fundamental mode is generally the same as that of Text mode.

Indent Editor Command

Arguments: None
Key sequence: Tab

In Text mode, spaces-for-tab #\Space characters are inserted. A prefix
argument causes this to occur at the start of the appropriate number of
lines (starting from the current line).

In Lisp mode, the current line is indented according to the structure of the
current Lisp form. A prefix argument p causes p lines to be indented
according to Lisp syntax.

See editor:*indent-with-tabs* for control over the insertion of #\Tab
characters by this and other indentation commands.

Note: the key sequence Tab is overridden in Lisp mode to perform Indent
Selection or Complete Symbol.

spaces-for-tab Editor Variable

Default value: 8

Determines the width of the whitespace (that is, the number of #\Space
characters) used to display a #\Tab character.

Indent Region Editor Command

Arguments: None
Key sequence: Meta+Ctrl+\

Indents all the text in the region between the mark and the current point.

In Text mode a block of whitespace, which is spaces-for-tab wide, is
inserted at the start of each line within the region.

In Lisp mode the text is indented according to the syntax of the Lisp form.

3.16 Indentation
In both cases, a prefix argument causes any existing indentation to be
deleted and replaced with a block of whitespace of the appropriate width.

Indent Rigidly Editor Command

Arguments: None
Key sequence: Ctrl+X Tab or Ctrl+X Ctrl+I

Indents each line in the region between the current point and the mark by
a block of whitespace which is spaces-for-tab wide. Any existing
whitespace at the beginning of the lines is retained.

A positive prefix argument causes the lines to be indented by the appro-
priate number of spaces, in addition to their existing space. A negative
prefix argument causes the lines to be shifted to the left by the appropriate
number of spaces. Where necessary, tabs are converted to spaces.

Indent Selection Editor Command

Arguments: None
Key sequence: None

Indents all the text in the selection or the current line if there is no selec-
tion. With a prefix argument p, any existing indentation is deleted and
replaced with a block of space p columns wide.

See also Indent Selection or Complete Symbol.

Delete Indentation Editor Command

Arguments: None
Key sequence: Meta+Shift+^

Joins the current line with the previous one, deleting all whitespace at the
beginning of the current line and at the end of the previous line. The
deleted whitespace is normally replaced with a single space. However, if
the deleted whitespace is at the beginning of a line, or immediately after a
(, or immediately before a), then the whitespace is merely deleted with-
out any characters being inserted. If the preceding character is a sentence
terminator, then two spaces are left instead of one.
 63

3 Command Reference

64
A prefix argument causes the following line to be joined with the current
line.

Back to Indentation Editor Command

Arguments: None
Key sequence: Meta+M

Moves the current point to the first character in the current line that is not
a whitespace character.

Indent New Line Editor Command

Arguments: None
Key sequence: None

Moves everything to the right of the current point to a new line and
indents it. Any whitespace before the current point is deleted. If there is a
fill-prefix, this is inserted at the start of the new line instead.

A prefix argument causes the current point to be moved down the appro-
priate number of lines and indented.

Quote Tab Editor Command

Arguments: None
Key sequence: None

Inserts a Tab character.

A prefix argument causes the appropriate number of tab characters to be
inserted.

3.17 Filling
Filling involves re-formatting text so that each line extends as far to the right as
possible without any words being broken or any text extending past the fill-
column.

3.17 Filling
The first section deals with general commands used to fill text, while the second
section provides information on Auto-Fill mode and related commands.

3.17.1 Fill commands

Fill Paragraph Editor Command

Arguments: None
Key sequence: Meta+Q

Fills the current paragraph. If the current point is located between two
paragraphs, the next paragraph is filled.

A prefix argument causes the current fill operation to use that value,
rather than the value of fill-column.

Fill Region Editor Command

Arguments: None
Key sequence: Meta+G

Fills the region from the current point to the mark.

A prefix argument causes the current fill operation to use that value,
rather than the value of fill-column.

fill-column Editor Variable

Default value: 70

Determines the column at which text in the current buffer is forced on to a
new line when filling text.

Set Fill Column Editor Command

Arguments: None
Key sequence: Ctrl+X F

Sets the value of fill-column, for the current buffer, as the column of the
current point.
 65

3 Command Reference

66
A prefix argument causes fill-column to be set at the required value.

fill-prefix Editor Variable

Default value: nil

Defines a string which is excluded when each line of the current buffer is
re-formatted using the filling commands. For example, if the value is ";;",
then these characters at the start of a line are skipped over when the text is
re-formatted. This allows you to re-format (fill) Lisp comments. If the
value is nil, no characters are excluded when text is filled.

If the vales is non-nil, any line that does not begin with the value is consid-
ered to begin a new paragraph. Therefore, any re-formatting of comments
in Lisp code does not intrude outside the commented lines.

Set Fill Prefix Editor Command

Arguments: None
Key sequence: Ctrl+X .

Sets the fill-prefix of the current buffer to be the text from the begin-
ning of the current line up to the current point. The fill-prefix may be
set to nil by using this command with the current point at the start of a
line.

Center Line Editor Command

Arguments: None
Key sequence: None

Centers the current line with reference to the current value of fill-col-
umn.

A prefix argument causes the current line to be centered with reference to
the required width.

3.17 Filling
3.17.2 Auto-fill mode

In the default mode of operation, no filling of text takes place unless specified
by using one of the commands described above. A result of this is that the user
has to press Return at the end of each line typed to simulate filling. In Auto-Fill
mode lines are broken between words at the right margin automatically as the
text is being typed. Each line is broken when a space is inserted, and the text
that extends past the right margin is put on the next line. The right hand margin
is determined by the editor variable fill-column.

Auto Fill Mode Editor Command

Arguments: None
Key sequence: None

Switches auto-fill mode on if it is currently off, and off if it is currently on.

With a positive prefix argument, auto-fill mode is switched on. With a neg-
ative or zero prefix argument, it is switched off. Using prefix arguments
with Auto Fill Mode disregards the current state of the mode.

Auto Fill Space Editor Command

Arguments: None
Key sequence: Space
Mode: Auto-Fill

Inserts a space and breaks the line between two words if the line extends
beyond the right margin. A fill prefix is automatically added at the begin-
ning of the new line if the value of fill-prefix is non-nil.

When Space is bound to this command in Auto-Fill mode, this key no
longer invokes Self Insert.

A positive prefix argument causes the required number of spaces to be
inserted but no line break. A prefix argument of zero causes a line break, if
necessary, but no spaces are inserted.
 67

3 Command Reference

68
Auto Fill Linefeed Editor Command

Arguments: None
Key sequence: Linefeed
Mode: Auto-Fill

Inserts a Linefeed and a fill-prefix (if one exists).

Auto Fill Return Editor Command

Arguments: None
Key sequence: Return
Mode: Auto-Fill

The current line is broken, between two words if necessary, with no Space
being inserted. This is equivalent to Auto Fill Space with a zero prefix
argument, but followed by a newline.

auto-fill-space-indent Editor Variable

Default value: nil

When true, Auto-fill commands use Indent New Comment Line to break
lines instead of New Line.

3.18 Buffers
This section contains details of commands used to manipulate buffers.

Select Buffer Editor Command

Arguments: buffer-name
Key sequence: Ctrl+X B buffer-name

Displays a buffer called buffer-name in the current window. If no buffer
name is provided, the last buffer accessed in the current window is dis-
played. If the buffer that is selected is already being displayed in another
window, any modifications to that buffer are shown simultaneously in
both windows.

3.18 Buffers
Select Buffer Other Window Editor Command

Arguments: buffer-name
Key sequence: None

Displays a buffer called buffer-name in a new window. If no buffer name is
provided, the last buffer displayed in the current window is selected. If the
buffer that is selected is already being displayed in another window, any
modifications to that buffer are shown simultaneously in both windows.

Select Previous Buffer Editor Command

Arguments: None
Key sequence: Meta+Ctrl+L

Displays the last buffer accessed in a new window. If the buffer that is
selected is already being displayed in another window, any modifications
to that buffer are shown simultaneously in both windows.

A prefix argument causes the appropriately numbered buffer, from the top
of the buffer history, to be selected.

Circulate Buffers Editor Command

Arguments: None
Key sequence: Meta+Ctrl+Shift+L

Move through the buffer history, selecting the successive previous buffers.

Kill Buffer Editor Command

Arguments: buffer-name
Key sequence: Ctrl+X K buffer-name

editor:kill-buffer-command p &optional buffer-name

Deletes a buffer called buffer-name. If no buffer name is provided, the cur-
rent buffer is deleted. If the buffer that is selected for deletion has been
modified then confirmation is asked for before deletion takes place.
 69

3 Command Reference

70
List Buffers Editor Command

Arguments: None
Key sequence: Ctrl+X Ctrl+B

Displays a list of all the existing buffers in the Buffers window in the Edi-
tor tool. Information is given on the name of the buffer, its mode, whether
it has been modified or not, the pathname of any file it is associated with,
and its size.

A buffer can be selected by clicking the left mouse button on the buffer
name. The buttons on the toolbar can then be used to modify the selected
buffer.

Create Buffer Editor Command

Arguments: buffer-name
Key sequence: None

editor:create-buffer-command p &optional buffer-name

Creates a buffer called buffer-name. If no buffer name is provided then the
current buffer is selected. If a buffer with the specified name already exists
then this becomes the current buffer instead, and no new buffer is created.

New Buffer Editor Command

Arguments: None
Key sequence: None

Creates a new unnamed buffer. The buffer is in Lisp mode.

default-buffer-element-type Editor Variable

Default value: lw:simple-char

The character element type used when a new buffer is created, for exam-
ple by New Buffer.

3.18 Buffers
Insert Buffer Editor Command

Arguments: buffer-name
Key sequence: None

Inserts the contents of a buffer called buffer-name at the current point. If no
buffer name is provided, the contents of the last buffer displayed in the
current window are inserted.

Rename Buffer Editor Command

Arguments: new-name
Key sequence: None

Changes the name of the current buffer to new-name.

Print Buffer Editor Command

Arguments: None
Key sequence: None

Prints the current buffer, using capi:print-text. See the CAPI Reference
Manual for details of this function.

Toggle Buffer Read-Only Editor Command

Arguments: None
Key sequence: Ctrl+X Ctrl+Q

Makes the current buffer read only, so that no modification to its contents
are allowed. If it is already read only, this restriction is removed.

Check Buffer Modified Editor Command

Arguments: None
Key sequence: Ctrl+X Shift+~

Checks whether the current buffer is modified or not.
 71

3 Command Reference

72
Buffer Not Modified Editor Command

Arguments: None
Key sequence: Meta+Shift+~

editor:buffer-not-modified-command p &optional buffer

Makes the current buffer not modified.

The argument buffer is the name of the buffer to be un-modified. The
default is the current buffer.

3.19 Windows
This section contains details of commands used to manipulate windows. A win-
dow ring is used to hold details of all windows currently open.

New Window Editor Command

Arguments: None
Key sequence: Ctrl+X 2

Creates a new window and makes it the current window. Initially, the new
window displays the same buffer as the current one.

Next Window Editor Command

Arguments: None
Key sequence: None

Changes the current window to be the next window in the window ring,
and the current buffer to be the buffer that is displayed in that window.

Next Ordinary Window Editor Command

Arguments: None
Key sequence: Ctrl+X O

Changes the current window to be the next ordinary editor window, thus
avoiding the need to cycle through other window types (for example, Lis-
teners and Debuggers).

3.19 Windows
Previous Window Editor Command

Arguments: None
Key sequence: None

Changes the current window to be the previous window visited, and the
current buffer to be the buffer that is displayed in that window.

Delete Window Editor Command

Arguments: None
Key sequence: Ctrl+X 0

Deletes the current window. The previous window becomes the current
window.

Delete Next Window Editor Command

Arguments: None
Key sequence: Ctrl+X 1

Deletes the next window in the window ring.

Scroll Next Window Down Editor Command

Arguments: None
Key sequence: None

The next window in the window ring is scrolled down.

A prefix argument causes the appropriately numbered window, from the
top of the window ring, to be scrolled.

Scroll Next Window Up Editor Command

Arguments: None
Key sequence: None

The next window in the window ring is scrolled up.
 73

3 Command Reference

74
A prefix argument causes the appropriately numbered window, from the
top of the window ring, to be scrolled.

Split Window Horizontally Editor Command

Arguments: None
Key sequence: Ctrl+X 5

Split the current window horizontally, adding a window to the left of the
current window or to the right if given a prefix argument. The new win-
dow will display the current buffer initially.

Split Window Vertically Editor Command

Arguments: None
Key sequence: Ctrl+X 6

Split the current window vertically, adding a window above the current
window or below if given a prefix argument. The new window will dis-
play the current buffer initially.

Unsplit Window Editor Command

Arguments: None
Key sequence: Ctrl+X 7

Remove another window in the same split column or row. A prefix argu-
ment causes all other windows in the same top level windows to be
removed. When invoked without a prefix, the next window is removed if
there is one, otherwise the previous window is removed.

Toggle Count Newlines Editor Command

Arguments: None
Key sequence: None

Controls the size of the scroller in editor-based tools, and how the Editor
tool’s mode line represents the extent of the displayed part of the buffer.

3.20 Pages
Toggle Count Newlines switches between counting newlines and count-
ing characters in the current buffer. The counting determines what is dis-
played in the Editor tool’s mode line, and how the size of the scroller is
computed.

When counting newlines, the mode line shows line numbers and the total
number of lines:

StartLine-EndLine[TotalLine]

When counting characters, the mode line shows percentages based on the
characters displayed compared to the total number of characters in the
buffer:

PercentStart-PercentEnd%

The default behavior is counting newlines, except for very large buffers.

Refresh Screen Editor Command

Arguments: None
Key sequence: Ctrl+L

Moves the current line to the center of the current window, and then re-
displays all the text in all the windows.

A prefix argument of 0 causes the current line to become located at the top
of the window. A positive prefix argument causes the current line to
become located the appropriate number of lines from the top of the win-
dow. A negative prefix argument causes the current line to become located
the appropriate number of lines from the bottom of the window.

3.20 Pages
Files are sometimes thought of as being divided into pages. For example, when
a file is printed on a printer, it is divided into pages so that each page appears on
a fresh piece of paper. The ASCII key sequence Ctrl+L constitutes a page delim-
iter (as it starts a new page on most line printers). A page is the region between
two page delimiters. A page delimiter can be inserted into text being edited by
using the editor command Quoted Insert (that is, type in Ctrl+Q Ctrl+L).
 75

3 Command Reference

76
Previous Page Editor Command

Arguments: None
Key sequence: Ctrl+X [

Moves the current point to the start of the current page.

A prefix argument causes the current point to be moved backwards the
appropriate number of pages.

Next Page Editor Command

Arguments: None
Key sequence: Ctrl+X]

Moves the current point to the start of the next page.

A prefix argument causes the current point to be moved forwards the
appropriate number of pages.

Goto Page Editor Command

Arguments: None
Key sequence: None

Moves the current point to the start of the next page.

A positive prefix argument causes the current point to be moved to the
appropriate page starting from the beginning of the buffer. A negative pre-
fix argument causes the current point to be moved back the appropriate
number of pages from the current location. A prefix argument of zero
causes the user to be prompted for a string, and the current point is moved
to the next page with that string contained in the page title.

Mark Page Editor Command

Arguments: None
Key sequence: Ctrl+X Ctrl+P

Puts the mark at the end of the current page and the current point at the
start of the current page. The page thereby becomes the current region.

3.21 Searching and replacing
A prefix argument marks the page which is the appropriate number of
pages on from the current one.

Count Lines Page Editor Command

Arguments: None
Key sequence: Ctrl+X L

Displays the number of lines in the current page and the location of the
current point within the page.

A prefix argument displays the total number of lines in the current buffer
and the location of the current point within the buffer (so that page delim-
iters are ignored).

View Page Directory Editor Command

Arguments: None
Key sequence: None

Displays a list of the first non-blank line after each page delimiter.

Insert Page Directory Editor Command

Arguments: None
Key sequence: None

Inserts a listing of the first non-blank line after each page delimiter at the
start of the buffer, moving the current point to the end of this list. The loca-
tion of the start of this list is pushed onto the mark ring.

A prefix argument causes the page directory to be inserted at the current
point.

3.21 Searching and replacing
This section is divided into three parts. The first two provide details of com-
mands used for searching. These commands are, on the whole, non-modifying
and non-destructive, and merely search for strings and patterns. The third part
provides details of commands used for replacing a string or pattern.
 77

3 Command Reference

78
3.21.1 Searching

Most of the search commands perform straightforward searches, but there are
two useful commands (Incremental Search and Reverse Incremental
Search) which perform incremental searches. This means that the search is
started as soon as the first character is typed.

Incremental Search Editor Command

Arguments: p string
Key sequence: Ctrl+S string

Searches forward, starting from the current point, for the search string that
is input, beginning the search as soon as each character is typed in. When a
match is found for the search string, the current point is moved to the end
of the matched string. If the search string is not found between the current
point and the end of the buffer, an error is signalled.

The search result is highlighted. You can change the style of the highlight-
ing in the LispWorks IDE by Preferences... > Environment > Styles > Colors
and Attributes > Search Match

With a prefix argument p the matches are displayed at a fixed line posi-
tion, p lines below the top of the window. Otherwise, the position of the
matched string within the window is influenced by the editor variable
incremental-search-minimum-visible-lines.

For example, to display successive definitions one line from the top of the
text view of the Editor window, enter:

Ctrl+U 2 Ctrl+S (d e f Ctrl+S Ctrl+S

All incremental searches can be controlled by entering one of the follow-
ing key sequences at any time during the search.

Ctrl+S If the search string is empty, repeats the last
incremental search, otherwise repeats a for-
ward search for the current search string.

If the search string cannot be found, starts the
search from the beginning of the buffer (wrap-
around search).

3.21 Searching and replacing
Ctrl+R Changes to a backward (reverse) search.

Delete Cancels the last character typed.

Ctrl+Q Quotes the next character typed.

Ctrl+W Adds the next word under the cursor to the
search string.

Meta+Ctrl+Y Adds the next form under the cursor to the
search string.

Ctrl+Y Adds the remainder of the line under the cur-
sor to the search string.

Meta+Y Adds the current kill string to the search
string.

Ctrl+C Add the editor window’s selected text to the
search string.

Esc If the search string is empty, invokes a non-
incremental search, otherwise exits the search,
leaving the current point at the last find.

Ctrl+G Aborts the search, returning the current point
to its original location.

If the search string cannot be found, cancels
the last character typed (equivalent to
Delete).

Return Exits the search, leaving the current point at
the last find.

incremental-search-minimum-visible-lines Editor Variable

Default value: 3

Determines the minimum of visible lines between an incremental search
match and the closest window border (top or bottom). If the point is closer
to the border than the value, the point is scrolled to the center of the win-
dow.
 79

3 Command Reference

80
Lines are counted from the start of the match, and the line where the
match starts is included in the count.

Note that this has no effect when doing "fixed position" search (with
numeric prefix, for example Ctrl+U digit Ctrl+S, or if the window is too
short.

Setting the value to 0 makes incremental searching behave as in Lisp-
Works 6.0 and earlier versions, that is the match can be shown on the top
or bottom line currently displayed in the window.

Reverse Incremental Search Editor Command

Arguments: string
Key sequence: Ctrl+R string

Searches backward, starting from the current point, for the search string
that is input, beginning the search as soon as each character is provided.
When a match is found for the search string, the current point is moved to
the start of the matched string. If the search string is not found between
the current point and the beginning of the buffer, an error is signalled.

You can use a fixed line position for the matches and/or modify the style
used to display them, as described for Incremental Search.

With a prefix argument p the matches are displayed at a fixed line posi-
tion, p lines below the top of the window. Otherwise, the position of the
matched string within the window is influenced by the editor variable
incremental-search-minimum-visible-lines.

The search can be controlled by entering one of the following key
sequences at any time during the search.

Ctrl+R If the search string is empty, repeats the last
incremental search, otherwise repeats a back-
ward search for the current search string.

If the search string cannot be found, starts the
search from the end of the buffer (wrap-
around search).

Ctrl+S Changes to a forward search.

3.21 Searching and replacing
Delete Cancels the last character typed.

Esc If the search string is empty, invokes a non-
incremental search, otherwise exits the search,
leaving the current point at the last find.

Ctrl+G Aborts the search, returning the current point
to its original location.

If the search string cannot be found, cancels
the last character typed (equivalent to
Delete).

Ctrl+Q Quotes the next character typed.

Forward Search Editor Command

Arguments: string
Key sequence: Ctrl+S Esc string

editor:forward-search-command p &optional string the-point

The default for the-point is the current point.

Searches forwards from the-point for string. When a match is found,
the-point is moved to the end of the matched string. In contrast with
Incremental Search, the search string must be terminated with a car-
riage return before any searching is done. If an empty string is provided,
the last search is repeated.

Backward Search Editor Command

Arguments: string
Key sequence: None

editor:reverse-search-command p &optional string the-point

The default for the-point is the current point.

Searches backwards from the-point for string. When a match is found,
the-point is moved to the start of the matched string. In contrast with
Reverse Incremental Search, the search string must be terminated
 81

3 Command Reference

82
with a carriage return before any searching is done. If an empty string is
provided, the last search is repeated.

Reverse Search is a synonym for Backward Search.

List Matching Lines Editor Command

Arguments: string
Key sequence: None

editor:list-matching-lines-command p &optional string

Lists all lines after the current point that contain string, in a Matches win-
dow.

A prefix argument causes the appropriate number of lines before and after
each matching line to be listed also.

Delete Matching Lines Editor Command

Arguments: string
Key sequence: None

editor:delete-matching-lines-command p &optional string

Deletes all lines after the current point that match string.

Delete Non-Matching Lines Editor Command

Arguments: string
Key sequence: None

editor:delete-non-matching-lines-command p &optional string

Deletes all lines after the current point that do not match string.

Search All Buffers Editor Command

Arguments: string
Key sequence: None

3.21 Searching and replacing
Searches all the buffers for string. If only one buffer contains string, it
becomes the current one, with the cursor positioned at the start of the
string. If more than one buffer contains the string, a popup window dis-
plays a list of those buffers. A buffer may then be selected from this list.

Directory Search Editor Command

Arguments: directory string
Key sequence: None

Searches files in directory for string. The current working directory is
offered as a default for directory.

By default only files with suffix .lisp, .lsp, .c or .h are searched. A non-
nil prefix argument causes all files to be searched, except for those ending
with one of the strings in the list system:*ignorable-file-suffices*.

Use the key sequence Meta+, to find subsequent definitions of the search
string.

Search Files Editor Command

Arguments: search-string directory
Key sequence: Ctrl+X *

Searches for a string in a directory using a Search Files tool.

The command prompts for search-string and directory and then raises a
Search Files tool. The configuration of the Search Files tool controls which
files in the directory are searched. If the search string is not empty, it starts
searching automatically, unless a prefix argument is given.

See the LispWorks IDE User Guide for a description of the Search Files tool.

Search Files Matching Patterns Editor Command

Arguments: search-string directory patterns
Key sequence: Ctrl+X &

Searches for a string in files under a directory with names matching given
patterns, using a Search Files tool.
 83

3 Command Reference

84
The command prompts for search-string, directory and patterns, and raises a
Search Files tool in Roots and Patterns mode. If the search string is not
empty, it starts searching automatically, unless a prefix argument is given.

patterns should be a comma-separated set of filename patterns delimited
by braces. A pattern where the last component does not contain * is
assumed to be a directory onto which the Search Files tool adds its own
filename pattern. patterns defaults to {*.lisp,*.lsp,*.c,*.h}.

See the LispWorks IDE User Guide for a description of the Search Files tool.

System Search Editor Command

Arguments: system string
Key sequence: None

Searches the files of system for string.

Matches are shown in editor buffers consecutively. Use the key sequence
Meta+, to find subsequent definitions of the search string.

Search System Editor Command

Arguments: search-string system
Key sequence: None

Prompts for search-string and system and then raises a Search Files tool in
System Search mode, which displays the search results and allows you to
visit the files.

See the LispWorks IDE User Guide for a description of the Search Files tool.

default-search-kind Editor Variable

Default value: :string-insensitive

Defines the default method of searching. By default, all searching (includ-
ing regexp searching, and replacing commands) ignores case. If you want
searching to be case-sensitive, the value of this variable should be set to
:string-sensitive using Set Variable.

3.21 Searching and replacing
It is also possible to search a set of files programatically using the search-
files function:

editor:search-files Function

editor:search-files &key string files generator => nil

search-files searches all the files in a list for a given string.

string is a string to search for (prompted if not given).

files is a list of pathnames of files to search, and generator is a function to
generate the files if none are supplied.

If a match is found the file is displayed in a buffer with the cursor on the
occurrence. Meta+-, makes the search continue until the next occurrence.

search-files returns nil.

For example:

(editor:search-files
 :files ’(".login" ".cshrc")
 :string "alias")

3.21.2 Regular expression searching

A regular expression (regexp) allows the specification of the search string to
include wild characters, repeated characters, ranges of characters, and alterna-
tives. Strings which follow a specific pattern can be located, which makes regu-
lar expression searches very powerful.

The regular expression syntax used is similar to that of Emacs. In addition to
ordinary characters, a regular expression can contain the following special char-
acters to produce the search pattern:

. Matches any single character except a new-
line. For example, c.r matches any three char-
acter string starting with c and ending with r.

* Matches the previous regexp any number of
times (including 0 times). For example, ca*r
matches strings beginning with c and ending
with r, with any number of a’s in-between.
 85

3 Command Reference

86
An empty regexp followed by * matches an
empty part of the input. By extension, ^* will
match exactly what ^ matches.

+ Matches the previous regexp any number of
times, but at least once. For example, ca+r
matches strings beginning with c and ending
with r, with at least one a in-between. An
empty regexp followed by + matches an
empty part of the input.

? Matches the previous regexp either 0 or 1
times. For example, ca?r matches either the
string cr or car, and nothing else. An empty
regexp followed by ? matches an empty part
of the input.

^ Matches the next regexp as long as it is at the
beginning of a line. For example, ^foo
matches the string foo as long as it is at the
beginning of a line.

$ Matches the previous regexp as long as it is at
the end of a line. For example, foo$ matches
the string foo as long as it is at the end of a
line.

[] Contains a character set to be used for match-
ing, where the other special characters men-
tioned do not apply. The empty string is
automatically part of the character set. For
example, [a.b] matches either a or . or b or
the empty string. The regexp c[ad]*r
matches strings beginning with c and ending
with r, with any number of a’s and d’s in-
between.

The characters - and ^ have special meanings
inside character sets. - defines a range and ^
defines a complement character set. For exam-

3.21 Searching and replacing
ple, [a-d] matches any character in the range
a to d inclusive. [^ab] matches any character
except a or b.

\ Quotes the special characters. For example, *
matches the character * (that is, * has lost its
special meaning).

\| Specifies an alternative. For example, ab\|cd
matches either ab or cd.

\(, \) Provides a grouping construct. For example,
ab\(cd\|ef\) matches either abcd or abef.

Regexp Forward Search Editor Command

Arguments: string
Key sequence: Meta+Ctrl+S string

editor:regexp-forward-search-command p &optional string the-point limit

Performs a forward search for string using regular expressions. The search
pattern must be terminated with a carriage return before any searching is
done. If an empty string is provided, the last regexp search is repeated.

The argument the-point specifies the position from which the search is to
start. The default is the current point. limit specifies a limiting point in the
buffer for the search. The default is the end of the buffer.

Regexp Reverse Search Editor Command

Arguments: string
Key sequence: Meta+Ctrl+R string

editor:regexp-reverse-search-command p &optional string the-point limit

Performs a backward search for string using regular expressions. The
search pattern must be terminated with a carriage return before any
searching is done. If an empty string is provided, the last regexp search is
repeated.
 87

3 Command Reference

88
The argument the-point specifies the position from which the search is to
start. The default is one position before the current point. limit specifies a
limiting point in the buffer for the search. The default is the current point.

Count Occurrences Editor Command

Arguments: None
Default binding: None

editor:count-occurrences-command p &optional regexp

Counts the number of regular expression matches for the string regexp
between the current point and the end of the buffer.

Count Matches is a synonym for Count Occurrences.

3.21.3 Replacement

Replace String Editor Command

Arguments: target replacement
Key sequence: None

editor:replace-string-command p &optional target replacement

Replaces all occurrences of target string by replacement string, starting from
the current point.

Whenever replacement is substituted for target, case may be preserved,
depending on the value of the editor variable case-replace.

Query Replace Editor Command

Arguments: target replacement
Key sequence: Meta+Shift+% target replacement

editor:query-replace-command p &optional target replacement

Replaces occurrences of target string by replacement string, starting from
the current point, but only after querying the user. Each time target is
found, an action must be indicated from the keyboard.

3.21 Searching and replacing
Whenever replacement is substituted for target, case may be preserved,
depending on the value of the editor variable case-replace.

The following key sequences are used to control Query Replace:

Space or y Replace target by replacement and move to the
next occurrence of target.

Delete Skip target without replacing it and move to
the next occurrence of target.

. Replace target by replacement and then exit.

! Replace all subsequent occurrences of target
by replacement without prompting.

Ctrl+R Enter recursive edit. This allows the current
occurrence of target to be edited. When this
editing is completed, Exit Recursive Edit
should be invoked. The next instance of target
is then found.

Esc Quit from Query Replace with no further
replacements.

Directory Query Replace Editor Command

Arguments: directory target replacement
Key sequence: None

Replaces occurrences of target string by replacement string for each file with
the suffix .lisp or .lsp in directory, but only after querying the user.
The current working directory is offered as a default for directory. A non-
nil prefix argument causes all files to be searched, except for those ending
with one of the strings in the list system:*ignorable-file-suffices*.
Each time target is found, an action must be indicated from the keyboard.
For details of possible actions see Query Replace.

System Query Replace Editor Command

Arguments: system target replacement
Key sequence: None
 89

3 Command Reference

90
Replaces occurrences of target string by replacement string, for each file in
system, but only after querying the user. Each time target is found, an
action must be indicated from the keyboard. For details of possible actions
see Query Replace.

case-replace Editor Variable

Default value: t

If the value of this variable is t, Replace String and Query Replace try
to preserve case when doing replacements. If its value is nil, the case of
the replacement string is as defined by the user.

Replace Regexp Editor Command

Arguments: target replacement
Key sequence: None

editor:replace-regexp-command p &optional target replacement

Replaces all matches of target regular expression by replacement string,
starting from the current point.

See “Regular expression searching” for a description of regular expres-
sions.

Query Replace Regexp Editor Command

Arguments: target replacement
Key sequence: None

editor:query-replace-regexp-command p &optional target replacement

Replaces matches of target regular expression by replacement string, start-
ing from the current point, but only after querying the user. Each time tar-
get is matched, an action must be indicated from the keyboard.

See “Regular expression searching” for a description of regular expres-
sions, and Query Replace for the keyboard gestures available.

3.22 Comparison
3.22 Comparison
This section describes commands which compare files, windows and/or buffers
against each other.

Compare Windows Editor Command

Arguments: [source1] [source2]
Key sequence: None

Compares the text in the current window with that another window. The
points are left where the text differs.

The first defaults to the current window. The second defaults to the next
ordinary window.

Differences in whitespace are ignored by default, according to the value of
Compare-Ignores-Whitespace.

Compare Buffers Editor Command

Arguments: [buffer1] [buffer2]
Key sequence: None

Compares the text in the current buffer with that another buffer.

The first argument defaults to the current buffer. The second defaults to
the next editor buffer.

Differences in whitespace are ignored by default, according to the value of
Compare-Ignores-Whitespace.

Compare-Ignores-Whitespace Editor Variable

Initial value: t

When true, the Compare Windows and Compare Buffers commands
ignore mismatches due to differences in whitespace.
 91

3 Command Reference

92
Diff Editor Command

Arguments: [file1] [file2]
Key sequence: None

Compares the current buffer with another file.

A prefix argument makes it compare any two files, prompting you for
both filenames.

Diff Ignoring Whitespace Editor Command

Arguments: [file1] [file2]
Key sequence: None

Compares the current buffer with another file, like Diff but ignoring
whitespace.

A prefix argument is interpreted in the same way as by Diff.

3.23 Registers
Locations and regions can be saved in registers. Each register has a name, and
reference to a previously saved register is by means of its name. The name of a
register, which consists of a single character, is case-insensitive.

Point to Register Editor Command

Arguments: name
Key sequence: Ctrl+X / name

Saves the location of the current point in a register called name, where
name is a single character.

Save Position is a synonym for Point to Register.

Jump to Register Editor Command

Arguments: name
Key sequence: Ctrl+X J name

3.23 Registers
Moves the current point to a location previously saved in the register
called name.

Jump to Saved Position and Register to Point are both synonyms
for Jump to Register.

Kill Register Editor Command

Arguments: name
Key sequence: None

Kills the register called name.

List Registers Editor Command

Arguments: None
Key sequence: None

Lists all existing registers.

Copy to Register Editor Command

Arguments: name
Key sequence: Ctrl+X X name

Saves the region between the mark and the current point to the register
called name. The register is created if it does not exist.

When a prefix argument is supplied, the region is also deleted from the
buffer.

Put Register is a synonym for Copy to Register.

Append to Register Editor Command

Arguments: name
Key sequence: None

Appends the region between the mark and the current point to the value
in the register called name, which must already exist and contain a region.
 93

3 Command Reference

94
When a prefix argument is supplied, the region is also deleted from the
buffer.

Prepend to Register Editor Command

Arguments: name
Key sequence: None

Prepends the region between the mark and the current point to the value
in the register called name, which must already exist and contain a region.

When a prefix argument is supplied, the region is also deleted from the
buffer.

Insert Register Editor Command

Arguments: name
Key sequence: Ctrl+X G name

Copies the region from the register called name to the current point.

Get Register is a synonym for Insert Register.

3.24 Modes
A buffer can be in two kinds of mode at once: major and minor. The following
two sections give a description of each, along with details of some commands
which alter the modes.

In most cases, the current buffer can be put in a certain mode using the mode
name as an Editor Command.

3.24.1 Major modes

The major modes govern how certain commands behave and how text is
displayed. Major modes adapt a few editor commands so that their use is more
appropriate to the text being edited. Some movement commands are affected by
the major mode, as word, sentence, and paragraph delimiters vary with the
mode. Indentation commands are very much affected by the major mode See
‘Indentation’ on page 3-61.

3.24 Modes
Major modes available in the LispWorks editor are as follows:

• Fundamental mode. Commands behave in their most general manner,
default values being used throughout where appropriate.

• Text mode. Used for editing straight text and is automatically loaded if the
file name ends in .txt, .text or .tx.

• Lisp mode. Used for editing Lisp programs and is automatically loaded if
the file name ends in .lisp, .lsp, .lispworks, .slisp, .l, .mcl or .cl.

• Shell mode. Used for running interactive shells.

The major mode of most buffers may be altered explicitly by using the com-
mands described below.

By default, Lisp mode is the major mode whenever you edit a file with type
lisp (as with several other file types). If you have Lisp source code in files with
another file type foo, put a form like this in your .lispworks file, adding your
file extension to the default set:

(editor:define-file-type-hook
("lispworks" "lisp" "slisp" "l" "lsp" "mcl" "cl" "foo")
(buffer type)
(declare (ignore type))
(setf (editor:buffer-major-mode buffer) "Lisp"))

Fundamental Mode Editor Command

Arguments: None
Key sequence: None

Puts the current buffer into Fundamental mode.

Text Mode Editor Command

Arguments: None
Key sequence: None

Puts the current buffer into Text mode.
 95

3 Command Reference

96
Lisp Mode Editor Command

Arguments: None
Key sequence: None

Puts the current buffer into Lisp mode. Notice how syntax coloring is used
for Lisp symbols. Also the balanced parentheses delimiting a Lisp form at
or immediately preceding the cursor are highlighted, by default in green.

3.24.2 Minor modes

The minor modes determine whether or not certain actions take place. Buffers
may be in any number of minor modes. No command details are given here as
they are covered in other sections of the manuals.

Minor modes available in the LispWorks editor are as follows:

• Overwrite mode. Each character that is typed overwrites an existing charac-
ter in the text—see “Overwriting” on page 60.

• Auto Fill mode. Lines are broken between words at the right hand margin
automatically, so there is no need to type Return at the end of each line—
see “Filling” on page 64.

• Abbrev mode. Allows abbreviation definitions to be expanded automati-
cally—see “Abbreviations” on page 98.

• Execute mode. Used by the Listener to make history commands available
(see the LispWorks IDE User Guide).

3.24.3 Default modes

default-modes Editor Variable

Default value: ("Fundamental")

This editor variable contains the default list of modes for new buffers.

3.24.4 Defining modes

New modes can be defined using the defmode function.

3.24 Modes
editor:defmode Function

defmode name &key setup-function syntax-table key-bindings no-redefine vars
cleanup-function major-p transparent-p precedence => nil

Defines a new editor mode called name.

name is a string containing the name of the mode being defined. setup-func-
tion is a function which sets up a buffer in this mode. key-bindings is a
quoted list of key-binding directions. no-redefine is a boolean: if true, the
mode cannot be re-defined. The default value of no-redefine is nil. vars is a
quoted list of editor variables and values. aliases is a quoted list of syn-
onyms for name. cleanup-function is a function which is called upon exit
from a buffer in this mode. major-p is a boolean: if true, the mode is defined
as major, otherwise minor. The default value of major-p is nil.

By default, any mode defined is a minor one—specification of major-mode
status is made by supplying a true value for major-p.

defmode is essentially for the purposes of mode specification—not all of
the essential definitions required to establish a new Editor mode are made
in a defmode call. In the example, below, other required calls are shown.

key-bindings can be defined by supplying a quoted list of bindings, where a
binding is a list containing as a first element the (string) name of the Editor
command being bound, and as the second, the key binding description
(see Chapter 6, “Advanced Features”, for example key-bindings).

The state of Editor variables can be changed in the definition of a mode.
These are supplied as a quoted list vars of dotted pairs, where the first ele-
ment of the pair is the (symbol) name of the editor variable to be changed,
and the second is the new value.

Both setup-function and cleanup-function are called with the mode and the
buffer locked. They can modify the buffer itself, but they must not wait for
anything that happens on another process, and they must not modify the
mode (for example by setting a variable in the mode), and must not try to
update the display.

As an example tet us define a minor mode, Foo. Foo has a set-up function,
called setup-foo-mode. All files with suffix .foo invoke Foo-mode.

Here is the defmode form:
 97

3 Command Reference

98
(editor:defmode "Foo" :setup-function 'setup-foo-mode)

The next piece of code makes .foo files invoke Foo-mode:

(editor:define-file-type-hook ("foo") (buffer type)
 (declare (ignore type))
 (setf (editor:buffer-minor-mode buffer "Foo") t))

The next form defines the set-up function:

(defun setup-foo-mode (buffer)
 (setf (editor:buffer-major-mode buffer) "Lisp")
 (let ((pathname (editor:buffer-pathname buffer)))
 (unless (and pathname
 (probe-file pathname))
 (editor:insert-string
 (editor:buffer-point buffer)
 #.(format nil ";;; -*- mode :foo -*-~2%(in-package \"CL-
USER\")~2%")))))

Now, any files with the suffix .foo invoke the Foo minor mode when
loaded into the Editor.

3.25 Abbreviations
Abbreviations (abbrevs) can be defined by the user, such that if an abbreviation is
typed at the keyboard followed by a word terminating character (such as Space
or ,), the expansion is found and used to replace the abbreviation. Typing can
thereby be saved for frequently used words or sequences of characters.

There are two kinds of abbreviations: global abbreviations, which are expanded in
all major modes; and mode abbreviations, which are expanded only in defined
major modes.

Abbreviations (both global and mode) are only expanded automatically when
Abbrev mode (a minor mode) is on. The default is for abbrev mode to be off.

All abbreviations that are defined can be saved in a file and reloaded during
later editor sessions.

Abbrev Mode Editor Command

Arguments: None
Key sequence: None

3.25 Abbreviations
Switches abbrev mode on if it is currently off, and off if it is currently on.
Only when in abbrev mode are abbreviations automatically expanded.

Add Mode Word Abbrev Editor Command

Arguments: abbrev
Key sequence: Ctrl+X Ctrl+A abbrev

Defines a mode abbreviation for the word before the current point.

A positive prefix argument defines an abbreviation for the appropriate
number of words before the current point. A zero prefix argument defines
an abbreviation for all the text in the region between the mark and the cur-
rent point. A negative prefix argument deletes an abbreviation.

Inverse Add Mode Word Abbrev Editor Command

Arguments: expansion
Key sequence: Ctrl+X Ctrl+H expansion

Defines the word before the current point as a mode abbreviation for
expansion.

Add Global Word Abbrev Editor Command

Arguments: abbrev
Key sequence: Ctrl+X + abbrev

Defines a global abbreviation for the word before the current point.

A positive prefix argument defines an abbreviation for the appropriate
number of words before the current point. A zero prefix argument defines
an abbreviation for all the text in the region between the mark and the cur-
rent point. A negative prefix argument deletes an abbreviation.

Inverse Add Global Word Abbrev Editor Command

Arguments: expansion
Key sequence: Ctrl+X - expansion
 99

3 Command Reference

100
Defines the word before the current point as a global abbreviation for
expansion.

Make Word Abbrev Editor Command

Arguments: abbrev expansion mode
Key sequence: None

editor:make-word-abbrev-command p &optional abbrev expansion mode

Defines an abbreviation for expansion without reference to the current
point. The default value for mode is global.

Abbrev Expand Only Editor Command

Arguments: None
Key sequence: None

Expands the word before the current point into its abbreviation definition
(if it has one). If the buffer is currently in abbrev mode then this is done
automatically on meeting a word defining an abbreviation.

Word Abbrev Prefix Point Editor Command

Arguments: None
Key sequence: Meta+’

Allows the prefix before the current point to be attached to the following
abbreviation. For example, if the abbreviation valn is bound to valua-
tion, typing re followed by Meta+’, followed by valn, results in the
expansion revaluation.

Unexpand Last Word Editor Command

Arguments: None
Key sequence: None

Undoes the last abbreviation expansion. If this command is typed twice in
succession, the previous abbreviation is restored.

3.25 Abbreviations
Delete Mode Word Abbrev Editor Command

Arguments: abbrev
Key sequence: None

editor:delete-mode-word-abbrev-command p &optional abbrev mode

Deletes a mode abbreviation for the current mode. A prefix argument
causes all abbreviations defined in the current mode to be deleted.

The argument mode is the name of the mode for which the deletion is to be
applied. The default is the current mode.

Delete Global Word Abbrev Editor Command

Arguments: abbrev
Key sequence: None

editor:delete-global-word-abbrev-command p &optional abbrev

Deletes a global abbreviation. A prefix argument causes all global abbrevi-
ations currently defined to be deleted.

Delete All Word Abbrevs Editor Command

Arguments: None
Key sequence: None

Deletes all currently defined abbreviations, both global and mode.

List Word Abbrevs Editor Command

Arguments: None
Key sequence: None

Displays a list of all the currently defined abbreviations in an Abbrev win-
dow.
 101

3 Command Reference

102
Word Abbrev Apropos Editor Command

Arguments: search-string
Key sequence: None

editor:word-abbrev-apropos-command p &optional search-string

Displays a list of all the currently defined abbreviations which contain
search-string in their abbreviation definition or mode. The list is displayed
in an Abbrev window.

Edit Word Abbrevs Editor Command

Arguments: None
Key sequence: None

Allows recursive editing of currently defined abbreviations. The abbrevia-
tion definitions are displayed in an Edit Word Abbrevs buffer, from where
they can be can be added to, modified, or removed. This buffer can then
either be saved to an abbreviations file, or Define Word Abbrevs can be
used to define any added or modified abbreviations in the buffer. When
editing is complete, Exit Recursive Edit should be invoked.

Write Word Abbrev File Editor Command

Arguments: filename
Key sequence: None

editor:write-word-abbrev-file-command p &optional filename

Saves the currently defined abbreviations to filename. If no file name is pro-
vided, the default file name defined by the editor variable abbrev-path-
name-defaults is used.

Append to Word Abbrev File Editor Command

Arguments: filename
Key sequence: None

editor:append-to-word-abbrev-file-command p &optional filename

3.25 Abbreviations
Appends all abbreviations that have been defined or redefined since the
last save to filename. If no file name is provided, the default file name
defined by the editor variable abbrev-pathname-defaults is used.

abbrev-pathname-defaults Editor Variable

Default value: abbrev.defns

Defines the default file name for saving the abbreviations that have been
defined in the current buffer.

Read Word Abbrev File Editor Command

Arguments: filename
Key sequence: None

editor:read-word-abbrev-file-command p &optional filename

Reads previously defined abbreviations from filename. The format of each
abbreviation must be that used by Write Word Abbrev File and Insert
Word Abbrevs.

Insert Word Abbrevs Editor Command

Arguments: None
Key sequence: None

Inserts into the current buffer, at the current point, a list of all currently
defined abbreviations. This is similar to Write Word Abbrev File,
except that the abbreviations are written into the current buffer rather than
a file.

Define Word Abbrevs Editor Command

Arguments: None
Key sequence: None

Defines abbreviations from the definition list in the current buffer. The for-
mat of each abbreviation must be that used by Write Word Abbrev File
and Insert Word Abbrevs.
 103

3 Command Reference

104
3.26 Keyboard macros
Keyboard macros enable a sequence of commands to be turned into a single
operation. For example, if it is found that a particular sequence of commands is
to be repeated a large number of times, they can be turned into a keyboard
macro, which may then be repeated the required number of times by using
Prefix Arguments.

Note that keyboard macros are only available for use during the current editing
session.

Define Keyboard Macro Editor Command

Arguments: None
Key sequence: Ctrl+X Shift+(

Begins the definition of a new keyboard macro. All the commands that are
subsequently invoked are executed and at the same time combined into
the newly defined macro. Any text typed into the buffer is also included in
the macro. The definition is ended with End Keyboard Macro, and the
sequence of commands can then be repeated with Last Keyboard Macro.

End Keyboard Macro Editor Command

Arguments: None
Key sequence: Ctrl+X Shift+)

Ends the definition of a keyboard macro.

Last Keyboard Macro Editor Command

Arguments: None
Key sequence: Ctrl+X E

Executes the last keyboard macro defined. A prefix argument causes the
macro to be executed the required number of times.

3.27 Echo area operations
Name Keyboard Macro Editor Command

Arguments: name
Key sequence: None

editor:name-keyboard-macro-command p &optional name

Makes the last defined keyboard macro into a command called name that
can subsequently be invoked by means of Extended Command.

Keyboard Macro Query Editor Command

Arguments: action
Key sequence: Ctrl+X Q action

During the execution of a keyboard macro, this command prompts for an
action. It is therefore possible to control the execution of keyboard macros
while they are running, to a small extent.

The following actions can be used to control the current macro execution.

Space Continue with this iteration of the keyboard macro and
then proceed to the next.

Delete Skip over the remainder of this iteration of the keyboard
macro and proceed to the next.

Escape Exit from this keyboard macro immediately.

3.27 Echo area operations
There are a range of editor commands which operate only on the Echo Area
(that is, the buffer where the user types in commands).

Although in many cases the key bindings have a similar effect to the bindings
used in ordinary buffers, this is just for the convenience of the user. In fact the
commands that are invoked are different.
 105

3 Command Reference

106
3.27.1 Completing commands

Many of the commands used in the Editor are long, in the knowledge that the
user can use completion commands in the Echo Area, and so rarely has to type a
whole command name. Details of these completion commands are given below.

Complete Input Editor Command

Arguments: None
Key sequence: Tab

Completes the text in the Echo Area as far as possible, thereby saving the
user from having to type in the whole of a long file name or command.
Use Tab Tab to produce a popup list of all possible completions.

Complete Field Editor Command

Arguments: None
Key sequence: Space

Completes the current part of the text in the Echo Area. So, for a command
that involves two or more words, if Complete Field is used when part of
the first word has been entered, an attempt is made to complete just that
word.

Confirm Parse Editor Command

Arguments: None
Key sequence: Return

Terminates an entry in the Echo Area. The Editor then tries to parse the
entry. If Return is typed in the Echo Area when nothing is being parsed, or
the entry is erroneous, an error is signalled.

Help on Parse Editor Command

Arguments: None
Key sequences: ?, Help, F1

3.27 Echo area operations
Displays a popup list of all possible completions of the text in the echo
area.

3.27.2 Repeating echo area commands

The Echo Area commands are recorded in a history ring so that they can be eas-
ily repeated. Details of these commands are given below.

Previous Parse Editor Command

Arguments: None
Key sequence: Meta+P

Moves to the previous command in the Echo Area history ring. If the cur-
rent input is not empty and the contents are different from what is on the
top of the ring, then this input is pushed onto the top of the ring before the
new input is inserted.

Next Parse Editor Command

Arguments: None
Key sequence: Meta+N

Moves to the next most recent command in the Echo Area history ring. If
the current input is not empty and the contents are different from what is
on the top of the ring, then this input is pushed onto the top of the ring
before the new input is inserted.

3.27.3 Movement in the echo area

Echo Area Backward Character Editor Command

Arguments: None
Key sequence: Ctrl+B

Moves the cursor back one position (without moving into the prompt).
 107

3 Command Reference

108
Echo Area Backward Word Editor Command

Arguments: None
Key sequence: Meta+B

Moves the cursor back one word (without moving into the prompt).

Beginning Of Parse Editor Command

Arguments: None
Key sequence: Meta+<

Moves the cursor to the location immediately after the prompt in the Echo
Area.

Beginning Of Parse or Line Editor Command

Arguments: None
Key sequence: Ctrl+A

Moves the cursor to the location at the start of the current line in multi-line
input, or to the location immediately after the prompt in the Echo Area.

3.27.4 Deleting and inserting text in the echo area

Echo Area Delete Previous Character Editor Command

Arguments: None
Key sequence: Delete

Deletes the previous character entered in the Echo Area.

Echo Area Kill Previous Word Editor Command

Arguments: None
Key sequence: Meta+Delete

Kills the previous word entered in the Echo Area.

3.28 Editor variables
Kill Parse Editor Command

Arguments: None
Key sequence: Ctrl+C Ctrl+U

Kills the whole of the input so far entered in the Echo Area.

Insert Parse Default Editor Command

Arguments: None
Key sequence: Ctrl+C Ctrl+P

Inserts the default value for the parse in progress at the location of the cur-
sor. It is thereby possible to edit the default. Simply typing Return selects
the default without any editing.

Return Default Editor Command

Arguments: None
Key sequence: Ctrl+C Ctrl+R

Uses the default value for the parse in progress. This is the same as issuing
the command Insert Parse Default and then pressing Return immedi-
ately.

Insert Selected Text Editor Command

Arguments: None
Key sequence: Ctrl+C Ctrl+C

Inserts the editor window’s selected text in the echo area.

3.28 Editor variables
Editor variables are parameters which affect the way that certain commands
operate. Descriptions of editor variables are provided alongside the relevant
command details in this manual.
 109

3 Command Reference

110
Show Variable Editor Command

Arguments: variable
Key sequence: None

Indicates the value of variable.

Set Variable Editor Command

Arguments: variable value
Key sequence: None

Allows the user to change the value of variable.

3.29 Recursive editing
Recursive editing occurs when you are allowed to edit text while an editor com-
mand is executing. The mode line of the recursively edited buffer is enclosed in
square brackets. For example, when using the command Query Replace, the
Ctrl+R option can be used to edit the current instance of the target string (that
is, enter a recursive edit). Details of commands used to exit a recursive edit are
given below.

Exit Recursive Edit Editor Command

Argument: None
Key sequence: Meta+Ctrl+Z

Exits a level of recursive edit, returning to the original command. An error
is signalled if not in a recursive edit.

Abort Recursive Edit Editor Command

Argument: None
Key sequence: Ctrl+]

Aborts a level of recursive edit, quitting the unfinished command immedi-
ately. An error is signalled if not in a recursive edit.

3.30 Key bindings
3.30 Key bindings
The commands for modifying key bindings that are described below are
designed to be invoked explicitly during each session with the Editor. If
the user wishes to create key bindings which are set up every session, the
function editor:bind-key should be used—see “Customizing default
key bindings” on page 168.

Bind Key Editor Command

Argument: command key-sequence bind-type
Key sequence: None

Binds command (full command names must be used) to key-sequence.

After entering command, enter the keys of key-sequence and press Return.

bind-type can be either buffer, global or mode. If a bind-type of buffer or
mode is selected, the name of the buffer or mode required must then be
entered. When a bind-type of buffer is selected, the current buffer is offered
as a default. The default value for bind-type is "Global".

Unless a bind type of global is selected, the scope of the new key binding
is restricted as specified. Generally, most key bindings are global. Note
that the Echo Area is defined as a mode, and some commands (especially
those involving completion) are restricted to the Echo Area.

Bind String to Key Editor Command

Argument: string key-sequence bind-type
Key sequence: None

Make key-sequence insert string.

After entering string, enter the keys of key-sequence and press Return.

bind-type is interpreted as in Bind Key.
 111

3 Command Reference

112
Delete Key Binding Editor Command

Argument: key-sequence bind-type
Key sequence: None

Removes a key binding, so that the key sequence no longer invokes any
command. The argument bind-type can be either buffer, global or mode. If
a bind-type of buffer or mode is selected, the name of the buffer or mode
required must then be entered. The default value for bind-type is "Global".

It is necessary to enter the kind of binding, because a single key sequence
may sometimes be bound differently in different buffers and modes.

Illegal Editor Command

Argument: None
Key sequence: None

Signals an editor error with the message "Illegal command in the current
mode" accompanied by a beep. It is sometimes useful to bind key
sequences to this command, to ensure the key sequence is not otherwise
bound.

Do Nothing Editor Command

Argument: None
Key sequence: None

Does nothing. This is therefore similar to Illegal, except that there is no
beep and no error message.

3.31 Running shell commands from the editor
The editor allows both single shell commands to be executed and also provides
a means of running a shell interactively.

Shell Command Editor Command

Argument: command
Key sequence: Meta+! command

3.31 Running shell commands from the editor
Executes the single shell command command. The output from the com-
mand is displayed in a Shell Output buffer. A prefix argument causes the
output from the shell command to be sent to the *terminal-io* stream
rather than the Shell Output buffer.

Run Command Editor Command

Argument: command
Key sequence: None

Executes the single shell command command in a Shell window. When the
command terminates, the subprocess is closed down.

Shell Editor Command

Argument: None
Key sequence: None

Opens a Shell window which allows the user to run a shell interactively.
The major mode of the buffer is Shell mode, and the minor mode is Exe-
cute mode so the history key bindings available in the Listener can also be
used in the Shell window.

Whenever the working directory is changed within the shell, the editor
attempts to keep track of these changes and update the default directory of
the Shell buffer. When a shell command is issued beginning with a string
matching one of the editor variables shell-cd-regexp, shell-pushd-
regexp or shell-popd-regexp, the editor recognises this command as a
change directory command and attempt to change the default directory of
the Shell buffer accordingly. If you have your own aliases for any of the
shell change directory commands, alter the value of the appropriate vari-
able. For example, if the value of shell-cd-regexp is "cd" and the shell
command cd /Applications/LispWorks is issued, the next time the edi-
tor command Wfind File is issued, the default directory offered is /
Applications/LispWorks. If you find that the editor has not recognised a
change directory command then the editor command cd may be used to
change the default directory of the buffer.
 113

3 Command Reference

114
CD Editor Command

Arguments: directory
Key sequence: None
Mode: Shell

Changes the directory associated with the current buffer to directory. The
current directory is offered as a default.

shell-cd-regexp Editor Variable

Default value: "cd"
Mode: Shell

A regular expression that matches the shell command to change the cur-
rent working directory.

shell-pushd-regexp Editor Variable

Default value: "pushd"
Mode: Shell

A regular expression that matches the shell command to push the current
working directory onto the directory stack.

shell-popd-regexp Editor Variable

Default value: "popd"
Mode: Shell

A regular expression that matches the shell command to pop the current
working directory from the directory stack.

prompt-regexp-string Editor Variable

Default value: "^[^#$%>
]*[#$%>] *"

Mode: Shell

3.31 Running shell commands from the editor
The regexp used to find the prompt in a Shell window. This variable is also
used in the Listener.

Interrupt Shell Subjob Editor Command

Argument: None
Key sequence: Ctrl+C Ctrl+C
Mode: Shell

Sends an interrupt signal to the subjob currently being run by the shell.
This is equivalent to issuing the shell command Ctrl+C.

Note: this command does not work on Microsoft Windows.

Stop Shell Subjob Editor Command

Argument: None
Key sequence: Ctrl+C Ctrl+Z
Mode: Shell

Sends a stop signal to the subjob currently being run by the shell. This is
equivalent to issuing the shell command Ctrl+Z.

Note: this command does not work on Microsoft Windows.

Shell Send Eof Editor Command

Argument: None
Key sequence: Ctrl+C Ctrl+D
Mode: Shell

Sends an end-of-file character (Ctrl+D) to the shell, causing either the
shell or its current subjob to finish.

Note: this command does not work on Microsoft Windows.
 115

3 Command Reference

116
3.32 Buffers, windows and the mouse

3.32.1 Buffers and windows

You can transfer text between LispWorks Editor buffers and ordinary win-
dows using the commands described below.

Copy to Cut Buffer Editor Command

Argument: None
Key sequence: None

Copies the current region to the Cut buffer. The contents of the buffer may
then be pasted into a window using the standard method for pasting.

Insert Cut Buffer Editor Command

Argument: None
Key sequence: None

Inserts the contents of the Cut buffer at the current point. You can put text
from a window into the Cut buffer using the standard method for cutting
text (usually by holding the left mouse button while dragging the mouse).

3.32.2 Actions involving the mouse

The functions to which the mouse buttons are bound are not true Editor Com-
mands. As such, the bindings cannot be changed. Details of mouse button
actions are given below.

Note that marks may also be set by using editor key sequences—see “Marks
and regions” on page 43—but also note that a region must be defined either by
using the mouse or by using editor key sequences, as the region may become
unset if a combination of the two is used. For example, using Ctrl+Space to set
a mark and then using the mouse to go to the start of the required region unsets
the mark.

left-button

Moves the current point to the position of the mouse pointer.

3.33 Miscellaneous
shift-left-button

In Emacs emulation, this moves the current point to the location of the
mouse pointer and sets the mark to be the end of the new current form or
comment line.

control-shift-left-button

Invokes the Editor Command Save Region, saving the region between
the current point and the mark at the top of the kill ring. If the last com-
mand was control-shift-left-button, the Editor Command Kill
Region is invoked instead. This allows one click to save the region, and
two clicks to save and kill it.

middle-button

If your mouse has a middle button, it pastes the current selection at the
location of the mouse pointer.

right-button

Brings up a context menu, from which a number of useful commands can
be invoked. The options include Cut, Copy, and Paste.

shift-right-button

Inserts the form or comment line at the location of the mouse pointer at the
current point.

3.33 Miscellaneous

Report Bug Editor Command

Argument: None
Key sequence: None

Opens a window containing the template for reporting bugs in LispWorks.
This template can then be filled in and emailed to Lisp Support.

break-on-editor-error Editor Variable

Default value: nil.
 117

3 Command Reference

118
Specifies whether an editor:editor-error generates a Lisp cerror, or
whether it just displays a message in the Echo Area.

Report Manual Bug Editor Command

Argument: None
Key sequence: None

Opens a window containing the template for reporting bugs in the Lisp-
Works documentation. This template can then be filled in and emailed to
Lisp Support.

Room Editor Command

Argument: None
Key sequence: None

Displays information on the current status of the memory allocation for
the host computer.

Build Application Editor Command

Argument: None
Key sequence: None

Invokes the Application Builder in the LispWorks IDE and does a build.
By default, it uses the current buffer as the build script. If given a prefix
argument it prompts for a file to use as the build script.

Invoke Tool Editor Command

Argument: None
Key sequence: Ctrl+#

Invokes a tool in the LispWorks IDE.

Firstly Invoke Tool prompts for a character. If you enter a known short-
cut character, the corresponding tool is activated. If the character is
unknown, it raises the Tools menu so you can select from it.

3.33 Miscellaneous
Notes:

1. The shortcut characters can be seen in the Tools menu. So if you do not
know the shortcut character, you can enter '?' to get the menu, and
then note the shortcut character.

2. On Cocoa, in any window in the LispWorks IDE Command+Ctrl+L
invokes the Listener tool (as an example), which is more convenient
than Invoke Tool.

3. If the tool does not already exist, one is created if needed.

4. Invoke Tool does nothing in a delivered image.
 119

3 Command Reference

120

4

4 Editing Lisp Programs
There are a whole set of editor commands designed to facilitate editing of Lisp
programs. These commands are designed to understand the syntax of the Lisp
language and therefore allow movement over Lisp constructs, indentation of
code, operations on parentheses and definition searching. Lisp code can also be
evaluated and compiled directly from the editor.

To use some of these commands the current buffer should be in Lisp mode. For
more information about editor modes, see “Modes” on page 94.

Commands are grouped according to functionality as follows:

• “Functions and definitions”

• “Forms”

• “Lists”

• “Comments”

• “Parentheses”

• “Documentation”

• “Evaluation and compilation”

• “Breakpoints”

• “Removing definitions”
121

4 Editing Lisp Programs

122
4.1 Automatic entry into lisp mode
Some source files begin with a line of this form

;;; -*- Mode: Common-Lisp; Author: m.mouse -*-

or this:

;; -*- Mode: Lisp; Author: m.mouse -*-

A buffer is automatically set to be in Lisp mode when such a file is displayed.

Alternatively, if you have files of Common Lisp code with extension other than
.lisp, add the following code to your .lispworks file, substituting the exten-
sions shown for your own. This ensures that Lisp mode is the major mode
whenever a file with one of these extensions is viewed in the editor:

(editor:define-file-type-hook
 ("lispworks" "lisp" "slisp" "el" "lsp" "mcl" "cl")
 (buffer type)
 (declare (ignore type))
 (setf (editor:buffer-major-mode buffer) "Lisp"))

Another way to make a Lisp mode buffer is the command New Buffer, and you
can put an existing buffer into Lisp mode via the command Lisp Mode.

4.2 Syntax coloring
When in Lisp mode, the LispWorks editor provides automatic Lisp syntax
coloring and parenthesis matching to assist the editing of Lisp programs.

You can ensure a buffer is in Lisp mode as described in “Automatic entry into
lisp mode” .

To modify the colors used in Lisp mode syntax coloring, use Preferences... >
Environment > Styles > Colors And Attributes as described in the LispWorks IDE
User Guide. Adjust the settings for the styles whose names begin with "Lisp".

4.3 Functions and definitions
4.3 Functions and definitions

4.3.1 Movement, marking and specifying indentation

Beginning of Defun Editor Command

Argument: None
Key sequence: Meta+Ctrl+A

Moves the current point to the beginning of the current top-level form. A
positive prefix argument p causes the point to be moved to the beginning
of the form p forms back in the buffer.

End of Defun Editor Command

Argument: None
Key sequence: Meta+Ctrl+E

Moves the current point to the end of the current top-level form. A posi-
tive prefix argument p causes the point to be moved to the end of the form
p forms forward in the buffer.

Mark Defun Editor Command

Argument: None
Key sequence: Meta+Ctrl+H

Puts the mark at the end of the current top-level form and the current
point at the beginning of the form. The definition thereby becomes the cur-
rent region. If the current point is initially located between two top-level
forms, then the mark and current point are placed around the previous
top-level form.

Defindent Editor Command

Argument: no-of-args
Key sequence: None
 123

4 Editing Lisp Programs

124
Defines the number of arguments of the operator to be specially indented
if they fall on a new line. The indent is defined for the operator name, for
example defun.

Defindent affects the special argument indentation for all forms with that
operator which you subsequently indent.

4.3.2 Definition searching

Definition searching involves taking a name for a function (or a macro, variable,
editor command, and so on), and finding the actual definition of that function.
This is particularly useful in large systems, where code may exist in a large
number of source files.

Function definitions are found by using information provided either by Lisp-
Works source recording or by a Tags file. If source records or Tags information
have not been made available to LispWorks, then the following commands do
not work. To make the information available to LispWorks, set the variable
dspec:*active-finders* appropriately. See the LispWorks User Guide and Ref-
erence Manual for details.

Source records are created if the variable *record-source-files* is true when
definitions are compiled, evaluated or loaded. See the LispWorks User Guide and
Reference Manual for details.

Tag information is set up by the editor itself, and can be saved to a file for future
use. For each file in a defined system, the tag file contains a relevant file name
entry, followed by names and positions of each defining form in that file. Before
tag searching can take place, there must exist a buffer containing the required
tag information. You can specify a previously saved tag file as the current tag
buffer, or you can create a new one using Create Tags Buffer. GNU Emacs
tag files are fully compatible with LispWorks editor tag files.

After a command such as Meta+. (Find Source), if there are multiple defini-
tions repeated use of Meta+, (Continue Tags Search) finds them in turn. If
you then wish to revisit a particular definition, try the commands Go Back and
Select Go Back.

4.3 Functions and definitions
Find Source Editor Command

Argument: name
Key sequence: Meta+. name

Tries to find the source code for name. The symbol under the current point
is offered as a default value for name. A prefix argument automatically
causes this default value to be used.

If the source code for name is found, the file in which it is contained is dis-
played in a buffer. When there is more than one definition for name, Find
Source finds the first definition, and Meta+, (Continue Tags Search)
finds subsequent definitions.

Find Source searches for definitions according to the value of
dspec:*active-finders*. You can control which source record informa-
tion is searched, and the order in which these are searched, by setting this
variable appropriately. See the LispWorks User Guide and Reference Manual
for details. There is an example setting for this variable in the configura-
tion files supplied.

If dspec:*active-finders* contains the value :tags, Find Source
prompts for the name of a tags file, and this is used for the current and
subsequent searches.

The found source is displayed according to the value of editor:*source-
found-action*. This depends on the buffer with the found definition
being in Lisp mode. For information on how to ensure this for particular
file types, see “Automatic entry into lisp mode” on page 122.

Find Source for Dspec Editor Command

Argument: dspec
Key sequence: None

This command is similar to Find Source, but takes a definition spec dspec
instead of a name as its argument.

For example, given a generic function foo of one argument, with methods
specializing on classes bar and baz,

Find Source for Dspec foo
 125

4 Editing Lisp Programs

126
will find each method definition in turn (with the continuation via Meta+,)
whereas

Find Source for Dspec (method foo (bar))

finds only the definition of the method on bar.

Find Command Definition Editor Command

Argument: command
Key sequence: None

This command is similar to Find Source, but takes the name of an editor
command, and tries to find its source code.

Except in the Personal Edition, you can use this command to find the defi-
nitions of the predefined editor commands. See the LispWorks User Guide
and Reference Manual chapter "Customization of LispWorks" for details.

Edit Editor Command Editor Command

Argument: command
Key sequence: None

This is a synonym for Find Command Definition.

View Source Search Editor Command

Argument: function
Key sequence: None

Shows the results of the latest source search (initiated by Find Source or
Find Source for Dspec or Find Command Definition) in the Find Def-
initions view of the Editor. See the chapter on the Editor tool in the Lisp-
Works IDE User Guide for more information about the Find Definitions
view.

4.3 Functions and definitions
List Definitions Editor Command

Argument: name
Key sequence: None

List the definitions for name. The symbol under the current point is offered
as a default value for name. A prefix argument automatically causes this
default value to be used.

This command searches for definitions and shows the results in the Find
Definitions view of the Editor tool instead of finding the first definition. It
does not set up the Meta+, action.

See the chapter on the Editor tool in the LispWorks IDE User Guide for more
information about the Find Definitions view.

List Definitions For Dspec Editor Command

Argument: dspec
Key sequence: None

This command is similar to List Definitions, but takes a definition spec
dspec instead of a name as its argument.

This command searches for definitions and shows the results in the Find
Definitions view of the Editor tool instead of finding the first definition.
This command does not set up the Meta+, action.

See the chapter on the Editor tool in the LispWorks IDE User Guide for more
information about the Find Definitions view.

Create Tags Buffer Editor Command

Argument: None
Key sequence: None

Creates a buffer containing Tag search information, for all the .lisp files
in the current directory. If you want to use this information at a later date
then save this buffer to a file (preferably a file called TAGS in the current
directory).
 127

4 Editing Lisp Programs

128
The format of the information contained in this buffer is compatible with
that of GNU Emacs tags files.

A prefix argument causes the user to be prompted for the name of a file
containing a list of files, to be used for constructing the tags table.

Find Tag Editor Command

Key sequence: Meta+?

Tries to find the source code for a name containing a partial or complete
match a supplied string by examining the Tags information indicated by
the value of dspec:*active-finders*.

The text under the current point is offered as a default value for the string.

If the source code for a match is found, the file in which it is contained is
displayed. When there is more than one definition, Find Tag finds the
first definition, and Meta+, (Continue Tags Search) finds subsequent
definitions.

The found source is displayed according to the value of editor:*source-
found-action*.

If there is no tags information indicated by the value of dspec:*active-
finders*, Find Tag prompts for the name of a tags file. The default is a
file called TAGS in the current directory. If there is no such file, you can cre-
ate one using Create Tags Buffer. If you want to search a different
directory, specify the name of a tags file in that directory.

See the chapter on the DSPEC package in the LispWorks User Guide and Ref-
erence Manual for information on how to use the dspec:*active-find-
ers* variable to control how this command operates. There is an example
setting for this variable in the configuration files supplied.

See also Find Source, Find Source for Dspec and Create Tags
Buffer.

Tags Search Editor Command

Key sequence: None

4.3 Functions and definitions
Exhaustively searches each file mentioned in the Tags files indicated by
the value of dspec:*active-finders* for a supplied string string. Note
that this does not merely search for definitions, but for any occurence of
the string.

If string is found, it is displayed in a buffer containing the relevant file.
When there is more than one definition, Tags Search finds the first defi-
nition, and Meta+, (Continue Tags Search) finds subsequent defini-
tions.

If there is no Tags file on dspec:*active-finders*, Tags Search
prompts for the name of a tags file. The default is a file called TAGS in the
current directory. If there is no such file, you can create one using Create
Tags Buffer. If you want to search a different directory, specify the name
of a tags file in that directory.

Continue Tags Search Editor Command

Argument: None
Key sequence: Meta+,

Searches for the next match in the current search. This command is only
applicable if issued immediately after a Find Source, Find Source for
Dspec, Find Command Definition, Edit Callers, Edit Callees, Find
Tag or Tags Search command.

Tags Query Replace Editor Command

Key sequence: None

Alows you to replace occurrences of a supplied string target by a second
supplied string replacement in each Tags file indicated by the value of
dspec:*active-finders*.

Each time target is found, an action must be specified from the keyboard.
For details of the possible actions see Query Replace.

If there is no Tags file indicated by dspec:*active-finders*, Tags
Query Replace prompts for the name of a tags file. The default is a file
 129

4 Editing Lisp Programs

130
called TAGS in the current directory. If there is no such file, you can create
one using Create Tags Buffer.

Visit Tags File Editor Command

Key sequence: None

Prompts for a Tags file file and makes the source finding commands use it.
This is done by modifying, if necessary, the value of dspec:*active-
finders*.

If file is already in dspec:*active-finders*, this command does noth-
ing.

If there are other Tags files indicated then Visit Tags File prompts for
whether to add simply add file as the last element of dspec:*active-
finders*, or to save the current value of dspec:*active-finders* and
start a new list of active finders, setting dspec:*active-finders* to the
new value (:internal file). In this case, the previous active finders list can
be restored by the command Rotate Active Finders.

If the value :tags appears on the list dspec:*active-finders* then file
replaces this value in the list.

If there is no tags information indicated then Visit Tags File simply
adds file as the last element of dspec:*active-finders*.

Rotate Active Finders Editor Command

Key sequence: Meta+Ctrl+.

Rotates the active finders history, activating the least recent one. This
modifies the value of dspec:*active-finders*.

The active finders history can have length greater than 1 if Visit Tags
File started a new list of active finders, or if a buffer associated with a
TAGS file on dspec:*active-finders* was killed.

Visit Other Tags File is a synonym for Rotate Active Finders.

4.3 Functions and definitions
4.3.3 Tracing functions

The commands described in this section use the Common Lisp trace facility.
Note that you can switch tracing on and off using dspec:tracing-enabled-p -
see the LispWorks User Guide and Reference Manual for details of this.

Trace Function Editor Command

Argument: function
Key sequence: None

This command traces function. The symbol under the current point is
offered as a default value for function. A prefix argument automatically
causes this default value to be used.

Trace Function Inside Definition Editor Command

Argument: function
Key sequence: None

This command is like Trace Function, except that function is only traced
within the definition that contains the cursor.

Untrace Function Editor Command

Argument: function
Key sequence: None

This command untraces function. The symbol under the current point is
offered as a default value for function. A prefix argument automatically
causes this default value to be used.

Trace Definition Editor Command

Argument: None
Key sequence: None

This command traces the function defined by the current top-level form.
 131

4 Editing Lisp Programs

132
Trace Definition Inside Definition Editor Command

Argument: None
Key sequence: None

This command is like Trace Definition, except that with a non-nil pre-
fix argument, prompts for a symbol to trace. Also, it prompts for a symbol
naming a second function, and traces the first only inside this.

Untrace Definition Editor Command

Argument: None
Key sequence: None

This command untraces the function defined by the current top-level
form.

Break Function Editor Command

Argument: function
Key sequence: None

This command is like Trace Function but the trace is with :break t so
that when function is entered, the debugger is entered.

Break Function on Exit Editor Command

Argument: function
Key sequence: None

This command is like Trace Function but the trace is with :break-on-
exit t so that when a called to function exits, the debugger is entered.

Break Definition Editor Command

Argument: None
Key sequence: None

Like Trace Definition but the definition is traced with :break t.

4.3 Functions and definitions
Break Definition on Exit Editor Command

Argument: None
Key sequence: None

Like Trace Definition but the definition is traced with :break-on-exit
t.

4.3.4 Function callers and callees

The commands described in this section, require that LispWorks is producing
cross-referencing information. This information is produced by turning source
debugging on while compiling and loading the relevant definitions (see
toggle-source-debugging in the LispWorks User Guide and Reference Manual).

List Callers Editor Command

Argument: dspec
Key sequence: None

Produces a Function Call Browser window showing those functions that
call the definition named by dspec. The name of the current top-level defi-
nition is offered as a default value for dspec. A prefix argument automati-
cally causes this default value to be used.

See "Dspecs: Tools for Handling Definitions" in the LispWorks User Guide
and Reference Manual for a description of dspecs.

List Callees Editor Command

Argument: dspec
Key sequence: None

Produces a Function Call Browser window showing those functions that
are called by the definition named by dspec. The name of the current top-
level definition is offered as a default value for dspec. A prefix argument
automatically causes this default value to be used.

See "Dspecs: Tools for Handling Definitions" in the LispWorks User Guide
and Reference Manual for a description of dspecs.
 133

4 Editing Lisp Programs

134
Show Paths To Editor Command

Argument: dspec
Key sequence: None

Produces a Function Call Browser window showing the callers of the defi-
nition named by dspec. The name of the current top-level definition is
offered as a default value for dspec. A prefix argument automatically
causes this default value to be used.

See "Dspecs: Tools for Handling Definitions" in the LispWorks User Guide
and Reference Manual for a description of dspecs.

Show Paths From Editor Command

Argument: dspec
Key sequence: None

Produces a Function Call Browser window showing the function calls
from the definition named by dspec. The name of the current top-level def-
inition is offered as a default value for dspec. A prefix argument automati-
cally causes this default value to be used.

See "Dspecs: Tools for Handling Definitions" in the LispWorks User Guide
and Reference Manual for a description of dspecs.

Edit Callers Editor Command

Argument: function
Key sequence: None

Produces an Editor window showing the latest definition found for a func-
tion that calls function. The name of the current top-level definition is
offered as a default value for function. A prefix argument automatically
causes this default value to be used. The latest definitions of each of the
other functions that call function are available via the Continue Tags
Search command.

4.3 Functions and definitions
Edit Callees Editor Command

Argument: function
Key sequence: None

Produces an Editor window showing the latest definition found for a func-
tion called by function. The name of the current top-level definition is
offered as a default value for function. A prefix argument automatically
causes this default value to be used. The latest definitions of each of the
other functions that are called by function are available via the Continue
Tags Search command.

4.3.5 Indentation and Completion

Indent Selection or Complete Symbol Editor Command

Argument: None
Key sequence: Tab
Mode: Lisp

Does Lisp indentation if there is a visible region. Otherwise, it attempts to
indent the current line. If the current line is already indented correctly
then it attempts to complete the symbol before the current point. See Com-
plete Symbol for more details.

The prefix argument, if supplied, is interpreted as if by Indent Selec-
tion or Complete Symbol.

Indent or Complete Symbol Editor Command

Argument: None
Key sequence: None

Attempts to indent the current line. If the current line is already indented
correctly then it attempts to complete the symbol before the current point.
See Complete Symbol for more details.

The prefix argument, if supplied, is interpreted as if by Indent or Com-
plete Symbol.
 135

4 Editing Lisp Programs

136
Complete Symbol Editor Command

Argument: predicate
Key sequence: Meta+Ctrl+I

Attempts to complete the symbol before the current point. If the string to
be completed is not unique, a list of possible completions is displayed.

If the Use in-place completion preference is selected then the completions
are displayed in a window which allows most keyboard gestures to be
processed as ordinary editor input. This allows speedy reduction of the
number of possible completions, while you can select the desired comple-
tion with Return, Up and Down.

If predicate is non-nil then only symbols which are bound or fbound are
offered amongst the possible completions.

Abbreviated Complete Symbol Editor Command

Argument: predicate
Key sequence: Meta+I

Attempts to complete the symbol abbreviation before the current point. If
the string to be completed is not unique, a list of possible completions is
displayed.

A symbol abbreviation is a sequence of words (sequences of alphanumeric
characters) separated by connectors (sequences of non-alphanumeric, non-
whitespace characters). Each word (connector) is a prefix of the corre-
sponding word (connector) in the expansions. Thus if you complete the
symbol abbreviation w-o then with-open-file and with-open-stream
are amongst the completions offered, assuming the COMMON-LISP pack-
age is visible.

If the Use in-place completion preference is selected then the completions
are displayed in a window which allows most keyboard gestures to be
processed as ordinary editor input. This allows speedy reduction of the
number of possible completions, while you can select the desired comple-
tion with Return, Up and Down.

4.3 Functions and definitions
If predicate is non-nil then only symbols which are bound or fbound are
offered amongst the possible completions.

4.3.6 Miscellaneous

Buffer Changed Definitions Editor Command

Argument: None
Key sequence: None

Calcuates which definitions that have been changed in the current buffer
during the current LispWorks session, and displays these in the Changed
Definitions tab of the Editor tool.

By default the reference point against which changes are calculated is the
time when the file was last read into the buffer. A prefix argument equal to
the value of the editor variable prefix-argument-default means the ref-
erence point is the last evaluation. A prefix argument of 1 means the refer-
ence point is the time the buffer was last saved to file.

Note: the most convenient to use this command is via the Editor tool.
Switch it to the Changed Definitions tab, where you can specify the refer-
ence point for calculating the changes.

Function Arglist Editor Command

Argument: function
Key sequence: Meta+= function

Prints the arguments expected by function in the Echo Area. The symbol
under the current point is offered as a default value for function. A prefix
argument automatically causes this default value to be used.

Note: example code showing how to use this command to display argu-
ment lists automatically is supplied with LispWorks, in the file

examples/editor/commands/space-show-arglist.lisp
 137

4 Editing Lisp Programs

138
Function Arglist Displayer Editor Command

Argument: None
Key sequence: Ctrl+`

Shows or hides information about the operator in the current form. The
command controls display of a special window (displayer) on top of the
editor. The displayer shows the operator and its arguments, and tries to
highlight the current argument (that is, the argument at the cursor posi-
tion). If it does not recognize the operator of the current form, it tries the
surrounding form, and if that fails it tries a third level of surrounding
form.

Additionally, while the displayer is visible:

Ctrl+/ Controls whether the documentation string of the
operator is also shown.

Ctrl++ Moves the displayer up.

Ctrl+- Moves the displayer down.

You can dismiss the displayer by invoking the command again, or by
entering Ctrl+G. On Cocoa and Windows it is dismissed automatically
when the underlying pane loses the focus.

In the LispWorks IDE you can change the style of the highlighting by
Preferences... > Environment > Styles > Colors and Attributes > Arglist High-
light.

If passed a prefix argument, for example:

Ctrl+U Ctrl+`

it does not raise a displayer window, but instead displays the operator and
its arguments, with highlight, in the Echo Area. This display is interface-
specific, and implemented only for the Editor and other tools based on the
editor.

Function Argument List Editor Command

Argument: function
Key sequence: Ctrl+Shift+A function

4.3 Functions and definitions
This command is similar to Function Arglist, except that the symbol at
the head of the current form is offered as a default value for function,
unless that symbol is a member of the list editor:*find-likely-func-
tion-ignores* in which case the second symbol in the form is offered as
the default. A prefix argument automatically causes this default value to
be used.

Describe Class Editor Command

Argument: class
Key sequence: None

Displays a description of the class named by class in a Class Browser tool.
The symbol under the current point is offered as a default value for class. A
prefix argument automatically causes this default value to be used.

Describe Generic Function Editor Command

Argument: function
Key sequence: None

Displays a description of function in a Generic Function Browser tool. The
symbol under the current point is offered as a default value for function. A
prefix argument automatically causes this default value to be used.

Describe Method Call Editor Command

Argument: None
Key sequence: None

Displays a Generic Function Browser tool, with a specific method combi-
nation shown.

When invoked with a prefix argument p while the cursor is in a
defmethod form, it uses the generic function and specializers of the
method to choose the method combination.

Otherwise, it prompts for the generic function name and the list of
specializers, which can be class names or lists of the form (eql object)
where object is not evaluated.
 139

4 Editing Lisp Programs

140
Describe System Editor Command

Argument: system
Key sequence: None

Displays a description of the defsystem-defined system named by system.
The symbol under the current point is offered as a default value for system.
A prefix argument automatically causes this default value to be used.

4.4 Forms

4.4.1 Movement, marking and indentation

Forward Form Editor Command

Argument: None
Key sequence: Meta+Ctrl+F

Moves the current point to the end of the next form. A positive prefix
argument causes the point to be moved the required number of forms for-
wards.

Backward Form Editor Command

Argument: None
Key sequence: Meta+Ctrl+B

Moves the current point to the beginning of the previous form. A positive
prefix argument causes the point to be moved the required number of
forms backwards.

Mark Form Editor Command

Argument: None
Key sequence: Meta+Ctrl+@

Puts the mark at the end of the current form. The current region is that
area from the current point to the end of form. A positive prefix argument
puts the mark at the end of the relevant form.

4.4 Forms
Indent Form Editor Command

Argument: None
Key sequence: Meta+Ctrl+Q

If the current point is located at the beginning of a form, the whole form is
indented in a manner that reflects the structure of the form. This command
can therefore be used to format a whole definition so that the structure of
the definition is apparent.

See editor:*indent-with-tabs* for control over the insertion of #\Tab
characters by this and other indentation commands.

4.4.2 Killing forms

Forward Kill Form Editor Command

Argument: None
Key sequence: Meta+Ctrl+K

Kills the text from the current point up to the end of the current form. A
positive prefix argument causes the relevant number of forms to be killed
forwards. A negative prefix argument causes the relevant number of
forms to be killed backwards.

Backward Kill Form Editor Command

Argument: None
Key sequence: Meta+Ctrl+Backspace

Kills the text from the current point up to the start of the current form. A
positive prefix argument causes the relevant number of forms to be killed
backwards. A negative prefix argument causes the relevant number of
forms to be killed forwards.

Kill Backward Up List Editor Command

Argument: None
Key sequence: None
 141

4 Editing Lisp Programs

142
Kills the form surrounding the current form. The cursor must be on the
opening bracket of the current form. The entire affected area is pushed
onto the kill-ring. A prefix argument causes the relevant number of sur-
rounding lists to be removed.

For example, given the following code, with the cursor on the second
open-bracket:

(print (do-some-work 1 2 3))

Kill Backward Up List would kill the outer form leaving this:

(do-some-work 1 2 3)

Also available through the function editor:kill-backward-up-list-
command.

Extract List is a synonym for Kill Backward Up List.

4.4.3 Macro-expansion of forms

Macroexpand Form Editor Command

Argument: None
Key sequence: Ctrl+Shift+M

Macro-expands the form after the current point. The output is sent to the
Output window. A prefix argument causes the output to be displayed in
the current buffer.

Walk Form Editor Command

Argument: None
Key sequence: Meta+Shift+M

Produces a macroexpansion of the form after the current point. The output
is sent to the Output window. A prefix argument causes the output to be
displayed in the current buffer.

Note: Walk Form does not expand the Common Lisp macros cond, prog,
prog* and multiple-value-bind, though it does expand their subforms.

4.5 Lists
4.4.4 Miscellaneous

Transpose Forms Editor Command

Argument: None
Key sequence: Meta+Ctrl+T

Transposes the forms immediately preceding and following the current
point. A zero prefix argument causes the forms at the current point and
the current mark to be transposed. A positive prefix argument causes the
form at or preceding the current point to be transposed with the form the
relevant number of forms forward. A negative prefix argument causes the
form at or preceding the current point to be transposed with the form the
relevant number of forms backward.

Insert Double Quotes For Selection Editor Command

Argument: None
Key sequence: Meta+"

Inserts a pair of double-quotes around the selected text, if any. If there is
no selected text and a prefix argument p is supplied, insert them around
the p following (or preceding) forms. Otherwise insert them at the current
point. The point is left on the character after the first double-quote.

4.5 Lists

4.5.1 Movement

Forward List Editor Command

Argument: None
Key sequence: Meta+Ctrl+N

Moves the current point to the end of the current list. A positive prefix
argument causes the point to be moved the required number of lists for-
wards.
 143

4 Editing Lisp Programs

144
Backward List Editor Command

Argument: None
Key sequence: Meta+Ctrl+P

Moves the current point to the beginning of the current list. A positive pre-
fix argument causes the point to be moved the required number of lists
backwards.

Forward Up List Editor Command

Argument: None
Key sequence: None

Moves the current point to the end of the current list by finding the first
closing parenthesis that is not matched by an opening parenthesis after the
current point.

Backward Up List Editor Command

Argument: None
Key sequence: Meta+Ctrl+U

Moves the current point to the beginning of the current list by finding the
first opening parenthesis that is not matched by a closing parenthesis
before the current point.

Down List Editor Command

Argument: None
Key sequence: Meta+Ctrl+D

Moves the current point to a location down one level in the current list
structure. A positive prefix argument causes the current point to be moved
down the required number of levels.

4.6 Comments
4.6 Comments

Set Comment Column Editor Command

Argument: None
Key sequence: Ctrl+X ;

Sets the comment column to the current column. A positive prefix argu-
ment causes the comment column to be set to the value of the prefix argu-
ment.

The value is held in the editor variable comment-column.

Indent for Comment Editor Command

Argument: None
Key sequence: Meta+;

Creates a new comment or moves to the beginning of an existing com-
ment, indenting it appropriately (see Set Comment Column).

If the current point is in a line already containing a comment, that com-
ment is indented as appropriate, and the current point is moved to the
beginning of the comment. An existing double semicolon comment is
aligned as for a line of code. An existing triple semicolon comment or a
comment starting in column 0, is not moved.

A prefix argument causes comments on the next relevant number of lines
to be indented. The current point is moved down the relevant number of
lines.

If characters not associated with the comment extend past the comment
column, a space is added before starting the comment.

Insert Multi Line Comment For Selection Editor Command

Argument: None
Key sequence: Meta+#

Inserts multi line comment syntax around the selected text, if any. If there
is no selected text and a prefix argument p is supplied, inserts them
 145

4 Editing Lisp Programs

146
around p following (or preceding) forms. Otherwise it inserts them at the
current point. The point is left on the first character inside the comment.

Up Comment Line Editor Command

Argument: None
Key sequence: Meta+P

Moves to the previous line and then performs an Indent for Comment.

Down Comment Line Editor Command

Argument: None
Key sequence: Meta+N

Moves to the next line and then performs an Indent for Comment.

Indent New Comment Line Editor Command

Argument: None
Key sequence: Meta+J or Meta+Newline

Ends the current comment and starts a new comment on the next line,
using the indentation and number of comment start characters from the
previous line’s comment. If Indent New Comment Line is performed
when the current point is not in a comment line, it simply acts as a Return.

Kill Comment Editor Command

Argument: None
Key sequence: Meta+Ctrl+;

Kills the comment on the current line and moves the current point to the
next line. If there is no comment on the current line, the point is simply
moved onto the next line. A prefix argument causes the comments on the
relevant number of lines to be killed and the current point to be moved
appropriately.

The comment is identified by matching against the value of comment-
start.

4.7 Parentheses
comment-begin Editor Variable

Default value: ";"
Mode: Lisp

When the value is a string, it is inserted to begin a comment by commands
like Indent for Comment and Indent New Comment Line.

comment-start Editor Variable

Default value: ";"
Mode: Lisp

A string that begins a comment. When the value is a string, it is inserted to
start a comment by commands like Indent New Comment Line, or used
to identify a comment by commands like Kill Comment.

comment-column Editor Variable

Default value: 0
Mode: Lisp

Column to start comments in. Set by Set Comment Column.

comment-end Editor Variable

Default value: nil
Mode: Lisp

String that ends comments. The value nil indicates Newline termination.
If the value is a string, it is inserted to end a comment by commands like
Indent New Comment Line.

4.7 Parentheses

Insert () Editor Command

Argument: None
Key sequence: None
 147

4 Editing Lisp Programs

148
Inserts a pair of parentheses, positioning the current point after the open-
ing parenthesis. A prefix argument p causes the parentheses to be placed
around p following (or preceding) forms.

Insert Parentheses For Selection Editor Command

Argument: None
Key sequence: Meta+(

Inserts a pair of parentheses around the selected text, if any. If there is no
selected text and a prefix argument p is supplied, inserts them around p
following (or preceding) forms. Otherwise it inserts them at the current
point. The point is left on the character after the opening parenthesis.

highlight-matching-parens Editor Variable

Default value: t
Mode: Lisp

When the value is true, matching parentheses are displayed in a different
font when the cursor is directly to the right of the corresponding close
parenthesis.

Move Over) Editor Command

Argument: None
Key sequence: Meta+)

Inserts a new line after the next closing parenthesis, moving the current
point to the new line. Any indentation preceding the closing parenthesis is
deleted, and the new line is indented.

Lisp Insert) Editor Command

Argument: None
Key sequence:)
Mode: Lisp

4.8 Documentation
Inserts a closing parenthesis and highlights the matching opening paren-
thesis, thereby allowing the user to examine the extent of the parentheses.

Find Unbalanced Parentheses Editor Command

Argument: None
Key sequence: None

Moves the point to the end of the last properly matched form, thereby
allowing you to easily identify any parentheses in your code which are
unbalanced.

Find Mismatch is a synonym for Find Unbalanced Parentheses.

4.8 Documentation

Apropos Editor Command

Argument: string
Key sequence: None

Displays a Symbol Browser tool which lists symbols with symbol names
matching string. The symbol name at the current point is offered as a
default value for string.

By default string is matched against symbol names as a regular expression.
A prefix argument causes a plain substring match to be used instead.

See “Regular expression searching” on page 85 for a description of regular
expression matching. See the LispWorks IDE User Guide for a description of
the Symbol Browser tool.

Describe Symbol Editor Command

Argument: symbol
Key sequence: None

Displays a description (that is, value, property list, package, and so on) of
symbol in a Help window. The symbol under the current point is offered as
 149

4 Editing Lisp Programs

150
a default value for string. A prefix argument automatically causes this
default value to be used.

Function Documentation Editor Command

Arguments: None
Key sequence: Ctrl+Shift+D

editor:function-documentation-command p

Prompts for a symbol, which defaults to the symbol at the current point,
and displays the HTML documentation for that symbol if it is found in the
HTML manuals index pages.

On X11/Motif the prefix argument controls whether a new browser win-
dow is created. If the option Reuse existing browser window is selected in
the browser preferences, then the prefix argument causes the command to
create a new browser window. If Reuse existing browser window is dese-
lected, then the prefix argument causes the command to reuse an existing
browser window.

Show Documentation Editor Command

Argument: name
Key sequence: Meta+Ctrl+Shift+A

Displays a Help window containing any documentation for the Lisp sym-
bol name that is present in the Lisp image. This includes function lambda
lists, and documentation strings accessible with cl:documentation, if
any such documentation exists.

Show Documentation for Dspec Editor Command

Argument: dspec
Key sequence: None

Displays any documentation in the Lisp image for the dspec dspec, as
described for Show Documentation.

4.9 Evaluation and compilation
dspec is a symbol or list naming a definition, as described in the LispWorks
User Guide and Reference Manual.

4.9 Evaluation and compilation
The commands described below allow the user to evaluate (interpret) or com-
pile Lisp code that exists as text in a buffer. In some cases, the code may be used
to modify the performance of the Editor itself.

4.9.1 General Commands

current-package Editor Variable

Default value: nil

If non-nil, defines the value of the current package.

Set Buffer Package Editor Command

Argument: package
Key sequence: None

Set the package to be used by Lisp evaluation and compilation while in
this buffer. Not to be used in the Listener, which uses the value of
package instead.

Set Buffer Output Editor Command

Argument: stream
Key sequence: None

Sets the output stream that evaluation results in the current buffer are sent
to.
 151

4 Editing Lisp Programs

152
4.9.2 Evaluation commands

Evaluate Defun Editor Command

Argument: None
Key sequence: Meta+Ctrl+X

Evaluates the current top-level form. If the current point is between two
forms, the previous form is evaluated.

If the form is a defvar form, then the command may first make the vari-
able unbound, according to the value of evaluate-defvar-action, and
hence assign the new value. This is useful because, whilst defvar does not
reassign the value of a bound variable, when editing a program it is likely
that you do want the new value.

evaluate-defvar-action Editor Variable

Default value: :reevaluate-and-warn

This affects the behavior of Evaluate Defun and Compile Defun when
they are invoked on a defvar form. The allowed values are:

:evaluate-and-warn

Do not make the variable unbound before evaluating the
form, and warn that it was not redefined.

:evaluate Do not make the variable unbound before evaluating the
form, but do not warn that it was not redefined.

:reevaluate-and-warn

Make the variable unbound before evaluating the form,
and warn that it was therefore redefined.

:reevaluate

Make the variable unbound before evaluating the form,
but do not warn that it was therefore redefined.

4.9 Evaluation and compilation
Reevaluate Defvar Editor Command

Argument: None
Key sequence: None

Evaluates the current top-level form if it is a defvar. If the current point is
between two forms, the previous form is evaluated. The form is treated as
if the variable is not bound.

Re-evaluate Defvar is a synonym for Reevaluate Defvar.

Evaluate Expression Editor Command

Argument: expression
Key sequence: Esc Esc expression
Key sequence: Meta+Esc expression

Evaluates expression. The expression to be evaluated is typed into the Echo
Area and the result of the evaluation is displayed there also.

Evaluate Last Form Editor Command

Argument: None
Key sequence: Ctrl+X Ctrl+E

Evaluates the Lisp form preceding the current point.

Without a prefix argument, prints the result in the Echo Area. With a non-
nil prefix argument, inserts the result into the current buffer.

Evaluate Region Editor Command

Argument: None
Key sequence: Ctrl+Shift+E

Evaluates the Lisp forms in the region between the current point and the
mark.
 153

4 Editing Lisp Programs

154
Evaluate Buffer Editor Command

Argument: None
Key sequence: None

Evaluates the Lisp forms in the current buffer.

Load File Editor Command

Argument: file
Key sequence: None

Loads file into the current eval server, so that all Lisp forms in the file are
evaluated.

Toggle Error Catch Editor Command

Argument: None
Key sequence: None

Toggles error catching for expressions evaluated in the editor. By default,
if there is an error in an expression evaluated in the editor, a Notifier win-
dow is opened which provides the user with a number of options, includ-
ing debug, re-evaluation and aborting of the editor command. However,
this behavior can be changed by using Toggle Error Catch, so that in
the event of an error, the error message is printed in the Echo Area, and the
user is given no restart or debug options.

Evaluate Buffer Changed Definitions Editor Command

Argument: None
Key sequence: None

Evaluates definitions that have been changed in the current buffer during
the current LispWorks session (use Buffer Changed Definitions on
page 137 to see which definitions have changed). A prefix argument equal
to the value of prefix-argument-default causes evaluation of defini-
tions changed since last evaluated. A prefix argument of 1 causes evalua-
tion of definitions changed since last saved.

4.9 Evaluation and compilation
Evaluate Changed Definitions Editor Command

Argument: None
Key sequence: None

Evaluates definitions in all Lisp buffers that have been changed during the
current LispWorks session. The effect of prefixes is the same as for Evalu-
ate Buffer Changed Definitions.

Evaluate System Changed Definitions Editor Command

Argument: system
Key sequence: None

Evaluates definitions that have been changed in system during the current
LispWorks session.

4.9.3 Evaluation in Listener commands

Evaluate Defun In Listener Editor Command

Argument: editp
Key sequence: None

This command works rather like Evaluate Defun in that it evaluates the
current top-level form and handles defvar forms usefully. However,
instead of doing the evaluation in the Editor window, it copies the form
into a Listener window as if you had entered it there.

Normally the evaluation is done immediately, but if a prefix argument is
given, the text is inserted into the Listener for you to edit before pressing
Return to evaluate it.

An in-package form is inserted before the form when necessary, so this
will change the current package in the Listener.

Evaluate Last Form In Listener Editor Command

Argument: editp
Key sequence: None
 155

4 Editing Lisp Programs

156
This command works rather like Evaluate Last Form in that it evaluates
the Lisp form preceding the current point. However, instead of doing the
evaluation in the Editor window, it copies the form into a Listener window
as if you had entered it there.

Normally the evaluation is done immediately, but if a prefix argument is
given, the text is inserted into the Listener for you to edit before pressing
Return to evaluate it.

An in-package form is inserted before the form when necessary, so this
will change the current package in the Listener.

Evaluate Region In Listener Editor Command

Argument: editp
Key sequence: None

This command works rather like Evaluate Region in that it evaluates the
Lisp forms in the current region. However, instead of doing the evaluation
in the Editor window, it copies the forms into a Listener window as if you
had entered them there.

Normally the evaluation is done immediately, but if a prefix argument is
given, the forms are inserted into the Listener for you to edit before press-
ing Return to evaluate them.

An in-package form is inserted before the forms when necessary, so this
will change the current package in the Listener.

4.9.4 Compilation commands

Compile Defun Editor Command

Argument: None
Key sequence: Ctrl+Shift+C

Compiles the current top-level form. If the current point is between two
forms, the previous form is evaluated.

If the form is a defvar form, then the command may first make the vari-
able unbound, according to the value of evaluate-defvar-action, and

4.9 Evaluation and compilation
hence assign the new value.This is useful because, whilst defvar does not
reassign the value of a bound variable, when editing a program it is likely
that you do want the new value.

Compile Region Editor Command

Argument: None
Key sequence: Ctrl+Shift+R

Compiles the Lisp forms in the region between the current point and the
mark.

Compile File Editor Command

Argument: file
Key sequence: None

Compiles file unconditionally, with cl:compile-file.

No checking is done on write dates for the source and binary files, to see if
the file needs to be compiled. Also, no checking is done to see if there is a
buffer for the file that should first be saved.

Compile Buffer Editor Command

Argument: None
Key sequence: Ctrl+Shift+B

Reads, compiles and then executes in turn each of the Lisp forms in the
current buffer.

Compile Buffer File Editor Command

Argument: None
Key sequence: None

Compiles the source file in the current buffer as if by Compile File, but
checks the file first. If its associated binary (fasl) file is older than the
source file or does not exist then the file is compiled. If the binary file is up
to date, the user is asked whether the file should be compiled anyway.
 157

4 Editing Lisp Programs

158
When compile-buffer-file-confirm is true, the user is always asked
for confirmation, even when the date of the source file is later than that of
the binary file.

A prefix argument causes the file to be compiled without checking the
date or existence of the binary file.

compile-buffer-file-confirm Editor Variable

Default value: t

Determines whether Compile Buffer File should prompt for a
compilation to proceed. If the value is true, the user is always prompted
for confirmation.

Compile Buffer Changed Definitions Editor Command

Argument: None
Key sequence: None

Compiles definitions that have been changed in the current buffer during
the current LispWorks session (use Buffer Changed Definitions to see
which definitions have changed). A prefix argument equal to the value of
prefix-argument-default causes compilation of definitions changed
since last compiled. A prefix argument of 1 causes compilation of
definitions changed since last saved.

Compile Changed Definitions Editor Command

Argument: None
Key sequence: None

Compiles definitions in all Lisp buffers that have been changed during the
current LispWorks session. The effect of prefixes is the same as for Com-
pile Buffer Changed Definitions.

4.9 Evaluation and compilation
Compile System Editor Command

Argument: system
Key sequence: None

Compiles all files in the system system.

If ASDF is loaded and the LispWorks tools are configured to use it, then
this command works with ASDF systems as well as those defined by
lispworks:defsystem.

Compile System Changed Definitions Editor Command

Argument: system
Key sequence: None

Compiles definitions that have been changed in system during the current
LispWorks session.

Disassemble Definition Editor Command

Argument: definition
Key sequence: None

Outputs assembly code for definition to the Output window, compiling it
first if necessary. The name of the current top-level definition is offered as
a default value for definition.

Edit Recognized Source Editor Command

Argument: None
Key sequence: Ctrl+X ,

Edit the source of the next compiler message, warning or error. It should
be used while viewing the Output window. Without a prefix argument, it
searches forwards in the Output window until it finds text which it
recognizes as a compiler message, warning or error, and then shows the
source code associated with that message. With a prefix argument, it
searches backwards.
 159

4 Editing Lisp Programs

160
4.10 Breakpoints
These commands operate on breakpoints, which are points in code where exe-
cution stops and the LispWorks IDE invokes the Stepper tool.

See "Breakpoints" in the LispWorks IDE User Guide for more information about
breakpoints and the Stepper tool.

4.10.1 Setting and removing breakpoints

Toggle Breakpoint Editor Command

Argument: None
Key sequence: None

If there is no breakpoint at the current point, sets a breakpoint there if pos-
sible. If there is a breakpoint at the current point, removes it.

4.10.2 Moving between breakpoints

Next Breakpoint Editor Command

Argument: None
Key sequence: None

Moves the point to the next breakpoint in the current buffer. If given a
numeric prefix argument p, it skips p-1 breakpoints.

Previous Breakpoint Editor Command

Argument: None
Key sequence: None

Moves the point to the previous breakpoint in the current buffer. If given a
numeric prefix argument p, it skips p-1 breakpoints.

4.11 Removing definitions
4.11 Removing definitions
These commands allow the user to remove definitions from the running Lisp
image. It uses Common Lisp functionality such as fmakunbound, makunbound
and remove-method to undefine Lisp functions, variables, methods and so on.

Note: This does not mean deleting the source code.

4.11.1 Undefining one definition

Undefine Editor Command

Argument: None
Key sequence: None

Without a prefix argument, this undefines the current top level definition.
That is, the defining form around or preceding the current point.

With a non-nil prefix argument, this does not undefine the definition but
instead inserts into the buffer a Lisp form which, if evaluated, would
undefine the definition.

Undefine Command Editor Command

Argument: None
Key sequence: None

Prompts for the name of an Editor command, and undefines that
command.

4.11.2 Removing multiple definitions

Undefine Buffer Editor Command

Argument: None
Key sequence: None

Undefines all the definitions in the current buffer.
 161

4 Editing Lisp Programs

162
Undefine Region Editor Command

Argument: None
Key sequence: None

Undefines the definitions in the current region.

5

5 Emulation
By default the LispWorks Editor emulates GNU Emacs. This is often unusable
for programmers familiar only with Mac OS keys and behavior: for instance, a
selection is not deleted on input, and most of the commonly used keys differ.

The LispWorks editor can be switched to emulate the Mac OS model instead of
Emacs.

When using Mac OS emulation the main differences are:

• An alternate set of key bindings for the commonly-used commands.

• The abort gesture for the current editor command is Esc, not Ctrl+G.

• Inserted text replaces any currently selected text.

• The cursor is a vertical bar rather than a block.

5.1 Using Mac OS editor emulation
To switch Mac OS editor emulation on, use Preferences... > Environment > Emula-
tion. See the section "Configuring the editor emulation" in the LispWorks IDE
User Guide for details.
163

5 Emulation

164
5.2 Key bindings
The key bindings for Mac OS editor emulation are supplied in the LispWorks
library file config/mac-key-binds.lisp. This file is loaded the first time that
you use Mac OS editor emulation, or on startup if your preference is stored.

5.2.1 Finding the keys

There are several ways to find the key for a given command, and the command
on a given key:

• The files mac-key-binds.lisp and selection-key-binds.lisp show
the default state, just like key-binds.lisp shows the Emacs bindings.

• The Editor command Describe Bindings shows all the current key
bindings, including those specific to the buffer, the major mode and any
minor modes that are in effect.

• The Editor command Describe Key reports the command on a given key.

• The Editor command Where Is reports the key for a given command.

• Use the Help > Editing menu.

5.2.2 Modifying the Key Bindings

As in Emacs emulation, the key sequences to which individual commands are
bound can be changed, and key bindings can be set up for commands which are
not, by default, bound to any key sequences.

Interactive means of modifying key bindings are described in “Key bindings”
on page 111. Key bindings can also be defined programmatically via
editor:bind-key forms similar to those in mac-key-binds.lisp.

However, note that you must use editor:set-interrupt-keys if you wish to
alter the abort gesture.

5.2.3 Accessing Emacs keys

When Mac OS editor emulation is on, most Emacs keys are still available since
keystrokes like Ctrl+X and Ctrl+S do not clash with standard Mac OS bind-
ings. For example, to invoke the command WFind File, simply enter:

5.3 Replacing the current selection
Ctrl+X Ctrl+F

If you have chosen not to have an Emacs Meta key (see “Using Mac OS editor
emulation”) you can use Ctrl+M instead. For example, to run the command
Skip Whitespace, enter:

Ctrl+M X Skip Whitespace

5.2.4 The Alt modifier and editor bindings

In Microsoft Windows emulation on Microsoft Windows, keystrokes with the
Alt modifier key are used by the system to activate the menu bar. Therefore
these keystrokes, for example Alt+A and Alt+Ctrl+A are not available to the
editor.

Windows accelerators always take precedence over editor key bindings, so in
Emacs emulation the Alt modifier key only acts as Meta though keystrokes
with Alt if there is no accelerator which matches.

On Cocoa, the preference for the Meta key affects the operation of menu acceler-
ators (shortcuts). If Command is used as Meta, then it will not be available for use
as an acclerator.

5.3 Replacing the current selection
When using Mac OS editor emulation, Delete Selection Mode is active so that
selected text is deleted when you type or paste text. Also, Delete deletes the
current selection.

Note: Delete Selection Mode can also be used independently of Mac OS editor
emulation. See “Delete Selection” on page 56 for details.

5.4 Emulation in Applications
If you include the LispWorks editor (via capi:editor-pane or its subclasses) in
an application, then by default your interfaces will use Microsoft Windows
emulation on Windows, Mac OS editor emulation on Cocoa, and Emacs emula-
tion on Unix and Linux.

To override this behavior in your interface classes, define a method on
capi:interface-keys-style. See the CAPI Reference Manual for details.
 165

5 Emulation

166
To override this behavior in your delivered application, use the delivery
keyword :editor-style. See the LispWorks Delivery User Guide for details.

6

6 Advanced Features
The editor can be customized, both interactively and programmatically, to suit
the users requirements.

The chapter “Command Reference” provides details of commands used to cus-
tomize the editor for the duration of an editing session (see “Keyboard macros”
on page 104, “Key bindings” on page 111, “Editor variables” on page 109). This
chapter contains information on customizing the editor on a permanent basis.

There are a number of ways in which the editor may be customized:

• The key sequences to which individual commands are bound can be
changed, and key bindings can be set up for commands which are not, by
default, bound to any key sequences—see “Customizing default key
bindings” on page 168.

• The indentation used for Lisp forms can be modified to suit the prefer-
ences of the user—see “Customizing Lisp indentation” on page 170.

• Additional editor commands can be created by combining existing com-
mands and providing specified arguments for them—see “Programming
the editor” on page 170.

Note that the default configuration files mentioned in this chapter were used
when LispWorks was released. They are not read in when the system is run, so
any modification to them will have no effect. If the user wishes to modify the
167

6 Advanced Features

168
behavior of LispWorks in any of these areas, the modifying code should be
included in the .lispworks file, or an image containing the modifications
should be saved.

6.1 Customizing default key bindings
The key sequences to which individual commands are bound can be changed,
and key bindings can be set up for commands which are not, by default, bound
to any key sequences. Interactive means of modifying key bindings are
described in “Key bindings” on page 111.

This section describes the editor function bind-key, which is used to establish
bindings programmatically. If you want to alter your personal key bindings, put
the modifying code in your .lispworks file.

The default Emacs key bindings can be found in the file
config/key-binds.lisp in the LispWorks library directory. See “Key bind-
ings” for details of the key binds files used in other editor emulations.

editor:bind-key Function

editor:bind-key name key &optional kind where

Binds the command name to the key sequence or combination key.

kind can take the value :global, :mode, or :buffer.

The default for kind is :global. which makes the binding apply in all buff-
ers and all modes, unless overridden by a mode-specific or buffer-specific
binding.

If where is not supplied, the binding is for the current emulation.
Otherwise where should be either :emacs or :mac, meaning that the bind-
ing is for Emacs emulation or Mac OS editor emulation respectively.

Note: before the editor starts, the current emulation is :emacs. Therefore
bind-key forms which do not specify where and which are evaluated
before the editor starts (for example, in your initialization file) will apply
to Emacs emulation only. Thus for example

(bind-key "Command" "Control-Right")

6.1 Customizing default key bindings
when evaluated in your initialization file will establish an Emacs
emulation binding. The same form when evaluated after editor startup
will establish a binding in the current emulation: Emacs or Mac OS editor
emulation.

It is best to specify the intended emulation:

(editor:bind-key "Command" "Control-Right" :global :mac)

If kind is :buffer the binding applies only to a buffer which should be
specified by the value of where.

If kind is :mode the binding applies only to a mode which should be speci-
fied by where.

If this function is called interactively via the command Bind Key, you will
be prompted as necessary for the kind of binding, the buffer or the mode.
The binding is for the current emulation. Tab completion may be used at
any stage.

The following examples, which are used to implement some existing key
bindings, illustrate how key sequences can be specified using bind-key.

(editor:bind-key "Forward Character" #\control-\f)
(editor:bind-key "Forward Word" #\meta-\f)
(editor:bind-key "Save File" ’#(#\control-\x #\control-\s))
(editor:bind-key "Regexp Forward Search" #\meta-control-\s)
(editor:bind-key "Complete Field" #\space :mode "Echo Area")
(editor:bind-key "Backward Character" "left")
(editor:bind-key "Forward Word" #("control-right"))

editor:bind-string-to-key Function

editor:bind-string-to-key string key &optional kind where

Binds the text string string to the keyboard shortcut key without the need
to create a command explicitly. Using key inserts string in the current
buffer. The kind and where arguments are as for editor:bind-key.

editor:set-interrupt-keys Function

editor:set-interrupt-keys keys &optional input-style
 169

6 Advanced Features

170
The key that aborts the current editor command is handled specially by
the editor. If you wish to change the default (from Ctrl+G for Emacs) then
you must use this function rather than editor:bind-key. See the file con-
fig/mac-key-binds.lisp for an example.

6.2 Customizing Lisp indentation
The indentation used for Lisp forms can be modified to suit the preferences of
the user.

The default indentations can be found in the file config/indents.lisp in the
LispWorks library directory. If you want to alter your personal Lisp indentation,
put the modifying code in your .lispworks file.

editor:setup-indent Function

editor:setup-indent form-name no-of-args &optional standard special

Modifies the indentation, in Lisp Mode, for the text following an instance
of form-name. The arguments no-of-args, standard and special should all be
integers. The first no-of-args forms following the form-name become
indented special spaces if they are on a new line. All remaining forms
within the scope of the form-name become indented standard spaces.

For example, the default indentation for if in Lisp code is established by:

(editor:setup-indent "if" 2 2 4)

This determines that the first 2 forms after the if (that is, the test and the
then clauses) get indented 4 spaces relative to the if, and any further
forms (here, just an else clause) are indented by 2 spaces.

6.3 Programming the editor
The editor functions described in this section can be combined and provided
with arguments to create new commands.

Existing editor commands can also be used in the creation of new commands.
Every editor command documented in this manual is named by a string com-
mand which can be used to invoke the command interactively, but there is also

6.3 Programming the editor
associated with this a standard Lisp function (the "command function") named
by a symbol exported from the editor package. You can use this symbol to call
the command programmatically. For example, the editor command Forward
Character is referred to by editor:forward-character-command.

The first argument of any command function is the prefix argument p, and this
must therefore be included in any programmatic call, even if the prefix argu-
ment is ignored. Some commands have additional optional arguments. For
example to insert 42 #\! characters, you would call

(editor:self-insert-command 42 #\!)

Details of these optional arguments are provided in the command descriptions
throughout this manual.

See editor:defcommand for the details of how to create new commands.

Note: the code found in this chapter is included in the examples/editor direc-
tory in the LispWorks library.

Note: code which modifies the contents of a capi:editor-pane (for example a
displayed editor buffer) must be run only in the interface process of that pane.

The following sections describe editor functions that are not interactive editor
commands.

6.3.1 Calling editor functions

All editor commands and some other editor functions expect to be called within
a dynamic context that includes settings for the current buffer and current win-
dow. This happens automatically when using the editor interactively.

You can set up the context in a CAPI application by using the function
capi:call-editor (see the CAPI Reference Manual).

You can also use the following function to call editor commands and functions.

editor:process-character Function

editor:process-character char window

Processes char in a dynamic context where the current window is window
and the current buffer is the buffer currently displayed in window.
 171

6 Advanced Features

172
The char can be one of the following:

• A string, naming an editor command to invoke.

• A list of the form (function . args), which causes function to be called
with args. The items in args are not evaluated.

• A function or symbol, which is called with nil as its argument (like a
command function would be if there is no prefix argument).

• A character or system:gesture-spec object, which is treated as if it
has been typed on the keyboard.

There is no return value. The processing may happen in another thread, so
may not have competed before this function returns.

6.3.2 Defining commands

editor:defcommand Macro

defcommand name lambda-list command-doc function-doc &body forms =>
command-function

Defines a new editor command. name is a usually string naming the new
editor command which can invoked in the editor via Extended Command,
and command-function is a symbol naming the new command function
which can be called programmatically. The command-function symbol is
interned in the current package.

lambda-list is the lambda list of the new command, which must have at
least one argument which is usually denoted p, the prefix argument.

command-doc and function-doc should be strings giving detailed and brief
descriptions of the new command respectively.

forms is the Lisp code for the command.

The name of the command must be a string, while the name of the associ-
ated command function must be a symbol. There are two ways in which
name can be supplied. Most simply, name is given as a string, and the string
is taken to be the name of the editor command. The symbol naming the
command function is computed from that string: spaces are replaced with
hyphens and alphabetic characters are uppercased, but otherwise the sym-

6.3 Programming the editor
bol name contains the same characters as the string with -COMMAND
appended.

If a specific function name, different to the one defcommand derives itself,
is required, then this can be supplied explicitly. To do this, name should be
a list: its first element is the string used as the name of the command,
while its second and last element is the symbol used to name the Lisp
command function.

For example the following code defines an editor command, Move Five,
which moves the cursor forward in an editor buffer by five characters.

(editor:defcommand "Move Five" (p)
 "Moves the current point forward five characters.
 Any prefix argument is ignored."
 "Moves five characters forward."
 (editor:forward-character-command 5))
=>
MOVE-FIVE-COMMAND

The prefix argument p is not used, and is there simply because the lambda-
list must have at least one element.

Use Meta+X Move Five to invoke the command.

As another example this command changes all the text in a writable buffer
to be uppercase:

(editor:defcommand "Uppercase Buffer" (p)
 "Uppercase the buffer contents" ""
 (declare (ignore p))
 (let* ((buffer (editor:current-buffer))
 (point (editor:buffer-point buffer))
 (start (editor:buffers-start buffer))
 (end (editor:buffers-end buffer)))
 (editor:set-current-mark start)
 (editor:move-point point end)
 (editor:uppercase-region-command nil)))

Having defined your new command, you can invoke it immediately by
Meta+X Uppercase Buffer.

You could also call it programmatically:

(uppercase-buffer-command nil)
 173

6 Advanced Features

174
If you anticipate frequent interactive use of Uppercase Buffer you will
want to bind it to a key. You can do this interactively for the current ses-
sion using Bind Key. Also you can put something like this in your initial-
ization file to establish the key binding for each new session:

(editor:bind-key "Uppercase Buffer" #("Control-x" "Meta-u"))

Then, entering Ctrl+X Meta+U will invoke the command.

6.3.3 Buffers

Each buffer that you manipulate interactively using editor commands is an
object of type editor:buffer that can be used directly when programming the
editor. Buffers contain an arbitrary number of editor:point objects, which are
used when examining or modifying the text in a buffer (see “Points” on page
179).

6.3.3.1 Buffer locking

Each buffer contains a lock that is used to prevent more than one thread from
modifying the text, text properties or points within the buffer simultaneously.
All of the exported editor functions (editor:insert-string, editor:move-
point etc) claim this lock implicitly and are therefore atomic with respect to
other such functions.

In situations where you want to make several changes as one atomic operation,
use one of the macros editor:with-buffer-locked or editor:with-point-
locked to lock the buffer for the duration of the operation. For example, if you
want to delete the next character and replace it by a space:

(editor:with-buffer-locked ((editor:current-buffer))
 (editor:delete-next-character-command nil)
 (editor:insert-character (editor:current-point)
 #\Space))

In addition, you sometimes want to examine the text in a buffer without chang-
ing it, but ensure that no other thread can modify it in the meantime. This can be
achieved by locking the buffer using editor:with-buffer-locked or edi-
tor:with-point-locked and passing the for-modification argument as nil. For
example, if you are computing the beginning and end of some portion of the
text in a buffer and then performing some operation on that text, you may want

6.3 Programming the editor
to lock the buffer to ensure that no other threads can modify the text while your
are processing it.

editor:with-buffer-locked Macro

editor:with-buffer-locked (buffer
 &key for-modification
 check-file-modification
 block-interrupts)
 &body body => values

Evaluates body while holding the lock in buffer. At most one thread can
lock a buffer at a time and the macro waits until it can claim the lock.

If for-modification is non-nil (the default), the contents of buffer can be mod-
ified by body. If for-modification is nil, the contents of buffer cannot be mod-
ified until body returns and trying to do so from within body will signal an
error. If the buffer is read-only and for-modification is non-nil, then an edi-
tor:editor-error is signalled. The status of the lock can be changed to
for-modification (see editor:change-buffer-lock-for-modification).
If the buffer is read-only, an editor:editor-error occurs if for-modifica-
tion is t.

The macro editor:with-buffer-locked can be used recursively, but if
the outermost use passed nil as the value of for-modification, then inner
uses cannot pass non-nil as the value of for-modification, unless edi-
tor:change-buffer-lock-for-modification is used to change the lock
status.

If check-file-modification is non-nil (the default) and the buffer is associated
with a file and has not already been modified, then the modification time
of the file is compared to the time that the file was last read. If the file is
newer than the buffer, then the user is asked if they want to re-read the file
into the buffer, and if they do then the file is re-read and the operations
aborts. Otherwise, there is no check for the file being newer than the
buffer.

If block-interrupts is non-nil, the body is evaluated with interrupts blocked.
This is useful if the buffer may be modified by an interrupt function, or
some interrupt function may end up waiting for another thread that may
 175

6 Advanced Features

176
wait for the buffer lock, which would cause a deadlock. The default is not
to block interrupts.

Note that using a non-nil value for block-interrupts is not the same as using
the without-interrupts or without-preemption macros. It just stops
the current thread from calling interrupt functions, so other threads might
run while the body is being evaluated.

The values returned are those of body.

editor:with-point-locked Macro

editor:with-point-locked (point
 &key for-modification
 check-file-modification
 block-interrupts
 errorp)
 &body body => values

Evaluates body while holding the lock in the buffer that is associated with
point. In addition, the macro checks that point is valid and this check is
atomic with respect to calls to the function editor:delete-point. The
values of for-modification, check-file-modification and block-interrupts have
the same meanings as for editor:with-buffer-locked.

The value of errorp determines the behavior when point is not valid. If
errorp is non-nil, an error is signaled, otherwise nil is returned without
evaluating body. The point may be invalid because it does not reference
any buffer (that is, it has been deleted), or because its buffer was changed
by another thread while the current thread was attempting to lock the
buffer.

The values returned are those of body, or nil when errorp is nil and point is
not valid.

editor:change-buffer-lock-for-modification Function

editor:change-buffer-lock-for-modification buffer &key check-file-
modification force-modification => result

Changes the status of the lock in the buffer buffer to allow modification of
the text. buffer must already be locked for non-modification by the current

6.3 Programming the editor
thread (that is, it must be dynamically within a editor:with-buffer-
locked or editor:with-point-locked form with for-modification nil).

buffer An editor buffer.

check-file-modification

A boolean.

force-modification

A boolean.

result :buffer-not-locked, :buffer-out-of-date or
:buffer-not-writable.

If check-file-modification is non-nil, the same test as described for edi-
tor:with-buffer-locked is performed, and if the file has been modified
then :buffer-out-of-date is returned without changing anything (it
does not prompt the user to re-read the file).

The default value of check-file-modification is t.

force-modification controls what happens if the buffer is read-only. If force-
modification is nil, the function returns :buffer-not-writable and does
nothing. If it is non-nil, the status is changed. The buffer remains read-
only.

result is nil if the status of the locking was changed to for-modification, or if
the status of the buffer lock was already for-modification. Otherwise, result
is a keyword indicating why the status could not be changed. When result
is non-nil, the status of the locking remains unchanged.

The returned value can be be one of:

:buffer-not-locked

The buffer is not locked by the current thread.

:buffer-not-writable

The buffer is not writable, and force-modification is nil.

:buffer-out-of-date

The file that is associated with the buffer was modified
after it was read into the editor, the buffer is not modified,
and check-file-modification is non-nil.
 177

6 Advanced Features

178
6.3.3.2 Buffer operations

editor:*buffer-list* Variable

Contains a list of all the buffers in the editor.

editor:current-buffer Function

editor:current-buffer

Returns the current buffer.

editor:buffer-name Function

editor:buffer-name buffer

Returns the name of buffer.

editor:window-buffer Function

editor:window-buffer window

Returns the buffer currently associated with window.

editor:buffers-start Function

editor:buffers-start buffer

Returns the starting point of buffer.

editor:buffers-end Function

editor:buffers-end buffer

Returns the end point of buffer.

editor:buffer-point Function

editor:buffer-point buffer

Returns the current point in buffer.

6.3 Programming the editor
editor:use-buffer Macro

editor:use-buffer buffer &body forms

Makes buffer the current buffer during the evaluation of forms.

editor:buffer-from-name Function

editor:buffer-from-name name

Returns the buffer called name (which should be a string). If there is no
buffer with that name, nil is returned.

editor:make-buffer Function

editor:make-buffer name &key modes

Creates a new buffer called name. The argument modes is a list of modes for
the new buffer. The default value for modes is Fundamental. The newly-
created buffer is returned.

editor:goto-buffer Function

editor:goto-buffer buffer in-same-window

Makes buffer the current buffer. If buffer is currently being shown in a win-
dow then the cursor is moved there. If buffer is not currently in a window
and in-same-window is non-nil then it is shown in the current window, oth-
erwise a new window is created for it.

6.3.4 Points

Locations within a buffer are recorded as editor:point objects. Each point
remembers a character position within the buffer and all of the editor functions
that manipulate the text of a buffer locate the text using one or more point
objects (sometimes the current point).

A point's kind controls what happens to the point when text in the buffer is
inserted or deleted.
 179

6 Advanced Features

180
:temporary points are for cases where you need read-only access to the buffer.
They are like GNU Emacs "points". They have a lower overhead than the other
kinds of point and do not need to be explicitly deleted, but do not use them in
cases where you make a point, insert or delete text and then use the point again,
since they do not move when the text is changed. Also, do not use them in cases
where more than one thread can modify their buffer without locking the buffer
first (see “Buffer locking” on page 174)

:before-insert and :after-insert points are for cases where you need to
make a point, insert or delete text and still use the point afterwards. They are
like GNU Emacs "markers". The difference between these two kinds is what
happens when text is inserted. For a point at position n from the start of the
buffer, inserting len characters will leave the point at either position n or n+len
according to the following table.

When text is deleted, :before-insert and :after-insert points are treated
the same: points <= the start of the deletion remain unchanged, points >= the
end of the deletion are moved with the text and points within the deleted region
are automatically deleted and cannot be used again.

All points with kind other than :temporary are stored within the data struc-
tures of the editor buffer so they can be updated when the text changes. A point
can be removed from the buffer by editor:delete-point, and point objects
are also destroyed if their buffer is killed.

editor:point-kind Function

editor:point-kind point

Returns the kind of the point, which is :temporary, :before-insert or
:after-insert.

Table 6.1 Editor point positions after text insertion

kind Insert at < n Insert at = n Insert at > n
:before-insert n+len n n
:after-insert n+len n+len n

6.3 Programming the editor
editor:current-point Function

editor:current-point

Returns the current point. See also editor:buffer-point.

editor:current-mark Function

editor:current-mark &optional pop-pno-error-p

Returns the current mark. If pop-p is t, the mark ring is rotated so that the
previous mark becomes the current mark. If no mark is set and no-error-p is
t, nil is returned; otherwise an error is signalled. The default for both of
these optional arguments is nil.

editor:set-current-mark Function

editor:set-current-mark point

Sets the current mark to be point.

editor:point< Function

editor:point< point1 point2

Returns non-nil if point1 is before point2 in the buffer.

editor:point<= Function

editor:point<= point1 point2

Returns non-nil if point1 is before or at the same offset as point2 in the
buffer.

editor:point> Function

editor:point> point1 point2

Returns non-nil if point1 is after point2 in the buffer.
 181

6 Advanced Features

182
editor:point>= Function

editor:point>= point1 point2

Returns non-nil if point1 is after or at the same offset as point2 in the buffer.

editor:copy-point Function

editor:copy-point point &optional kind new-point

Makes and returns a copy of point. The argument kind can take the value
:before, :after, or :temporary. If new-point is supplied, the copied
point is bound to that as well as being returned.

editor:delete-point Function

editor:delete-point point

Deletes the point point.

This should be done to any non-temporary point which is no longer
needed.

editor:move-point Function

editor:move-point point new-position

Moves point to new-position, which should itself be a point.

editor:start-line-p Function

editor:start-line-p point

Returns t if point is immediately before the first character in a line, and
nil otherwise.

editor:end-line-p Function

editor:end-line-p point

Returns t if point is immediately after the last character in a line, and nil
otherwise.

6.3 Programming the editor
editor:same-line-p Function

editor:same-line-p point1 point2

Returns t if point1 and point2 are on the same line, and nil otherwise.

editor:save-excursion Macro

editor:save-excursion &rest body

Saves the location of the point and the mark and restores them after com-
pletion of body. This restoration is accomplished even when there is an
abnormal exit from body.

editor:with-point Macro

editor:with-point point-bindings &rest body

point-bindings is a list of bindings, each of the form (var point [kind]).
Each variable var is bound to a new point which is a copy of the point point
though possibly with a different kind, if kind is supplied. If kind is not sup-
plied, then the new point has kind :temporary.

The forms of body are evaluated within the scope of the point bindings,
and then the points in each variable var are deleted, as if by edi-
tor:delete-point. Each point var is deleted even if there was an error
when evaluating body.

The main reason for using with-point to create non-temporary points is
to allow body to modify the buffer while keeping these points up to date
for later use within body.

6.3.5 The echo area

editor:message Function

editor:message string &rest args

A message is printed in the Echo Area. The argument string must be a
string, which may contain formatting characters to be interpreted by
 183

6 Advanced Features

184
format. The argument args consists of arguments to be printed within the
string.

editor:clear-echo-area Function

editor:clear-echo-area &optional string force

Clears the Echo Area. The argument string is then printed in the Echo
Area. If force is non-nil, the Echo Area is cleared immediately, with no
delay. Otherwise, there may be a delay for the user to read any existing
message.

6.3.6 Editor errors

Many editor commands and functions signal an error on failure (using edi-
tor:editor-error as described below). This causes the current operation to be
aborted.

In many cases, the user will not want the operation to abort completely if one of
the editor commands it uses is not successful. For example, the operation may
involve a search, but some aspects of the operation should continue even if the
search is not successful. To achieve this, the user can catch the editor:editor-
error using a macro such as handler-case.

For example, one part of an application might involve moving forward 5 forms.
If the current point cannot be moved forward five forms, generally the Editor
would signal an error. However, this error can be caught. The following trivial
example shows how a new message could be printed in this situation, replacing
the system message.

(editor:defcommand "Five Forms" (p)
 "Tries to move the current point forward five forms,
 printing out an appropriate message on failure."
 "Tries to move the current point forward five forms."
 (handler-case
 (editor:forward-form-command 5)
 (editor:editor-error (condition)
 (editor:message "could not move forward five"))))

6.3 Programming the editor
editor:editor-error Function

editor:editor-error string &rest args

By default this prints a message in the Echo Area, sounds a beep, and exits
to the top level of LispWorks, aborting the current operation. The argu-
ment string must be a string, which is interpreted as a control string by
format. As with editor:message, args can consist of arguments to be pro-
cessed within the control string.

The behavior is affected by break-on-editor-error.

6.3.7 Files

editor:find-file-buffer Function

editor:find-file-buffer pathname &optional check-function

Returns a buffer associated with the file pathname, reading the file into a
new buffer if necessary. The second value returned is T if a new buffer is
created, and nil otherwise. If the file already exists in a buffer, its consis-
tency is first checked by means of check-function. If no value is supplied for
check-function, editor:check-disk-version-consistent is used.

editor:fast-save-all-buffers Function

editor:fast-save-all-buffers &optional ask

Saves all modified buffers which are associated with a file. If ask is non-nil
then confirmation is asked for before saving each buffer. If ask is not set, all
buffers are saved without further prompting.

Unlike the editor command Save All Files this function can be run
without any window interaction. It is thus suitable for use in code which
does not intend to allow the user to leave any buffers unsaved, and from
the console if it is necessary to save buffers without re-entering the full
window system.
 185

6 Advanced Features

186
editor:check-disk-version-consistent Function

editor:check-disk-version-consistent pathname buffer

Checks that the date of the file pathname is not more recent than the last
time buffer was saved. If pathname is more recent, the user is prompted on
how to proceed. Returns t if there is no need to read the file from disk and
nil if it should be read from disk.

editor:buffer-pathname Function

editor:buffer-pathname buffer

Returns the pathname of the file associated with buffer. If no file is associ-
ated with buffer, nil is returned.

6.3.7.1 File encodings in the editor

An editor buffer ideally should have an appropriate external format (or
encoding) set before you write it to a file. Otherwise an external format
specified in the value of the editor variable output-format-default is
used. If the value of output-format-default is not an external-format
specifier, then the external format is chosen similarly to the way cl:open
does it. By default this chosen external format will be the Windows code
page on Microsoft Windows, and Latin-1 on other platforms.

When using the Editor tool, use Set External Format to set interactively
the external format for the current buffer, or set Preferences... > Environ-
ment > File Encodings > Output (which in turn sets the editor variable out-
put-format-default) to provide a global default value.

In an application which writes editor buffers to file, you can do this to set
the external format of a given buffer:

 (setf (editor:buffer-external-format buffer) ef-spec)

You can also set a global default external format for editor buffers:

(setf (editor:variable-value ’editor:output-format-default
 :global)
 ef-spec)

6.3 Programming the editor
Then ef-spec will be used when a buffer itself does not have an external for-
mat.

6.3.7.2 Non base-char errors

If your buffer contains a cl:extended-char char then Latin-1 and other
encodings which support only cl:base-char are not appropriate.
Attempts to save the buffer using such external formats will signal an
error ’char is not of type BASE-CHAR'. Set the external format to one
which includes char, or delete char from the buffer before saving.

The command

6.3.7.3 Choosing the encoding to use

You may want a file which is Unicode UCS-2 encoded (external format
:unicode), UTF-8 encoding (:utf) or a language-specific encoding such
as :shift-jis or :gbk. Or you may want an Latin-1 encoded file, in
which case you could pass :latin-1-safe.

6.3.8 Inserting text

editor:insert-string Function

editor:insert-string point string &optional start end

Inserts string at point in the current buffer. The arguments start and end
specify the indices within string of the substring to be inserted. The default
values for start and end are 0 and (length string) respectively.

editor:kill-ring-string Function

editor:kill-ring-string &optional index

Returns either the topmost string on the kill ring, or the string at index
places below the top when index is supplied.

The editor kill ring stores the strings copied by the editor, in order to allow
using them later.
 187

6 Advanced Features

188
editor:points-to-string Function

editor:points-to-string start end

Returns the string between the points start and end.

6.3.9 Indentation

editor:*indent-with-tabs* Variable

Controls whether indentation commands such as Indent and Indent
Form insert whitespace using #\Space or #\Tab characters when changing
the indentation of a line.

The initial value is nil, meaning that only the #\Space character is
inserted.

A true value for editor:*indent-with-tabs* causes the indentation com-
mands to insert #\Tab characters according to the value of spaces-for-
tab and then pad with #\Space characters as needed.

6.3.10 Lisp

editor:*find-likely-function-ignores* Variable

Contains a list of symbols likely to be found at the beginning of a form
(such as apply, funcall, defun, defmethod, defgeneric).

editor:*source-found-action* Variable

This variable determines how definitions found by the commands Find
Source, Find Source for Dspec and Find Tag are shown. The value
should be a list of length 2.

The first element controls the positioning of the definition: when t, show it
at the top of the editor window; when a non-negative fixnum, position it
that many lines from the top; and when nil, position it at the center of the
window.

6.3 Programming the editor
The second element can be :highlight, meaning highlight the definition,
or nil, meaning do not highlight it.

The initial value of *source-found-action* is (nil :highlight).

6.3.11 Movement

editor:line-end Function

editor:line-end point

Moves point to be located immediately before the next newline character,
or the end of the buffer if there are no following newline characters.

editor:line-start Function

editor:line-start point

Moves point to be located immediately after the previous newline charac-
ter, or the start of the buffer if there are no previous newline characters.

editor:character-offset Function

editor:character-offset point n

Moves point forward n characters. If n is negative, point moves back n char-
acters.

editor:word-offset Function

editor:word-offset point n

Moves point forward n words. If n is negative, point moves back n words.

editor:line-offset Function

editor:line-offset point n &optional to-offset

Moves point n lines forward, to a location to-offset characters into the line. If
n is negative, point moves back n lines. If to-offset is nil (its default value),
 189

6 Advanced Features

190
an attempt is made to retain the current offset. An error is signalled if there
are not n further lines in the buffer.

editor:form-offset Function

editor:form-offset point n &optional form depth

Moves point forward n Lisp forms. If n is negative, point moves back n
forms. If form is t (its default value) then atoms are counted as forms, oth-
erwise they are ignored. Before point is moved forward n forms, it first
jumps out depth levels. The default value for depth is 0.

6.3.12 Prompting the user

The following functions can be used to prompt for some kind of input, which is
generally typed into the Echo Area.

The following keyword arguments are common to a number of prompting func-
tions.

:must-exist Specifies whether the value that is input by the user must
be an existing value or not. If :must-exist is non-nil, the
user is prompted again if a non-existent value is input.

:default Defines the default value that is selected if an empty
string is input.

:default-string

Specifies the string that may be edited by the user (with
Insert Parse Default).

:prompt Defines the prompt that is written in the Echo Area. Most
prompting functions have a default prompt that is used if
no value is supplied for :prompt.

:help Provides a help message that is printed if the user types
"?".

6.3 Programming the editor
editor:prompt-for-file Function

editor:prompt-for-file &key direction must-exist create-directories default
default-string prompt help

Prompts for a file name, and returns a pathname.

:direction You can specify direction :input (when expecting to read
the file) or direction :output (when expecting to write the
file). This controls the default value of must-exist, which is
false for direction :output and true otherwise.

:create-directories

If create-directories is true, then the user is prompted to
create any missing directories in the path she enters. The
default is false for direction :output and true otherwise.

See above for an explanation of the other arguments.

editor:prompt-for-buffer Function

editor:prompt-for-buffer &key prompt must-exist default default-string help

Prompts for a buffer name, and returns the buffer. See above for an expla-
nation of the keywords.

The default value of must-exist is t. If must-exist is nil and the buffer does
not exist, it is created.

editor:prompt-for-integer Function

editor:prompt-for-integer &key prompt must-exist default help

Prompts for an integer. See above for an explanation of the keywords.

editor:prompt-for-string Function

editor:prompt-for-string &key prompt default default-string clear-echo-area
help

Prompts for a string. No checking is done on the input. The keyword clear-
echo-area controls whether or not the echo area is cleared (that is, whether
 191

6 Advanced Features

192
the text being replaced is visible or not). The default for this keyword is t.
See above for an explanation of the remaining keywords.

editor:prompt-for-variable Function

editor:prompt-for-variable &key must-exist prompt default default-string
help

Prompts for an editor variable. See above for an explanation of the key-
words. The default value of must-exist is t.

6.3.13 In-place completion

editor:complete-in-place Function

editor:complete-in-place complete-func &key extract-func skip-func insert-
func

Performs a non-focus completion at the editor current point.

complete-func should be a function designator with signature:

complete-func string &optional user-arg => result

string should be a string to complete. user-arg is the second return value of
extract-func, if this is not nil. result should be a list of items to be displayed
in the list panel of the non-focus window.

extract-func must be a function designator with signature

extract-func point => string, user-arg

point should be a Point object

extract-func needs to move point to the beginning of the text that will be
replaced if the user confirms. It should return two values: string is the
string to complete, and user-arg can be any Lisp object. string is passed to
the function complete-func, and if user-arg is non-nil it is also passed.

The default value of extract-func is a function which searches backwards
until it finds a non-alphanumeric character, or the beginning of the buffer.
It then moves its point argument forward to the next character. The func-

6.3 Programming the editor
tion returns its first value string the string between this and the original
location of the point, and it returns nil as the second value user-arg.

skip-func, if supplied, must be a function designator with signature

skip-func point

point should be a Point object

point will be used as the end of the region to replace by the completion. At
the call to skip-func, the point is located at the same place as the point that
was passed to extract-func (after it moved). skip-func needs to move point
forward to the end of the text that should be replaced when the user wants
to do the completion. If skip-func is not supplied, the end point is set to the
current point.

insert-func, if supplied, must be a function designator with signature

insert-func result string user-arg => string-to-use

result is the item selected by the user, string is the original string that was
returned by extract-func, and user-arg is the second value returned by
extract-func (regardless of whether this value is nil). It must return a
string, string-to-use, which is inserted as the the completion.

If insert-func is not supplied, the completion item is inserted. If it is not a
string it is first converted by prin1-to-string.

When editor:complete-in-place is called, it makes a copy of the
current point and passes it to extract-func. It then copies this point and
positions it either using skip-func or the current point. These two points
define the text to be replaced. editor:complete-in-place then calls com-
plete-func, and use the result to raise a non-focus window next to the cur-
rent point. The interaction of this window is as described in CAPI User
Guide.

Note: editor:complete-with-non-focus is a deprecated synonym for
editor:complete-in-place.
 193

6 Advanced Features

194
6.3.14 Variables

editor:define-editor-variable Function

editor:define-editor-variable name value &optional documentation

Defines an editor variable.

name Symbol naming the variable.

value The value to assign to the variable.

mode A string naming a mode.

documentation A documentation string.

The macro editor:define-editor-variable defines a global editor
variable. There is only one global value, so repeated uses of edi-
tor:define-editor-variable overwrite each other.

editor:define-editor-variable gives a readable value of defining a
variable, and is recognized by the LispWorks source code location system.
However variables can also be defined dynamically by calling (setf
editor:variable-value). Variable values may be accessed by edi-
tor:variable-value.

A variable has only one string of documentation associated with it. edi-
tor:variable-value overwrites the existing documentation string, if
there is any. You can see the documentation by the command Describe
Editor Variable. It can can be accessed programmatically by edi-
tor:editor-variable-documentation.

Note: for backwards compatibility name can also be a string, which is con-
verted to a symbol by uppercasing, replacing #\Space by #\-, and intern-
ing in the EDITOR package. This may lead to clashes and so you should
use a symbol for name, not a string.

editor:define-editor-mode-variable Function

editor:define-editor-mode-variable name mode value &optional
documentation

Defines an editor variable in the specified mode.

6.3 Programming the editor
mode A string naming a mode.

name, value As for editor:define-editor-variable.

documentation As for editor:define-editor-variable, except that
editor:define-editor-mode-variable installs the
documentation only if the editor variable does not
already have any documentation.

editor:define-editor-mode-variable defines a variable in the speci-
fied mode. There is one value per variable per mode.

editor:define-editor-mode-variable gives a readable value of defin-
ing a variable in a mode, and is recognized by the LispWorks source code
location system. However mode variables can also be defined dynamically
by calling (setf editor:variable-value). Mode variable values may
be accessed by editor:variable-value.

editor:editor-variable-documentation Function

editor:editor-variable-documentation editor-variable-name

editor-variable-name

A symbol naming an editor variable.

Returns the documentation associated with the editor variable, if any.

Note: For backwards compatibility a string editor-variable-name is also
accepted, as described for editor:define-editor-variable.

editor:variable-value Function

editor:variable-value name &optional kind where

Returns the value of the editor variable name, where name is a symbol. An
error is signalled if the variable is undefined. The argument kind can take
the value :current, :buffer, :global or :mode. The default value of kind
is :current.

When kind is :current the argument where should be nil (the default,
meaning the current buffer) or an editor buffer object or the name of a
 195

6 Advanced Features

196
buffer. The variable value for the specified buffer is returned or (if there is
no current buffer) then the global variable value is returned.

kind can also be :buffer, and then buffer should be an editor buffer object.

For example, the code given below will, by default, return the value :ask-
user.

(editor:variable-value
 'editor:add-newline-at-eof-on-writing-file)

The value of variables may also be altered using this function. For exam-
ple, the code given below will allow buffers to be saved to file without any
prompt for a missing newline.

(setf
 (editor:variable-value
 'editor:add-newline-at-eof-on-writing-file)
 nil)

editor:variable-value-if-bound Function

editor:variable-value-if-bound name &optional kind where

Returns the value of the variable name. If the variable is not bound, nil is
returned. The arguments are as for editor:variable-value.

editor:buffer-value Function

editor:buffer-value buffer name &optional errorp

Accesses the value of the editor variable name in the buffer specified by
buffer.

name should be a symbol and buffer should be a point object or a buffer
object.

If the editor variable is undefined and errorp is true, an error is signalled. If
the variable is undefined and errorp is false, nil is returned. The default
value of errorp is nil.

6.3 Programming the editor
6.3.15 Windows

editor:current-window Function

editor:current-window

Returns the current window.

editor:redisplay Function

editor:redisplay

Redisplays any window that appears to need it. In general, the contents of
a window may not be redisplayed until there is an event to provoke it.

Note: editor:redisplay will update a modified editor buffer only when
that buffer is the editor:current-buffer. Take care to call edi-
tor:redisplay in an appropriate context.

editor:window-text-pane Function

editor:window-text-pane window

Returns the capi:editor-pane associated with an editor window.

6.3.16 Examples

6.3.16.1 Example 1

The following simple example creates a new editor command called Current
Line.
 197

6 Advanced Features

198
(editor:defcommand "Current Line" (p)
 "Computes the line number of the current point and
 prints it in the Echo Area"
 "Prints the line number of the current point"
 (let* ((cpoint (editor:current-point))
 (svpoint (editor:copy-point cpoint))
 (count 0))
 (editor:beginning-of-buffer-command nil)
 (loop
 (if (editor:point> cpoint svpoint)
 (return))
 (unless (editor:next-line-command nil)
 (return))
 (incf count))
 (editor:move-point cpoint svpoint)
 (editor:message "Current Line Number: ~S " count)))

6.3.16.2 Example 2

This example creates a new editor command called Goto Line which moves the
current point to the specified line number.

(editor:defcommand "Goto Line" (p)
 "Moves the current point to a specified line number.
 The number can either be supplied via the prefix
 argument, or, if this is nil, it is prompted for."
 "Moves the current point to a specified line number."
 (let ((line-number
 (or p (editor:prompt-for-integer
 :prompt "Line number: "
 :help "Type in the number of the line to
 go to"))))
 (editor:beginning-of-buffer-command nil)
 (editor:next-line-command line-number)))

6.3.16.3 Example 3

The following example illustrates how text might be copied between buffers.
First, string is set to all the text in from-buf. This text is then copied to the end of
to-buf.

6.4 Editor source code
(defun copy-string (from-buf to-buf)
 (let ((string (editor:points-to-string
 (editor:buffers-start from-buf)
 (editor:buffers-end from-buf))))
 (editor:insert-string (editor:buffers-end to-buf) string)))

To test this example, two buffers named t1 and t2 should be created. Then, to
copy all the text from t1 to the end of t2:

(copy-string (editor:buffer-from-name "t1")
(editor:buffer-from-name "t2"))

6.4 Editor source code
The section does not apply to LispWorks Personal Edition.

LispWorks comes with source code for the editor, which you can refer to when
adding editor extensions.

6.4.1 Contents

The directory lib/6-1-0-0/src/editor/ contains most of the source files of
the LispWorks editor. Some low-level source code is not distributed.

6.4.2 Source location

To enable location of editor definitions by Find Source and related commands,
configure LispWorks as described under "Finding source code" in the LispWorks
User Guide and Reference Manual.

6.4.3 Guidelines for use of the editor source code

Some care is needed when working with the supplied editor source code, to
ensure that you do not compromise the IDE or introduce a dependancy on a
particular release of LispWorks.

In particular please note:

• The editor source code may not match the compiled code in the Lisp-
Works image exactly, for example if editor patches have been loaded.

• Modifications to the EDITOR package definition are not allowed.
 199

6 Advanced Features

200
• Redefining existing definitions is not recommended. It is better to define a
new command to do what you want. If you find a bug or have a useful
extension to an existing definition then please let us know.

• Do not rely on the expansion of exported macros.

• If you use any internal (that is, not exported) EDITOR symbols, please tell
us, so we can consider how to support your requirements. In addition,
some internal macros have been removed from the LispWorks image and
these should not be used.

Glossary
Abbrev

An abbrev (abbreviation) is a user defined text string which, when typed
into a buffer, may be expanded into another string using Abbrev Mode.
Typing can therefore be saved by defining short strings to be expanded
into frequently used longer words or phrases.

Abbrevs should not be confused with the abbreviated symbol comple-
tion implemented by the command Abbreviated Complete Symbol.

Abbrev Mode

Abbrev mode is a minor mode which allows abbrevs to be automatically
expanded when typed into a buffer.

Auto-Fill Mode

Auto-fill mode is a minor mode which allows lines to be broken between
words at the right margin automatically as the text is being typed. This
means that Return does not have to be pressed at the end of each line to
simulate filling.

Auto-Saving

Auto-saving is the automatic, periodic backing-up of the file associated
with the current buffer.
201

202
Backup

When a file is explicitly saved in the editor, a backup is automatically
made by writing the old contents of the file to a backup before saving the
new version of the file. The name of the backup file is that of the original
file followed by a ~ character.

Binding

A binding is made up of one or more key sequences. A command may
have a default binding associated with it, which executes that command.
Bindings provide a quick and easy way to execute commands.

Buffer

A buffer is a temporary storage area used by the editor to hold the con-
tents of a file while the process of editing is taking place.

Case Conversion

Case conversion means changing the case of text from lower to upper
case and vice versa.

Completion

Completion is the process of expanding a partial or abbreviated name
into the full name. Completion can used for expanding symbols, editor
command names, filenames and editor buffer names.

Control Key

The Control key (Ctrl) is used as part of many key sequences. Ctrl
must be held down while pressing the required character key.

Ctrl Key

See Control Key.

Current

The adjective current is often used to describe a point, buffer, mark, para-
graph, and similar regions of text, as being the text area or item on which
relevant commands have an effect. For example, the current buffer is the
buffer on which most editor commands operate.

Cursor

The cursor is the rectangle (in Emacs emulation) or vertical bar (in other
emulations) seen in a buffer which indicates the position of the current
point within that buffer.

Customization

Customization means making changes to the way the editor works. The
editor can be customized both in the short and long term to suit the
users requirements. Short term customization involves altering the way
the editor works for the duration of an editing session by using standard
editor commands, while long term customization involves program-
ming the editor.

Default

A default is the value given to an argument if none is specified by the
user.

Deleting

Deleting means removing text from the buffer without saving it. The
alternative is killing.

Echo Area

The Echo Area is a buffer used to display and input editor information.
Commands are typed into this buffer and editor produced messages are
displayed here.

Emulation

The LispWorks Editor can behave like GNU Emacs, or like a typical edi-
tor on the Mac OS platform. Keys, cursors, behavior with selected text
and other functionality differs. We use the term Mac OS editor Emula-
tion to denote this alternate behavior.

Escape Key

The Escape key (Esc) has its own functionality but is mostly used in
Emacs emulation in place of the Meta key when no such key exists on a
keyboard. Esc must be typed before pressing the required character key.
 203

204
Extended Command

Most editor commands can be invoked explicitly by using their full com-
mand names, preceded by the Meta+X key sequence. A command issued
in such a way is known as an extended command.

Fill Prefix

The fill prefix is a string which is ignored when filling takes place. For
example, if the fill prefix is ;;, then these characters at the start of a line
are skipped over when the text is re-formatted.

Filling

Filling involves re-formatting text so that each line extends as far to the
right as possible without any words being broken or any text extending
past a predefined right-hand column.

Global Abbrev

A global abbrev is an abbrev which can be expanded in all major modes.

History Ring

The history ring records Echo Area commands so that they can easily be
repeated.

Incremental Search

An incremental search is a search which is started as soon as the first
character of the search string is typed.

Indentation

Indentation is the blank space at the beginning of a line. Lisp, like many
other programming languages, has conventions for the indentation of
code to make it more readable. The editor is designed to facilitate such
indentation.

Insertion

Insertion is the process of inputting text into a buffer.

Keyboard Macro

A keyboard macro allows a sequence of editor commands to be turned
into a single operation. Keyboard macros are only available for the dura-
tion of an editing session.

Key Sequence

A key sequence is a sequence of characters used to issue, or partly issue,
an editor command. A single key sequence usually involves holding
down one of two specially defined modifier keys (that is Ctrl and
Meta), while at the same time pressing another key.

Killing

Killing means removing text from a buffer and saving it in the kill ring,
so that the text may be recovered at a later date. The alternative is delet-
ing.

Kill Ring

The kill ring stores text which has been killed, so that it may be recov-
ered at a later date. Text can be re-inserted into a buffer by yanking. There
is only one kill ring for all buffers so that text can be copied from one
buffer to another.

Major Mode

Major modes govern how certain commands behave. They adapt a few
editor commands so that their use is more appropriate to the text being
edited. For example, the concept of indentation is radically different in
Lisp mode and Fundamental mode. Each buffer is associated with one
major mode.

Mark

A mark stores the location of a point so that it may be used for reference
at a later date. More than one mark may be associated with a single
buffer and saved in a mark ring.
 205

206
Mark Ring

The mark ring stores details of marks, so that previously defined marks
can be accessed. The mark ring works like a stack, in that marks are
pushed onto the ring and can only be popped off on a "last in first out"
basis. Each buffer has its own mark ring.

Meta Key

On most PC keyboards this key is synonymous with the Alt key. How-
ever, there are many different types of keyboard, and the Meta key may
not be marked with "Alt" or "Meta". It may be marked with a special
character, such as a diamond, or it may be one of the function keys — try
F11.

In Emacs emulation, Meta must be held down while pressing the
required character key. As some keyboards do not have a Meta key, the
Escape (Esc) key can be used in place of Meta.

On Cocoa, you can configure "Meta" by choosing
Preferences... > Environment > Emulation.

Minor Mode

The minor modes determine whether or not certain actions take place.
For example, when abbrev mode is on, abbrevs are automatically
expanded when typed into a buffer. Buffers may possess any number of
minor modes.

Mode

Each buffer has two modes associated with it: a major mode and a minor
mode. A buffer must have one major mode, but can have zero or more
minor modes associated with it. Major modes govern how certain com-
mands behave, while minor modes determine whether or not certain
actions take place.

Mode Abbrev

A mode abbrev is an abbrev which is expanded only in predefined major
modes.

Mode Line

At the bottom of each buffer is a mode line that provides information
concerning that buffer. The information displayed includes name of the
buffer, major mode, minor mode and whether the buffer has been modi-
fied or not.

Newline

Newline is a whitespace character which terminates a line of text.

Overwrite Mode

Overwrite mode is a minor mode which causes each character typed to
replace an existing character in the text.

Page

A page is the region of text between two page delimiters. The ASCII key
sequence Ctrl+L constitutes a page delimiter (as it starts a new page on
most line printers).

Pane

A pane is the largest portion of an editor window, used to display the
contents of a buffer.

Paragraph

A paragraph is defined as the text within two paragraph delimiters. A
blank line constitutes a paragraph delimiter. The following characters at
the beginning of a line are also paragraph delimiters: Space Tab @ - ’
)

Prefix Argument

A prefix argument is an argument supplied to a command which some-
times alters the effect of that command, but in most cases indicates how
many times that command is to be executed. This argument is known as
a prefix argument as it is supplied before the command to which it is to
be applied. Prefix arguments sometimes have no effect on a command.
 207

208
Point

A point is a location in a buffer where editor commands take effect. The
current point is generally the location between the character indicated by
the cursor and the previous character (that is, it actually lies between two
characters). Many types of commands (moving, inserting, deleting)
operate with respect to the current point, and indeed move that point.

Recursive Editing

Recursive editing occurs when you are allowed to edit text while an edi-
tor command is executing.

Region

A region is the area of text between the mark and the current point.
Many editor commands affect only a specified region.

Register

Registers are named slots in which locations and regions can be saved
for later use.

Regular Expression Searching

A regular expression (regexp) allows the specification of a search string
to include wild characters, repeated characters, ranges of characters, and
alternatives. Strings which follow a specific pattern can be located,
which makes regular expression searches very powerful.

Replacing

Replacing means substituting one string for another.

Saving

Saving means copying the contents of a buffer to a file.

Scrolling

Scrolling means slightly shifting the text displayed in a pane either
upwards or downwards, so that a different portion of the buffer is dis-
played.

Searching

Searching means moving the current point to the next occurrence of a
specified string.

Sentence

A sentence begins wherever a paragraph or previous sentence ends. The
end of a sentence is defined as consisting of a sentence terminating char-
acter followed by two spaces or a newline. The following characters are
sentence terminating characters: . ? !

Tag File

A tag file is one which contains information on the location of Lisp func-
tion definitions in one or more files. For each file in a defined system, the
tag file contains a relevant file name entry, followed by names and posi-
tions of each defining form in that file. This information is produced by
the editor and is required for some definition searches.

Transposition

Transposition involves taking two units of text and swapping them
round so that each occupies the others former position.

Undoing

Commands that modify text in a buffer can be undone, so that the text
reverts to its state before the command was invoked.

Undo Ring

An undo ring is used to hold details of modifying commands so that
they can be undone at a later date. The undo ring works like a stack, in
that commands are pushed onto the ring and can only be popped off on
a "last in first out" basis.

Variable (Editor)

Editor variables are parameters which affect the way that certain com-
mands operate.
 209

210
Whitespace

Whitespace is any consecutive run of the whitespace characters Space,
Tab or Newline.

Window

A window is an object used by the window manager to display data.
When the editor is called up, an editor window is created and displayed.

Window Ring

A window ring is used to hold details of all windows currently open.

Word

A word is a continuous string of alphanumeric characters (that is, the
letters A–Z and numbers 0–9). In most modes, any character which is
not alphanumeric is treated as a word delimiter.

Yanking

Yanking means inserting a previously killed item of text from the kill
ring at a required location. This is often known as pasting.

Index
Symbols
files 25
? Help on Parse 106
~ files 25, 33, 34

A
Abbrev Expand Only 100
Abbrev Mode 98
abbrev mode 96, 98
Abbreviated Complete Symbol 136
abbreviation

add global 99
add global expansion 99
add mode 99
add mode expansion 99
append to file 102
delete all 101
delete global 101
delete mode 101
edit 102
editor definition 98
expand 100
list 101
read from file 103
save to file 102
undo last expansion 100

abbreviation commands 98
abbrev-pathname-defaults 103
Abort Recursive Edit 110
aborting editor commands 11, 16

aborting processes 11, 16
Add Global Word Abbrev 99
Add Mode Word Abbrev 99
add-newline-at-eof-on-writing-file 30
Append Next Kill 52
Append to File 29
Append to Register 93
Append to Word Abbrev File 102
Application Builder tool 118
Apropos 149
Apropos Command 19
argument

listing for function 137
prefix 23

attribute
description 20
listing with apropos 19

Auto Fill Linefeed 68
Auto Fill Mode 67
Auto Fill Return 68
Auto Fill Space 67
Auto Save Toggle 32
auto-fill mode 67, 96
auto-fill-space-indent 68
auto-save file 31
auto-save-checkpoint-frequency 33
auto-save-cleanup-checkpoints 33
auto-save-filename-pattern 32
auto-save-key-count-threshold 33

B
Back to Indentation 64
Backup File 29
backup file 29, 33, 34
backup-filename-pattern 34

211

Index

212
backup-filename-suffix 34
backups-wanted 33
Backward Character 37
Backward Form 140
Backward Kill Line 51
Backward Kill Sentence 52
Backward List 144
Backward Paragraph 40
Backward Search 81
Backward Sentence 39
Backward Up List 144
Backward Word 38
base-char type 187
Beginning of Buffer 42
Beginning of Defun 123
Beginning of Line 38
Beginning Of Parse 108
Beginning of Parse or Line 108
Bind Key 111
Bind String to Key 111
binding keys 111
bind-key 168
bind-string-to-key 169
Bottom of Window 41
Break Definition 132
Break Definition on Exit 133
Break Function 132
Break Function on Exit 132
breaking processes 17
break-on-editor-error 117
buffer

changed definitions in 137
circulate 69
commands 68
compile 157
compile changed definitions 158
compile if necessary 157
create 70
editor definition 6
evaluate 154
evaluate changed definitions 154
file options 35
functions 174, 197
insert 71
kill 36, 69
list 70
mark whole 46
modified check 71
move to beginning 42
move to end 42
new 70
not modified 72
read only 71
rename 71
revert 35
save 27
search all 82
select 68
select in other window 69
select previous 69
set package 151

buffer 174
Buffer Changed Definitions 137
Buffer Not Modified 72
buffer-from-name 179
buffer-list 178
buffer-name 178
buffer-pathname 186
buffer-point 178
buffers and windows 116
buffers-end 178
buffers-start 178
buffer-value 196
bug

reporting 117, 118
Build Application 118
button

mouse bindings in editor 116

C
calling editor functions 171
Capitalize Region 59
Capitalize Word 58
case conversion commands 57
case-replace 90
CD 114
Center Line 66
change-buffer-lock-for-

modification 176
character

backward 37
delete expanding tabs 49
delete next 48
delete previous 49
forward 37
insert with overwrite 61
overwrite previous 61
transposition 59

character-offset 189
Check Buffer Modified 71
check-disk-version-

consistent 186
Circulate Buffers 69
class

Index
describe 139
Class Browser tool 139
clear-echo-area 184
colors

Lisp syntax 122
command

abort 16
completion 106
description 20
execution 9, 17, 171
history 21
key sequence for 22
key sequences 22
listing with apropos 19
repetition 11, 23
shell 112

Command+Ctrl+,, break gesture 17
commands

abbreviation 98
aborting commands 11, 16
aborting processes 11, 16
buffer 68
case conversion 57
compilation 151, 156
cut and paste 13
deleting text 13, 48
echo area 105
editing Lisp programs 121
editor variable 109
evaluation 151, 152, 155
file handling 12, 25
filling 64
help 14, 18
indentation 61
inserting text 12, 53
key binding 111
keyboard macro 104
killing text 13, 48
Lisp comment 145
Lisp documentation 149
Lisp form 140
Lisp function and definition 123
Lisp list 143
movement 12, 37
overwriting 60
pages 75
parentheses 147, 149
recursive editing 110
register 92
replacing 77
running shell from editor 112
searching 77

transposition 59
undoing 13, 56
window 72

comment
create 145
kill 146
move to 145

comment commands 145
comment-begin 147
comment-column 147
comment-end 147
comments

inserting 145
comment-start 147
Compare Buffers 91
Compare Windows 91
Compare-Ignores-Whitespace 91
compilation commands 151, 156
compilation messages

finding the source code 159
compile

buffer 157
buffer changed definitions 158
buffer if necessary 157
changed definitions 158
file 157
form 156
region 157
system 159
system changed definitions 159

Compile Buffer 157
Compile Buffer Changed Definitions 158
Compile Buffer File 157
Compile Changed Definitions 158
Compile Defun 156
Compile File 157
Compile Region 157
Compile System 159
Compile System Changed

Definitions 159
compile-buffer-file-confirm 158
Complete Field 106
Complete Input 106
Complete Symbol 136
complete-in-place 192
complete-with-non-focus 193
completion

dynamic word 56
in-place 192
of abbreviated symbols 136
of commands 106
of filenames 56
 213

Index

214
of symbols 135, 136
configuration files 164, 167
Confirm Parse 106
Continue Tags Search 129
Control key 9
control keys

insert into buffer 55
Copy To Cut Buffer 116
Copy to Register 93
copy-point 182
Count Lines Page 77
Count Lines Region 46
Count Matches 88
Count Occurrences 88
Count Words Region 46
Create Buffer 70
Create Tags Buffer 127
Ctrl key 9
Ctrl+] Abort Recursive

Edit 110
Ctrl+‘ Function Arglist

Displayer 138
Ctrl+A Beginning of Line 38
Ctrl+A Beginning Of Parse or

Line 108
Ctrl+B Backward Character 37
Ctrl+B Echo Area Backward

Character 107
Ctrl+C Ctrl+C Insert Selected

Text 109
Ctrl+D Delete Next

Character 48
Ctrl+E End of Line 38
Ctrl+F Forward Character 37
Ctrl+G, abort current command 16
Ctrl+H A Apropos 14
Ctrl+H A Apropos Command 19
Ctrl+H B Describe Bindings 22
Ctrl+H C What Command 20
Ctrl+H Ctrl+D Document

Command 20
Ctrl+H Ctrl+K Document Key 21
Ctrl+H Ctrl+V Document

Variable 22
Ctrl+H D Describe Command 14,

20
Ctrl+H G Generic Describe 20
Ctrl+H Help 18
Ctrl+H K Describe Key 14, 21
Ctrl+H L What Lossage 21
Ctrl+H V Describe Editor

Variable 22
Ctrl+H W Where Is 22
Ctrl+K Kill Line 51
Ctrl+L Refresh Screen 75
Ctrl+N Next Line 38
Ctrl+O Open Line 54
Ctrl+P Insert Parse

Default 109
Ctrl+P Previous Line 38
Ctrl+Q Quoted Insert 55
Ctrl+R Return Default 109
Ctrl+R Reverse Incremental

Search 80
Ctrl+S Esc Forward Search 81
Ctrl+S Incremental Search 78
Ctrl+Shift+_ Undo 13, 57
Ctrl+Shift+A Function Argu-

ment List 138
Ctrl+Shift+B Compile

Buffer 157
Ctrl+Shift+C Compile Defun 156
Ctrl+Shift+D Function

Documentation 150
Ctrl+Shift+E Evaluate

Region 153
Ctrl+Shift+M Macroexpand

Form 142
Ctrl+Shift+R Compile

Region 157
Ctrl+Space Set Mark 44
Ctrl+T Transpose

Characters 59
Ctrl+U Kill Parse 109
Ctrl+U Set Prefix Argument 23
Ctrl+V Scroll Window Down 40
Ctrl+W Kill Region 52
Ctrl+X - Inverse Add Global

Word Abbrev 99
Ctrl+X & Search Files Match-

ing Patterns 83
Ctrl+X (Define Keyboard

Macro 104
Ctrl+X) End Keyboard

Macro 104
Ctrl+X * Search Files 83
Ctrl+X + Add Global Word

Abbrev 99
Ctrl+X . Set Fill Prefix 66
Ctrl+X / Point to Register 92
Ctrl+X ; Set Comment

Column 145
Ctrl+X = What Cursor

Position 42

Index
Ctrl+X [Previous Page 76
Ctrl+X] Next Page 76
Ctrl+X ~ Check Buffer

Modified 71
Ctrl+X 0 Delete Window 73
Ctrl+X 1 Delete Next Window 73
Ctrl+X 2 New Window 72
Ctrl+X B Select Buffer 68
Ctrl+X C Go Back 47
Ctrl+X Ctrl+A Add Mode word

Abbrev 99
Ctrl+X Ctrl+B List Buffers 70
Ctrl+X Ctrl+C Save All Files

and Exit 29
Ctrl+X Ctrl+E Evaluate Last

Form 153
Ctrl+X Ctrl+F Wfind File 26
Ctrl+X Ctrl+H Inverse Add

Mode Word Abbrev 99
Ctrl+X Ctrl+I Indent

Rigidly 63
Ctrl+X Ctrl+L Lowercase

Region 58
Ctrl+X Ctrl+O Delete Blank

Lines 49
Ctrl+X Ctrl+P Mark Page 76
Ctrl+X Ctrl+Q Toggle Buffer

Read-Only 71
Ctrl+X Ctrl+S Save File 27
Ctrl+X Ctrl+T Transpose

Lines 60
Ctrl+X Ctrl+U Uppercase

Region 58
Ctrl+X Ctrl+V Find Alternate

File 26
Ctrl+X Ctrl+W Write File 28
Ctrl+X Ctrl+X Exchange Point

and Mark 44
Ctrl+X Delete Backward Kill

Sentence 52
Ctrl+X E Last Keyboard

Macro 104
Ctrl+X F Set Fill Column 65
Ctrl+X G Insert Register 94
Ctrl+X H Mark Whole Buffer 46
Ctrl+X I Insert File 36
Ctrl+X J Jump to Register 92
Ctrl+X K Kill Buffer 69
Ctrl+X L Count Lines Page 77
Ctrl+X M Select Go Back 47
Ctrl+X O Next Ordinary

Window 72

Ctrl+X O Next Window 72
Ctrl+X P Go Forward 48
Ctrl+X Q Keyboard Macro

Query 105
Ctrl+X S Save All Files 28
Ctrl+X Tab Indent Rigidly 63
Ctrl+X X Copy to Register 93
Ctrl+Y Un-Kill 14, 53
Ctrl-C Ctrl-C Interrupt Shell

Subjob 115
Ctrl-C Ctrl-D Shell Send

Eof 115
Ctrl-C Ctrl-Z Stop Shell

Subjob 115
current point

editor definition 7
current-buffer 178
current-mark 181
current-package 151
current-point 181
current-window 197
customising

editor 167
editor commands 167
indentation of Lisp forms 167, 170
key bindings 164, 167, 168

cut and paste commands 13

D
debugger

using in editor 154
default

external format 27, 30
prefix argument 23, 24

default-auto-save-on 32
default-buffer-element-type 70
default-modes 96
default-search-kind 84
defcommand macro 172
Defindent 123
Define Keyboard Macro 104
Define Word Abbrevs 103
define-editor-mode-

variable 194
define-editor-variable 194
definition

break 132, 133
disassemble 159
editing 123
find 125
find buffer changes 137
searching for 124
 215

Index

216
trace 131
trace inside 132
untrace 132

defmode function 97
Delete All Word Abbrevs 101
Delete Blank Lines 49
DELETE Delete Previous

Character 49
DELETE Echo Area Delete Pre-

vious Character 108
Delete File 36
Delete File and Kill Buffer 36
Delete Global Word Abbrev 101
Delete Horizontal Space 49
Delete Indentation 63
Delete Key Binding 112
Delete Matching Lines 82
Delete Mode Word Abbrev 101
Delete Next Character 48
Delete Next Window 73
Delete Non-Matching Lines 82
Delete Previous Character 49
Delete Previous Character Expanding

Tabs 49
Delete Region 50
Delete Selection Mode 56
Delete Window 73
delete-point 182
deleting text 48
deleting text commands 13, 48
deletion

editor definition 48
of selection 56
of surrounding form 141

delimiter
sentence 9

Describe Bindings 22
Describe Class 139
Describe Command 20
Describe Editor Variable 22
Describe Generic Function 139
Describe Key 21
Describe Method Call 139
Describe Symbol 149
Describe System 140
Diff 92
Diff Ignoring Whitespace 92
directory

change 114
query replace 89
search 83

Directory Query Replace 89
Directory Search 83
Disassemble Definition 159
Do Nothing 112
Document Command 20
Document Key 21
Document Variable 22
documentation commands 149
double-quotes

inserting 143
Down Comment Line 146
Down List 144
dspec

documentation 150
Dynamic Completion 56

E
echo area

complete text 106
completing commands in 106
deleting and inserting text in 108
editor definition 105
help on parse 106
movement in 107
next command 107
previous command 107
prompting the user 190
repeating commands in 107
terminate entry 106

Echo Area Backward Character 107
Echo Area Backward Word 108
echo area commands 105
Echo Area Delete Previous Character 108
echo area functions 183, 197
Echo Area Kill Previous Word 108
Edit Callees 135
Edit Callers 134
Edit Editor Command 126
Edit Recognized Source 159
Edit Word Abbrevs 102
editor

customising 167
delete-region-command 50
programming 170

editor commands
Abbrev Expand Only 100
Abbrev Mode 98
Abbreviated Complete Symbol

Meta+I 136
Abort Recursive Edit Ctrl+] 110
Add Global Word Abbrev Ctrl+X

+ 99
Add Mode Word Abbrev Ctrl+X

Index
Ctrl+A 99
Append Next Kill Meta+Ctrl+W 52
Append to File 29
Append to Register 93
Append to Word Abbrev File 102
Apropos 149
Apropos Command Ctrl+H A 19
Auto Fill Linefeed LINEFEED 68
Auto Fill Mode 67
Auto Fill Return RETURN 68
Auto Fill Space SPACE 67
Auto Save Toggle 32
Back to Indentation Meta+M 64
Backup File 29
Backward Character Ctrl+B 37
Backward Form Meta+Ctrl+B 140
Backward Kill Line 51
Backward Kill Sentence Ctrl+X

Delete 52
Backward List Meta+Ctrl+P 144
Backward Paragraph Meta+[40
Backward Search 81
Backward Sentence Meta+A 39
Backward Up List Meta+Ctrl+U 144
Backward Word Meta+B 38
Beginning of Buffer Meta+< 42
Beginning of Defun

Meta+Ctrl+A 123
Beginning of Line Ctrl+A 38
Beginning Of Parse Meta+< 108
Beginning of Parse or Line

Ctrl+A 108
Bind Key 111
Bind String to Key 111
Bottom of Window 41
Break Definition 132
Break Definition on Exit 133
Break Function 132
Break Function on Exit 132
Buffer Changed Definitions 137
Buffer Not Modified

Meta+Shift+~ 72
Build Application 118
Capitalize Region 59
Capitalize Word Meta+C 58
CD 114
Center Line 66
Check Buffer Modified Ctrl+X ~ 71
Circulate Buffers

Meta+Ctrl+Shift+L 69
Compare Buffers 91
Compare Windows 91

Compile Buffer Changed
Definitions 158

Compile Buffer File 157
Compile BufferCtrl+Shift+B 157
Compile Changed Definitions 158
Compile Defun Ctrl+Shift+C 156
Compile File 157
Compile Region Ctrl+Shift+R 157
Compile System 159
Compile System Changed

Definitions 159
Complete Field SPACE 106
Complete Input TAB 106
Complete Symbol Meta+Ctrl+I 136
Confirm Parse RETURN 106
Continue Tags Search Meta+, 129
Copy To Cut Buffer 116
Copy to Register Ctrl+X X 93
Count Lines Page Ctrl+X L 77
Count Lines Region 46
Count Matches 88
Count Occurrences 88
Count Words Region 46
Create Buffer 70
Create Tags Buffer 127
Defindent 123
Define Keyboard Macro Ctrl+X

(104
Define Word Abbrevs 103
Delete All Word Abbrevs 101
Delete Blank Lines Ctrl+X

Ctrl+O 49
Delete File 36
Delete File and Kill Buffer 36
Delete Global Word Abbrev 101
Delete Horizontal Space Meta+\ 49
Delete Indentation

Meta+Shift+^ 63
Delete Key Binding 112
Delete Matching Lines 82
Delete Mode Word Abbrev 101
Delete Next Character Ctrl+D 48
Delete Next Window Ctrl+X 1 73
Delete Non-Matching Lines 82
Delete Previous Character DELETE 49
Delete Previous Character Expanding

Tabs 49
Delete Region 50
Delete Selection Mode 56
Delete Window Ctrl+X 0 73
Describe Bindings Ctrl+H B 22
Describe Class 139
 217

Index

218
Describe Command Ctrl+H D 20
Describe Editor Variable Ctrl+H V 22
Describe Generic Function 139
Describe Key Ctrl+H K 21
Describe Method Call 139
Describe Symbol 149
Describe System 140
Diff 92
Diff Ignoring Whitespace 92
Directory Query Replace 89
Directory Search 83
Disassemble Definition 159
Do Nothing 112
Document Command Ctrl+H

Ctrl+D 20
Document Key Ctrl+H Ctrl+K 21
Document Variable Ctrl+H

Ctrl+V 22
Down Comment Line Meta+N 146
Down List Meta+Ctrl+D 144
Dynamic Completion Meta+/ 56
Echo Area Backward Character

Ctrl+B 107
Echo Area Backward Word

Meta+B 108
Echo Area Delete Previous Character

DELETE 108
Echo Area Kill Previous Word

Meta+Delete 108
Edit Callees 135
Edit Callers 134
Edit Editor Command 126
Edit Recognized Source 159
Edit Word Abbrevs 102
End Keyboard Macro Ctrl+X) 104
End of Buffer Meta+> 42
End of Defun Meta+Ctrl+E 123
End of Line Ctrl+E 38
Evaluate Buffer 154
Evaluate Buffer Changed

Definitions 154
Evaluate Changed Definitions 155
Evaluate Defun In Listener 155
Evaluate Defun Meta+Ctrl+X 152
Evaluate Expression

Escape+Escape 153
Evaluate Last Form In Listener 155
Evaluate Last FormCtrl+X

Ctrl+E 153
Evaluate Region In Listener 156
Evaluate RegionCtrl+Shift+E 153
Evaluate System Changed
Definitions 155
Exchange Point and Mark Ctrl+X

Ctrl+X 44
Exit Recursive Edit

Meta+Ctrl+Z 110
Expand File Name Meta+Tab 56
Extract List 142
Fill Paragraph Meta+Q 65
Fill Region Meta+G 65
Find Alternate File Ctrl+X

Ctrl+V 26
Find Command Definition 126
Find File 25
Find Mismatch 149
Find Source for Dspec 125
Find Source Meta+. 125
Find Tag Meta+? 128
Find Unbalanced Parentheses 149
Find Unwritable Character 31
Forward Character Ctrl+F 37
Forward Form Meta+Ctrl+F 140
Forward Kill Sentence Meta+K 52
Forward List Meta+Ctrl+N 143
Forward Paragraph Meta+] 39
Forward Search Ctrl+S Esc 81
Forward Sentence Meta+E 39
Forward Up List 144
Forward Word Meta+F 38
Function Arglist Displayer

Ctrl+‘ 138
Function Arglist Meta+= 137
Function Argument List

Ctrl+Shift+A 138
Function Documentation

Ctrl+Shift+D 150
Fundamental Mode 95
Generic Describe Ctrl+H G 20
Get Register 94
Go Back Ctrl+X C 47
Go Forward Ctrl+X P 48
Goto Line 39
Goto Page 76
Goto Point 43
Help Ctrl+H 18
Help on Parse ? 106
Illegal 112
Incremental Search Ctrl+S 78
Indent for Comment Meta+; 145
Indent Form Meta+Ctrl+Q 141
Indent New Comment Line Meta+J or

Meta+Newline 146
Indent New Line 64

Index
Indent or Complete Symbol 135
Indent Region Meta+Ctrl+\ 62
Indent Rigidly 63
Indent Rigidly Ctrl+X Tab,

Ctrl+X Ctrl+I 63
Indent Selection or Complete Symbol

TAB 135
Indent TAB 62
Insert () 147
Insert Buffer 71
Insert Cut Buffer 116
Insert Double Quotes For Selection

Meta+" 143
Insert File Ctrl+X I 36
Insert Multi Line Comment For Selec-

tion Meta+# 145
Insert Page Directory 77
Insert Parentheses For Selection

Meta+(148
Insert Parse Default Ctrl+P 109
Insert Register Ctrl+X G 94
Insert Selected Text Ctrl+C

Ctrl+C 109
Insert Word Abbrevs 103
Interrupt Shell Subjob Ctrl-C

Ctrl-C 115
Inverse Add Global Word Abbrev

Ctrl+X - 99
Inverse Add Mode Word Abbrev

Ctrl+X Ctrl+H 99
Invoke Tool 118
Jump to Register Ctrl+X J 92
Jump to Saved Position 93
Just One Space Meta+Space 49
Keyboard Macro Query Ctrl+X Q 105
Kill Backward Up List 141
Kill Buffer Ctrl+X K 69
Kill Comment Meta+Ctrl+; 146
Kill Line Ctrl+K 51
Kill Next Word Meta+D 51
Kill Parse Ctrl+U 109
Kill Previous Word Meta+Delete 51
Kill Region Ctrl+W 52
Kill Register 93
Last Keyboard Macro Ctrl+X E 104
Line to Top of Window 41
Lisp Insert) 148
Lisp Mode 96
List Buffers Ctrl+X Ctrl+B 70
List Callees 133
List Callers 133
List Definitions 127

List Definitions For Dspec 127
List Matching Lines 82
List Registers 93
List Unwritable Characters 31
List Word Abbrevs 101
Load File 154
Lowercase Region Ctrl+X

Ctrl+L 58
Lowercase Word Meta+L 57
Macroexpand Form

Ctrl+Shift+M 142
Make Word Abbrev 100
Manual Entry 23
Mark Defun Meta+Ctrl+H 123
Mark Form Meta+Ctrl+@ 140
Mark Page Ctrl+X Ctrl+P 76
Mark Paragraph Meta+H 45
Mark Sentence 45
Mark Whole Buffer Ctrl+X H 46
Mark Word Meta+@ 45
Move Over) Meta+) 148
Move to Window

LineMeta+Shift+R 42
Name Keyboard Macro 105
Negative Argument 24
New Buffer 70
New Line RETURN 54
New Window Ctrl+X 2 72
Next Breakpoint 160
Next Line Ctrl+N 38
Next Ordinary Window Ctrl+X O 72
Next Page Ctrl+X] 76
Next Parse Meta+N 107
Next Window Ctrl+X O 72
Open Line Ctrl+O 54
Overwrite Delete Previous

Character 61
Overwrite Mode 61
Point to Register Ctrl+X / 92
Pop and Goto Mark 44
Pop Mark Meta+Ctrl+Space 44
Prepend to Register 94
Previous Breakpoint 160
Previous Line Ctrl+P 38
Previous Page Ctrl+X [76
Previous Parse Meta+P 107
Previous Window 73
Print File 34
Print Region 47
Process File Options 35
Put Register 93
Query Replace Meta+Shift+% 88
 219

Index

220
Query Replace Regexp 90
Quote Tab 64
Quoted Insert Ctrl+Q 55
Read Word Abbrev File 103
Re-evaluate Defvar 153
Reevaluate Defvar 153
Refresh Screen Ctrl+L 75
Regexp Forward Search

Meta+Ctrl+S 87
Regexp Reverse Search

Meta+Ctrl+R 87
Register to Point 93
Rename Buffer 71
Rename File 36
Replace Regexp 90
Replace String 88
Report Bug 117
Report Manual Bug 118
Return Default Ctrl+R 109
Reverse Incremental Search

Ctrl+R 80
Reverse Search 82
Revert Buffer 35
Room 118
Rotate Active Finders 130
Rotate Active Finders

Meta+Ctrl+. 130
Run Command 113
Save All Files and Exit Ctrl+X

Ctrl+C 29
Save All Files Ctrl+X S 28
Save File Ctrl+X Ctrl+S 27
Save Position 92
Save Region Meta+W 52
Scroll Next Window Down 73
Scroll Next Window Up 73
Scroll Window Down Ctrl+V 40
Scroll Window Up Meta+V 40
Search All Buffers 82
Search Files Ctrl+X * 83
Search Files Matching Patterns

Ctrl+X & 83
Search System 84
Select Buffer Ctrl+X B 68
Select Buffer Other Window 69
Select Go Back Ctrl+X M 47
Select Previous Buffer

Meta+Ctrl+L 69
Self Insert 55
Self Overwrite 61
Set Buffer Output 151
Set Buffer Package 151
Set Comment Column Ctrl+X ; 145
Set External Format 31
Set Fill Column Ctrl+X F 65
Set Fill Prefix Ctrl+X . 66
Set Mark Ctrl+Space 44
Set Prefix Argument Ctrl+U 23
Set Variable 110
Shell Command Meta-! 112
Shell Send Eof Ctrl-C Ctrl-D 115
Show Documentation for Dspec 150
Show Documentation

Meta+Ctrl+Shift+A 150
Show Paths From 134
Show Paths To 134
Show Variable 110
Skip Whitespace 42
Split Window Horizontally 74
Split Window Vertically 74
Stop Shell Subjob Ctrl-C Ctrl-

Z 115
System Query Replace 89
System Search 84
Tags Query Replace 129
Tags Search 128
Text Mode 95
Toggle Auto Save 32
Toggle Breakpoint 160
Toggle Buffer Read-Only Ctrl+X

Ctrl+Q 71
Toggle Count Newlines 74
Toggle Error Catch 154
Top of Window 41
Trace Definition 131
Trace Definition Inside Definition 132
Trace Function 131
Trace Function Inside Definition 131
Transpose Characters Ctrl+T 59
Transpose Forms Meta+Ctrl+T 143
Transpose Lines Ctrl+X Ctrl+T 60
Transpose Regions 60
Transpose Words Meta+T 59
Undefine 161
Undefine Buffer 161
Undefine Command 161
Undefine Region 162
Undo Ctrl+Shift+_ 57
Unexpand Last Word 100
Un-Kill Ctrl+Y 53
Unsplit Window 74
Untrace Definition 132
Untrace Function 131
Up Comment Line Meta+P 146

Index
Uppercase Region Ctrl+X
Ctrl+U 58

Uppercase Word Meta+U 58
View Page Directory 77
View Source Search 126
Visit File 26
Visit Other Tags File 130
Visit Tags File 130
Walk Form Meta+Shift+M 142
Wfind File Ctrl+X Ctrl+F 26
What Command Ctrl+H C 20
What Cursor Position Ctrl+X = 42
What Line 39
What Lossage Ctrl+H L 21
Where Is Ctrl+H W 22
Where is Point 43
Word Abbrev Apropos 102
Word Abbrev Prefix Point Meta+’ 100
Write File Ctrl+X Ctrl+W 28
Write Region 29
Write Word Abbrev File 102
Zap To Char Meta+Z 53

editor errors
debugging 117

editor functions
bind-key 168
bind-string-to-key 169
buffer-from-name 179
buffer-name 178
buffer-pathname 186
buffer-point 178
buffers-end 178
buffers-start 178
buffer-value 196
change-buffer-lock-for-

modification 176
character-offset 189
check-disk-version-

consistent 186
clear-echo-area 184
complete-in-place 192
complete-with-non-focus 193
copy-point 182
current-buffer 178
current-mark 181
current-point 181
current-window 197
define-editor-mode-

variable 194
define-editor-variable 194
delete-point 182
editor-error 185

editor-variable-
documentation 195

end-line-p 182
fast-save-all-buffers 185
find-file-buffer 185
form-offset 190
goto-buffer 179
insert-string 187
kill-ring-string 187
line-end 189
line-offset 189
line-start 189
make-buffer 179
message 183
move-point 182
point< 181
point<= 181
point> 181
point>= 182
point-kind 180
points-to-string 188
process-character 171
prompt-for-buffer 191
prompt-for-file 191
prompt-for-integer 191
prompt-for-string 191
prompt-for-variable 192
redisplay 197
same-line-p 183
search-files 85
set-current-markt 181
set-interrupt-keys 169
setup-indent 170
start-line-p 182
variable-value 195
variable-value-if-bound 196
window-buffer 178
window-text-pane 197
word-offset 189

editor macros
save-excursion 183
use-buffer 179
with-buffer-locked 174, 175
with-point 183
with-point-locked 174, 176

editor package 170
editor source code 199
Editor tool 134, 135
editor types
buffer 174
point 179

editor variable 109
 221

Index

222
editor variables
abbrev-pathname-defaults 103
add-newline-at-eof-on-writing-file 30
auto-fill-space-indent 68
auto-save-checkpoint-frequency 33
auto-save-cleanup-checkpoints 33
auto-save-filename-pattern 32
auto-save-key-count-threshold 33
backup-filename-pattern 34
backup-filename-suffix 34
backups-wanted 33
break-on-editor-error 117
case-replace 90
comment-begin 147
comment-column 147
comment-end 147
comment-start 147
Compare-Ignores-Whitespace 91
compile-buffer-file-confirm 158
current-package 151
default-auto-save-on 32
default-buffer-element-type 70
default-modes 96
default-search-kind 84
evaluate-defvar-action 152
fill-column 65
fill-prefix 66
highlight-matching-parens 148
incremental-search-minimum-visible-

lines 79
input-format-default 27
output-format-default 30
prefix-argument-default 24
prompt-regexp-string 114
region-query-size 46
revert-buffer-confirm 35
save-all-files-confirm 28
scroll-overlap 41
shell-cd-regexp 114
shell-pop-regexp 114
shell-push-regexp 114
spaces-for-tab 62
undo-ring-size 57

editor-error 185
editor-variable-

documentation 195
encoding

default 27, 30
setting 31
unwritable character 31
unwritable characters 31

End Keyboard Macro 104
End of Buffer 42
End of Defun 123
End of Line 38
end-line-p 182
error

catching evaluation 154
editor 184

error functions 184
Escape key 9
Escape+Escape Evaluate

Expression 153
evaluate

buffer 154
buffer changed definition 154
changed definitions 155
defvar 153
expression 153
file 154
form 152, 155
last form 153, 155
region 153, 156
system changed definitions 155

Evaluate Buffer 154
Evaluate Buffer Changed Definitions 154
Evaluate Changed Definitions 155
Evaluate Defun 152
Evaluate Defun In Listener 155
Evaluate Expression 153
Evaluate Last Form 153
Evaluate Last Form In Listener 155
Evaluate Region 153
Evaluate Region In Listener 156
Evaluate System Changed

Definitions 155
evaluate-defvar-action 152
evaluation commands 151, 152, 155
examples

programming the editor 197
Exchange Point and Mark 44
execute mode 96
executing editor commands 9, 17
Exit Recursive Edit 110
Expand File Name 56
expression

evaluate 153
Extended Command 10
extended-char type 187
external format

default 27, 30
setting 31
unwritable character 31
unwritable characters 31

Index
external formats 186
Extract List 142

F
fast-save-all-buffers 185
file

auto-saving 31
backup 29, 33, 34
compile 157
delete 36
editor definition 6
evaluate 154
expand name 56
find alternate 26
finding 25
insert into buffer 36
options for buffer 35
print 34
rename 36
save 27, 29
set external format 31
unwritable character 31
unwritable characters 31
write 28

file encodings 186
file functions 197
file handling commands 12, 25
filename completion 56
files

search 83
Fill Paragraph 65
Fill Region 65
fill-column 65
filling commands 64
fill-prefix 66
Find Alternate File 26
Find Command Definition 126
Find File 25
Find Mismatch 149
Find Source 125
Find Source for Dspec 125
Find Tag 128
Find Unbalanced Parentheses 149
Find Unwritable Character 31
find-file-buffer 185
finding editor source code 126
*find-likely-function-

ignores* 188
form

compile 156
evaluate 152, 155
evaluate last 153, 155

indent 141
macro-expand 142
mark 140
move to beginning 140
move to end 140
transposition 143

form commands 140
form-offset 190
Forward Character 37
Forward Form 140
Forward Kill Sentence 52
Forward List 143
Forward Paragraph 39
Forward Search 81
Forward Sentence 39
Forward Up List 144
Forward Word 38
function

argument list 137
break 132
describe generic 139
documentation 150
edit callees 135
edit callers 134
editing 123
find definition 124
indentation 123
list callees 133, 134
list callers 133, 134
mark 123
move to beginning 123
move to end 123
trace 131
trace inside 131
untrace 131

Function Arglist 137
Function Arglist Displayer 138
Function Argument List 138
Function Call Browser tool 133, 134
Function Documentation 150
functions

buffer 174, 197
calling 171
defmode 97
echo area 183, 197
editor error 184
editor, see editor functions
file 197
inserting text 187
Lisp editor 188
movement 189, 197
point 179
 223

Index

224
prompt 190
variable 194
window 197

Fundamental Mode 95
fundamental mode 95

G
Generic Describe 20
generic function

describe 139
Generic Function Browser tool 139
Get Register 94
global abbreviation

editor definition 98
Go Back 47
Go Forward 48
Goto Line 39
Goto Page 76
Goto Point 43
goto-buffer 179

H
Help 18
help commands 14, 18
Help on Parse 106
highlight-matching-parens 148
history of commands 21
history ring 107

I
Illegal 112
Incremental Search 78, 79
incremental-search-minimum-visible-

lines 79
Indent 62
indent

form 141
Indent for Comment 145
Indent Form 141
Indent New Comment Line 146
Indent New Line 64
Indent or Complete Symbol 135
Indent Region 62
Indent Rigidly 63
Indent Selection 63
Indent Selection or Complete Symbol 135
indentation

customising 167, 170
define for Lisp forms 123
define for Lisp functions 123
delete 63
move back to 64
indentation commands 61
indenting 188
indent-with-tabs 188
In-place completion 192
input-format-default 27
Insert () 147
Insert Buffer 71
Insert Cut Buffer 116
Insert Double Quotes For Selection 143
Insert File 36
Insert Multi Line Comment For

Selection 145
Insert Page Directory 77
Insert Parentheses For Selection 148
Insert Parse Default 109
Insert Register 94
Insert Selected Text 109
Insert Word Abbrevs 103
inserting text commands 12, 53
inserting text functions 187
insert-string 187
Interrupt Shell Subjob 115
Inverse Add Global Word Abbrev 99
Inverse Add Mode Word Abbrev 99
Invoke Tool 118

J
Jump to Register 92
Jump to Saved Position 93
Just One Space 49

K
key

command description 20
Control 9
description 20, 21
Escape 9
Meta 9

key binding 111
customising 164, 167, 168

key sequence
editor definition 9
for command 22

key sequences
for commands 22

keyboard macro
begin definition of 104
editor definition 104
end definition of 104
execute 104

Index
name 105
keyboard macro commands 104
Keyboard Macro Query 105
Kill Backward Up List 141
Kill Buffer 69
Kill Comment 146
Kill Line 51
Kill Next Word 51
Kill Parse 109
Kill Previous Word 51
Kill Region 52
Kill Register 93
kill ring 48, 50, 53
killing

editor definition 48
killing text 50
killing text commands 13, 48
kill-ring-string 187

L
Last Keyboard Macro 104
line

beginning 38
centre 66
count for page 77
count for region 46
delete blank 49
delete matching 82
delete non-matching 82
end 38
goto 39
indent new 64
indentation 135
kill 51
kill backward 51
length 65
list matching 82
move to top of window 41
next 38
open new 54
previous 38
transposition 60
what line 39

line count 77
Line to Top of Window 41
line-end 189
LINEFEED Auto Fill Linefeed 68
line-offset 189
line-start 189
Lisp

editor commands 121
Lisp comment commands 145

Lisp documentation commands 149
Lisp editor functions 188
Lisp form commands 140
Lisp Insert) 148
Lisp list commands 143
Lisp Mode 96
Lisp mode 95
LispWorks IDE tools

Application Builder 118
Class Browser 139
Editor 134, 135
Function Call Browser 133, 134
Generic Function Browser 139
Listener 50, 96, 115, 155
Output Browser 50
Process Browser 17
Search Files 83, 84
selecting 118
Shell 113, 115
shortcuts 118
Symbol Browser 149

list
extract 141
kill backward up 141
move down one level 144
move to end 143, 144
move to start 144

List Buffers 70
List Callees 133
List Callers 133
list commands 143
List Definitions 127
List Definitions For Dspec 127
List Matching Lines 82
List Registers 93
List Unwritable Characters 31
List Word Abbrevs 101
Listener tool 50, 96, 115, 155
Load File 154
locations 47
Lowercase Region 58
Lowercase Word 57

M
macro

keyboard 104
Macroexpand Form 142
macro-expansion 142
macros
defcommand 172

major mode
editor definition 8, 94
 225

Index

226
Make Word Abbrev 100
make-buffer 179
man Unix command 23
manual

on-line editor 20, 21, 22
Manual Entry 23
mark

editor definition 7
exchange with point 44
form 140
move current point to 44
paragraph 45
pop 44
sentence 45
set 44
word 45
See also locations

Mark Defun 123
Mark Form 140
Mark Page 76
Mark Paragraph 45
mark ring 43
Mark Sentence 45
Mark Whole Buffer 46
Mark Word 45
message 183
Meta key 9
Meta-! Shell Command 112
Meta+" Insert Double Quotes

For Selection 143
Meta+# Insert Multi Line Com-

ment For Selection 145
Meta+(Insert Parentheses For

Selection 148
Meta+) Move Over) 148
Meta+, Continue Tags

Search 129
Meta+. Find Source 125
Meta+/ Dynamic Completion 56
Meta+; Indent for Comment 145
Meta+< Beginning of Buffer 42
Meta+< Beginning Of Parse 108
Meta+= Function Arglist 137
Meta+> End of Buffer 42
Meta+? Find Tag 128
Meta+@ Mark Word 45
Meta+[Backward Paragraph 40
Meta+\ Delete Horizontal

Space 49
Meta+] Forward Paragraph 39
Meta+’ Word Abbrev Prefix

Point 100
Meta+A Backward Sentence 39
Meta+B Backward Word 38
Meta+B Echo Area Backward

Word 108
Meta+C Capitalize Word 58
Meta+Ctrl+.Rotate Active

Finders 130
Meta+Ctrl+; Kill Comment 146
Meta+Ctrl+@ Mark Form 140
Meta+Ctrl+\ Indent Region 62
Meta+Ctrl+A Beginning of

Defun 123
Meta+Ctrl+B Backward Form 140
Meta+Ctrl+D Down List 144
Meta+Ctrl+E End of Defun 123
Meta+Ctrl+F Forward Form 140
Meta+Ctrl+H Mark Defun 123
Meta+Ctrl+I Complete

Symbol 136
Meta+Ctrl+L Select Previous

Buffer 69
Meta+Ctrl+N Forward List 143
Meta+Ctrl+P Backward List 144
Meta+Ctrl+Q Indent Form 141
Meta+Ctrl+R Regexp Reverse

Search 87
Meta+Ctrl+S Regexp Forward

Search 87
Meta+Ctrl+Shift+A Show

Documentation 150
Meta+Ctrl+Shift+L Circulate

Buffers 69
Meta+Ctrl+Space Pop Mark 44
Meta+Ctrl+T Transpose

Forms 143
Meta+Ctrl+U Backward Up

List 144
Meta+Ctrl+W Append Next

Kill 52
Meta+Ctrl+X Evaluate Defun 152
Meta+Ctrl+Z Exit Recursive

Edit 110
Meta+D Kill Next Word 51
Meta+Delete Echo Area Kill

Previous Word 108
Meta+Delete Kill Previous

Word 51
Meta+E Forward Sentence 39
Meta+F Forward Word 38
Meta+G Fill Region 65
Meta+H Mark Paragraph 45
Meta+I Abbreviated Complete

Index
Symbol 136
Meta+J Indent New Comment

Line 146
Meta+K Forward Kill

Sentence 52
Meta+L Lowercase Word 57
Meta+M Back to Indentation 64
Meta+N Down Comment Line 146
Meta+N Next Parse 107
Meta+Newline Indent New Com-

ment Line 146
Meta+P Previous Parse 107
Meta+P Up Comment Line 146
Meta+Q Fill Paragraph 65
Meta+Shift+% Query Replace 88
Meta+Shift+^ Delete

Indentation 63
Meta+Shift+~ Buffer Not

Modified 72
Meta+Shift+M Walk Form 142
Meta+Shift+R Move to Window

Line 42
Meta+Space Just One Space 49
Meta+T Transpose Words 59
Meta+Tab Expand File Name 56
Meta+U Uppercase Word 58
Meta+V Scroll Window Up 40
Meta+W Save Region 52
Meta+Z Zap To Char 53
method call

describe 139
Microsoft Windows keys

using 163
minor mode

editor definition 8, 96
mode

editor definition 8, 94
indentation in 61

mode abbreviation
editor definition 98

mode line
editor definition 6

modes
abbrev 96, 98
auto-fill 67, 96
execute 96
fundamental 95
Lisp 95
overwrite 61, 96
shell 95
text 95

mouse

editor bindings 116
Move Over) 148
Move to Window Line 42
movement commands 12, 37

locations 47
movement functions 189, 197
move-point 182

N
Name Keyboard Macro 105
Negative Argument 24
New Buffer 70
New in LispWorks 6.1

fixed line position mode in incremental
search 78, 80

Function Arglist Displayer
can use Echo Area 138

incremental-search-minimum-
visible-lines 79

Invoke Tool 118
Split Window Horizontally 74
Split Window Vertically 74
Unsplit Window 74
Zap To Char 53

New Line 54
New Window 72
newline

adding to end of file 30
Next Breakpoint 160
Next Line 38
Next Ordinary Window 72
Next Page 76
Next Parse 107
Next Window 72

O
Open Line 54
Output Browser tool 50
output-format-default 30
Overwrite Delete Previous Character 61
Overwrite Mode 61
overwrite mode 61, 96
overwriting commands 60

P
package

editor 170
set 151

page
display first lines 77
editor definition 75
 227

Index

228
goto 76
insert first lines into buffer 77
mark 76
next 76
previous 76

page commands 75
pane

editor definition 5
paragraph

backward 40
editor definition 9
fill 65
forward 39
mark 45

parentheses
inserting a pair of 147, 148

parentheses commands 147
pending delete 56
point

editor definition 7
exchange with mark 44
goto 43
move to window line 42
position of 42
save to register 92
where is 43

point 179
point behavior 179
point functions 179
point ring, see mark ring
Point to Register 92
point< 181
point<= 181
point> 181
point>= 182
point-kind 180
points and text modification 179
points-to-string 188
Pop and Goto Mark 44
Pop Mark 44
prefix

fill 66
prefix argument 11, 23
prefix-argument-default 24
Prepend to Register 94
Previous Breakpoint 160
Previous Line 38
Previous Page 76
Previous Parse 107
Previous Window 73
print

file 34
region 47
Print File 34
Print Region 47
process

breaking 17
Process Browser tool 17
Process File Options 35
process-character 171
programming the editor 170

calling functions 171
examples 197

prompt functions 190
prompt-for-buffer 191
prompt-for-file 191
prompt-for-integer 191
prompt-for-string 191
prompt-for-variable 192
prompt-regexp-string 114
Put Register 93

Q
Query Replace 88
query replace 88

directory 89
regexp 90
system 89
tags 129

Query Replace Regexp 90
Quote Tab 64
Quoted Insert 55

R
Read Word Abbrev File 103
recursive editing 110
redisplay 197
Re-evaluate Defvar 153
Reevaluate Defvar 153
Refresh Screen 75
regexp

query replace 90
replace 90

Regexp Forward Search 87
Regexp Reverse Search 87
region

append 29
capitalize 59
compile 157
delete 50
determining 44
editor definition 8
evaluate 153, 156

Index
fill 65
get from register 94
indent 62
indent rigidly 63
kill 52
line count 46
lowercase 58
print 47
save 52
transposition 60
uppercase 58
word count 46
write 29

region-query-size 46
register

append to 93
editor definition 92
get region 94
kill 93
list 93
move to saved position 92
prepend to 94
record position 93
save current point to 92
save position 93

register commands 92
Register to Point 93
regular expression 85

count occurrences of 88
regular expression search 85
Rename Buffer 71
Rename File 36
repeating a command 11, 23
replace

case sensitivity 90
query 88
regexp 90
string 88

Replace Regexp 90
Replace String 88
replacing 88
replacing commands 77
Report Bug 117
Report Manual Bug 118
RETURN Auto Fill Return 68
RETURN Confirm Parse 106
Return Default 109
RETURN New Line 54
Reverse Incremental Search 80
Reverse Search 82
Revert Buffer 35
revert-buffer-confirm 35

ring
history 107
kill 48, 50, 53
mark 43
undo 56
window 72

Room 118
Rotate Active Finders 130
Run Command 113

S
same-line-p 183
Save All Files 28
Save All Files and Exit 29
Save File 27
Save Position 92
Save Region 52
save-all-files-confirm 28
save-excursion 183
screen

refresh 75
scroll button

size 74
Scroll Next Window Down 73
Scroll Next Window Up 73
Scroll Window Down 40
Scroll Window Up 40
scroller

size 74
scroll-overlap 41
search

all buffers 82
backward 81
case sensitivity 84
directory 83
files 83
forward 81
incremental backward 80
incremental forward 78
match position 79
regexp backward 87
regexp forward 87
regular expression 85
system 84

Search All Buffers 82
Search Files 83
Search Files Matching Patterns 83
Search Files tool 83, 84
Search System 84
search-files 85
searching 78
searching commands 77
 229

Index

230
Select Buffer 68
Select Buffer Other Window 69
Select Go Back 47
Select Previous Buffer 69
selection

indent 63
indenting 135

Self Insert 55
Self Overwrite 61
sentence

backward 39
delimiter 9
editor definition 8
forward 39
kill backward 52
kill forward 52
mark 45
terminator 9

Set Buffer Output 151
Set Buffer Package 151
Set Comment Column 145
Set External Format 31
Set Fill Column 65
Set Fill Prefix 66
Set Mark 44
Set Prefix Argument 23
Set Variable 110
set-current-mark 181
set-interrupt-keys 169
setup-indent 170
Shell Command 112
shell command

from editor 112
shell mode 95
Shell Send Eof 115
Shell tool 113, 115
shell-cd-regexp 114
shell-pop-regexp 114
shell-push-regexp 114
Show Documentation 150
Show Documentation for Dspec 150
Show Paths From 134
Show Paths To 134
Show Variable 110
simple-char type 70
Skip Whitespace 42
source finding

active finders list 130
dspec 125
editor command 126
editor definitions 199
name 125
tags 128
tags files 128, 130

source recording 124
source-found-action 188
space

delete horizontal 49
just one 49

SPACE Auto Fill Space 67
SPACE Complete Field 106
spaces-for-tab 62
Split Window Horizontally 74
Split Window Vertically 74
start-line-p 182
Stop Shell Subjob 115
string

count occurrences of 88
insert 187
replace 88
search 78

symbol
apropos 149
browser 149
completion 135, 136
describe 149

Symbol Browser tool 149
Syntax coloring 122
system

compile 159
compile changed definitions 159
describe 140
evaluate changed definitions 155
query replace 89
search 84

System Query Replace 89
System Search 84

T
TAB

for command completion 106
for indentation 62, 135
for symbol completion 135

tab
insert 64
width 62

TAB Complete Input 106
TAB Indent 62
TAB Indent Selection or Com-

plete Symbol 135
tag

continue search 129
create buffer 127
editor definition 124

Index
find 128
query replace 129
search 128
visit file 130

Tags Query Replace 129
Tags Search 128
temporary files 33, 34
terminator

sentence 9
text handling concepts 8
Text Mode 95
text mode 95
Toggle Auto Save 32
Toggle Breakpoint 160
Toggle Buffer Read-Only 71
Toggle Count Newlines 74
Toggle Error Catch 154
Top of Window 41
Trace Definition 131
Trace Definition Inside Definition 132
Trace Function 131
Trace Function Inside Definition 131
tracing functions 131
Transpose Characters 59
Transpose Forms 143
Transpose Lines 60
Transpose Regions 60
Transpose Words 59
transposition commands 59

U
Undefine 161
undefine

buffer 161
command 161
definition 161
region 162

Undefine Buffer 161
Undefine Command 161
Undefine Region 162
Undo 57
undo ring 56

size 57
undoing editor commands 13, 56
undo-ring-size 57
Unexpand Last Word 100
Unix command

man 23
Un-Kill 53
Unsplit Window 74
Untrace Definition 132
Untrace Function 131

Up Comment Line 146
Uppercase Region 58
Uppercase Word 58
use-buffer 179

V
variable

change value of 110
description 20, 22
editor 109
listing with apropos 19
show value of 110

variable functions 194
variables
buffer-list 178
*find-likely-function-

ignores* 188
indent-with-tabs 188
source-found-action 188
indenting 188

variable-value 195
variable-value-if-bound 196
View Page Directory 77
View Source Search 126
Visit File 26
Visit Other Tags File 130
Visit Tags File 130

W
Walk Form 142
Wfind File 26
What Command 20
What Cursor Position 42
What Line 39
What Lossage 21
Where Is 22
Where Is Point 43
whitespace

skip 42
window

delete 73
delete next 73
editor definition 5
mode line 74
move line to top of 41
move to bottom 41
move to top 41
new 72
next 72
previous 73
scroll down 40
 231

Index

232
scroll next down 73
scroll next up 73
scroll overlap 41
scroll up 40
scroller 74
split 74

window commands 72
window functions 197
window ring 72
window-buffer 178
windows

and the Editor 116
copy 116
paste 116

window-text-pane 197
with-buffer-locked 174, 175
with-point 183
with-point-locked 174, 176
word

backward 38
capitalize 58
count for region 46
dynamic completion 56
editor definition 8
forward 38
kill next 51
kill previous 51
lowercase 57
mark 45
transposition 59
uppercase 58

Word Abbrev Apropos 102
Word Abbrev Prefix Point 100
word-offset 189
Write File 28
Write Region 29
Write Word Abbrev File 102

Y
yank 53

Z
Zap To Char 53

	LispWorks® for Macintosh Editor User Guide
	Copyright and Trademarks
	Contents
	1 Introduction
	1.1 Using the editor within LispWorks
	1.1.1 About this manual

	2 General Concepts
	2.1 Window layout
	2.1.1 Windows and panes
	2.1.2 Files and buffers
	2.1.3 The mode line

	2.2 Buffer locations
	2.2.1 Points
	2.2.2 Marks
	2.2.3 Regions

	2.3 Modes
	2.4 Text handling concepts
	2.4.1 Words
	2.4.2 Sentences
	2.4.3 Paragraphs

	2.5 Executing commands
	2.5.1 Keys — Command, Ctrl and Meta
	2.5.2 Two ways to execute commands
	2.5.3 Prefix arguments

	2.6 Basic editing commands
	2.6.1 Aborting commands and processes
	2.6.2 File handling
	2.6.3 Inserting text
	2.6.4 Movement
	2.6.5 Deleting and killing text
	2.6.6 Undoing
	2.6.7 Killing and Yanking
	2.6.8 Help

	3 Command Reference
	3.1 Aborting commands and processes
	3.2 Executing commands
	Extended Command

	3.3 Help
	3.3.1 The help command
	Help
	Apropos Command
	What Command
	Describe Command
	Document Command
	Generic Describe
	Describe Key
	Document Key
	What Lossage
	Describe Editor Variable
	Document Variable
	Where Is
	Describe Bindings

	3.3.2 Other help commands
	Manual Entry

	3.4 Prefix arguments
	Set Prefix Argument
	prefix-argument-default
	None
	Negative Argument

	3.5 File handling
	3.5.1 Finding files
	Find File
	Wfind File
	Visit File
	Find Alternate File
	input-format-default

	3.5.2 Saving files
	Save File
	Save All Files
	save-all-files-confirm
	Write File
	Write Region
	Append to File
	Backup File
	Save All Files and Exit
	add-newline-at-eof-on-writing-file
	output-format-default
	Set External Format
	Find Unwritable Character
	List Unwritable Characters

	3.5.3 Auto-saving files
	Toggle Auto Save
	default-auto-save-on
	auto-save-filename-pattern
	auto-save-key-count-threshold
	auto-save-checkpoint-frequency
	auto-save-cleanup-checkpoints

	3.5.4 Backing-up files on saving
	backups-wanted
	backup-filename-suffix
	backup-filename-pattern

	3.5.5 Miscellaneous file operations
	Print File
	Revert Buffer
	revert-buffer-confirm
	Process File Options
	Insert File
	Delete File
	Delete File and Kill Buffer
	Rename File
	Make Directory

	3.6 Movement
	Forward Character
	Backward Character
	Forward Word
	Backward Word
	Beginning of Line
	End of Line
	Next Line
	Previous Line
	Goto Line
	What Line
	Forward Sentence
	Backward Sentence
	Forward Paragraph
	Backward Paragraph
	Scroll Window Down
	Scroll Window Up
	scroll-overlap
	Line to Top of Window
	Top of Window
	Bottom of Window
	Move to Window Line
	Beginning of Buffer
	End of Buffer
	Skip Whitespace
	What Cursor Position
	Where Is Point
	Goto Point

	3.7 Marks and regions
	3.7.1 Marks
	Set Mark
	Pop and Goto Mark
	Pop Mark
	Exchange Point and Mark
	Mark Word
	Mark Sentence
	Mark Paragraph
	Mark Whole Buffer

	3.7.2 Regions
	Count Words Region
	Count Lines Region
	region-query-size
	Print Region

	3.8 Locations
	Go Back
	Select Go Back
	Go Forward

	3.9 Deleting and killing text
	3.9.1 Deleting Text
	Delete Next Character
	Delete Previous Character
	Delete Previous Character Expanding Tabs
	Delete Horizontal Space
	Just One Space
	Delete Blank Lines
	Delete Region
	Clear Listener
	Clear Output

	3.9.2 Killing text
	Kill Next Word
	Kill Previous Word
	Kill Line
	Backward Kill Line
	Forward Kill Sentence
	Backward Kill Sentence
	Kill Region
	Save Region
	Append Next Kill
	Zap To Char

	3.10 Inserting text
	Un-Kill
	Rotate Kill Ring
	New Line
	Open Line
	Quoted Insert
	Self Insert
	Dynamic Completion
	Expand File Name

	3.11 Delete Selection
	Delete Selection Mode

	3.12 Undoing
	Undo
	undo-ring-size

	3.13 Case conversion
	Lowercase Word
	Uppercase Word
	Capitalize Word
	Lowercase Region
	Uppercase Region
	Capitalize Region

	3.14 Transposition
	Transpose Characters
	Transpose Words
	Transpose Lines
	Transpose Regions

	3.15 Overwriting
	Overwrite Mode
	Self Overwrite
	Overwrite Delete Previous Character

	3.16 Indentation
	Indent
	spaces-for-tab
	Indent Region
	Indent Rigidly
	Indent Selection
	Delete Indentation
	Back to Indentation
	Indent New Line
	Quote Tab

	3.17 Filling
	3.17.1 Fill commands
	Fill Paragraph
	Fill Region
	fill-column
	Set Fill Column
	fill-prefix
	Set Fill Prefix
	Center Line

	3.17.2 Auto-fill mode
	Auto Fill Mode
	Auto Fill Space
	Auto Fill Linefeed
	Auto Fill Return
	auto-fill-space-indent

	3.18 Buffers
	Select Buffer
	Select Buffer Other Window
	Select Previous Buffer
	Circulate Buffers
	Kill Buffer
	List Buffers
	Create Buffer
	New Buffer
	default-buffer-element-type
	Insert Buffer
	Rename Buffer
	Print Buffer
	Toggle Buffer Read-Only
	Check Buffer Modified
	Buffer Not Modified

	3.19 Windows
	New Window
	Next Window
	Next Ordinary Window
	Previous Window
	Delete Window
	Delete Next Window
	Scroll Next Window Down
	Scroll Next Window Up
	Split Window Horizontally
	Split Window Vertically
	Unsplit Window
	Toggle Count Newlines
	Refresh Screen

	3.20 Pages
	Previous Page
	Next Page
	Goto Page
	Mark Page
	Count Lines Page
	View Page Directory
	Insert Page Directory

	3.21 Searching and replacing
	3.21.1 Searching
	Incremental Search
	incremental-search-minimum-visible-lines
	Reverse Incremental Search
	Forward Search
	Backward Search
	List Matching Lines
	Delete Matching Lines
	Delete Non-Matching Lines
	Search All Buffers
	Directory Search
	Search Files
	Search Files Matching Patterns
	System Search
	Search System
	default-search-kind
	editor:search-files

	3.21.2 Regular expression searching
	Regexp Forward Search
	Regexp Reverse Search
	Count Occurrences

	3.21.3 Replacement
	Replace String
	Query Replace
	Directory Query Replace
	System Query Replace
	case-replace
	Replace Regexp
	Query Replace Regexp

	3.22 Comparison
	Compare Windows
	Compare Buffers
	Compare-Ignores-Whitespace
	Diff
	Diff Ignoring Whitespace

	3.23 Registers
	Point to Register
	Jump to Register
	Kill Register
	List Registers
	Copy to Register
	Append to Register
	Prepend to Register
	Insert Register

	3.24 Modes
	3.24.1 Major modes
	Fundamental Mode
	Text Mode
	Lisp Mode

	3.24.2 Minor modes
	3.24.3 Default modes
	default-modes

	3.24.4 Defining modes
	editor:defmode

	3.25 Abbreviations
	Abbrev Mode
	Add Mode Word Abbrev
	Inverse Add Mode Word Abbrev
	Add Global Word Abbrev
	Inverse Add Global Word Abbrev
	Make Word Abbrev
	Abbrev Expand Only
	Word Abbrev Prefix Point
	Unexpand Last Word
	Delete Mode Word Abbrev
	Delete Global Word Abbrev
	Delete All Word Abbrevs
	List Word Abbrevs
	Word Abbrev Apropos
	Edit Word Abbrevs
	Write Word Abbrev File
	Append to Word Abbrev File
	abbrev-pathname-defaults
	Read Word Abbrev File
	Insert Word Abbrevs
	Define Word Abbrevs

	3.26 Keyboard macros
	Define Keyboard Macro
	End Keyboard Macro
	Last Keyboard Macro
	Name Keyboard Macro
	Keyboard Macro Query

	3.27 Echo area operations
	3.27.1 Completing commands
	Complete Input
	Complete Field
	Confirm Parse
	Help on Parse

	3.27.2 Repeating echo area commands
	Previous Parse
	Next Parse

	3.27.3 Movement in the echo area
	Echo Area Backward Character
	Echo Area Backward Word
	Beginning Of Parse
	Beginning Of Parse or Line

	3.27.4 Deleting and inserting text in the echo area
	Echo Area Delete Previous Character
	Echo Area Kill Previous Word
	Kill Parse
	Insert Parse Default
	Return Default
	Insert Selected Text

	3.28 Editor variables
	Show Variable
	Set Variable

	3.29 Recursive editing
	Exit Recursive Edit
	Abort Recursive Edit

	3.30 Key bindings
	Bind Key
	Bind String to Key
	Delete Key Binding
	Illegal
	Do Nothing

	3.31 Running shell commands from the editor
	Shell Command
	Run Command
	Shell
	CD
	shell-cd-regexp
	shell-pushd-regexp
	shell-popd-regexp
	prompt-regexp-string
	Interrupt Shell Subjob
	Stop Shell Subjob
	Shell Send Eof

	3.32 Buffers, windows and the mouse
	3.32.1 Buffers and windows
	Copy to Cut Buffer
	Insert Cut Buffer

	3.32.2 Actions involving the mouse

	3.33 Miscellaneous
	Report Bug
	break-on-editor-error
	Report Manual Bug
	Room
	Build Application
	Invoke Tool

	4 Editing Lisp Programs
	4.1 Automatic entry into lisp mode
	4.2 Syntax coloring
	4.3 Functions and definitions
	4.3.1 Movement, marking and specifying indentation
	Beginning of Defun
	End of Defun
	Mark Defun
	Defindent

	4.3.2 Definition searching
	Find Source
	Find Source for Dspec
	Find Command Definition
	Edit Editor Command
	View Source Search
	List Definitions
	List Definitions For Dspec
	Create Tags Buffer
	Find Tag
	Tags Search
	Continue Tags Search
	Tags Query Replace
	Visit Tags File
	Rotate Active Finders

	4.3.3 Tracing functions
	Trace Function
	Trace Function Inside Definition
	Untrace Function
	Trace Definition
	Trace Definition Inside Definition
	Untrace Definition
	Break Function
	Break Function on Exit
	Break Definition
	Break Definition on Exit

	4.3.4 Function callers and callees
	List Callers
	List Callees
	Show Paths To
	Show Paths From
	Edit Callers
	Edit Callees

	4.3.5 Indentation and Completion
	Indent Selection or Complete Symbol
	Indent or Complete Symbol
	Complete Symbol
	Abbreviated Complete Symbol

	4.3.6 Miscellaneous
	Buffer Changed Definitions
	Function Arglist
	Function Arglist Displayer
	Function Argument List
	Describe Class
	Describe Generic Function
	Describe Method Call
	Describe System

	4.4 Forms
	4.4.1 Movement, marking and indentation
	Forward Form
	Backward Form
	Mark Form
	Indent Form

	4.4.2 Killing forms
	Forward Kill Form
	Backward Kill Form
	Kill Backward Up List

	4.4.3 Macro-expansion of forms
	Macroexpand Form
	Walk Form

	4.4.4 Miscellaneous
	Transpose Forms
	Insert Double Quotes For Selection

	4.5 Lists
	4.5.1 Movement
	Forward List
	Backward List
	Forward Up List
	Backward Up List
	Down List

	4.6 Comments
	Set Comment Column
	Indent for Comment
	Insert Multi Line Comment For Selection
	Up Comment Line
	Down Comment Line
	Indent New Comment Line
	Kill Comment
	comment-begin
	comment-start
	comment-column
	comment-end

	4.7 Parentheses
	Insert ()
	Insert Parentheses For Selection
	highlight-matching-parens
	Move Over)
	Lisp Insert)
	Find Unbalanced Parentheses

	4.8 Documentation
	Apropos
	Describe Symbol
	Function Documentation
	Show Documentation
	Show Documentation for Dspec

	4.9 Evaluation and compilation
	4.9.1 General Commands
	current-package
	Set Buffer Package
	Set Buffer Output

	4.9.2 Evaluation commands
	Evaluate Defun
	evaluate-defvar-action
	Reevaluate Defvar
	Evaluate Expression
	Evaluate Last Form
	Evaluate Region
	Evaluate Buffer
	Load File
	Toggle Error Catch
	Evaluate Buffer Changed Definitions
	Evaluate Changed Definitions
	Evaluate System Changed Definitions

	4.9.3 Evaluation in Listener commands
	Evaluate Defun In Listener
	Evaluate Last Form In Listener
	Evaluate Region In Listener

	4.9.4 Compilation commands
	Compile Defun
	Compile Region
	Compile File
	Compile Buffer
	Compile Buffer File
	compile-buffer-file-confirm
	Compile Buffer Changed Definitions
	Compile Changed Definitions
	Compile System
	Compile System Changed Definitions
	Disassemble Definition
	Edit Recognized Source

	4.10 Breakpoints
	4.10.1 Setting and removing breakpoints
	Toggle Breakpoint

	4.10.2 Moving between breakpoints
	Next Breakpoint
	Previous Breakpoint

	4.11 Removing definitions
	4.11.1 Undefining one definition
	Undefine
	Undefine Command

	4.11.2 Removing multiple definitions
	Undefine Buffer
	Undefine Region

	5 Emulation
	5.1 Using Mac OS editor emulation
	5.2 Key bindings
	5.2.1 Finding the keys
	5.2.2 Modifying the Key Bindings
	5.2.3 Accessing Emacs keys
	5.2.4 The Alt modifier and editor bindings

	5.3 Replacing the current selection
	5.4 Emulation in Applications

	6 Advanced Features
	6.1 Customizing default key bindings
	editor:bind-key
	editor:bind-string-to-key
	editor:set-interrupt-keys

	6.2 Customizing Lisp indentation
	editor:setup-indent

	6.3 Programming the editor
	6.3.1 Calling editor functions
	editor:process-character

	6.3.2 Defining commands
	editor:defcommand

	6.3.3 Buffers
	6.3.3.1 Buffer locking
	editor:with-buffer-locked
	editor:with-point-locked
	editor:change-buffer-lock-for-modification

	6.3.3.2 Buffer operations
	editor:*buffer-list*
	editor:current-buffer
	editor:buffer-name
	editor:window-buffer
	editor:buffers-start
	editor:buffers-end
	editor:buffer-point
	editor:use-buffer
	editor:buffer-from-name
	editor:make-buffer
	editor:goto-buffer

	6.3.4 Points
	editor:point-kind
	editor:current-point
	editor:current-mark
	editor:set-current-mark
	editor:point<
	editor:point<=
	editor:point>
	editor:point>=
	editor:copy-point
	editor:delete-point
	editor:move-point
	editor:start-line-p
	editor:end-line-p
	editor:same-line-p
	editor:save-excursion
	editor:with-point

	6.3.5 The echo area
	editor:message
	editor:clear-echo-area

	6.3.6 Editor errors
	editor:editor-error

	6.3.7 Files
	editor:find-file-buffer
	editor:fast-save-all-buffers
	editor:check-disk-version-consistent
	editor:buffer-pathname
	6.3.7.1 File encodings in the editor
	6.3.7.2 Non base-char errors
	6.3.7.3 Choosing the encoding to use

	6.3.8 Inserting text
	editor:insert-string
	editor:kill-ring-string
	editor:points-to-string

	6.3.9 Indentation
	editor:*indent-with-tabs*

	6.3.10 Lisp
	editor:*find-likely-function-ignores*
	editor:*source-found-action*

	6.3.11 Movement
	editor:line-end
	editor:line-start
	editor:character-offset
	editor:word-offset
	editor:line-offset
	editor:form-offset

	6.3.12 Prompting the user
	editor:prompt-for-file
	editor:prompt-for-buffer
	editor:prompt-for-integer
	editor:prompt-for-string
	editor:prompt-for-variable

	6.3.13 In-place completion
	editor:complete-in-place

	6.3.14 Variables
	editor:define-editor-variable
	editor:define-editor-mode-variable
	editor:editor-variable-documentation
	editor:variable-value
	editor:variable-value-if-bound
	editor:buffer-value

	6.3.15 Windows
	editor:current-window
	editor:redisplay
	editor:window-text-pane

	6.3.16 Examples
	6.3.16.1 Example 1
	6.3.16.2 Example 2
	6.3.16.3 Example 3

	6.4 Editor source code
	6.4.1 Contents
	6.4.2 Source location
	6.4.3 Guidelines for use of the editor source code

	Glossary
	Abbrev
	Abbrev Mode
	Auto-Fill Mode
	Auto-Saving
	Backup
	Binding
	Buffer
	Case Conversion
	Completion
	Control Key
	Ctrl Key
	Current
	Cursor
	Customization
	Default
	Deleting
	Echo Area
	Emulation
	Escape Key
	Extended Command
	Fill Prefix
	Filling
	Global Abbrev
	History Ring
	Incremental Search
	Indentation
	Insertion
	Keyboard Macro
	Key Sequence
	Killing
	Kill Ring
	Major Mode
	Mark
	Mark Ring
	Meta Key
	Minor Mode
	Mode
	Mode Abbrev
	Mode Line
	Newline
	Overwrite Mode
	Page
	Pane
	Paragraph
	Prefix Argument
	Point
	Recursive Editing
	Region
	Register
	Regular Expression Searching
	Replacing
	Saving
	Scrolling
	Searching
	Sentence
	Tag File
	Transposition
	Undoing
	Undo Ring
	Variable (Editor)
	Whitespace
	Window
	Window Ring
	Word
	Yanking

	Index

