
COM/Automation
User Guide and
Reference Manual
Version 6.1

Copyright and Trademarks
LispWorks COM/Automation User Guide and Reference Manual

Version 6.1

December 2011

Copyright © 2011 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be construed as a
commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or inaccuracies that may appear in this
publication. The software described in this book is furnished under license and may only be used or copied in accordance with the terms of
that license.

LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the registered trade-
marks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986, 1987, 1988 Xerox
Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, pro-
vided that this copyright and permission notice appear in all copies and supporting documentation, and that the name of M.I.T. not be used
in advertising or publicity pertaining to distribution of the software without specific, written prior permission. M.I.T. makes no representa-
tion about the suitability of this software for any purpose. It is provided “as is” without express or implied warranty. M.I.T. disclaims all war-
ranties with regard to this software, including all implied warranties of merchantability and fitness. In no event shall M.I.T. be liable for any
special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of con-
tract, negligence or other tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of ICU software obtained from http://source.icu-project.org and which bears the following copyright and permis-
sion notice:
ICU License - ICU 1.8.1 and later
COPYRIGHT AND PERMISSION NOTICE
Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Soft-
ware"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright
notice(s) and this permission notice appear in all copies of the Software and that both the above copyright notice(s) and this permission
notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIM-
ITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF
THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or
other dealings in this Software without prior written authorization of the copyright holder. All trademarks and registered trademarks men-
tioned herein are the property of their respective owners.

US Government Restricted Rights
The LispWorks Software is a commercial computer software program developed at private expense and is provided with restricted rights.
The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth in the accompanying End User
License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR 12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14
Alt III, as applicable. Rights reserved under the copyright laws of the United States.

Address

LispWorks Ltd
St. John’s Innovation Centre
Cowley Road
Cambridge
CB4 0WS
England

Telephone

From North America: 877 759 8839
(toll-free)

From elsewhere: +44 1223 421860

Fax
From North America: 617 812 8283
From elsewhere: +44 870 2206189

www.lispworks.com

http://www.lispworks.com

Contents
Preface vii

1 Using COM 1

Prerequisites 1
Including COM in a Lisp application 1
The mapping from COM names to Lisp symbols 3
Obtaining the first COM interface pointer 3
Reference counting 4
Querying for other COM interface pointers 4
Calling COM interface methods 4
Implementing COM interfaces in Lisp 13
Calling COM object methods from Lisp 24

2 COM Reference Entries 27

add-ref 27
automation-server-command-line-action 28
automation-server-main 29
automation-server-top-loop 32
call-com-interface 33
call-com-object 35
check-hresult 36
co-create-guid 37
co-initialize 38
co-task-mem-alloc 38
co-task-mem-free 40
iii

Contents

iv
co-uninitialize 40
com-error 41
com-interface 42
com-interface-refguid 42
com-object 43
com-object-destructor 43
com-object-from-pointer 44
com-object-initialize 45
com-object-query-interface 46
create-instance 47
define-com-implementation 48
define-com-method 51
find-clsid 53
get-object 54
guid-equal 55
guid-to-string 56
hresult 56
hresult-equal 57
i-unknown 57
interface-ref 58
make-factory-entry 59
make-guid-from-string 60
midl 61
:midl-file 63
query-interface 64
query-object-interface 65
refguid 66
refguid-interface-name 66
refiid 67
register-class-factory-entry 68
register-server 68
release 70
s_ok 70
server-can-exit-p 71
set-automation-server-exit-delay 72
standard-i-unknown 73
start-factories 74
stop-factories 75
succeeded 75
unregister-server 76

Contents
with-com-interface 77
with-com-object 79
with-temp-interface 81
with-query-interface 82

3 Using Automation 85

Including Automation in a Lisp application 85
Starting a remote Automation server 87
Calling Automation methods 87
Implementing Automation interfaces in Lisp 91
Examples of using Automation 94

4 Automation Reference Entries 97

com-dispatch-invoke-exception-error 97
com-dispatch-invoke-exception-error-info 98
call-dispatch-get-property 99
call-dispatch-method 100
call-dispatch-put-property 102
com-object-dispinterface-invoke 103
create-instance-with-events 105
create-object 106
define-automation-collection 107
define-automation-component 109
define-dispinterface-method 112
disconnect-standard-sink 114
do-collection-items 115
do-connections 116
find-component-tlb 117
find-component-value 119
get-active-object 120
get-error-info 121
get-i-dispatch-name 122
get-i-dispatch-source-names 123
i-dispatch 124
interface-connect 124
interface-disconnect 125
lisp-variant 126
invoke-dispatch-get-property 127
invoke-dispatch-method 128

 v

Contents

vi
invoke-dispatch-put-property 130
make-lisp-variant 131
:midl-type-library-file 132
query-simple-i-dispatch-interface 133
register-active-object 134
revoke-active-object 135
set-error-info 136
set-i-dispatch-event-handler 137
set-variant 140
simple-i-dispatch 142
simple-i-dispatch-callback-object 144
standard-automation-collection 145
standard-i-connection-point-container 148
standard-i-dispatch 149
with-coclass 150
with-dispatch-interface 151

5 Tools 155

The COM Implementation Browser 155
The COM Object Browser 159
The COM Interface Browser 160
Editor extensions 161

Index 163

Preface
This manual documents the LispWorks COM/Automation API, which pro-
vides a toolkit for using Microsoft COM and Automation with Common Lisp.

For details of using OLE and ActiveX controls with the CAPI, see the class
capi:ole-control-pane in the CAPI Reference Manual.

This preface contains information you need when using the rest of the this
manual. It discusses the purpose of this manual, the typographical conven-
tions used, and gives a brief description of the rest of the contents.

Assumptions

The manual assumes that you are familiar with:

• LispWorks

• The LispWorks FLI.

• Common Lisp and CLOS, the Common Lisp Object System

• The functionality of Microsoft COM/Automation.

Unless otherwise stated, examples given in this document assume that the
current package has COM on its package-use-list.
vii

viii
Conventions used in the manual

Throughout this manual, certain typographical conventions have been
adopted to aid readability.

Text which refers to Lisp forms is printed like this. Variables and values
described in the reference sections are printed like this.

Entries in the reference sections are listed alphabetically and each entry is
headed by the symbol name and type, followed by a number of fields provid-
ing further details. These fields consist of a subset of the following: “Sum-
mary”, “Signature”, “Superclasses”, “Subclasses”, “Slots”, “Accessors”,
“Readers”, “Compatibility Note”, “Description”, “Notes”, “Examples”, and
“See Also”.

Entries with a long “Description” section usually have as their first field a
short “Summary” providing a quick overview of the purpose of the symbol
being described.

The “Signature” section provides details of the arguments taken by the func-
tions and macros and values returned, separated by the => sign. The top level
of parentheses is omitted, but parentheses used for destructuring in macros
are included explicitly. Optional items in the syntax of macros are denoted
using square brackets [like this]. Repeated items have an asterisk suffix like
this*.

For classes, only direct sub- and superclasses are detailed in the “Subclasses”
and “Superclasses” sections of each entry.

Examples show fragments of code and sometimes the results of evaluating
them

Finally, the “See also” section provides a reference to other related symbols.

Please let us know if you find any mistakes in the LispWorks documentation,
or if you have any suggestions for improvements.

A Description of the Contents

The manual is divided into three sections, relating to COM, Automation and
tools respectively. The COM and Automation sections each contain a user
guide and a reference chapter.

Chapter 1, Using COM introduces the principles behind the LispWorks COM
API and describes how to use it to call COM methods and implement COM
servers.

Chapter 2, COM Reference Entries provides a detailed description of every
function, macro, variable and type in the LispWorks COM API.

Chapter 3, Using Automation introduces the LispWorks Automation API and
describes how to use it to call Automation methods and implement Automa-
tion servers.

Chapter 4, Automation Reference Entries provides a detailed description of
every function, macro, variable and type in the LispWorks Automation API.

Chapter 5, Tools describes some tools which are available in the LispWorks
IDE to help with debugging applications using COM/Automation.
 ix

x

1

1 Using COM
1.1 Prerequisites
Because COM is a low level binary API, many features of the LispWorks COM
API depend on the LispWorks FLI. See the LispWorks Foreign Language Interface
User Guide and Reference Manual for details. You should also have a working
knowledge of Microsoft COM.

To compile IDL files, you will need Microsoft® Visual C++® installed.

1.2 Including COM in a Lisp application
This section describes how to load COM and generate any FLI definitions
needed to use it, and how to build a COM DLL.

1.2.1 Loading the modules

Before using any of the LispWorks COM API, it must be loaded by evaluating

(require "com")

1.2.2 Generating FLI definitions from COM definitions

COM definitions are typically described in one of two ways, either as IDL
files, which allow the full range of COM definitions or as type libraries, which
1

1 Using COM

2

are generally only used for Automation. Before you can use any COM func-
tionality in a Lisp application, you need to convert the COM definitions into
Lisp FLI definitions and various supporting data structures. This corresponds
to using midl.exe or the MFC Class Wizard when writing C/C++ COM code.

To convert an IDL file, either compile it using the function midl or add it to a
system definition with the option :type :midl-file and compile and load
the system.

Note: types like IDispatch must declared before they are used, for this
conversion to work.

Conversion of type libraries is covered in Chapter 3, “Using Automation”.

1.2.3 Standard IDL files

Certain standard IDL files have already been converted to FLI definitions as
part of the COM API modules. These are listed below and should not be con-
verted again.

1.2.4 Making a COM DLL with LispWorks

You can make a DLL with LispWorks by using deliver (or save-image) with
the :dll-exports keyword. The value of the :dll-exports keyword can
include the keyword :com, which exports (with appropriate definitions) the
standard four symbols that a COM DLL needs:

DllGetClassObject
DllRegisterServer
DllUnregisterServer
DllCanUnloadNow

Table 1.1 Pre converted IDL files

IDL file Part of Lisp module
UNKNWN.IDL com

WTYPES.IDL com

OAIDL.IDL automation

OLEAUTO.IDL automation

OCIDL.IDL automation

1.3 The mapping from COM names to Lisp symbols
If no other symbols are exported, the value of :dll-exports can be the key-
word :com, which means the same as the list (:com). See the LispWorks
Delivery User Guide for more details.

1.3 The mapping from COM names to Lisp symbols
COM names are typically a mixture of upper and lower case letters and digits,
with words capitalized. These names are mapped to Lisp symbols, adding
hyphens to match typical Lisp conventions for word boundaries. These exam-
ples illustrate some conversions:

In addition, COM methods with the propget attribute have a get- prefix
added to their names and COM methods with the propput or propputref
attributes have a put- prefix added to their names. Note that these prefixes
are not used when calling methods via Automation.

To see the mapping for a particular file, look at the output while loading a con-
verted IDL file or type library.

1.4 Obtaining the first COM interface pointer
All interaction with a remote COM server is done via its interface pointers and
the most common way to obtain the first interface pointer is using the function
create-instance. This takes the CLSID of the server and returns an interface
pointer for the i-unknown interface unless another interface name is specified.

For example, the following will create an instance of Microsoft Word:

(create-instance "000209FF-0000-0000-C000-000000000046")

Table 1.2 Examples of COM names and their
corresponding Lisp names

COM name Lisp name
IUnknown i-unknown

pStr p-str

DWORD dword

IEnumVARIANT i-enum-variant
 3

1 Using COM

4

1.5 Reference counting
The lifetime of each COM interface pointer is controlled by its reference count.
When a new reference to a COM interface pointer is made, the function add-
ref should be called to increment its reference count. When a reference is
removed, the function release should be called to decrement it again. The
macro with-temp-interface can be useful when working with temporary
interface pointers to ensure that they are released when a body of code exits in
any way.

Refer to standard COM texts for more details of the reference counting rules.
The LispWorks COM API does not perform any automatic reference counting
(sometimes called smart pointers in C++).

1.6 Querying for other COM interface pointers
An interface pointer can be queried to discover if the underlying object sup-
ports other interfaces. This is done using the function query-interface,
passing the interface pointer and the refiid of the interface to query. A
refiid is either a foreign pointer to a GUID structure or a symbol naming a
COM interface as described in Section 1.3.

For example, the function below will find the COM interface pointer for itsi-
dispatch interface:

(defun find-dispatch-pointer (ptr)
 (query-interface ptr 'i-dispatch))

The macro with-query-interface can be used to query an interface pointer
and automatically release it again on exit from a body of code.

1.7 Calling COM interface methods
The macros call-com-interface and with-com-interface are used to call
COM methods. To call a COM method, you need to specify the interface
name, the method name, a COM interface pointer and suitable arguments.
The interface and method names are given as symbols named as in Section 1.3
and the COM interface pointer is a foreign pointer of type com-interface. In
both macros, the args and values are as specified in the Section 1.7.1.

1.7 Calling COM interface methods
The with-com-interface macro is useful when several methods are being
called with the same COM interface pointer, because it establishes a local
macro that takes just the method name and arguments.

For example, the following are equivalent ways of calling the move and
resize methods of a COM interface pointer window-ptr for the i-window
interface:

(progn
 (call-com-interface (window-ptr i-window move) 10 10)
 (call-com-interface (window-ptr i-window resize) 100 100))

(with-com-interface (call-window-ptr i-window) window-ptr
 (call-window-ptr move 10 10)
 (call-window-ptr resize 100 100))

1.7.1 Data conversion when calling COM methods

All IDL definitions map onto FLI definitions, mirroring the mapping that
midl.exe does for C/C++. However, IDL provides some additional type
information that C/C++ lacks (for instance the string attribute), so there are
some additional conversions that Lisp performs when it can.

The COM API uses the information from the IDL to convert data between FLI
types and Lisp types where appropriate for arguments and return values of
COM method calls. In particular:

• Primitive integer types are represented as Lisp integers.

• Primitive char types are represented as Lisp characters.

• Primitive float types are represented as Lisp float types.

• COM interface pointers are FLI objects represented as objects of type
com-interface, which supports type checking of the interface name.

• Except as detailed below, all other COM types are represented as their
equivalent FLI types. This includes other pointer types and structs.

In COM, all parameters have a direction which can be either in, out or both in
and out (referred to as in-out here). Arguments and values for client-side COM
method calls reflect the direction as described in the following sections. For a
complete version of the example code, see the file
 5

1 Using COM

6

examples\com\manual\args\args-calling.lisp in the LispWorks installa-
tion.

1.7.1.1 In parameters

In parameters are passed as positional arguments in the order they are speci-
fied and do not affect the return values.

• A parameter with the string attribute can be passed either as a foreign
pointer or as a Lisp string (converted to a foreign string with dynamic
extent for the duration of the call).

• A parameter whose type is either an array type or a pointer type with a
size_is attribute can be passed either as a foreign pointer or, if the ele-
ment type is not a foreign aggregate type, as a Lisp array of the appro-
priate rank (converted to a foreign array with dynamic extent for the
duration of the call).

• Otherwise, the Lisp value is converted using the FLI according to the
mapping of types defined above.

For example, given the IDL

import "unknwn.idl";

[object,
 uuid(E37A70A0-EFC9-11D5-BF02-000347024BE1)
]
interface IArgumentExamples : IUnknown
{
 typedef [string] char *argString;

 HRESULT inMethod([in] int inInt,
 [in] argString inString,
 [in] int inArraySize,
 [in, size_is(inArraySize)] int *inArray);
}

the method in-method can be called with Lisp objects like this:

1.7 Calling COM interface methods
(let ((array #(7 6)))
 (call-com-interface (arg-example i-argument-examples
 in-method)
 42
 "the answer"
 (length array)
 array))

or with foreign pointers like this:

(fli:with-dynamic-foreign-objects ()
 (let* ((farray-size 2)
 (farray (fli:allocate-dynamic-foreign-object
 :type :int
 :nelems farray-size
 :initial-contents '(7 6))))
 (fli:with-foreign-string (fstring elt-count byte-count)
 "the answer"
 (declare (ignore elt-count byte-count))
 (call-com-interface (arg-example i-argument-examples
 in-method)
 42
 fstring
 farray-size
 farray))))

Note that the int arguments are always passed as Lisp integer because int
is a primitive type.

1.7.1.2 Out parameters

Out parameters are always of type pointer in COM and never appear as posi-
tional arguments in the Lisp call. Instead, there is a keyword argument named
after the parameter, which can be used to pass an object to be modified by the
method. In addition, each out parameter generates a return value, which will
be eq to the value of keyword argument if it was passed and otherwise
depends on the type of the parameter as described below.

• If the value of the keyword argument is a foreign pointer then it is
passed directly to the method and is expected to point to an object of
the appropriate size to contain the returned data.

• If the value of the keyword argument is nil then a null pointer is
passed to the method.
 7

1 Using COM

8

• Except where specified below, if the keyword argument is omitted, a
foreign object with dynamic extent is created to contain the value and a
pointer to this object is passed to the method. On return, the contents
maybe be converted back to a Lisp object as specified.

• A parameter with the string attribute is converted to a Lisp string if
the keyword is not passed. If the keyword is passed, the memory for the
string might need to be freed by co-task-mem-free if nothing else
does this.

• A parameter whose type is either an array type or a pointer type with a
size_is attribute will be converted to a Lisp array if the keyword is not
passed and the element type is not a foreign aggregate type. If the
keyword argument is not passed then a new Lisp array is made. If the
value of the keyword argument is a Lisp array then that is filled.

• For a parameter whose type is a foreign aggregate type, such as struct,
the keyword argument must be passed and its value must be as a
foreign pointer. This pointer is passed directly to the method.

• For a parameter with the iid_is attribute, a com-interface pointer is
returned using the indicated iid parameter to control the interface
name.

• Otherwise, the dynamic extent foreign pointer is dereferenced to obtain
the Lisp return value, as if by calling fli:dereference.

For example, given the IDL

import "unknwn.idl";

[object,
 uuid(E37A70A0-EFC9-11D5-BF02-000347024BE1)
]
interface IArgumentExamples : IUnknown
{
 typedef [string] char *argString;

 HRESULT outMethod([out] int *outInt,
 [out] argString *outString,
 [in] int outArraySize,
 [out, size_is(outArraySize)] int *outArray);
}

1.7 Calling COM interface methods
the method out-method can return Lisp objects like this:

(multiple-value-bind (hres int string array)
 (call-com-interface (arg-example i-argument-examples
 out-method)
 8)
 ;; int is of type integer
 ;; string is of type string
 ;; array is of type array
)

or fill an existing array like this:

(let ((out-array (make-array 5)))
 (multiple-value-bind (hres int string array)
 (call-com-interface (arg-example i-argument-examples
 out-method)
 (length out-array)
 :out-array out-array)
 ;; int is of type integer
 ;; string is of type string
 ;; array is eq to out-array and was filled
))

or set the contents of foreign memory like this:

(fli:with-dynamic-foreign-objects ((out-int :int)
 (out-string WIN32:LPSTR))
 (let* ((out-farray-size 5)
 (out-farray (fli:allocate-dynamic-foreign-object
 :type :int
 :nelems out-farray-size)))
 (multiple-value-bind (hres int string array)
 (call-com-interface (arg-example i-argument-examples
 out-method)
 out-farray-size
 :out-int out-int
 :out-string out-string
 :out-array out-farray)
 ;; Each foreign pointer contains the method’s results
 ;; int is the foreign pointer out-int
 ;; string is the foreign pointer out-string
 ;; array is the foreign pointer out-array
 ;; Note that the string must be freed as follows:
 (co-task-mem-free (fli:dereference out-string)))))
 9

1 Using COM

10
1.7.1.3 In-out parameters

In-out parameters are always of type pointer in COM and are handled as a
mixture of in and out. In particular, they have both a positional parameter and
a keyword parameter, which can be used to control the value passed and con-
version of the value returned respectively. Each in-out parameter generates a
return value, which will be eq to the value of the keyword argument if it was
passed and otherwise depends on the type of the parameter as below.

• As for out parameters, if the value of the keyword argument is a foreign
pointer then it is passed directly to the method and is expected to be of
the appropriate size to contain the returned data. If the value of the key-
word argument is nil then a null pointer is passed to the COM call. The
positional argument should be nil is these cases. If the keyword argu-
ment not passed, a foreign object with dynamic extent is created to con-
tain the value, initialized with data from the positional argument before
calling the method and possibly converted back to a Lisp value on
return.

• For a parameter with the string attribute, the positional argument is
handled as for the in argument string case and the keyword argument
is handled as for the out argument string case. The functions co-task-
mem-alloc and co-task-mem-free should be used to manage the
memory for the string itself.

• For a parameter whose type is a non-aggregate array type or a pointer
to a non-aggregate type that has the size_is attribute, the positional
argument is handled as for the in argument array case and the keyword
argument is handled as for the out argument array case. To update an
existing array, pass it as both the positional and keyword argument val-
ues.

• For a parameter whose type is a foreign aggregate type, the keyword
argument must be passed and its value must be a foreign pointer. This
pointer is passed directly to the method and the positional argument
should be nil.

• Otherwise, a foreign object with dynamic extent is created, set to con-
tain the value of positional argument before calling the method and

1.7 Calling COM interface methods
dereferenced on return to obtain the Lisp return value, as if by calling
fli:dereference.

For example, given the IDL

import "unknwn.idl";

[object,
 uuid(E37A70A0-EFC9-11D5-BF02-000347024BE1)
]
interface IArgumentExamples : IUnknown
{
 typedef [string] char *argString;

 HRESULT inoutMethod([in, out] int *inoutInt,
 [in, out] argString *inoutString,
 [in] int inoutArraySize,
 [in, out, size_is(inoutArraySize)]
 int *inoutArray);
}

the method inout-method can receive and return Lisp objects like this:

(let ((in-array #(7 6)))
 (multiple-value-bind (hres int string array)
 (call-com-interface (arg-example i-argument-examples
 inout-method)
 42
 "the answer"
 (length in-array)
 in-array)
 ;; int is of type integer
 ;; string is of type string
 ;; array is of type array
))

or fill an existing array like this:
 11

1 Using COM

12
(let* ((in-array #(7 6))
 (out-array (make-array (length in-array))))
 (multiple-value-bind (hres int string array)
 (call-com-interface (arg-example i-argument-examples
 inout-method)
 42
 "the answer"
 (length in-array)
 in-array
 :inout-array out-array)
 ;; int is of type integer
 ;; string is of type string
 ;; array is eq to out-array, which was filled
))

or update an existing array like this:

(let* ((inout-array #(7 6)))
 (multiple-value-bind (hres int string array)
 (call-com-interface (arg-example i-argument-examples
 inout-method)
 42
 "the answer"
 (length inout-array)
 inout-array
 :inout-array inout-array)
 ;; int is of type integer
 ;; string is of type string
 ;; array is eq to inout-array, which was updated
))

1.7.2 Error handling

Most COM methods return an integer hresult to indicate success or failure,
which can be checked using succeeded,. s_ok, hresult-equal or check-
hresult.

In addition, after calling a COM method that provides extended error infor-
mation, you can call the function get-error-info to obtain more details of
any error that occurred. This is supplied with a list of fields, which should be
keywords specifying the parts of the error information to obtain.

For example, in the session below, tt is a COM interface pointer for the
i-test-suite-1 interface:

1.8 Implementing COM interfaces in Lisp
CL-USER 186 > (call-com-interface (tt i-test-suite-1 fx))

"in fx" ;; implementation running
-2147352567 ;; the error code DISP_E_EXCEPTION

CL-USER 187 > (get-error-info :fields '(:description
 :source))
("foo" "fx")

CL-USER 188 >

1.8 Implementing COM interfaces in Lisp
Lisp implementations of COM interfaces are created by defining an appropri-
ate class and then defining COM methods for all the interfaces implemented
by this class.

The class can inherit from standard-i-unknown to obtain an implementation
of the i-unknown interface. This superclass provides reference counting and
an implementation of the query-interface method that generates COM
interface pointers for the interfaces specified in the class definition. It also sup-
ports aggregation.

There are two important things to note about COM classes and methods:

• The implementation objects and COM interface pointers are different
things: an interface pointer must be queried from the implementation
object explicitly and the function com-object-from-pointer can be
used to obtain an object from an interface pointer. This is show in Figure
1.1 below.

• COM methods are not defined with defmethod because they have very
specific conventions for passing arguments and returning values that
are different from those of Lisp.
 13

1 Using COM

14
Figure 1.1 The relationship between an Lisp object and its COM interface
pointers

1.8.1 Steps required to implement COM interfaces

To implement a COM interface in Lisp, you need the following:

1. Some COM interface definitions, converted to Lisp as specified in Sec-
tion 1.2.2

2. A COM object class defined with the macro define-com-implementa-
tion, specifying the interface(s) to implement.

3. Implementations of the methods using define-com-method.

4. If the objects are to be created by another process, a description of the
class factories created with make-factory-entry and registered with
register-class-factory-entry.

5. Initialization code to call co-initialize. It should also call start-
factories in a thread that will be processing Windows messages (for
instance a CAPI thread) if you have registered class factories.

1.8.2 The lifecycle of a COM object

Since COM objects can be accessed from outside the Lisp world, possibly from
a different application, their lifetimes are controlled more carefully than those

Lisp object

Interface pointer 1

Interface pointer 2

query

query

invoke

invoke

1.8 Implementing COM interfaces in Lisp
of normal Lisp objects. The diagram below shows the lifecycle of a typical
COM object.

Figure 1.2 The lifecyle of a COM object

Each COM object goes through the following stages.

1. CLOS object initialization.

In the first stage, the object is created by a call to make-instance, either
by a class factory (see Section 1.8.3) or explicitly by the application. The
normal CLOS initialization mechanisms such as initialize-instance
can be used to initialize the object. During this stage, the object is known
only to Lisp and can be garbage collected if the next stage is not reached.

2. COM initialization.

At some point, the server makes the first COM interface pointer for the
object by invoking the COM method query-interface, either automat-
ically in the class factory or explicitly using by using macros such as
query-object-interface or call-com-object. When this happens,
the object’s reference count will become 1 and the object will be stored in

Start

CLOS object initialization

COM object initialization

COM object destruction

Garbage collection

End

CLOS object in Lisp

CLOS object in Lisp

CLOS object in Lisp

COM interfaces referenced by clients COM usage
 15

1 Using COM

16
the COM runtime system. In addition, the generic function com-
object-initialize is called to allow class-specific COM initialization
to be done.

3. COM usage.

In this stage, the object is used via its COM interface pointers by a client
or directly by Lisp code in the server. Several COM interface pointers
might be created and each one contributes to the overall reference count
of the object.

4. COM destruction.

This stage is entered when the reference count is decremented to zero,
which is triggered by all the COM interface pointers being released by
their clients. The generic function com-object-destructor is called to
allow class-specific COM cleanups and the object is removed from the
COM runtime system. From now on, the object is not known to COM
world.

5. Garbage collection.

The final stage of an object’s lifecyle is the normal Lisp garbage collec-
tion process, which removes the object from memory when there are no
more references to it.

1.8.3 Class factories

The LispWorks COM runtime provides an implementation of the class factory
protocol, which will construct COM objects on demand. The class factory
implementation supports aggregation when passed an outer unknown pointer.

Class factories are described by objects created with make-factory-entry
and must be registered with the COM runtime using register-class-fac-
tory-entry. The function start-factories should be called when the
application initializes to start all the registered class factories.

When using the Automation API described in Chapter 3 and Chapter 4, class
factories are created and registered automatically by the define-automa-
tion-component macro if appropriate.

1.8 Implementing COM interfaces in Lisp
1.8.4 Unimplemented methods

If the class does not define all the COM methods for the interfaces it imple-
ments, then some of those methods may be inherited from superclasses (see
Section 1.8.5). If there is no direct or inherited definition of a method, then a
default method that returns E_NOTIMPL will be provided automatically. The
default method also fills all out arguments with null bytes and ignores all in
and in-out arguments except those needed to compute the size of arrays for
filling out arguments.

1.8.5 Inheritance

A COM object class will inherit COM method implementations from its super-
classes if no direct method is defined. However, unlike Lisp methods where
an effective method is computed from the set of applicable methods for each
generic function, COM methods are always inherited in groups via their
defining interface. This is because the interface is used to call a COM method,
not the COM object

Specifically, each method is inherited from the first class in the class prece-
dence list that implements the interface where the method is declared. No
attempt is made to search further down the class precedence list if this class is
using the unimplemented method definition described in Section 1.8.4.

1.8.5.1 An example of multiple inheritance

The inheritance rules may lead to unexpected results in the case of multiple
inheritance. For example, consider the following IDL:

// IDL definition of IFoo
import "unknwn.idl";

[uuid(7D9EB760-E4E5-11D5-BF02-000347024BE1)]
interface IFoo : IUnknown
{
 HRESULT meth1();
 HRESULT meth2();
 HRESULT meth3();
}

and these three (partial) implementations of the interface i-foo.
 17

1 Using COM

18
1. An implementation with no definition of meth2:

(define-com-implementation foo-impl-1 ()
 ()
 (:interfaces i-foo))

(define-com-method meth1 ((this foo-impl-1))
 s_ok)

(define-com-method meth3 ((this foo-impl-1))
 s_ok)

2. An implementation with no definition except meth2:

(define-com-implementation foo-impl-2 ()
 ()
 (:interfaces i-foo))

(define-com-method meth2 ((this foo-impl-2))
 s_ok)

3. A combined implementation, inheriting from steps 1 and 2.

(define-com-implementation foo-impl-12 (foo-impl-1
 foo-impl-2)
 ()
 (:interfaces i-foo))

In step 3, the class foo-impl-12 implements the interface i-foo, but inherits
all the i-foo method definitions from foo-impl-1, which is the first class in
the class precedence list that implements that interface. These method defini-
tions include the "unimplemented" definition of meth2 in foo-impl-1, which
hides the definition in the other superclass foo-impl-2. As a result, when the
following form is evaluated with p-foo created from an instance of
foo-impl-12:

(let ((object (make-instance 'foo-impl-12)))
 (with-temp-interface (p-foo)
 (nth-value 1 (query-object-interface
 foo-impl-12
 object
 'i-foo))
 (with-com-interface (call-p-foo i-foo) p-foo
 (values (call-p-foo meth1)
 (call-p-foo meth2)
 (call-p-foo meth3)))))

1.8 Implementing COM interfaces in Lisp
the three values are S_OK, E_NOTIMPL and S_OK.

1.8.5.2 A second example of multiple inheritance

Here is a further extension to the example in Section 1.8.5.1, with an additional
interface i-foo-ex.that inherits from i-foo as in the following IDL:

[uuid(7D9EB761-E4E5-11D5-BF02-000347024BE1)]
interface IFooEx : IFoo
{
 HRESULT meth4();
}

This interface has the following additional implementations:

1. An implementation defining all the methods in i-foo-ex:

(define-com-implementation foo-ex-impl-1 ()
 ()
 (:interfaces i-foo-ex))

(define-com-method meth1 ((this foo-ex-impl-1))
 s_ok)

(define-com-method meth2 ((this foo-ex-impl-1))
 s_ok)

(define-com-method meth3 ((this foo-ex-impl-1))
 s_ok)

(define-com-method meth4 ((this foo-ex-impl-1))
 s_ok)

2. A combined implementation, inheriting from step 3 from Section 1.8.5.1
and step 1 above.

(define-com-implementation foo-ex-impl-2 (foo-impl-12
 foo-ex-impl-1)
 ()
 (:interfaces i-foo-ex))

In step 2, the class foo-ex-impl-2 implements the interface i-foo-ex and is
a subclass of foo-ex-impl-1, which implements i-foo. When the following
form is evaluated with p-foo-ex created from an instance of foo-ex-impl-2:
 19

1 Using COM

20
(let ((object (make-instance 'foo-ex-impl-2)))
 (with-temp-interface (p-foo-ex)
 (nth-value 1 (query-object-interface
 foo-ex-impl-2
 object
 'i-foo-ex))
 (with-com-interface (call-p-foo i-foo-ex) p-foo-ex
 (values (call-p-foo meth1)
 (call-p-foo meth2)
 (call-p-foo meth3)
 (call-p-foo meth4)))))

the four values are S_OK, E_NOTIMPL, S_OK and S_OK.

Note that, even though foo-ex-impl-2 only explicitly implements i-foo-ex,
the methods meth1, meth2 and meth3 were declared in its parent interface
i-foo. This means that their definitions (including the "unimplemented" defi-
nition of meth2) are inherited from foo-impl (via foo-impl-12), because
foo-impl-12 is before foo-ex-impl-2 in the class precedence list of
foo-ex-impl-2. Only meth4, which is declared in i-foo-ex, is inherited
from foo-ex-impl-1.

1.8.6 Data conversion in define-com-method

All IDL definitions map onto FLI definitions, mirroring the mapping that
midl.exe does for C/C++. However, IDL provides some additional type
information that C/C++ lacks (for instance the string attribute), so there are
some additional conversions that Lisp performs when it can. For a complete
example of data conversion, see the file
examples\com\manual\args\args-impl.lisp in the LispWorks installation.

1.8.6.1 FLI types

The COM API uses the information from the IDL to convert data between FLI
types and Lisp types where appropriate for arguments and return values of
COM method definitions. In particular:

• Primitive integer types are represented as Lisp integers

• Primitive char types are represented as Lisp characters.

• Primitive float types are represented as Lisp float types.

1.8 Implementing COM interfaces in Lisp
• COM interface pointers are represented as objects of type
com-interface, which supports type checking of the interface name.

• All other types are represented as their equivalent FLI types. This
includes other pointer types and structs.

Each argument is the IDL has a corresponding argument in the
define-com-method form. In addition, each argument has a pass-style which
specifies whether additional conversions are performed.

If the pass-style of a parameter is :foreign, then the value will be exactly what
the FLI would provide, i.e. foreign pointers for strings and for all out or in-out
parameters (which are always pointers in the IDL).

If the pass-style of a parameter is :lisp, then the conversions described in the
following sections will be done.

1.8.6.2 In parameters

For in parameters:

• A parameter with the string attribute will be converted to a Lisp
string. The string should not be destructively modified by the body.

• A parameter of COM type BSTR will be converted to a Lisp string. The
string should not be destructively modified by the body.

• A parameter of COM type VARIANT* will be converted to a Lisp object
according to the VT code in the variant (see Table 3.1, page 89).

• A parameter of COM type SAFEARRAY(type) or SAFEARRAY(type)* will
be converted to a Lisp array. The elements of type type are converted as
in Table 3.1.

• A parameter of COM type VARIANT_BOOL will be converted to nil (for
zero) or t (for any other value). Note that a parameter of type BOOL will
be converted to an integer because type libraries provide no way to
distinguish this case from the primitive integer type.

• A parameter whose type is an array type or a pointer type with a
size_is attribute will be converted to a temporary Lisp array. The Lisp
array might have dynamic extent.
 21

1 Using COM

22
• Otherwise, the value is converted to a Lisp value using the FLI accord-
ing to the mapping of types defined in Section 1.8.6.1.

1.8.6.3 Out parameters

For out parameters:

• A parameter whose type is an array type or a pointer type with a
size_is attribute will be converted to a Lisp array of the appropriate
size allocated for the dynamic extent of the body forms. After the body
has been evaluated, the contents of the array will be copied into the for-
eign array that the caller has supplied.

• For other types, the parameter will be nil initially and the body should
use setq to set it to the value to be returned.

In the latter case, the value will be converted to a foreign object after the body
has been evaluated. The following conversions are done:

• For a parameter with the string attribute, a Lisp string will be con-
verted to a foreign string using CoTaskMemAlloc().

• For a parameter of COM type BSTR*, a Lisp string will be converted to a
foreign string using SysAllocString().

• For a parameter of COM type VARIANT*, the value can be any Lisp
value, with the VT code being set according to the Lisp type (see Table
3.1, page 89). If exact control is required, use the pass-style :foreign and
the function set-variant.

• For a parameter of COM type SAFEARRAY(type)*, the value can be
either a foreign pointer to an appropriate SAFEARRAY or a Lisp array. In
the latter case, a new SAFEARRAY is created which contains the elements
of the Lisp array converted as in Table 3.1.

• For a parameter of COM type VARIANT_BOOL*, the value can be a gener-
alized boolean.

• Otherwise, the Lisp value will be converted using the FLI according to
the mapping of types defined in Section 1.8.6.1.

1.8 Implementing COM interfaces in Lisp
1.8.6.4 In-out parameters

For in-out parameters:

• A parameter whose type is an array type or a pointer type with a
size_is attribute will be converted to a Lisp array of the appropriate
size allocated for the dynamic extent of the body forms. The initial con-
tents of the Lisp array will be taken from the foreign array which was
passed by the caller. After the body has been evaluated, the contents of
the Lisp array will be copied back into the foreign array.

• For a parameter with the string attribute, the parameter will be the
converted to a Lisp string. To return a different string, the parameter
should be set to another (non eq) Lisp string, which will cause the origi-
nal foreign string to be freed with CoTaskMemFree() and a new foreign
string allocated with CoTaskMemAlloc(). The initial string should not
be destructively modified by the body.

• For a parameter of COM type BSTR*, the parameter will be the con-
verted to a Lisp string. To return a different string, the parameter should
be set to another (non eq) Lisp string, which will cause the original for-
eign string to be freed with SysFreeString() and a new foreign string
allocated with SysAllocString().

• For parameters of COM type VARIANT*, the parameter will be con-
verted to a Lisp object (see Table 3.1, page 89). To return a different
value, the parameter should be set to another (non eq) value, which will
be placed back into the VARIANT with the VT code being set according
to the Lisp type (see Table 3.1, page 89). If exact control of the VT code is
required, use the pass-style :foreign and the function set-variant.

• For parameters of COM type SAFEARRAY(type)*, the parameter will be
converted to a Lisp array. The elements of type type are converted as in
Table 3.1. To return a different value, the parameter should be set to
another (non eq) value, which can be either a foreign pointer to an
appropriate SAFEARRAY or a Lisp array. In the latter case, a new SAFEAR-
RAY is created which contains the elements of the Lisp array converted
as in Table 3.1.

• For parameter of COM type VARIANT_BOOL*, the parameter will be nil
or t according to the initial value (zero or non zero). To return a differ-
 23

1 Using COM

24
ent value, set the parameter to a new value, which can be a generalized
boolean.

1.9 Calling COM object methods from Lisp
Within the implementation of a COM object, the macros call-com-object
and with-com-object can be used to call COM methods directly for a COM
object without using an interface pointer. To call a COM method, you need to
specify the class name, the method name, the interface name if the method
name is not unique, a COM object and suitable arguments. The class name is a
symbol as used in the define-com-implementation form and can be a
superclass of the actual object class. The method and interface names are
given as symbols named as in Section 1.3. and the arguments and values are
as specified below in Section 1.9.1. These macros should be used with caution
because they assume that the caller knows the implementation's pass-style for
all the arguments.

The with-com-object macro is useful when several methods are being called
with the same COM object, because it establishes a local macro that takes just
the method name and arguments.

1.9.1 Data conversion when calling COM object methods

No explicit argument or return value conversion is done by call-com-object
or with-com-object. As a result, every argument must be passed as a posi-
tional argument and must be of the type expected by the method’s implemen-
tation The allowable types are described in the following sections.

1.9.1.1 In parameters

For in parameters,

• For a parameter with the string attribute, the value can be a Lisp
string.

• For a parameter of COM type BSTR, the value can be a Lisp string.

• For a parameter whose type is an array type or a pointer type with a
size_is attribute, the value can be a Lisp array of the appropriate rank
and dimension.

1.9 Calling COM object methods from Lisp
• Otherwise, the value should match what the FLI would generate for the
parameter's type.

1.9.1.2 Out parameters

For out parameters,

• If nil is passed, the value from the method is returned without any
conversion.

• For a parameter whose type is an array type or a pointer type with a
size_is attribute, the value can be a Lisp array. The contents of the
array will be modified by the method and the array will be returned as
a value.

• Otherwise, the value should be a foreign pointer of the type that the FLI
would generate for the parameter's type. The foreign pointer will be
returned as a value.

1.9.1.3 In-out parameters

For in-out parameters,

• For a parameter whose type is an array type or a pointer type with a
size_is attribute, the value can be a Lisp array. The contents of the
array will be modified by the method and the array will be returned as
a value.

• For a parameter with the string attribute, the parameter can be a Lisp
string. The value of the parameter at the end of the body will be
returned as a value.

• For a parameter of COM type BSTR*, the parameter can be a Lisp string.
The value of the parameter at the end of the body will be returned as a
value.

• For parameters of COM type VARIANT*, the parameter can be any Lisp
object. The value of the parameter at the end of the body will be
returned as a value.

• If the value is a foreign pointer of the type that the FLI would generate
for the parameter's type then the foreign object it points to will be the
 25

1 Using COM

26
value of the parameter. The foreign pointer will be returned as a value,
with the new contents as modified (or not) by the method.

• Otherwise, the parameter is passed directly to the method and the value
of the parameter at the end of the body will be returned as a value.

2

2 COM Reference Entries
The following chapter documents COM functionality.

add-ref Function

Summary Increments the reference count of a COM interface pointer.

Package com

Signature add-ref interface-ptr => ref-count

Arguments interface-ptr A COM interface pointer.

Values ref-count The new reference count.

Description Each COM interface pointer has a reference count which is
used by the server to control its lifetime. The function
add-ref should be called whenever an extra reference to the
interface pointer is being made. The function invokes the
COM method IUnknown::AddRef so the form
(add-ref ptr) is equivalent to using call-com-interface
as follows:
27

2 COM Reference Entries

28
(call-com-interface (ptr i-unknown add-ref))

Example (add-ref p-foo)

See also release

interface-ref

query-interface

call-com-interface

automation-server-command-line-action Function

Summary Reports what action was specified for the automation server.

Package com

Signature automation-server-command-line-action => action

Arguments None.

Values One of the keywords :register, :unregister or :embed-
ding, or nil.

Description The function automation-server-command-line-action
inspects the command line to see what action was specified
for the automation server. The possible return values have
the following meanings:

:register The server should register itself (by regis-
ter-server). Specified by /RegServer.

:unregister The server should unregister itself (by
unregister-server). Specified by /UnReg-
Server.

:embedding The server was run with /Embedding or
-Embedding.

nil No recognized action.

See also register-server

unregister-server

automation-server-main Function

Summary For use as the main function for an automation server.

Package com

Signature automation-server-main &key exit-delay exit-function new-
process force-server forced-exit-delay quit-on-registry-error handle-
registry-error

Arguments exit-delay A non-negative real number.

exit-function A function specifier.

new-process A boolean.

force-server A boolean.

forced-exit-delay A non-negative real number.

quit-on-registry-error

A boolean.

handle-registry-error

A boolean.

Description The function automation-server-main is for use as the
main function for an automation server.

exit-delay, if supplied, sets the exit delay for automation-
server-top-loop, by calling set-automation-server-
exit-delay with it.

exit-function is an exit-function for automation-server-top-
loop. The default value of exit-function is server-can-exit-
p.
 29

2 COM Reference Entries

30
new-process controls whether to run automation-server-
top-loop in its own process.

force-server controls whether to force running the automation
server even if the application starts normally. The default
value of force-server is t.

forced-exit-delay specifies the exit-delay in seconds when the
server is forced.

automation-server-main checks the command line (using
automation-server-command-line-action) for what
action it should do, and then does it.

If the action is :register or :unregister, automation-
server-main tries register or unregister the server (using
register-server and unregister-server). If the opera-
tion succeeds, automation-server-main just returns :reg-
ister or :unregister.

handle-registry-error controls what happens if there is an error
while trying to register or unregister. If nil is supplied then
error is called, and if a non-nil value is supplied, then the
error is handled. If handle-registry-error is not supplied, by
default the error is handled, but if the command line contains
-debug or /debug, the error is not handled. The default value
of handle-registry-error is nil.

quit-on-registry-error controls what happens if an error occurs
during registration. If it is non-nil (the default), then automa-
tion-server-main calls quit with the appropriate status
value (5). Otherwise it returns :register-failed or
:unregister-failed. The default value of quit-on-registry-
error is t.

If the comand line action is :embedding or the action is nil
and force-server is non-nil (the default) then automation-
server-main runs the server by using automation-server-
top-loop. If new-process is nil (the default), automation-
server-top-loop is called on the current process. In this
case automation-server-main returns only after automa-

tion-server-top-loop exits (and the server was closed). If
new-process is true, automation-server-top-loop is called
on its own process and automation-server-main returns
immediately.

If the server is "forced", that is the action is nil but force-server
is non-nil, and forced-exit-delay is non-nil, the exit-delay is set
to forced-exit-delay (using set-automation-server-exit-
delay). This overrides the value of the argument exit-delay.

automation-server-main returns the result of automa-
tion-server-command-line-action, except in the case of
registry failure as decribed above.

Notes 1. automation-server-main is intended to be used as the
main function in an automation server that is delivered as
an executable (rather than as a DLL).

2. When the application acts only as automation server,
automation-server-main can be the function argument
to deliver, or the restart-function in save-image (multi-
processing t is needed too). It will deal correctly with reg-
istration when the command line argument is supplied,
otherwise runs the server until it can exit and then
returns (the application will exit because there will not be
any other processes).

3. When the application also needs to do other things,
automation-server-main can be used to run the server.
Note that with the default values when automation-
server-main runs the server it does not return until the
server exits, so you need to either pass :new-process t,
or run it on its own process. You will also need to con-
sider whether to wait when failing to register, and hence
may want to pass :quit-on-registry-failure nil.

See also automation-server-top-loop

automation-server-command-line-action

set-automation-server-exit-delay
 31

2 COM Reference Entries

32
automation-server-top-loop Function

Summary A function to run a COM server.

Package com

Signature automation-server-top-loop &key exit-delay exit-function

Arguments exit-function A function designator.

exit-delay A non-negative real number specifying a
time in seconds.

Description The function automation-server-top-loop calls co-ini-
tialize and start-factories, and then processes mes-
sages, until the server can exit. Since COM works by
messages, it will end up processing all COM requests.

exit-function determines when the server can exit. It defaults
to server-can-exit-p, which is normally the right function.
This returns t when the COM server is not used and there are
no other "working processes". See the documentation for
server-can-exit-p. When exit-function is supplied, it needs
to be a function of no arguments which returns true when the
server can exit. The exit-function is used like a wait function: it
is called repeatedly, it needs to be reasonably fast, and should
not wait for anything.

Once the server can exit, automation-server-top-loop
delays exiting for another period of time, exit-delay seconds.
exit-delay defaults to 5, and can be set by calling set-automa-
tion-server-exit-delay. If supplied, exit-delay is passed to
set-automation-server-exit-delay on entry. However,
later calls to set-automation-server-exit-delay can
change the exit-delay.

After the delay automation-server-top-loop checks again
by calling exit-function. If this returns false it goes on to pro-
cess messages. Otherwise it stops the factories, calls co-
uninitialize and returns.

Notes 1. automation-server-top-loop interacts with the
deliver keyword :quit-when-no-windows, such that
the delivered application does not quit even after all
CAPI windows are closed as long as automation-
server-top-loop has not returned.

2. automation-server-top-loop does not return while
the server is active. Typically it will be running on its own
process.

3. automation-server-top-loop uses mp:general-han-
dle-event to process Lisp events, so it is possible to run
in the same thread operations that rely on such messages.
In particular, CAPI windows can start on the same pro-
cess. However, all COM input is processed in this thread,
so it is probably better to start CAPI windows on other
processes, so that they do not interfere with each other.

4. automation-server-top-loop does not return a useful
value.

See also start-factories

stop-factories

automation-server-main

server-can-exit-p

set-automation-server-exit-delay

call-com-interface Macro

Summary Invokes a method from a particular COM interface.

Package com

Signature call-com-interface spec arg* => values

spec ::= (interface-ptr interface-name method-name)
 33

2 COM Reference Entries

34
Arguments spec The interface pointer and a specification of
the method to be called.

interface-ptr A form which is evaluated to yield a COM
interface pointer.

interface-name A symbol which names the com interface. It
is not evaluated.

method-name A symbol which names the method. It is not
evaluated.

arg Arguments to the method (see Section 1.7.1,
“Data conversion when calling COM meth-
ods” for details).

Values values Values from the method (see Section 1.7.1,
“Data conversion when calling COM meth-
ods” for details).

Description The macro call-com-interface invokes the method
method-name for the COM interface interface-name, which
should the type or a supertype of the actual type of interface-
ptr. The args and values are described in detail in Section 1.7.1,
“Data conversion when calling COM methods”.

Example This example invokes the COM method GetTypeInfo in the
interface IDispatch.

(defun get-type-info (disp tinfo &key
 (locale LOCALE_SYSTEM_DEFAULT))
 (multiple-value-bind (hres typeinfo)
 (call-com-interface
 (disp i-dispatch get-type-info)
 tinfo locale)
 (check-hresult hres 'get-type-info)
 typeinfo))

See also with-com-interface

query-interface

add-ref

release

call-com-object Macro

Summary Invokes a COM method on a COM object.

Package com

Signature call-com-object spec arg* => values

spec ::= (object class-name method-spec &key interface)

method-spec ::= method-name | (interface-name method-name)

Arguments spec The object and a specification of the method
to be called.

object A form which is evaluated to yield a COM
object.

class-name A symbol which names the COM implemen-
tation class. It is not evaluated.

method-spec Specifies the method to be called. It is not
evaluated.

method-name A symbol naming the method to call.

interface-name A symbol naming the interface of the
method to call. This is only required if the
implementation class class-name has more
than one method with the given method-
name.

interface An optional form which when evaluated
should yield a COM interface pointer. This is
only needed if the definition of the method
being called has the interface keyword in its
class-spec.
 35

2 COM Reference Entries

36
arg Arguments to the method (see Section 1.9.1,
“Data conversion when calling COM object
methods” for details).

Values values Values from the method (see Section 1.9.1,
“Data conversion when calling COM object
methods” for details).

Description The macro call-com-object invokes the method method-
name for the COM class class-name, which should the type or
a supertype of the actual type of object. The args and values are
described in detail in Section 1.9.1, “Data conversion when
calling COM object methods”.

Note that, because this macro requires a COM object, it can
only be used by the implementation of that object. All other
code should use call-com-interface with the appropriate
COM interface pointer.

Examples (call-com-object (my-doc doc-impl move) 0 0)

(call-com-object (my-doc doc-impl resize) 100 200)

See also with-com-object

query-object-interface

call-com-interface

check-hresult Macro

Summary Signals an error if a result code indicates a failure.

Package com

Signature check-hresult hresult function-name

Arguments hresult An integer hresult.

function-name A name for inclusion in the error message.

Description The check-hresult macro checks the hresult and returns if
the it is one of the 'succeeded' values, for instance S_OK or
S_FALSE. Otherwise it signals an error of type com-error,
which will include the function-name in its message.

Examples (check-hresult S_OK "test") => nil

(check-hresult E_NOINTERFACE "test")
signals an error mentioning "test"

See also succeeded

hresult

hresult-equal

co-create-guid Function

Summary Makes a unique refguid object.

Package com

Signature co-create-guid &key register => refguid

Arguments register A generalized boolean.

Values refguid A refguid object.

Description The function co-create-guid makes a new unique refguid
object. If register is true (the default), then the table of known
refguids is updated.

Examples Make a GUID without registering it in the table of known ref-
guids:

(com:co-create-guid :register nil)
=>
#<REFGUID FOO C76B64AF-969A-4EFF-97BC-6CE2EB65019B>
 37

2 COM Reference Entries

38
See also refguid

make-guid-from-string

com-interface-refguid

guid-equal

guid-to-string

refguid-interface-name

co-initialize Function

Summary Initialize the COM library in the current thread.

Package com

Signature co-initialize &optional co-init

Arguments co-init Flags to specify the concurrency model and
initialization options for the thread.

Description The function co-initialize initializes COM for the current
thread. This must be called by every thread that uses COM
client or server functions.

The default value of co-init is COINIT_APARTMENTTHREADED.
Other flags are allowed as for the dwCoInit argument to
CoInitializeEx.

Examples (co-initialize)

See also co-uninitialize

co-task-mem-alloc Function

Summary Allocates a block of foreign memory for use in COM method
argument passing.

Package com

Signature co-task-mem-alloc &key type pointer-type initial-element
 initial-contents nelems => pointer

Arguments type A FLI type specifying the type of the object
to be allocated. If type is supplied, pointer-
type must not be supplied.

pointer-type A foreign pointer type specifying the type of
the pointer object to be allocated. If pointer-
type is supplied, type must not be supplied.

initial-element A keyword setting the initial value of every
element in the newly allocated object to ini-
tial-element.

initial-contents A list of forms which initialize the contents
of each element in the newly allocated
object.

nelems An integer specifying how many copies of
the object should be allocated. The default
value is 1.

Values pointer A pointer to the specified type or pointer-type.

Description The function co-task-mem-alloc calls the C function
CoTaskMemAlloc() to allocate a block of memory. The vari-
ous arguments are handled in the same way as for the func-
tion fli:allocate-foreign-object (see the LispWorks
Foreign Language Interface User Guide and Reference Manual).

Examples Two ways to allocate memory for an integer:

(co-task-mem-alloc :type :int)

(co-task-mem-alloc :pointer-type '(:pointer :int))

See also co-task-mem-free
 39

2 COM Reference Entries

40
co-task-mem-free Function

Summary Frees a block of foreign memory used in COM method argu-
ment passing.

Package com

Signature co-task-mem-free pointer => pointer2

Arguments pointer A foreign pointer for the block to be freed.

Values pointer2 The same as pointer.

Description The function co-task-mem-free calls the C function
CoTaskMemFree() to free a block of memory. The pointer
should not be dereferenced after calling this function.

Example (co-task-mem-free ptr)

See also co-task-mem-alloc

co-uninitialize Function

Summary Close the COM library in the current thread.

Package com

Signature co-uninitialize

Description The function co-uninitialize closes the COM library on
the current thread. This should be called when COM is no
longer required, for instance before exiting the application.

Examples (co-uninitialize)

See also co-initialize

com-error Condition Class

Summary The condition class used to signal errors from COM.

Package com

Superclasses error

Subclasses com-dispatch-invoke-exception-error

Initargs :hresult An integer giving the hresult of the error.

:function-name

Either nil or a string or symbol describing
the function that generated the error.

Readers com-error-hresult
com-error-function-name

Description The class com-error is used by the Lisp COM API when sig-
nalling errors that originate as hresult code from COM.

Example This function silently ignores the E_NOINTERFACE error:

(defun call-ignoring-nointerface-error (function)
 (handler-bind
 ((com-error
 #'(lambda (condition)
 (when (hresult-equal (com-error-hresult
 condition)
 E_NOINTERFACE)
 (return-from
 call-ignoring-nointerface-error
 nil)))))
 (funcall function)))

See also check-hresult

hresult-equal

hresult
 41

2 COM Reference Entries

42
com-interface Class

Summary The class of all COM interface pointers.

Package com

Superclasses fli:foreign-pointer

Description The class com-interface is used for all COM interface point-
ers.

Example (typep (query-interface ptr 'i-unknown) 'com-interface)
=> t

See also call-com-interface

com-interface-refguid Function

Summary Return the refguid object for a named COM interface.

Package com

Signature com-interface-refguid interface-name => refguid

Arguments interface-name A symbol naming a COM interface.

Values refguid The refguid object matching interface-name.

Description The function com-interface-refguid returns a refguid
object that matches interface-name, which should be a symbol
as described in Section 1.3, “The mapping from COM names
to Lisp symbols”. This definition of this COM interface must
have been converted to Lisp FLI definitions as in
Section 1.2.2, “Generating FLI definitions from COM defini-
tions” or Section 3.1, “Including Automation in a Lisp appli-
cation”.

Examples (guid-to-string (com-interface-refguid 'i-unknown))
=> "00000000-0000-0000-C000-000000000046"

See also refguid

guid-equal

guid-to-string

make-guid-from-string

refguid-interface-name

com-object Class

Summary The ancestor of an COM object implementation classes.

Package com

Superclasses standard-object

Subclasses standard-i-unknown

Description The class com-object is the ancestor of all COM object
implementation classes. In general, it is more useful to inherit
from its subclass standard-i-unknown, which provides an
implementation of the i-unknown interface.

Example For a COM object my-doc:

(typep my-doc 'com-object) => t

See also standard-i-unknown

com-object-destructor Generic Function

Summary Called when a COM object loses its last interface pointer.

Package com
 43

2 COM Reference Entries

44
Signature com-object-destructor object

Arguments object A COM object.

Method
Signatures

com-object-destructor (object standard-i-unknown)

com-object-destructor :around
(object standard-i-unknown)

Description The generic function com-object-destructor is called by
the implementation of the class standard-i-unknown at the
point where the last COM interface pointer is removed for
the object, i.e. where the overall reference count becomes
zero. After this, the object is known only to Lisp and is not
involved in any COM operations and will be freed as normal
by the garbage collector. The built-in primary method spe-
cializing on standard-i-unknown does nothing. The build-
in around method specializing on standard-i-unknown
frees the memory used by the COM interface pointers. Typi-
cally, after methods are defined to handle class-specific clean-
ups.

This function should not be called directly by user code.

Examples (defmethod com-object-destructor :after
 ((my-doc doc-impl))
 (close (document-file my-doc)))

See also com-object-initialize

standard-i-unknown

com-object-from-pointer Function

Summary Return the COM object that implements a particular COM
interface pointer.

Package com

Signature com-object-from-pointer pointer => object

Arguments pointer A foreign pointer.

Values object A COM object or nil.

Description The function com-object-from-pointer returns the COM
object that implements pointer. The value of pointer should be
a foreign pointer or COM interface pointer that was created
by LispWorks itself and implemented by a subclass of com-
object. If pointer is not a known COM interface pointer then
nil is returned.

Example (com-object-from-pointer my-ptr)

See also com-object

com-object-initialize Generic Function

Summary Called when a COM object gets its first interface pointer.

Package com

Signature com-object-initialize object

Arguments object A COM object.

Method
Signatures

com-object-initialize (object standard-i-unknown)

Description The generic function com-object-initialize is called by
the built-in class standard-i-unknown at the point where
the first COM interface pointer is made for the object. Prior to
this, the object is known only to Lisp and is not involved in
any COM operations. The built-in primary method specializ-
ing on standard-i-unknown does nothing.
 45

2 COM Reference Entries

46
This function should not be called directly by user code.

Examples (defmethod com-object-initialize :after
 ((my-doc doc-impl))
 (ensure-open-document-file my-doc))

See also com-object-destructor

standard-i-unknown

com-object-query-interface Generic Function

Summary Called by the built in implementation of query-interface.

Package com

Signature com-object-query-interface object iid

Arguments object A COM object.

iid A GUID foreign pointer.

Method
Signatures

com-object-query-interface (object standard-i-unknown)
 (iid t)

Description The generic function com-object-query-interface is
called by the built-in implementation of query-interface
for the class standard-i-unknown. The built-in primary
method specializing on standard-i-unknown handles the i-
unknown interface and all the interfaces specified by the
define-com-implementation form for the class of object.

In most cases, there is no need to specialize this generic func-
tion for user-defined classes.

This function should not be called directly by user code.

See also define-com-implementation

standard-i-unknown

create-instance Function

Summary Starts the implementation of a remote COM object and
returns its interface pointer.

Package com

Signature create-instance clsid &key unknown-outer clsctx riid errorp

 => interface-ptr

Arguments clsid A string or a refguid giving a CLSID to cre-
ate.

unknown-outer A COM interface pointer specifying the
outer i-unknown if the new instance is to be
aggregated.

clsctx A CLSCTX value, which defaults to
CLSCTX_SERVER.

riid An optional refiid giving the name of the
COM interface return.

errorp A boolean. The default is t.

Values interface-ptr A COM interface pointer for riid.

Description Creates an instance of the COM server associated with clsid
and returns an interface pointer for its riid interface. If riid is
nil, then i-unknown is used.

If the server cannot be started, then an error of type
com-error will be signalled if errorp is true, otherwise nil
will be returned.

If unknown-outer is non-nil, it will be passed as the outer
unknown interface to be aggregated with the new instance.

Notes To create an i-dispatch interface and set an event handler,
you can use create-instance-with-events.
 47

2 COM Reference Entries

48
Example (create-instance
 "000209FF-0000-0000-C000-000000000046")

See also refguid

refiid

i-unknown

create-object

create-instance-with-events

define-com-implementation Macro

Summary Defines an implementation class for a particular set of inter-
faces.

Package com

Signature define-com-implementation class-name (superclass-name*)
 (slot-specifier*) class-option*

Arguments class-name A symbol naming the class to define.

superclass-name A symbol naming a superclass to inherit
from.

slot-specifier A slot description as used by defclass.

class-option An option as used by defclass.

Description The macro define-com-implementation defines a
standard-class which is used to implement a COM object.
Normal defclass inheritance rules apply for slots and Lisp
methods.

Each superclass-name argument specifies a direct superclass of
the new class, which can be another COM implementation
class or any other standard-class provided that com-
object is included somewhere in the overall class prece-
dence list. To get the built-in handling for the i-unknown

interface, inherit from standard-i-unknown (which is the
default superclass if no others are specified).

The slot-specifiers are standard defclass slot definitions.

The class-options are standard defclass options. In addition
the following options are recognized:

(:interfaces interface-name*)

Each interface-name specifies a COM inter-
face that the object will implement. i-
unknown should not be specified unless the
you wish to replace the standard implemen-
tation provided by standard-i-unknown. If
more than one interface-name is given then all
the methods must have different names
(except for those which are inherited from a
common parent interface).

(:inherit-from class-name interface-name*)

This indicates that the class will inherit the
implementation of all the methods in the
interfaces specified by the interface-names
directly from class-name. The class-name must
be one of the direct or indirect superclasses
of the class being defined. Without this
option, methods from superclasses are
inherited indirectly and can be shadowed in
the class being defined. Use of
:inherit-from allows various internal
space-optimizations.

For example, given a COM class foo-impl which imple-
ments the i-foo interface, this definition of bar-impl:

(define-com-implementation bar-impl (foo-impl)
 ()
 (:interfaces i-foo))
 49

2 COM Reference Entries

50
will allow methods from i-foo to be shadowed whereas this
definition:

(define-com-implementation bar-impl (foo-impl)
 (:interfaces i-foo)
 (:inherit-from foo-impl i-foo))

will result in an error if a method from i-foo is redefined for
bar-impl.

(:dont-implement interface-name*)

This option tells standard-i-unknown that
it should not respond to query-interface
for the given interface-names (which should
be parents of the interfaces implemented by
the class being defined). Normally,
standard-i-unknown will respond to
query-interface for a parent interface by
returning a pointer to the child interface.

For example, given an interface i-foo-internal and sub-
interface i-foo-public, the following definition

(define-com-implementation foo-impl ()
 ()
 (:interfaces i-foo-public))

specifies that foo-impl will respond to query-interface
for i-foo-public and i-foo-internal, whereas the follow-
ing definition

(define-com-implementation foo-impl ()
 (:interfaces i-foo-public)
 (:dont-implement i-foo-internal))

specifies that foo-impl will respond to query-interface
for i-foo-public only.

Examples (define-com-implementation i-robot-impl ()
 ((tools :accessor robot-tools))
 (:interfaces i-robot)
)

(define-com-implementation i-r2d2-impl (i-robot-impl)
 ()
 (:interfaces i-robot i-r2d2)
)

See also define-com-method

standard-i-unknown

define-com-method Macro

Summary The define-com-method macro is used to define a COM
method for a particular implementation class.

Package com

Signature define-com-method method-spec (class-spec arg-spec*)
 form*

method-spec ::= method-name | (interface-name method-name)

class-spec ::= (this class-name &key interface)

arg-spec ::= (parameter-name [direction [pass-style]])

Arguments method-spec Specifies the method to be defined.

method-name A symbol naming the method to define.

interface-name A symbol naming the interface of the
method to define. This is only required if the
implementation class class-name has more
than one method with the given method-
name.

class-spec Specifies the implementation class and vari-
ables bound to the object with in the forms.

this A symbol which will be bound to the COM
object whose method is being invoked.

class-name A symbol naming the COM implementation
class for which this method is defined.
 51

2 COM Reference Entries

52
interface A optional symbol which will be bound to
the COM interface pointer whose method is
being invoked. Usually this is not needed
unless the interface pointer is being passed
to some other function in the implementa-
tion.

arg-spec Describes one of the method’s arguments.

parameter-name A symbol which will be bound to that argu-
ment’s value while the forms are evaluated.

direction Specifies the direction of the argument,
either :in, :out or :in-out If specified, it
must match the definition of the interface.
The default is taken from the definition of
the interface.

pass-style Specifies how the argument will be con-
verted to a Lisp value. It can be either :lisp
or :foreign, the default is :lisp.

form Forms which implement the method. The
value of the final form is returned as the
result of the method.

Description The macro define-com-method defines a COM method that
implements the method method-name for the COM implemen-
tation class class-name. The extended method-spec syntax is
required if class-name implements more than one interface
with a method called method-name (analogous to the C++ syn-
tax InterfaceName::MethodName).

The symbol this is bound to the instance of the COM imple-
mentation class on which the method is being invoked. The
symbol this is also defined as a local macro (as if by with-
com-object), which allows the body to invoke other meth-
ods on the instance.

If present, the symbol interface is bound to the interface
pointer on which the method is being invoked.

Each foreign argument is converted to a Lisp argument as
specified by the pass-style. See Section 1.8.6, “Data conversion
in define-com-method” for details.

If an error is to be returned from an Automation method, the
function set-error-info can be used to provide more
details to the caller.

Example (define-com-method (i-robot rotate)
 ((this i-robot-impl)
 (axis :in)
 (angle-delta :in))
 (let ((joint (find-joint axis)))
 (rotate-joint joint))
 S_OK)

See also define-com-implementation

set-error-info

set-variant

find-clsid Function

Summary Searches the registry for a GUID or ProgId.

Package com

Signature find-clsid name &optional errorp => refguid

Arguments name A string or a refguid.

errorp A generalized boolean.

Values refguid A refguid.

Description The function find-clsid searches for the supplied GUID or
ProgId in the registry.
 53

2 COM Reference Entries

54
name can be a string representing a GUID (with or without
the curly brackets) or a string containing a ProgId. Otherwise
name can be a refguid, which is simply returned.

If find-clsid fails to find the GUID, it either signals an error
or returns nil, depending on the value of errorp. The default
value of errorp is t.

Example To find the GUID of the Explorer ActiveX:

(com:find-clsid "Shell.Explorer")

get-object Function

Summary Returns an interface pointer for a named object.

Signature get-object name &key riid errorp => interface-ptr

Arguments name A string.

riid An optional refiid giving the name of the
COM interface return.

errorp A boolean. The default value is t.

Values interface-ptr A COM interface pointer for riid.

Description The function get-object finds an existing object named by
name in the Running Object Table or activates the object if it is
not running.

get-object returns an interface pointer for the object's riid
interface. If riid is nil, then i-unknown is used.

If an error occurs, an error of type com-error will be sig-
nalled if errorp is non-nil, otherwise nil will be returned.

Example If C:\temp\spreadsheet.xls is open in Microsoft Excel
2007, then its WorkBook interface can be obtained using

(get-object "c:\\Temp\\spreadsheet.xls"
 :riid 'i-dispatch)

See also create-instance

create-object

get-active-object

guid-equal Function

Summary Compares the GUID data in two GUID pointers.

Package com

Signature guid-equal guid1 guid2 => flag

Arguments guid1 A foreign pointer to a GUID object.

guid2 A foreign pointer to a GUID object.

Values flag A boolean, true if guid1 and guid2 contain
the same GUID data.

Description The function guid-equal compares the GUID data in guid1
and guid2 and returns true if the data is identical.

Examples (guid-equal (com-interface-refguid 'i-unknown)
 (com-interface-refguid 'i-dispatch))
=> nil

(guid-equal (com-interface-refguid 'i-unknown)
 (make-guid-from-string
 "00000000-0000-0000-C000-000000000046"))
=> t

See also refguid

com-interface-refguid

guid-to-string

make-guid-from-string

refguid-interface-name
 55

2 COM Reference Entries

56
guid-to-string Function

Summary Converts a GUID to a string of hex characters.

Package com

Signature guid-to-string guid => guid-string

Arguments guid A foreign pointer to a GUID object.

Values guid-string A string in the standard hex format for
GUIDs.

Description The function guid-to-string converts the data in the guid
to a string of hex characters in the standard-format.

Example (guid-to-string (com-interface-refguid 'i-unknown))
=> "00000000-0000-0000-C000-000000000046"

See also refguid

com-interface-refguid

guid-equal

make-guid-from-string

refguid-interface-name

hresult FLI type descriptor

Summary The FLI type corresponding to HRESULT in C/C++.

Package com

Signature hresult

Description The hresult type is a signed 32 bit integer. When used as the
result type of a COM method, the value E_UNEXPECTED is
returned if the COM method body does not return an integer.

See also hresult-equal

check-hresult

hresult-equal Function

Summary Compares one hresult to another.

Package com

Signature hresult-equal hres1 hres2 => flag

Arguments hres1 An integer hresult.

hres2 An integer hresult.

Values flag A boolean, true if hres1 and hres2 are equal.

Description The function hresult-equal compares hres1 and hres2 and
returns true if they represent the same hresult. This func-
tion differs from the Common Lisp function eql because it
handles signed and unsigned versions of each hresult.

Example E_NOTIMPL is negative, so

(eql E_NOTIMPL 2147500033)
=> nil

(hresult-equal E_NOTIMPL 2147500033)
=> t

See also hresult

check-hresult

com-error

i-unknown COM Interface Type

Summary The Lisp name for the IUnknown COM interface.
 57

2 COM Reference Entries

58
Package com

Description The symbol i-unknown is the name given to the IUnknown
COM interface within Lisp. The name results from the stan-
dard mapping described in Section 1.3, “The mapping from
COM names to Lisp symbols”.

Examples (query-interface ptr 'i-unknown)

See also standard-i-unknown

i-dispatch

interface-ref Macro

Summary Accesses a place containing an interface pointer, maintaining
reference counts.

Package com

Signature interface-ref iptr => iptr

(setf interface-ref) new-value iptr => new-value

Arguments iptr A place containing a COM interface pointer
or nil.

new-value A COM interface pointer or nil.

Description interface-ref is useful when manipulating a place contain-
ing an interface pointer.

The setf expander increments the reference count, as if by
add-ref, of new-value, unless it is nil. It then decrements the
reference count, as if by release, of the existing value in iptr,
unless this is nil. Note that this order is important in the case
that the new value is the same as the current value. Finally
the value of place iptr is set to new-value.

The reader interface-ref simply returns its argument and
does no reference counting. It may be useful in a form which
both reads and writes a place like incf.

See also add-ref

release

make-factory-entry Function

Summary Make a object which can be used to register a class factory.

Package com

Signature make-factory-entry &key clsid implementation-name
constructor-function constructor-extra-args
friendly-name
prog-id version-independent-prog-id

Arguments clsid The CLSID of the coclass.

implementation-name

A Lisp symbol naming the implementation
class.

constructor-function

A function to construct the object. If nil, the
default constructor is used which makes an
instance of the implementation-name and que-
ries it for a i-unknown interface pointer. The
default constructor also handles aggregation.

constructor-extra-args

Extra arguments to pass to the
constructor-function.

friendly-name The name of the coclass for use by applica-
tion builders.

prog-id The ProgID of the coclass.
 59

2 COM Reference Entries

60
version-independent-prog-id

The VersionIndependentProgID of the
coclass.

Description Makes an object to contain all the information for class fac-
tory registration in the COM runtime. This object should be
passed to register-class-factory-entry to perform the
registration. This done automatically if you use
define-automation-component described in the Chapter 3,
“Using Automation”.

Examples (make-factory-entry
 :clsid (make-guid-from-string
 "7D9EB762-E4E5-11D5-BF02-000347024BE1")
 :implementation-name 'doc-impl
 :prog-id "Wordifier.Document.1"
 :version-independent-prog-id "Wordifier.Document"
 :friendly-name "Wordifier Document")

See also register-class-factory-entry

make-guid-from-string Function

Summary Make a refguid object from a hex string.

Package com

Signature make-guid-from-string string &optional interface-name
=> refguid

Arguments string A string in the standard hex format for
GUIDs.

interface-name A symbol naming a COM interface. If non-
nil, the refguid will be will added to the table
of known refguids.

Values refguid A refguid object matching string.

Description The function make-guid-from-string makes a refguid
object from string. If the GUID data matches a known ref-
guid, then that is returned. Otherwise, a new refguid is cre-
ated and returned. If interface-name is non-nil, then the table
of known refguids is updated. If the GUID is already known
under a different name, an error is signalled.

Examples This GUID is a predefined one for i-unknown:

(refguid-interface-name
 (make-guid-from-string
 "00000000-0000-0000-C000-000000000046"))
=> I-UNKNOWN

See also refguid

com-interface-refguid

guid-equal

guid-to-string

refguid-interface-name

midl Function

Summary Converts an IDL file into Lisp FLI definitions.

Package com

Signature midl file &key package depth mapping-options output-file load
import-search-path

Arguments file A pathname designator giving the name of
an IDL file.

package The package in which definitions are cre-
ated. Defaults to the current package.

depth How many levels of IDL import statement
to convert to Lisp. This defaults to 0, which
means only convert definitions for the IDL
file itself. Imported files should be converted
 61

2 COM Reference Entries

62
and loaded before the importing file. Some
of the standard files are preloaded, so
should not be loaded again (see
Section 1.2.3, “Standard IDL files”).

mapping-options Allows options to be passed controlling the
conversion of individual definitions.

output-file If this is nil (the default), the IDL file is
compiled in-memory. Otherwise a Lisp fasl
is produced so the definitions can be
reloaded without requiring recompilation. If
output-file is t then the fasl is named after the
IDL file, otherwise output-file is used as a
pathname designator to specify the name of
the fasl file.

load If this is true (the default) then any fasl pro-
duced is loaded after being compiled. Other-
wise, the fasl must be loaded explicitly with
load. This argument has no effect if output-
file is nil.

import-search-path

Specifies where to look for files referenced
by import statements in the IDL. The
default value, which is :default, causes a
search in the same directory as file. Other-
wise the value should be a list of pathname
designators specifying directories to search.
After searching using the value of import-
search-path, midl looks in any directory in
the INCLUDE environment variable.

Description This function is used to convert an IDL file into Lisp FLI defi-
nitions, which is necessary before the types in the file can be
used from the Lisp COM API. See Section 1.3, “The mapping
from COM names to Lisp symbols” for the details on how
these FLI definitions are named.

Notes midl requires that types like IDispatch are declared before
they are used.

Examples To compile myfile.idl into memory:

(midl "myfile.idl")

To compile myfile.idl to myfile.ofasl:

(midl "myfile.idl" :output-file t :load nil)

To compile myfile.idl to myfile.ofasl and load it:

(midl "myfile.idl" :output-file t)

See also :midl-file

:midl-file Defsystem Member Type

Summary The :midl-file defsystem member type can be used to
include IDL files in a Lisp system definition.

Package com

Description When a file is given the type :midl-file, compiling the sys-
tem will compile the IDL file to produce a fasl. Loading the
system will load this fasl. The :package, :mapping-options
and :import-search-path keywords can specified as for
midl.

Examples ;; Include the file myfile.idl in a system
(defsystem my-system ()
 :members (("myfile.idl" :type :midl-file)))

See also midl
 63

2 COM Reference Entries

64
query-interface Function

Summary Attempts to obtain a COM interface pointer for one interface
from another.

Package com

Signature query-interface interface-ptr iid &key errorp => interface-for-iid

Arguments interface-ptr A COM interface pointer to be queried.

iid The iid of a COM interface.

errorp A boolean. The default is t.

Values interface-for-iid The new COM interface pointer or nil.

Description The function query-interface function invokes the COM
method IUnknown::QueryInterface to attempt to obtain an
interface pointer for the given iid. The iid can be a symbol
naming a COM interface or a refguid foreign pointer con-
taining its iid.

If the IUnknown::QueryInterface returns successfully then
the new interface pointer interface-for-iid is returned.

If errorp is true, then nil is returned if the interface pointer
cannot be found, otherwise an error of type com-error is sig-
nalled.

Example (query-interface p-foo 'i-bar)

See also refguid

com-error

add-ref

release

with-temp-interface

with-query-interface

query-object-interface Macro

Summary Obtains a COM interface pointer for a particular interface
from a COM object.

Package com

Signature query-object-interface class-name object iid &key ppv-object
=> hresult, interface-ptr-for-iid

Arguments class-name The COM object class name of the object.
This can be a superclass name.

object A COM object to be queried.

iid The iid of a COM interface.

ppv-object If specified, this should be a foreign pointer
which will be set to contain the
interface-ptr-for-iid.

Values hresult The hresult.

interface-ptr-for-iid

The new interface pointer or nil if none.

Description The macro query-object-interface invokes the COM
method IUnknown::QueryInterface to attempt to obtain an
interface pointer for the given iid. The iid can be a symbol
naming a COM interface or a refguid foreign pointer con-
taining its iid.

The first value is the integer hresult from the call to
IUnknown::QueryInterface. If the result indicates suc-
cess, then interface-ptr-for-iid is returned as the second value.

Example (query-object-interface foo-impl p-foo 'i-bar)

See also refguid

hresult
 65

2 COM Reference Entries

66
refguid FLI type descriptor

Summary A FLI type used to refer to GUID objects.

Package com

Signature refguid

Description The refguid type is a pointer to a GUID structure, like the
type REFGUID in C. In addition, a table of named refguids is
maintained, using the names chosen when COM interface
types are converted to a Lisp FLI definitions by midl or pars-
ing a type library.

Example (typep (com-interface-refguid 'i-unknown) 'refguid)
=> t

See also com-interface-refguid

guid-equal

guid-to-string

make-guid-from-string

refguid-interface-name

refiid

midl

refguid-interface-name Function

Summary Returns the COM interface name of a refguid if known.

Package com

Signature refguid-interface-name refguid => interface-name

Arguments refguid A refguid object.

Values interface-name A symbol naming the COM interface of
refguid.

Description Returns a symbol naming the COM interface of refguid,
which must be a refguid object known to Lisp.

Example (refguid-interface-name
 (make-guid-from-string
 "00000000-0000-0000-C000-000000000046"))
=> i-unknown

See also refguid

com-interface-refguid

guid-equal

guid-to-string

make-guid-from-string

refiid FLI type descriptor

Summary A FLI type used to refer to iids.

Package com

Signature refiid

Description The refgiid foreign type is a useful converted type for iid
arguments to foreign functions. When given a symbol, it
looks up the GUID as if by calling com-interface-refguid.
Otherwise the value should be a foreign pointer to a GUID
structure, which is passed directly without conversion.

Example Given the definition of print-iid:

(fli:define-foreign-function print-iid
 ((iid refiid)))

then these two forms are equivalent:

(print-iid 'i-unknown)

(print-iid (com-interface-refguid 'i-unknown))
 67

2 COM Reference Entries

68
See also com-interface-refguid

refguid

register-class-factory-entry Function

Summary Registers the description of a class factory.

Package com

Signature register-class-factory-entry new-factory-entry

Arguments new-factory-entry

A factory entry from make-factory-entry.

Description Register the factory entry with the COM runtime so that
register-server, unregister-server, start-factories
and stop-factories will know about the coclass in the fac-
tory entry. This is done automatically if you use
define-automation-component described in the Chapter 3,
“Using Automation”.

Examples

See also make-factory-entry

start-factories

stop-factories

register-server

unregister-server

register-server Function

Summary Externally registers all class factories known to Lisp.

Package com

Signature register-server &key clsctx

Arguments clsctx The CLSCTX in which to register the class
factory.

Description The register-server function updates the Windows
registry to contain the appropriate keys for all the class
factories registered in the current Lisp image. For
Automation components, the type libraries are registered as
well. During development, the type library will be found
whereever the system definition specified, but after using
Lispworks delivery it must be located in the directory
containing the application’s executable or DLL.

This function should be called when an application is
installed, usually by detecting the /RegServer command line
argument.

When running on 64-bit Windows, 32-bit LispWorks updates
the 32-bit registry view and 64-bit LispWorks updates the 64-
bit registry view. LispWorks does not change the registry
reflection settings.

Example (defun start-up-function ()
 (cond ((member "/RegServer"
 system:*line-arguments-list*
 :test 'equalp)
 (register-server))
 ((member "/UnRegServer"
 system:*line-arguments-list*
 :test 'equalp)
 (unregister-server))
 (t
 (co-initialize)
 (start-factories)
 (start-application-main-loop)))
 (quit))

See also unregister-server

register-class-factory-entry
 69

2 COM Reference Entries

70
start-factories

stop-factories

release Function

Summary The release function decrements the reference count of an
interface pointer.

Package com

Signature release interface-ptr => ref-count

Arguments interface-ptr A COM interface pointer.

Values ref-count The new reference count.

Description Each COM interface pointer has a reference count which is
used by the server to control its lifetime. The function
release should be called whenever a reference to the inter-
face pointer is being removed. The function invokes the COM
method IUnknown::Release so the form (release ptr) is
equivalent to using call-com-interface as follows:

(call-com-interface (ptr i-unknown release))

Example (release p-foo)

See also add-ref

interface-ref

query-interface

with-temp-interface

s_ok Macro

Summary Compares a result code to the value of s_ok.

Package com

Signature s_ok hresult => flag

Arguments hresult An integer hresult.

Values flag A boolean.

Description The s_ok macro checks the hresult and returns true if its value
is that of the constant S_OK.

Examples (S_OK S_OK) => t

(S_OK S_FALSE) => nil

(S_OK E_NOINTERFACE) => nil

See also succeeded

hresult

hresult-equal

check-hresult

server-can-exit-p
server-in-use-p Functions

Summary Predicates for whether a COM server is in use or can exit.

Package com

Signature server-can-exit-p => result

Signature server-in-use-p => result

Arguments None.

Values result A boolean.
 71

2 COM Reference Entries

72
Description The function server-in-use-p returns true when the COM
server is in use, which means one or more of the following:

1. There are live objects other than the class factories.

2. Any of the class factories has more than one reference.

3. The server is locked by a client call to the COM method
IClassFactory::LockServer.

The function server-can-exit-p returns true if the server
can exit, which means that the server is not in use (that is,
(not (server-in-use-p)) returns t, and also that there are
no other "working processes", which means that all other pro-
cesses except the one that calls server-can-exit-p are
"Internal servers" (see mp:process-run-function).

The main purpose of server-can-exit-p is to be the exit-
function for automation-server-top-loop, either as the
default or called from a supplied exit-function.

See also automation-server-top-loop

set-automation-server-exit-delay Function

Summary Sets the exit-delay used by automation-server-top-loop.

Package com

Signature set-automation-server-exit-delay exit-delay

Arguments exit-delay A non-negative real number specifying a
time in seconds.

Description The function set-automation-server-exit-delay sets the
exit-delay which is used by automation-server-top-loop to
delay exiting once the server is unused.

set-automation-server-exit-delay can be called both
before and after automation-server-top-loop, and can be
used repeatedly after automation-server-top-loop was
called to dynamically change the exit-delay. The setting per-
sists over saving and delivering an image, so it can be used in
the delivery script too.

See also automation-server-top-loop

standard-i-unknown Class

Summary A complete implementation of the i-unknown interface.

Package com

Superclasses com-object

Subclasses standard-i-dispatch
standard-i-connection-point-container

Initargs :outer-unknown

An optional interface pointer to the outer
unknown interface if this object is aggregated.

Description The class standard-i-unknown provides a complete imple-
mentation of the i-unknown interface.

The class provides a reference count for the object which calls
the generic function com-object-initialize when the
object is given a reference count and
com-object-destructor when it becomes zero again. These
generic functions can be specialized to perform initialization
and cleanup operations.

The class also provides an implementation of
query-interface which calls the generic function
com-object-query-interface. The default method han-
 73

2 COM Reference Entries

74
dles i-unknown and all the interfaces specified by the
define-com-implementation form for the class of the
object.

There is support for aggregation via the :outer-unknown ini-
targ, which is also passed by built-in class factory implemen-
tation.

Example Inheriting from a non-COM class requires
standard-i-unknown to be mentioned explicitly:

(define-com-implementation doc-impl
 (document-mixin
 standard-i-unknown)
 ()
 (:interfaces i-doc))

See also define-com-implementation

standard-i-dispatch

standard-i-connection-point-container

com-object-initialize

com-object-destructor

com-object-query-interface

com-object

i-unknown

start-factories Function

Summary Starts all the registered class factories.

Package com

Signature start-factories &optional clsctx

Arguments clsctx The CLSCTX in which to start the factories.

Description The start-factories function starts all the registered class
factories in the given clsctx, which defaults to

CLSCTX_LOCAL_SERVER. This function should be called once
when a COM server application starts if it has externally reg-
istered class factories.

See also register-class-factory-entry

stop-factories

register-server

unregister-server

co-initialize

stop-factories Function

Summary Stops all the registered class factories.

Package com

Signature stop-factories

Description The stop-factories function stops all the registered class
factories. This function should be called once before a COM
server application exits if it has externally registered class fac-
tories.

See also register-class-factory-entry

start-factories

register-server

unregister-server

co-uninitialize

succeeded Macro

Summary Checks an hresult for success.

Package com
 75

2 COM Reference Entries

76
Signature succeeded hresult => flag

Arguments hresult An integer hresult.

Values flag A boolean.

Description The succeeded macro checks the hresult and returns true if
the it is one of the 'succeeded' values, for instance S_OK or
S_FALSE.

Examples (succeeded S_OK) => t

(succeeded E_NOINTERFACE) => nil

See also check-hresult

hresult

hresult-equal

s_ok

unregister-server Function

Summary Externally unregisters all class factories known to Lisp.

Package com

Signature unregister-server

Description The unregister-server function updates the Windows reg-
istry to remove the appropriate keys for all the class factories
registered in the current Lisp image. For Automation compo-
nents, the type libraries are unregistered as well.

This function should be called when an application is unin-
stalled, usually by detecting the /UnRegServer command
line argument.

When running on 64-bit Windows, 32-bit LispWorks updates
the 32-bit registry view and 64-bit LispWorks updates the 64-

bit registry view. LispWorks does not change the registry
reflection settings.

Example (defun start-up-function ()
 (cond ((member "/UnRegServer"
 system:*line-arguments-list*
 :test 'equalp)
 (unregister-server))
 ((member "/RegServer"
 system:*line-arguments-list*
 :test 'equalp)
 (register-server))
 (t
 (co-initialize)
 (start-factories)
 (start-application-main-loop)))
 (quit))

See also register-server

register-class-factory-entry

start-factories

stop-factories

with-com-interface Macro

Summary Used to simplify invocation of several methods from a partic-
ular COM interface pointer.

Package com

Signature with-com-interface disp interface-ptr form* => values

disp ::= (dispatch-function interface-name)

Arguments disp The names of the dispatch function and
interface.
 77

2 COM Reference Entries

78
dispatch-function A symbol which will be defined as a local
macro, as if by macrolet. The macro can be
used by the forms to invoke the methods on
interface-ptr.

interface-name A symbol which names the COM interface.
It is not evaluated.

interface-ptr A form which is evaluated to yield a COM
interface pointer that implements
interface-name.

form A form to be evaluated.

Values values The values returned by the last form.

Description When the macro with-com-interface evaluates the forms,
the local macro dispatch-function can be used to invoked the
methods for the COM interface interface-name, which should
be the type or a supertype of the actual type of interface-ptr.

The dispatch-function macro has the following signature:

dispatch-function method-name arg* => values

where

method-name A symbol which names the method. It is not
evaluated.

arg Arguments to the method (see Section 1.7.1,
“Data conversion when calling COM meth-
ods” for details).

values Values from the method (see Section 1.7.1,
“Data conversion when calling COM meth-
ods” for details).

Example This example invokes the COM method GetTypeInfo in the
interface IDispatch.

(defun get-type-info (disp tinfo &key
 (locale LOCALE_SYSTEM_DEFAULT))
 (multiple-value-bind (hres typeinfo)
 (with-com-interface (call-disp i-dispatch) disp
 (call-disp get-type-info tinfo locale))
 (check-hresult hres 'get-type-info)
 typeinfo))

See also call-com-interface

with-com-object Macro

Summary Used to simplify invocation of several methods from a given
COM object.

Package com

Signature with-com-object disp object form* => values

disp ::= (dispatch-function class-name &key interface)

Arguments disp The names of the dispatch function and
object class.

dispatch-function A symbol which will be defined as a macro,
as if by macrolet. The macro can be used by
the forms to invoke the methods on object.

class-name A symbol which names the COM implemen-
tation class. It is not evaluated.

interface An optional form which when evaluated
should yield a COM interface pointer. This is
only needed if the definition of the methods
being called have the interface keyword in
their class-specs.

object A form which is evaluated to yield a COM
object.

form A form to be evaluated.
 79

2 COM Reference Entries

80
Values values The values returned by the last form.

Description When the macro call-com-object evaluates the forms, the
local macro dispatch-function can be used to invoked the
methods for the COM class class-name, which should be the
type or a supertype of the actual type of object.

The dispatch-function macro has the following signature:

dispatch-function method-spec arg* => values

method-spec ::= method-name | (interface-name method-name)

where

method-spec Specifies the method to be called. It is not
evaluated.

method-name A symbol naming the method to call.

interface-name A symbol naming the interface of the
method to call. This is only required if the
implementation class class-name has more
than one method with the given method-
name.

arg Arguments to the method (see Section 1.9.1,
“Data conversion when calling COM object
methods” for details).

values Values from the method (see Section 1.9.1,
“Data conversion when calling COM object
methods” for details).

Note that, because with-com-object requires a COM object,
it can only be used by the implementation of that object. All
other code should use with-com-interface with the appro-
priate COM interface pointer.

Example (with-com-object (call-my-doc doc-impl) my-doc
 (call-my-doc move 0 0)
 (call-my-doc resize 100 200))

See also call-com-object

define-com-method

with-com-interface

with-temp-interface Macro

Summary Used to simplify reference counting for a COM interface
pointer.

Package com

Signature with-temp-interface (var) interface-ptr form* => values

Arguments var A variable which is bound to interface-ptr
while the forms are evaluated.

interface-ptr A form which is evaluated to yield a COM
interface pointer.

form A form to be evaluated.

Values values The values returned by the last form.

Description When the macro with-temp-interface evaluates the forms,
the variable var is bound to the value of interface-ptr. When
control leaves the body (whether directly or due to a non-
local exit), release is called with this interface pointer.

Example This example invokes the COM method GetDocumentation
in the interface ITypeInfo on an interface pointer which
must be released after use.

(defun get-tinfo-member-documentation (disp tinfo
 member-id)
 (with-temp-interface (typeinfo)
 (get-type-info disp tinfo)
 (call-com-interface (typeinfo i-type-info
 get-documentation)
 member-id)))
 81

2 COM Reference Entries

82
See also release

with-query-interface

with-query-interface Macro

Summary Used to simplify reference counting when querying a COM
interface pointer.

Package com

Signature with-query-interface disp interface-ptr form* => values

disp ::= (punknown interface-name &key errorp dispatch)

Arguments punknown A variable which is bound to the queried
interface pointer while the forms are evalu-
ated.

interface-name A symbol which names the COM interface.
It is not evaluated.

errorp A boolean indicating whether an error
should be signaled if interface-name is not
implemented by interface-ptr.

dispatch A symbol which will be defined as a local
macro, as if by macrolet as if by
with-com-interface. The macro can be
used by the forms to invoke the methods on
punknown.

interface-ptr A form which is evaluated to yield a COM
interface pointer to query.

form A form to be evaluated.

Values values The values returned by the last form.

Description The macro with-query-interface calls query-interface
to find an interface pointer for interface-name from the exist-

ing COM interface pointer interface-ptr. While evaluates the
forms, the variable punknown is bound to the queried pointer
and the pointer is released when control leaves the body
(whether directly or due to a non-local exit).

If errorp is true, then punknown is bound to nil if the interface
pointer cannot be found, otherwise an error of type
com-error is signalled.

If dispatch is specified, then a local macro is created as if by
with-com-interface to invoke COM interface methods on
punknown.

Example This example invokes the methods on an i-bar interface
pointer queried from an existing interface pointer.

(with-query-interface (p-bar i-bar
 :dispatch call-bar)
 p-foo
 (call-bar bar-init)
 (call-bar bar-print))

See also query-interface

release

with-temp-interface
 83

2 COM Reference Entries

84

3

3 Using Automation
3.1 Including Automation in a Lisp application
This section describes how to load Automation and generate any FLI defini-
tions needed to use it.

3.1.1 Loading the modules

Before using any of the LispWorks Automation APIs, you need to load the
module using

(require "automation")

3.1.2 Generating FLI definitions from COM definitions

Automation components and interfaces that are to be used by the Automation
API must be placed in a type library using suitable tools. In some cases, this
type library will be supplied as part of the DLL or executable containing the
component.

Some of the Automation APIs described in this chapter require you to convert
the definitions in the type library into FLI definitions. This is done by compil-
ing and loading a system definition that references the library with the
options :type :midl-type-library-file. The names in the type library are
85

3 Using Automation

86
converted to Lisp symbols as specified in “The mapping from COM names to
Lisp symbols” on page 3

Note: this is not required by all the APIs, for example see “Calling Automa-
tion methods without a type library” on page 88 and “A simple implementa-
tion of a single Automation interface” on page 92.

3.1.3 Reducing the size of the converted library

Suppose you have a defsystem system definition form that references a
library: that is, a system member has options :type :midl-type-library-
file as described in “Generating FLI definitions from COM definitions” on
page 85.

For this member, the option :com can be added to specify whether all the
COM functionality is required. The keyword can take these values:

t Analyze and generate all the required code for calling
and implementing the interfaces from the type library.
This is the default value.

nil Analyze but do not generate any code for calling or
implementing COM interfaces from the type library. It
is still possible to call Automation methods.

:not-binary Analyze but do not generate any code for calling or
implementing COM interfaces from the type library. It
is still possible to call Automation methods and imple-
ment dispinterfaces in the type library, but not dual or
COM interfaces.

Using the value nil or :not-binary generates much smaller code and is
therefore much faster. However, it is never obligatory to use the option :com.

Use :com nil when the application calls Automation interfaces from the type
library but does not implement any of them or need to call any methods from
dual interfaces using call-com-interface.

Use :com :not-binary when the application implements only dispinterfaces
from the library. This is typically required for implementing sink interfaces for
use with connection points.

3.2 Starting a remote Automation server
For an example see examples/com/ole/simple-container/defsys.lisp.

3.2 Starting a remote Automation server
A remote Automation server is started from Lisp by using its coclass name,
CLSID or ProgID. The macro with-coclass can be used to make an instance
of an automation server from its coclass name for the duration of its body. The
function create-object can be used to start an automation server given its
CLSID or ProgID. The function create-instance-with-events can be used
to start and automation server and set its event handler. The function get-
active-object can be used to look for a registered running instance of a
coclass in the system Running Object Table.

3.3 Calling Automation methods
Automation methods can be called either with or without a compiled type
library. In both cases, arguments and return values are converted according to
the types specified by the method’s definition.

3.3.1 Calling Automation methods using a type library

To use this approach, you must have the type library available at compile-time
(see “Generating FLI definitions from COM definitions” on page 85). Informa-
tion from the type library is built into your application, which makes method
calling more efficient. However, it also makes it less dynamic, because the
library at the time the application is run must match.

There are three kinds of Automation method, each of which is called using
macros designed for the purpose.

• Ordinary methods are called using the macros call-dispatch-method
and with-dispatch-interface. If there is no Automation method
with the given method name, then a property getter with the same
name is called if it exists, otherwise an error is signaled. The setf form
of call-dispatch-method can be used to call property setter methods.

• Property getter methods are called using the macro call-dispatch-
get-property.
 87

3 Using Automation

88
• Property setter methods are called using the macros call-dispatch-
put-property or the setf form of call-dispatch-get-property.

To use these macros, you need to specify the interface name, the method
name, a COM interface pointer for the i-dispatch interface and suitable
arguments. The interface and method names are given as symbols named as
in Section 1.3 on page 3 and the COM interface pointer is a foreign pointer of
type com-interface. In all the macros, the args and values are as specified in
the Section 3.3.3.

The with-dispatch-interface macro is useful when several methods are
being called with the same COM interface pointer, because it establishes a
local macro that takes just the method name and arguments.

3.3.2 Calling Automation methods without a type library

This approach is useful if the type library is not available at compile time or
you want to allow methods to be called dynamically without knowing the
interface pointer type at compile-time. It can be less efficient than using the
approach in Section 3.3.1, but is often the simplest approach, especially if the
Automation component was written to be called from a language like Visual
Basic.

There are three kinds of Automation method, each of which is called using
functions designed for the purpose.

• Ordinary methods are called using the function invoke-dispatch-
method. If there is no Automation method with the given method name,
then a property getter with the same name is called if it exists, other-
wise an error is signaled. The setf form of invoke-dispatch-method
can be used to call property setter methods.

• Property getter methods are called using the function invoke-dis-
patch-get-property.

• Property setter methods are called either using the function invoke-
dispatch-put-property or the setf form of invoke-dispatch-get-
property.

To use these function, you need to specify a COM interface pointer for the i-
dispatch interface, the method name and suitable arguments. The method

3.3 Calling Automation methods
name is given as a string or integer and the COM interface pointer is a foreign
pointer of type com-interface. In all the functions, the args and values are as
specified in the Section 3.3.3.

3.3.3 Data conversion when calling Automation methods

The arguments and return values to Automation methods are restricted to a
small number of simple types, which map to Lisp types as follows:

When an Automation argument is a lisp-variant object, its type is used to
set the VT code. See make-lisp-variant and set-variant.

In and in-out parameters are passed as positional arguments in the calling
forms and out and in-out parameters are returned as additional values. If there
is an argument with the retval attribute then it is returned as the first value.

Table 3.1 Automation types, VT codes and their corresponding Lisp types

Automation type VT code Lisp type

null value VT_NULL the symbol :null
empty value VT_EMPTY the symbol :empty
SHORT VT_I2 integer
LONG VT_I4 integer
FLOAT VT_R4 single-float
DOUBLE VT_R8 double-float
CY VT_CY not suppported
DATE VT_DATE not suppported
BSTR VT_BSTR string
IDispatch* VT_DISPATCH FLI (:pointer i-dispatch)
SCODE VT_ERROR integer
VARIANT_BOOL VT_BOOL nil or t
VARIANT* VT_VARIANT recursively convert
IUknown* VT_UNKNOWN FLI (:pointer i-unknown)
DECIMAL VT_DECIMAL not suppported
BYTE VT_UI1 integer
SAFEARRAY VT_ARRAY array
dynamic dynamic lisp-variant
 89

3 Using Automation

90
3.3.4 Using collections

The macro do-collection-items can be used to iterate over the items or an
interface that implements the Collection protocol. If the collection items are
interface pointers, they must be released when not needed.

For example, to iterate over the Table objects from the Tables collection of a
MyDocument interface pointer

(with-temp-interface (tables)
 (call-dispatch-get-property
 (doc my-document tables))
 (do-collection-items (table tables)
 (inspect-the-table table)
 (release table)))

3.3.5 Using connection points

Event sink interfaces can be connected and disconnected using the functions
interface-connect and interface-disconnect.

For example, the following macro connects a sink interface pointer
event-handler to a source of i-clonable-events events clonable for the duration
of its body.

(defmacro handling-clonable-events ((clonable event-handler)
 &body body)
 (lw:with-unique-names (cookie)
 (lw:rebinding (clonable event-handler)
 `(let ((,cookie nil))
 (unwind-protect
 (progn
 (setq ,cookie
 (interface-connect ,clonable
 'i-clonable-events
 ,event-handler))
 ,@body)
 (when ,cookie
 (interface-disconnect ,clonable
 'i-clonable-events
 ,cookie)))))))

3.4 Implementing Automation interfaces in Lisp
3.3.6 Error handling

When an Automation server returns an error code, the calling macros such as
call-dispatch-method signal an error of type com-error. The error mes-
sage will contain the source and description fields from the error.

For example, if pp is a dispatch pointer to i-test-suite-1:

CL-USER 184 > (call-dispatch-method
 (pp nil i-test-suite-1 fx))
"in fx" ;; implementation running
Error: COM IDispatch::Invoke Exception Occured (0 "fx") : foo
 1 (abort) Return to level 0.
 2 Return to top loop level 0.

Type :b for backtrace, :c <option number> to proceed, or :? for
other options

3.4 Implementing Automation interfaces in Lisp
This section describes two techniques for implementing Automation inter-
faces in Lisp. The choice of technique usually depends on whether you are
implementing a complete server or a simple event sink. The section then
describes other kinds of interfaces that can be implemented and how to report
errors to the caller of a method.

3.4.1 A complete implementation of an Automation server

In the case where you are designing an set of COM interfaces and implement-
ing a server to support them, you need to make a complete implementation in
Lisp. This allows several Automation interfaces to be implemented by a single
class and also supports dual interfaces.

The implementation defines an appropriate class, inheriting from the class
standard-i-dispatch to obtain an implementation of the COM interface i-
dispatch. This implementation of i-dispatch will automatically invoke the
appropriate COM method.

For dual interfaces, the methods should be defined in the same way as
described for COM interfaces in Section 1.8 on page 13.
 91

3 Using Automation

92
For dispinterfaces, the methods should be implemented using the macro
define-dispinterface-method or by a specialized method of the generic
function com-object-dispinterface-invoke.

To implement an Automation interface in Lisp with standard-i-dispatch,
you need the following:

1. A type library for the component, converted to Lisp as specified in Sec-
tion 3.1 on page 85.

2. A COM object class defined with define-automation-component or
define-automation-collection, specifying the coclass or interface(s)
to implement.

3. Implementations of the methods using define-com-method, define-
dispinterface-method or com-object-dispinterface-invoke.

4. For an out-of-process Automation component, either use automation-
server-main or have registration code which calls register-server
and unregister-server, typically after checking the result of automa-
tion-server-command-line-action or explicitly checking the com-
mand line for arguments /RegServer and /UnRegServer.

5. Initialization code which either calls automation-server-top-loop or
automation-server-main, or calls co-initialize and start-facto-
ries in a thread that will be processing Windows messages (for instance
a CAPI thread).

3.4.2 A simple implementation of a single Automation interface

In the case where you are implementing a single dispinterface that was
designed by someone else, for example an event sink, you can usually avoid
needing to parse a type library or define a class to implement the interface.

Instead, you implement a dispinterface using the class simple-i-dispatch
by doing the following:

1. Obtain an interface pointer that will provide type information for the
component, to be used as the related-dispatch argument in the call to the
function query-simple-i-dispatch-interface. In the case where you
are implementing an event sink, the source interface pointer will usually
do this.

3.4 Implementing Automation interfaces in Lisp
2. Optionally, define a class with defclass inheriting from simple-i-
dispatch. The class simple-i-dispatch can be used itself if no special
callback object is required.

3. Implement an invoke-callback that selects and implements the methods of
the interface.

4. Define initialization code which calls co-initialize, obtains the
related-dispatch from step 1, makes an instance of the COM object class
defined in step 2 with the invoke-callback from step 3, obtains its interface
pointer by calling query-simple-i-dispatch-interface (passing the
related-dispatch) and attaches this interface pointer to the appropriate
sink in the related-dispatch (for example using connection point functions
such as interface-connect). This must all be done in a thread that will
be processing Windows messages (for instance a CAPI thread).

3.4.3 Implementing collections

Interfaces that support the Collection protocol can be implemented using the
macro define-automation-collection. This defines a subclass of stan-
dard-automation-collection, which implements the minimal set of collec-
tion methods and calls Lisp functions to provide the items. If the collection
items are interface pointers, appropriate reference counting must be observed.

See the example in the directory examples/com/automation/collections/.

3.4.4 Implementing connection points

Lisp implementations can act as event sources via a built-in implementation of
the IConnectionPointContainer interface, which define-automation-
component provides if source interfaces are specified. A built-in implementa-
tion of IConnectionPoint handles connections for each interface and the
macro do-connections can be used to iterate over the connections when fir-
ing the events.

3.4.5 Reporting errors

Classes defined using define-automation-component allow extended error
information to be returned for all Automation methods. Within the body of a
 93

3 Using Automation

94
define-com-method definition, the function set-error-info can be called
to describe the error. In addition, this function returns the value of
DISP_E_EXCEPTION, which can be returned directly as the hresult from the
method.

For example:

(define-com-method (i-test-suite-1 fx)
 ((this c-test-suite-1))
 (print "in fx")
 (set-error-info :description "foo"
 :iid 'i-test-suite-1
 :source "fx"))

3.4.6 Registering a running object for use by other applications

If other applications need to be able to find one of your running objects from
its coclass, then call register-active-object to register an interface pointer
for the object in the system Running Object Table. Call revoke-active-
object to remove the registration.

3.4.7 Automation of a CAPI application

For an example of how to implement an Automation server that controls a
CAPI application, see the file examples\com\automation\capi-applica-
tion\build.lisp in the LispWorks installation.

3.5 Examples of using Automation
Several complete examples are provided in the examples subdirectory of your
LispWorks library.

A simple Automation application:

com/automation/capi-application/readme.txt

com/automation/cl-smtp/clsmtp-impl-build.lisp

Controlling an Automation application:

com/automation/capi-application/readme.txt

com/automation/cl-smtp/clsmtp-test.lisp

3.5 Examples of using Automation
Getting events from COM interfaces:

com/automation/events/ie-events.lisp

com/automation/capi-application/readme.txt
 95

3 Using Automation

96

4

4 Automation Reference
Entries
The following chapter documents Automation functionality.

com-dispatch-invoke-exception-error Condition Class

Summary The condition class used to signal Automation exceptions.

Package com

Superclasses com-error

Initargs None

Description The class com-dispatch-invoke-exception-error is used
by the LispWorks COM API when Automation signals an
exception (DISP_E_EXCEPTION).

See also com-dispatch-invoke-exception-error-info
97

4 Automation Reference Entries

98
com-dispatch-invoke-exception-error-info Function

Summary Retrieves information stored in a com-dispatch-invoke-
exception-error.

Package com

Signature com-dispatch-invoke-exception-error-info condition fields
=> field-values

Arguments condition A com-dispatch-invoke-exception-
error.

fields A list of keywords as specified below.

Values field-values A list.

Description The function com-dispatch-invoke-exception-error-
info retrieves information about the exception from a com-
dispatch-invoke-exception-error object. The keywords
in fields are used to select which information is returned in
field-values, which is a list of values corresponding to each
keyword in fields.

The following keyword are supported in fields:

:code The error code.

:source The source of the error.

:descriptionThe description of the error.

:help-file The help file for the error.

:help-context The help context for the error.

Example (handler-case
 (com:invoke-dispatch-method counter "Run")
 (com:com-dispatch-invoke-exception-error (condition)
 (destructuring-bind (code description)
 (com:com-dispatch-invoke-exception-error-info
 condition
 '(:code :description))
 (format *error-output*
 "Run failed with code ~D, description ~S."
 code
 description))))

See also com-dispatch-invoke-exception-error

call-dispatch-get-property Macro

Summary Calls an Automation property getter method from a particu-
lar interface.

Package com

Signature call-dispatch-get-property spec arg* => values

spec ::= (dispinterface-ptr dispinterface-name method-name)

Arguments spec The interface pointer and a specification of
the method to be called.

dispinterface-ptr A form which is evaluated to yield a COM
i-dispatch interface pointer.

dispinterface-name

A symbol which names the Automation
interface. It is not evaluated.

method-name A symbol which names the property getter
method. It is not evaluated.

arg Arguments to the method (see Section 3.3.3,
“Data conversion when calling Automation
methods” for details).
 99

4 Automation Reference Entries

100
Values values Values from the method (see Section 3.3.3,
“Data conversion when calling Automation
methods” for details).

Description The call-dispatch-get-property macro is used to invoke
an Automation property getter method from Lisp. The
dispinterface-ptr should be a COM interface pointer for the
i-dispatch interface. The appropriate Automation property
getter method, chosen using dispinterface-name and
method-name, is invoked after evaluating each arg. The args
must be values that are suitable for the method and of types
compatible with Automation. The values returned are as
specified by the method signature. In general, property getter
methods take no arguments and return the value of the prop-
erty, but see Section 3.3.3, “Data conversion when calling
Automation methods” for more details.

There is also setf expander for
call-dispatch-get-property, which can be used as an
alternative to the call-dispatch-put-property macro.

Example For example, in order to get and set the Width property of a
MyDocument interface pointer

(call-dispatch-get-property
 (doc my-document width))

(setf (call-dispatch-get-property
 (doc my-document width))
 10)

See also call-dispatch-put-property

call-dispatch-method

call-dispatch-method Macro

Summary Calls an Automation method from a particular interface.

Package com

Signature call-dispatch-method spec arg* => values

spec ::= (dispinterface-ptr dispinterface-name method-name)

Arguments spec The interface pointer and a specification of
the method to be called.

dispinterface-ptr A form which is evaluated to yield a COM
i-dispatch interface pointer.

dispinterface-name

A symbol which names the Automation
interface. It is not evaluated.

method-name A symbol which names the method. It is not
evaluated.

arg Arguments to the method (see Section 3.3.3,
“Data conversion when calling Automation
methods” for details).

Values values Values from the method (see Section 3.3.3,
“Data conversion when calling Automation
methods” for details).

Description The call-dispatch-method macro is used to invoke an
Automation method from Lisp. The dispinterface-ptr should
be a COM interface pointer for the i-dispatch interface. The
appropriate Automation method, chosen using dispinterface-
name and method-name, is invoked after evaluating each arg.
The args must be values that are suitable for the method and
of types compatible with Automation. The values returned
are as specified by the method signature. See Section 3.3.3,
“Data conversion when calling Automation methods” for
more details. If there is no Automation method with the
given method-name, then a property getter with the same
name is called if it exists, otherwise an error is signaled. The
 101

4 Automation Reference Entries

102
setf form of call-dispatch-method can be used to call
property setter methods.

Example For example, in order to invoke the ReFormat method of a
MyDocument interface pointer

(call-dispatch-method (doc my-document re-format))

See also with-dispatch-interface

call-dispatch-get-property

call-dispatch-put-property

call-dispatch-put-property Macro

Summary Calls an Automation property setter method from a particu-
lar interface.

Package com

Signature call-dispatch-put-property spec arg* => values

spec ::= (dispinterface-ptr dispinterface-name method-name)

Arguments spec The interface pointer and a specification of
the method to be called.

dispinterface-ptr A form which is evaluated to yield a COM
i-dispatch interface pointer.

dispinterface-name

A symbol which names the Automation
interface. It is not evaluated.

method-name A symbol which names the property getter
method. It is not evaluated.

arg Arguments to the method (see Section 3.3.3,
“Data conversion when calling Automation
methods” for details).

Values values Values from the method (see Section 3.3.3,
“Data conversion when calling Automation
methods” for details).

Description The call-dispatch-put-property macro is used to invoke
an Automation property setter method from Lisp. The
dispatch-ptr should be a COM interface pointer for the
i-dispatch interface. The appropriate Automation property
setter method, chosen using dispinterface-name and
method-name, is invoked after evaluating each arg. The args
must be values that are suitable for the method and of types
compatible with Automation. The values returned are as
specified by the method signature. In general, property setter
methods take one argument (the new value) and return the
no values, but see Section 3.3.3, “Data conversion when call-
ing Automation methods” for more details.

There is also setf expander for call-dispatch-get-prop-
erty, which can be used as an alternative to the
call-dispatch-put-property macro.

Example For example, in order to set the Width property of a
MyDocument interface pointer

(call-dispatch-put-property
 (doc my-document width)
 10)

See also call-dispatch-get-property

call-dispatch-method

com-object-dispinterface-invoke Generic Function

Summary A generic function called by IDispatch::Invoke when there
is no defined dispinterface method.

Package com
 103

4 Automation Reference Entries

104
Signature com-object-dispinterface-invoke com-object method-name
 method-type args
 => value

Arguments com-object A COM object whose method is being
invoked.

method-name A string naming the method to be called.

method-type A keyword specifying the type of method
being called.

args A vector containing the arguments to the
method.

Description The generic function com-object-dispinterface-invoke
is called by IDispatch::Invoke when there is no method
defined using define-dispinterface-method.

Methods can be written for com-object-dispinterface-
invoke, specializing on an Automation implementation class
and implementing the method dispatch based on method-
name and method-type.

The method-name argument is a string specifying the name of
the method as given by the method declaration in the IDL or
type library. The method-type argument, has one of the follow-
ing values:

:get when invoking a property getter method.

:put when invoking a property setter method.

:method when invoking a normal method.

The arguments to the method are contained in the vector args,
in the order specified by the method declaration in the type
library. For in and in-out arguments, the corresponding ele-
ment of args contains the argument value converted to the
type specified by the method declaration and then converted
to Lisp objects as specified in Section 3.3.3, “Data conversion
when calling Automation methods”. For out and in-out argu-
ments, the corresponding element of args should be set by the

method to contain the value to be returned to the caller and
will be converted to an automation value as specified in
Section 3.3.3, “Data conversion when calling Automation
methods”.

The value should be a value which can be converted to the
appropriate return type as the primary value of the method
and will be converted to an automation value as specified in
Section 3.3.3, “Data conversion when calling Automation
methods”. It is ignored for methods that are declared as
returning void.

Notes When using com-object-dispinterface-invoke, it is not
possible to distinguish between invocations of the same
method name for different interfaces when com-object imple-
ments several interfaces. If this is required, then the method
must be defined with define-dispinterface-method.

Example See the example file in

examples/com/ole/simple-container/owc-spread-
sheet.lisp

See also define-dispinterface-method

create-instance-with-events Function

Summary A convenience function which combines create-instance
and set-i-dispatch-event-handler.

Package com

Signature create-instance-with-events clsid event-handler &rest args
&key event-object => interface, list

Arguments clsid A string or a refguid giving a CLSID to cre-
ate.
 105

4 Automation Reference Entries

106
event-handler A function of four arguments.

event-object A Lisp object.

Values interface An i-dispatch interface.

sinks A list of objects representing the connections
made.

Description The function create-instance-with-events is a conve-
nience function which starts an i-dispatch interface and
sets an event handler.

It first calls create-instance with clsid and all the keyword
arguments except the event-object. It defaults the create-
instance argument riid to the value i-dispatch.

It then calls set-i-dispatch-event-handler on the result-
ing interface, passing event-handler, event-object and clsid (as
the coclass).

interface is the interface started, and sinks is the result of set-
i-dispatch-event-handler.

Examples See examples/com/automation/events/ie-events.lisp

See also create-instance

set-i-dispatch-event-handler

create-object Function

Summary Create an instance of a coclass.

Package com

Signature create-object &key clsid progid clsctx => interface-ptr

Arguments clsid A string giving a CLSID to create.

progid A string giving a ProgID to create.

clsctx A CLSCTX value, which defaults to
CLSCTX_SERVER.

Values interface-ptr An i-dispatch interface pointer.

Description Creates an instance of a coclass and returns its i-dispatch
interface pointer. The coclass can be specified directly by
using the clsid argument or indirectly using the progid argu-
ment, which will locate the CLSID from the registry.

Examples The following are equivalent ways of creating an Microsoft
Word application object:

(create-object :progid "Word.Application.8")

(create-object
 :clsid "000209FF-0000-0000-C000-000000000046")

See also with-coclass

define-automation-collection Macro

Summary Defines an implementation class for an Automation compo-
nent that supports the Collection protocol.

Package com

Signature define-automation-collection class-name (superclass-name*)
 (slot-specifier*) class-option*

Arguments class-name A symbol naming the class to define.

superclass-name A symbol naming a superclass to inherit
from.

slot-specifier A slot description as used by defclass.

class-option An option as used by defclass.
 107

4 Automation Reference Entries

108
Description The macro define-automation-collection defines a
standard-class which is used to implement an Automation
component that supports the Collection protocol. Normal
defclass inheritance rules apply for slots and Lisp methods.

Each superclass-name argument specifies a direct superclass of
the new class, which can be any standard-class provided
that standard-automation-collection is included some-
where in the overall class precedence list. This standard class
provides a framework for the collection class.

slot-specifiers are standard defclass slot definitions.

class-options are standard defclass options. In addition the
following options are recognized:

(:interface interface-name)

This option is required. The component will
implement the interface-name, which must be
an Automation Collection interface, contain-
ing (at least) the standard properties Count
and _NewEnum. The macro will define an
implementation of these methods using
information from the instance of the class to
count and iterate.

(:item-method item-method-name*)

When specified, a COM method named
item-method-name will be defined that will
look up items using the
item-lookup-function from the instance.

If not specified, the method will be called
Item. For Collections which do not have an
item method, pass nil as the
item-method-name.

Example

See also define-automation-component

standard-automation-collection

define-automation-component Macro

Summary Define an implementation class for a particular Automation
component.

Package com

Signature define-automation-component class-name (superclass-name*)
 (slot-specifier*)
 class-option*

Arguments class-name A symbol naming the class to define.

superclass-name A symbol naming a superclass to inherit
from.

slot-specifier A slot description as used by defclass.

class-option An option as used by defclass.

Description The macro define-automation-component defines a
standard-class which is used to implement an Automation
component. Normal defclass inheritance rules apply for
slots and Lisp methods.

Each superclass-name argument specifies a direct superclass of
the new class, which can be any standard-class provided
that certain standard classes are included somewhere in the
overall class precedence list. These standard classes depend
on the other options and provide the default superclass list if
none is specified. The following standard classes are avail-
able:

• standard-i-dispatch is always needed and provides a
complete implementation of the i-dispatch interface,
based on the type information in the type library.
 109

4 Automation Reference Entries

110
• standard-i-connection-point-container is needed
if there are any source interfaces specified (via the
:coclass or :source-interfaces options). This pro-
vides a complete implementation of the Connection
Point protocols.

slot-specifiers are standard defclass slot definitions.

class-options are standard defclass options. In addition the
following options are recognized:

(:coclass coclass-name)

coclass-name is a symbol specifying the name
of a coclass. If this option is specified then a
class factory will be registered for this
coclass, to create an instance of class-name
when another application requires it. The
component will implement the interfaces
specified in the coclass definition and the
default interface will be returned by the
class factory.

Exactly one of :coclass and :interfaces
must be specified.

(:interfaces interface-name*)

Each interface-name specifies an Automation
interface that the object will implement. The
i-unknown and i-dispatch interfaces
should not be specified because their imple-
mentations are automatically inherited from
standard-i-dispatch. No class factory
will be registered for class-name, so the only
way to make instances is from with Lisp by
calling make-instance.

Exactly one of :coclass and :interfaces
must be specified.

(:source-interfaces interface-name*)

Each interface-name specifies a source inter-
face on which the object allows connections
to be made. If the :coclass option is also
specified, then the interfaces flagged with
the source attribute are used as the default
for the :source-interfaces option.

When there are event interfaces, the compo-
nent automatically implements the
IConnectionPointContainer interface.
The supporting interfaces
IEnumConnectionPoints,
IConnectionPoint and IEnumConnections
are also provided automatically.

(:extra-interfaces interface-name*)

Each interface-name specifies a COM inter-
face that the object will implement, in addi-
tion to the interfaces implied by the
:coclass option. This allows the object to
implement other interfaces not mentioned in
the type library.

(:coclass-reusable-p reusable)

If reusable is true (the default), then the
server running the component can receive
requests from more than one application. If
reusable is nil, then the server will receive
requests only from the application that
started it and the Operating System will
start a new instance of the server if required.
For more details, see REGCLS_MULTIPLEUSE
and REGCLS_SINGLEUSE in MSDN.

Use define-com-method, define-dispinterface-method
or com-object-dispinterface-invoke to define methods
 111

4 Automation Reference Entries

112
in the interfaces implemented by the component. See also
Section 1.8.4, “Unimplemented methods”.

Example (define-automation-component c-test-suite-1 ()
 ((prop3 :initform nil)
 (interface-4-called :initform nil))
 (:coclass test-suite-component)
)

See also define-com-method

define-dispinterface-method

com-object-dispinterface-invoke

standard-i-dispatch

standard-i-connection-point-container

define-automation-collection

define-dispinterface-method Macro

Summary The define-dispinterface-method macro is used to define
a dispinterface method.

Package com

Signature define-dispinterface-method method-spec (class-spec .
lambda-list) form* => value

method-spec ::= method-name | (interface-name method-name)

class-spec ::= (this class-name)

Arguments method-spec Specifies the method to be defined.

method-name A symbol naming the method to define.

interface-name A symbol naming the interface of the
method to define. This is only required if the
implementation class class-name has more
than one method with the given method-
name.

class-spec Specifies the implementation class and vari-
ables bound to the object with in the forms.

this A symbol which will be bound to the COM
object whose method is being invoked.

class-name A symbol naming the COM implementation
class for which this method is defined.

lambda-list A simple lambda list. That is, a list of param-
eter names.

form Forms which implement the method. The
value of the final form is returned as the
result of the method.

value The value to be returned to the caller.

Description The macro define-dispinterface-method defines a
dispinterface method that implements the method method-
name for the Automation implementation class class-name.
The extended method-spec syntax is required if class-name
implements more than one interface with a method called
method-name (analogous to the C++ syntax
InterfaceName::MethodName).

The symbol this is bound to the instance of the Automation
implementation class on which the method is being invoked.

The number of parameter in lambda-list must match the dec-
laration in the type library. Each in and in-out parameter is
bound to the value passed to IDispatch::Invoke, con-
verted to the type specified by the method declaration and
then converted to Lisp objects as specified in Section 3.3.3,
“Data conversion when calling Automation methods”. For
missing values the value of the parameter is :not-found. For
out and in-out arguments, the corresponding parameter
should be set by the forms to contain the value to be returned
to the caller and will be converted to an automation value as
specified in Section 3.3.3, “Data conversion when calling
Automation methods”.
 113

4 Automation Reference Entries

114
The value should be a value which can be converted to the
appropriate return type as the primary value of the method
and will be converted to an automation value as specified in
Section 3.3.3, “Data conversion when calling Automation
methods”. It is ignored for methods that are declared as
returning void.

Notes The define-com-method macro should be used to imple-
ment methods in dual interfaces.

See also define-com-method

com-object-dispinterface-invoke

disconnect-standard-sink Function

Summary Releases a standard sink object, stopping the events.

Package com

Signature disconnect-standard-sink sink => result

Arguments sink A standard sink object.

Values result t or nil.

Description The function disconnect-standard-sink releases a standard
sink object. This is one of the objects in the list returned by
set-i-dispatch-event-handler which represents a con-
nection it made.

disconnect-standard-sink stops the events that pass through
sink.

result is t if the sink was released.

See also create-instance-with-events

set-i-dispatch-event-handler

do-collection-items Macro

Summary Iterates over the items of an Automation Collection.

Package com

Signature do-collection-items (item collection) form*

Arguments item A symbol bound to each item in the collec-
tion in turn.

collection A form which is evaluated to yield a COM
i-dispatch interface pointer that imple-
ments the collection protocol.

form A form to be evaluated.

Description The do-collection-items macro executes each form in
turn, with item bound to each item of the collection.

Note that for collections whose items are interface pointers,
the forms must arrange for each pointer to be released when
no longer needed. The collection should be a COM interface
pointer for an i-dispatch interface that implements the Col-
lection protocol. The items are converted to Lisp as specified
in Section 3.3.3, “Data conversion when calling Automation
methods”.

Example For example, to iterate over the Table objects from the
Tables collection of a MyDocument interface pointer

(with-temp-interface (tables)
 (call-dispatch-get-property
 (doc my-document tables))
 (do-collection-items (table tables)
 (inspect-the-table table)
 (release table)))

See also call-dispatch-method
 115

4 Automation Reference Entries

116
do-connections Macro

Summary Iterates over the sinks for a given Automation component
object.

Package com

Signature do-connections ((sink interface-name &key
 dispatch automation-dispatch)
 container)
 form*

Arguments sink A symbol which will be bound to each sink
interface pointer.

interface-name A symbol naming the sink interface.

dispatch A symbol which will be bound to a local
macro that invokes a method from the sink
interface as if by with-com-interface.

automation-dispatch

A symbol which will be bound to a local
macro that invokes a method from the sink
interface as if by with-dispatch-inter-
face.

container An instance of a component class that has
interface-name as one of its source interfaces.

form A form to be evaluated.

Description The macro do-connections provides a way to iterate over
all the sink interface pointers for the source interface
interface-name in the connection point container container. The
container must be a subclass of
standard-i-connection-point-container. Each form is
evaluated in turn with sink bound to each interface pointer. If
dispatch is given, it is defined as a local macro invoking the
COM interface interface-name as if by with-com-interface.

If automation-dispatch is given, it is defined as a local macro
invoking the Automation interface interface-name as if by
with-dispatch-interface.

Within the scope of do-connections you can call the local
function discard-connection which discards the connec-
tion currently bound to sink. This is useful when an error is
detected on that connection, for example when the client has
terminated. The signature of this local function is

discard-connection &key release

release is a boolean defaulting to false. If release is true then
release is called on sink.

Example Suppose there is a source interface i-clonable-events with
a method on-cloned. The following function can be used to
invoke this method on all the sinks of an instance of a
clonable-component class:

(defun fire-on-cloned (clonable-component)
 (do-connections ((sink i-clonable-events
 :dispatch call-clonable)
 clonable-component)
 (call-clonable on-cloned value)))

See also with-dispatch-interface

with-com-interface

standard-i-connection-point-container

find-component-tlb Function

Summary Returns the path of the type library associated with a
component name.

Package com

Signature find-component-tlb name &key version min-version max-version
=> path
 117

4 Automation Reference Entries

118
Arguments name A string.

version A string or nil.

min-version A string or nil.

max-version A string or nil.

Values path A string or nil.

Description The function find-component-tlb returns the path of the
type library associated with the component name.

name should be the name of a component (either a ProgID or
a GUID).

If version is supplied, find-component-tlb finds only this
version of the type library.

If min-version or max-version, or both of these, are supplied,
they restrict which version of the type library can be found.

Each of version, min-version and max-version, if supplied,
should be a string. The string should contain either one hexa-
decimal number or two hexadecimal numbers separated by a
dot. The first number is the major version, the second is the
minor version, which defaults to 0.

If version is not supplied, then find-component-tlb prefer-
entially finds the the library version specified in the registry
for the component (if any) if it fits the specification by max-
version and/or min-version, otherwise it finds the earliest ver-
sion in the range specified by min-version and max-version.

find-component-tlb returns nil if it fails to find the type
library within the specified version constraints.

See also :midl-type-library-file

find-component-value Function

Summary Searches the registry for values associated with a component.

Package com

Signature find-component-value name key-name => result, root

Arguments name A string.

key-name A string or a keyword.

Values result A Lisp object.

root A keyword.

Description The function find-component-value searches the Windows
registry for values associated with a component.

name should be the name of a component (either a ProgID or
a GUID).

key-name should name a registry key. If it is a string, it should
match the key name in the registry. Otherwise key-name can
be one of the following keywords:

:library Returns the library that implements the
component (if any)

:inproc-server32

As for :library

:local-server32

Returns the executable that implements the
component (if any)

:version Returns the version

:prog-id Returns the ProgID

:version-independent-prog-id

Returns the version-independent ProgId
 119

4 Automation Reference Entries

120
:type-lib Returns the GUID of the type library

find-component-value returns the value result associated
with the given key-name in the registry for component name. If
a value is found., then there is a second returned value root
which is either :local-machine or :user, indicating the
branch of the registry in which the value was found.

find-component-value simply returns nil if it fails to find
the information.

When running on 64-bit Windows, 32-bit LispWorks looks in
the 32-bit registry view and 64-bit LispWorks looks in the 64-
bit registry view. LispWorks does not change the registry
reflection settings.

Examples (com:find-component-value "shell.explorer" :version)

get-active-object Function

Summary Looks for a registered running instance of a coclass.

Signature get-active-object &key clsid progid riid errorp => interface-ptr

Arguments clsid A string or a refguid giving a CLSID to cre-
ate.

progid A string giving a ProgID to create.

riid An optional refiid giving the COM inter-
face name to return.

errorp A boolean. The default is t.

Values interface-ptr A COM interface pointer for riid.

Description Looks for a registered running instance of a coclass in the sys-
tem Running Object Table and returns its riid interface
pointer if any. If riid is nil, then i-unknown is used.

The coclass can be specified directly by using the clsid argu-
ment or indirectly using the progid argument, which will
locate the CLSID from the registry.

If errorp is true, then an error is signaled if no instances are
running. Otherwise nil is returned if no instances are run-
ning.

Example (get-active-object :progid "Excel.Application"
 :riid 'i-dispatch)

See also get-object

get-error-info Function

Summary Retrieves the error information for the current Automation
method.

Package com

Signature get-error-info &key errorp fields => field-value*

Arguments errorp A boolean. If true and an error occurs while
retrieving the error information, then an
error of type com-error is signalled. Other-
wise nil is returned.

fields A list of keywords specifying the error infor-
mation fields to return.

Values field-value* Values corresponding to the fields argument.

Description The function get-error-info allows the various compo-
nents of the error information to be retrieved for the last
Automation method called. The fields should be a list of the
following keywords, to specify which fields of the error infor-
mation should be returned:
 121

4 Automation Reference Entries

122
:iid A refguid object.

:source A string specifying the ProgID.

:description A string describing the error.

:help-file A string giving the help file’s path.

:help-context An integer giving the help context id.

A field-value will be returned for each field specified. The
field-value will be nil if the field is does not have a value.

Example (multiple-value-bind (source description)
 (get-error-info :fields '(:source :description))
 (error "Failed with '~A' in ~A" description source))

See also set-error-info

call-dispatch-method

com-error

get-i-dispatch-name Function

Summary Returns the foreign name of an i-dispatch interface.

Package com

Signature get-i-dispatch-name i-dispatch => name

Arguments i-dispatch An i-dispatch interface.

Values name A string.

Description The function get-i-dispatch-name returns the foreign name
of an i-dispatch interface. That is, it obtains the first return
value of ITypeInfo::GetDocumentation.

Example To implement code like this:

If TypeOf objMap.Selection Is Pushpin Then
...

you would need something like:

(if (equalp (COM:get-i-dispatch-name selection)
 "PushPin")
 ...)

get-i-dispatch-source-names Function

Summary Returns the source names associated with an i-dispatch
interface.

Package com

Signature get-i-dispatch-source-names i-dispatch &key all coclass =>
source-names

Arguments i-dispatch An i-dispatch interface.

all A generalized boolean, default value false.

coclass The coclass to use, or nil.

Values source-names A list.

Description The function get-i-dispatch-source-names returns the
source names that are associated with the i-dispatch inter-
face i-dispatch, which will be used by set-i-dispatch-
event-handler.

coclass and all are as described for set-i-dispatch-event-
handler.

Notes If you need to call set-i-dispatch-event-handler repeat-
edly, then it is most efficient to call get-i-dispatch-
source-names once and pass the result source-names to set-
i-dispatch-event-handler. This is because set-i-dis-
 123

4 Automation Reference Entries

124
patch-event-handler itself calls get-i-dispatch-
source-names if its source-names argument is nil.

See also set-i-dispatch-event-handler

i-dispatch COM Interface Type

Summary The Lisp name for the i-dispatch COM interface.

Package com

Description The symbol i-dispatch is the name given to the i-dispatch
COM interface within Lisp. The name results from the stan-
dard mapping described in Section 1.3, “The mapping from
COM names to Lisp symbols”.

Examples (query-interface ptr 'i-dispatch)

See also i-unknown

standard-i-dispatch

interface-connect Function

Summary Connects a sink interface pointer to the source of events in
another COM interface pointer.

Package com

Signature interface-connect interface-ptr iid sink-ptr &key errorp =>
cookie

Arguments interface-ptr A COM interface pointer that provides the
source interface iid.

iid The iid of the source interface to be con-
nected. The iid can be a symbol naming the
interface or a refguid foreign pointer.

sink-ptr A COM interface that will receive the events
for the iid.

errorp A boolean. When false, errors connecting the
sink-ptr will cause nil to be returned. Other-
wise an error of type com-error will be sig-
nalled.

Values cookie An integer cookie associated with this con-
nection.

Description Connects the COM interface sink-ptr to the connection point
in interface-ptr that is named by iid.

Example Suppose there is an interface pointer clonable which pro-
vides a source interface i-clonable-events, then the fol-
lowing form can be used to connect an implementation of
this source interface sink:

(setq cookie
 (interface-connect clonable
 'i-clonable-events
 sink))

See also interface-disconnect

refguid

com-error

interface-disconnect Function

Summary Disconnect a sink interface pointer from the source of events
in another COM interface pointer.

Package com
 125

4 Automation Reference Entries

126
Signature interface-disconnect &key interface-ptr iid cookie &key errorp
=> flag

Arguments interface-ptr A COM interface pointer that provides the
source interface iid.

iid The iid of the source interface to be discon-
nected. The iid can be a symbol naming the
interface or a refguid foreign pointer.

cookie The integer cookie associated with the con-
nection to be disconnected.

errorp A boolean. When false, errors disconnecting
the cookie will cause nil to be returned. Oth-
erwise an error of type com-error will be
signalled.

Values flag A boolean, true for successful disconnection.

Description Disconnects the connection for cookie from the connection
point in interface-ptr that matches iid.

Example Suppose there is an interface pointer clonable which pro-
vides a source interface i-clonable-events, then the fol-
lowing form can be used to disconnect an implementation of
this source interface with cookie cookie:

(interface-disconnect clonable
 'i-clonable-events
 cookie)

See also interface-connect

refguid

com-error

lisp-variant Type

Summary An object that contains a type and a value.

Package com

Accessors lisp-variant-type
lisp-variant-value

Description A lisp-variant is an object that contains a type and a value.
The type and value are as described for the function set-
variant.

See also make-lisp-variant

set-variant

invoke-dispatch-get-property Function

Summary Call a dispatch property getter method from an interface
pointer.

Package com

Signature invoke-dispatch-get-property dispinterface-ptr name &rest
args => values

Arguments dispinterface-ptr An Automation interface pointer.

name A string or integer.

args Arguments passed to the method.

Values values Values returned by the method.

Description The function invoke-dispatch-get-property is used to
invoke an Automation property getter method from Lisp
without needing to compile a type library as part of the
application. This is similar to using

Dim var as Object
Print #output, var.Prop
 127

4 Automation Reference Entries

128
in Microsoft Visual Basic and contrasts with the macro call-
dispatch-get-property which requires a type library to be
compiled.

The dispinterface-ptr should be a COM interface pointer for
the i-dispatch interface. The appropriate Automation
method, chosen using name, which is either a string naming
the method or the integer id of the method. The args are con-
verted to Automation values and are passed as the method’s
in and in-out parameters in the order in which they appear.
The values returned consist of the primary value of the
method (if not void) and the values of any out or in-out
parameters. See Section 3.3.3, “Data conversion when calling
Automation methods” for more details.

There is also setf expander for
invoke-dispatch-get-property, which can be used as an
alternative to the call-dispatch-put-property macro.

Example For example, in order to get and set the Width property of an
interface pointer in the variable doc:

(invoke-dispatch-get-property doc "Width")

(setf (invoke-dispatch-get-property
 doc "Width")
 10)

See also invoke-dispatch-method

invoke-dispatch-put-property

call-dispatch-get-property

invoke-dispatch-method Function

Summary Call a dispatch method from an interface pointer.

Package com

Signature invoke-dispatch-method dispinterface-ptr name &rest args =>
values

Arguments dispinterface-ptr An Automation interface pointer.

name A string or integer.

args Arguments passed to the method.

Values values Values returned by the method.

Description The function invoke-dispatch-method is used to invoke an
Automation method from Lisp without needing to compile a
type library as part of the application. This is similar to using

Dim var as Object
var.Method(1,2)

in Microsoft Visual Basic and contrasts with the macro call-
dispatch-method which requires a type library to be com-
piled.

The dispinterface-ptr should be a COM interface pointer for
the i-dispatch interface. The appropriate Automation
method, chosen using name, which is either a string naming
the method or the integer id of the method. The args are con-
verted to Automation values and are passed as the method’s
in and in-out parameters in the order in which they appear.
The values returned consist of the primary value of the
method (if not void) and the values of any out or in-out
parameters. See Section 3.3.3, “Data conversion when calling
Automation methods” for more details. If there is no Auto-
mation method with the given name, then a property getter
with the same name is called if it exists, otherwise an error is
signaled. The setf form of invoke-dispatch-method can be
used to call property setter methods.

Example For example, in order to invoke the ReFormat method of an
interface pointer in the variable doc:

(invoke-dispatch-method doc "ReFormat")
 129

4 Automation Reference Entries

130
See also invoke-dispatch-get-property

invoke-dispatch-put-property

call-dispatch-method

invoke-dispatch-put-property Function

Summary Call a dispatch property setter method from an interface
pointer.

Package com

Signature invoke-dispatch-put-property dispinterface-ptr name &rest
args => values

Arguments dispinterface-ptr An Automation interface pointer.

name A string or integer.

args Arguments passed to the method.

Values values Values returned by the method.

Description The function invoke-dispatch-put-property is used to
invoke an Automation property setter method from Lisp
without needing to compile a type library as part of the
application. This is similar to using

Dim var as Object
var.Prop = 2

in Microsoft Visual Basic and contrasts with the macro call-
dispatch-put-property which requires a type library to be
compiled.

The dispinterface-ptr should be a COM interface pointer for
the i-dispatch interface. The appropriate Automation
method, chosen using name, which is either a string naming
the method or the integer id of the method. The args are con-
verted to Automation values and are passed as the method’s

in and in-out parameters in the order in which they appear.
The new value of the property should be the last argument.
The values returned consist of the primary value of the
method (if not void) and the values of any out or in-out
parameters. See Section 3.3.3, “Data conversion when calling
Automation methods” for more details.

Example For example, in order to set the Width property of an inter-
face pointer in the variable doc:

(invoke-dispatch-put-property doc "Width" 10)

See also invoke-dispatch-method

invoke-dispatch-get-property

call-dispatch-put-property

make-lisp-variant Function

Summary Returns a Lisp object that contains a type and a value.

Package com

Signature make-lisp-variant type &optional value => lisp-variant

Description The function make-lisp-variant returns a lisp-variant
object lisp-variant containing type and value.

lisp-variant can be passed as an argument to an Automation
method, to give control over the VT code that the method
sees. The meaning of type and value are as described for set-
variant.

See also lisp-variant

set-variant
 131

4 Automation Reference Entries

132
:midl-type-library-file Defsystem Member Type

Summary A defsystem member type that can be used to include a type
library file in a Lisp system definition.

Package com

Description When a file is given the type :midl-type-library-file,
compiling the system will compile the type library file to pro-
duce a fasl. Loading the system will load this fasl. The
:package and :mapping-options keywords can specified as
for midl.

The keyword :component-name name-spec can be supplied to
specifiy that the source is the library specified by name-spec.

name-spec should be one of:

t Means that the component name is the same
as the module name.

A string The name of the component.

A list (component-name keywords-and-values) where
the keywords and values are passed to
find-component-tlb when looking for the
actual library.

In all cases the module name, less anything after the last dot,
is used as the default filename for the compiled file.

The keyword :com can be supplied to reduce the amount of
code generated. For the details, see “Reducing the size of the
converted library” on page 86.

Examples To include the file myfile.tlb in a system, use

(defsystem my-system ()
 :members (("myfile.tlb"
 :type :midl-type-library-file)))

To compile the library associated with "OWC10.Spreadsheet",
producing an object file in OWC10.ofasl put a clause like this
in the defsystem form:

("OWC10.SPREADSHEET" :type :midl-type-library-file
 :com :not-binary
 :component-name t)

To compile the same library, but to a different object file, use:

("my-owc" :type :midl-type-library-file
 :com :not-binary
 :component-name "OWC10.SPREADSHEET")

To compile the same library, but using only version newer
than 1.1, use a clause like this:

("my-owc" :type :midl-type-library-file
 :com :not-binary
 :component-name ("OWC10.SPREADSHEET"
 :min-version "1.1"))

See also find-component-tlb

:midl-file

query-simple-i-dispatch-interface Function

Summary Queries the interface pointer from a simple-i-dispatch
object using the type information from another interface.

Package com

Signature query-simple-i-dispatch-interface this &key related-dispatch
=> interface-ptr, refguid

Arguments this A simple-i-dispatch object.

related-dispatch An i-dispatch interface pointer.

Values interface-ptr An interface pointer.

refguid A refguid.
 133

4 Automation Reference Entries

134
Description The function query-simple-i-dispatch-interface is
used to obtain an interface pointer from a simple-i-dis-
patch interface. The simple-i-dispatch contains the inter-
face name provided using its :interface-name initarg, but
it doesn't have the details of this interface, so query-simple-
i-dispatch-interface must be able to find the details.

In the current implementation, the only way for the details to
be found is by passing the related-dispatch argument. This
should be an interface pointer from which type information
about the interface name can be obtained.

The query-simple-i-dispatch-interface function
returns two values, interface-ptr which is an interface pointer
for the interface-name contained in this and refguid, which is
the refguid of that interface-name.

A typical use of query-simple-i-dispatch-interface is
to implement a sink interface for events from some other
component. The interface pointer for that component is
passed as the related-dispatch because that connects to the type
library containing both interface definitions.

Before using query-simple-i-dispatch-interface
directly, consider the functions set-i-dispatch-event-
handler and create-instance-with-events, which pro-
vide an succinct way to provide an event callback.

See also simple-i-dispatch

create-instance-with-events

set-i-dispatch-event-handler

register-active-object Function

Summary Registers an instance of a coclass.

Signature register-active-object interface-ptr &key clsid progid flags =>
token

Arguments interface-ptr A COM interface pointer.

clsid A string or a refguid giving a CLSID to cre-
ate.

progid A string giving a ProgID to create.

flags An integer.

Values token An integer.

Description Registers interface-ptr in the system Running Object Table for
a specific coclass that the application implements. The coclass
can be specified directly by using the clsid argument or indi-
rectly using the progid argument, which will locate the CLSID
from the registry.

flags can be an integer as specified for the Win32 API function
RegisterActiveObject. The default value of flags is 0.

The returned value token can be used with revoke-active-
object to revoke the registration.

See also revoke-active-object

revoke-active-object Function

Summary Unregisters a previously registered instance of a coclass.

Signature revoke-active-object token

Arguments token An integer.

Description Revokes the registration of the object associated with token in
the system Running Object Table. The value of token should
be one that was returned by a call to register-active-
object.

See also register-active-object
 135

4 Automation Reference Entries

136
set-error-info Function

Summary Sets the error information for the current Automation
method.

Package com

Signature set-error-info &key iid source description help-file help-context
 => error-code

Arguments iid The iid of the interface that defined the error,
or nil if none. The iid can be a symbol nam-
ing the interface or a refguid foreign
pointer.

source A string giving the ProgID for the class that
raised the error, or nil if none.

description A string giving the textual description of the
error, or nil if none.

help-file A string giving the path of the help file that
describes the error, or nil if none.

help-context An integer giving the help context id for the
error, or nil if none.

Values error-code The error code DISP_E_EXCEPTION or nil if
the error info could not be set.

Description The function set-error-info allows the various compo-
nents of the error information to be set for the current Auto-
mation method. It should only be called within the dynamic
scope of the body of a define-com-method definition. The
value DISP_E_EXCEPTION can be returned as the hresult of
the method to indicate failure.

Examples (define-com-method (i-robot rotate)
 ((this i-robot-impl)
 (axis :in)
 (angle-delta :in))
 (let ((joint (find-joint axis)))
 (if joint
 (progn
 (rotate-joint joint)
 S_OK)
 (set-error-info :iid 'i-robot
 :description "Bad joint."))))

See also define-com-method

get-error-info

refguid

hresult

set-i-dispatch-event-handler Function

Summary Sets an event handler for an i-dispatch interface.

Package com

Signature set-i-dispatch-event-handler

 (interface event-handler &key all coclass

 event-object source-names)

 => sinks

Arguments interface An i-dispatch interface.

event-handler A function of four arguments.

all A generalized boolean, default value false.

coclass The coclass to use, or nil.

event-object A Lisp object.

source-names A list of "source" interface names, or nil.
 137

4 Automation Reference Entries

138
Values sinks A list of objects representing the connections
made.

Description The function set-i-dispatch-event-handler sets an event
handler for the i-dispatch interface interface.

event-handler is a function of four arguments:

event-handler event-obj method-name method-type args

event-obj is the value of event-object if this is non-nil. If event-
object is nil, event-obj is the value of interface.

method-name is the method-name that has been called, which
is the same as the "event" name in Visual Basic terminology.

method-type is the type of the method. For a normal "event" it
is :method. method-type can also be :put or :get if the
underlying "source" interface has "propput" or "propget"
methods or properties.

args is an array containing the arguments to the method
("event"). This varies according to the method. For out or in-
out arguments, it is possible to return a value by setting the
corresponding value in the array.

The all, coclass and source-names arguments to set-i-dis-
patch-event-handler tell it which "source" interface or
interfaces to use. In most cases, the default is correct.

If all is false, then only the "default" "source" is used. If all is
true, then set-i-dispatch-event-handler uses all the
source interfaces that the coclass defines.

coclass tells set-i-dispatch-event-handler which coclass
to use, which is the same as the object in Visual Basic
terminology.

If coclass is nil, it uses the first coclass in the type library that
has the type of interface as a default interface, or if there is no
such coclass, the first coclass that has this interface. In most of
the cases this is the desired coclass.

If coclass is non-nil, it specifies which coclass to use. It can be
a ProgID (for example "Word.Application") or a coclass
name or a coclass GUID. If the i-dispatch interface was
created with create-instance, then the argument to cre-
ate-instance is the correct coclass to use.

If source-names is non-nil, then it is a list of "source" interface
names to use, and all and coclass are ignored. If source-names
is nil, then set-i-dispatch-event-handler calls get-i-
dispatch-source-names to calculate the "source" interface
names.

sinks is a list of objects representing the connections that set-
i-dispatch-event-handler made. When the events are no
longer needed, they can be released by disconnect-stan-
dard-sink.

Notes 1. set-i-dispatch-event-handler can be called more
than once on the same i-dispatch, and this generates
new connections each time. Therefore, if it is called more
than once such that it uses the same source names, events
will arrive more than once.

2. If you need to call set-i-dispatch-event-handler
repeatedly, then it is most efficient to call get-i-dis-
patch-source-names once and pass the result source-
names to set-i-dispatch-event-handler.

3. There is a useful function create-instance-with-
events which combines create-instance and set-i-
dispatch-event-handler.

See also disconnect-standard-sink

create-instance-with-events

get-i-dispatch-source-names
 139

4 Automation Reference Entries

140
set-variant Function

Summary Sets the fields in a VARIANT pointer.

Package com

Signature set-variant variant type &optional value

Arguments variant A foreign pointer to an object of type
VARIANT.

type A keyword specifying the type of value.

value The value to store in variant.

Description The function set-variant can be used to set the type and
value of a VARIANT object. It is useful if the default type pro-
vided by the automatic conversion for VARIANT return values
is incorrect. The value of meaning of type is an specified
below

Value of type VT code used Expected type of
value

nil dynamic any suitable
:empty VT_EMPTY ignored
:null VT_NULL ignored
:short VT_I2 integer

:long VT_I4 integer

:float VT_R4 single-float

:double VT_R8 double-float

:cy VT_CY
:date VT_DATE
:bstr VT_BSTR string

:dispatch VT_DISPATCH FLI pointer
:error VT_ERROR ignored
:bool VT_BOOL nil or non nil
:variant VT_VARIANT FLI pointer

If type is nil then the actual VT code is chosen dynamically
according to the Lisp type of value (see Table 3.1, page 89).

If type is a cons of the form (:array . type) for some key-
word type, then variant is set to contain an array of objects of
type. Each element of value is expected to be suitable for con-
version to type.

If type is :array or another list starting with :array then
variant is set to contain an array of VARIANT objects with the
same dimensions as value. Each element of value is converted
as if by calling set-variant with a type chosen as follows:

• If type is the symbol :array, then nil is passed as the
element type.

• If type is of the form (:array array) then array should be
an array with the same dimensions as value. The element
type is taken from the corresponding element of array.

• If type is of the form (:array . types) then types should
be a suitable value for the :initial-contents argu-
ment to make-array to make an array of types with the
same dimensions as value. The element type is taken
from the corresponding element of that array. In particu-

:unknown VT_UNKNOWN FLI pointer
:decimal VT_DECIMAL
(:unsigned

:char)
VT_UI1 integer

(:array . type) VT_BYREF +

VT code for type
array

:array

or (:array array)
or (:array . types)

VT_ARRAY +

VT_VARIANT
array

(:pointer type2) VT_BYREF +

VT code for type2
FLI pointer

Value of type VT code used Expected type of
value
 141

4 Automation Reference Entries

142
lar, if value is a vector of length n then type should be a
list of the form (:array type1 type2 ... typen).

Examples (set-variant v :null)

(set-variant v :short 10)

(set-variant v '(:pointer :short) ptr)

(set-variant v ’(:array :short :int) #(1 2))

See also define-com-method

simple-i-dispatch Class

Summary A complete dynamic implementation of the i-dispatch
interface.

Package com

Superclasses standard-i-dispatch

Subclasses None

Initargs :interface-name

The name of the interface to implement. See
query-simple-i-dispatch-interface for
details on how this is used.

:invoke-callback

A function that is called with four argu-
ments whenever one of the interface's meth-
ods is invoked. The arguments are the
callback object, the method name as a string,
the method type (a keyword :method, :get
or :put) and a vector of the method's argu-
ments. The value returned by the function
will be returned to the caller of the method

See com-object-dispinterface-invoke
for more details of the method name, type
and arguments.

Accessors simple-i-dispatch-invoke-callback

Readers simple-i-dispatch-interface-name
simple-i-dispatch-refguid

Description The class simple-i-dispatch provides a complete imple-
mentation of the i-dispatch interface, without requiring a
type library to be parsed. The type information is obtained at
run-time when query-simple-i-dispatch-interface is
called. The class inherits from standard-i-dispatch to pro-
vide the i-unknown interface.

The simple-i-dispatch-refguid reader can be used to
return the refguid of the interface. This can only be called
after query-simple-i-dispatch-interface has been
called.

The implementation obtains the callback object argument to
the invoke-callback by calling simple-i-dispatch-call-
back-object with the simple-i-dispatch object. The
default method returns the simple-i-dispatch object itself,
but this method can be overridden for subclasses to return
some other object.

Before using simple-i-dispatch directly, consider the func-
tions set-i-dispatch-event-handler and create-
instance-with-events, which provide an succinct way to
provide an event callback.

See also query-simple-i-dispatch-interface

simple-i-dispatch-callback-object

standard-i-dispatch

i-dispatch

capi:ole-control-pane-simple-sink
 143

4 Automation Reference Entries

144
simple-i-dispatch-callback-object Generic Function

Summary A generic function that can be implemented to modify the
first argument to the invoke-callback in simple-i-dispatch.

Package com

Signature this => object

Method
Signature

(this simple-i-dispatch) => this

Arguments this An object of type simple-i-dispatch.

Values object The callback object to be pass as the first
argument to the invoke-callback of this.

Description The generic function simple-i-dispatch-callback-
object is called by the implementation of simple-i-dis-
patch to obtain the callback object (first argument) to its
invoke-callback. This allows the object to be computed in some
way by subclassing simple-i-dispatch and implementing
a method on simple-i-dispatch-callback-object spe-
cialized for the subclass.

The pre-defined primary method specializing on simple-i-
dispatch always returns its argument.

Example When the function my-dispatch-callback below is called,
its first argument will be the useful-object passed to make-my-
dispatch.

(defclass my-dispatch (simple-i-dispatch)
 ((useful-object :initarg :useful-object)))

(defmethod simple-i-dispatch-callback-object
 ((this my-dispatch))
 (slot-value this 'useful-object))

(defun make-my-dispatch (useful-object)
 (make-instance
 'my-dispatch
 :useful-object useful-object
 :invoke-callback 'my-dispatch-callback
 :interface-name "MyDispatchInterface"))

See also simple-i-dispatch

standard-automation-collection Class

Summary A framework for implementing Automation collections.

Package com

Superclasses standard-i-dispatch

Initargs :count-function

A function of no arguments that should
return the number of items in the collection.
This initarg is required.

:items-function

A function of no arguments that should
return a sequence of items in the collection.
This function is called by the implementa-
tion of _NewEnum and the sequence is copied.
Exactly one of :items-function and
:item-generator-function must be speci-
fied.

:item-generator-function
 145

4 Automation Reference Entries

146
A function of no arguments that should
return an item generator, which will generate
the items in the collection. See below for
more details. Exactly one of
:items-function and
:item-generator-function must be speci-
fied.

:data-function

A function called on each item that the
:items-function or
:item-generator-function returns. This
is called when iterating, to produce the
value that is returned to the caller.

:item-lookup-function

A function which takes a single argument,
an integer or a string specifying an item. The
function should return the item specified.
This initarg is required if the :item-method
option is non-nil in
define-automation-collection.

Description The class standard-automation-collection provides a
framework for implementing Automation collections. These
typically provide a Count property giving the number of
objects in the collect, a _NewEnum property for iterating over
the element of the collection method and optionally an Item
method for finding items by index or name.

The :count-function initarg specifies a function to count
the items of the collection and is invoked by the implementa-
tion of the Count method.

Exactly one of the initargs :item-function and
:item-generator-function must be specified to provide
items for the implementation of the IEnumVARIANT instance
returned by the _NewEnum method.

If :items-function is specified, then it will be called once
when _NewEnum is called and should return a sequence of the
items in the collection. This sequence is copied, so can be
modified by the program without affecting the collection.

If :item-generator-function is specified, it should be an
item generator that will generate all the items in the collection.
It will be called once with the argument :clone when
_NewEnum is called and then by the implementation of the
resulting IEnumVARIANT interface. An item generator is a func-
tion of one argument which specifies what to do:

:next Return two values: the next item and t. If
there are no more items, return nil and nil.

:skip If there are no more items, return nil. Oth-
erwise skip the current item and return t.

:reset Reset the generator so the first item will be
returned again.

:clone Return a copy of the item generator. The copy
should have the same current item.

The :data-function initarg should be function to convert
each item returned by the :items-function or the item gen-
erator into a value whose type is compatible with Automa-
tion (see Table 3.1, page 89). The default function is
identity.

Example See the example in the directory

examples/com/automation/collections/

See also define-automation-collection

standard-i-dispatch

i-dispatch
 147

4 Automation Reference Entries

148
standard-i-connection-point-container Class

Summary A complete implementation of the Connection Point proto-
col.

Package com

Superclasses standard-i-unknown

Description The class standard-i-connection-point-container pro-
vides a complete implementation of the Connection Point
protocols. It implements the IConnectionPointContainer
interface and creates connection points for each interface
given by the :outgoing-interfaces initarg.

If a class defined with define-automation-component
macro specifies the :source-interfaces option or has
interfaces with the "source" attribute in its coclass then it
must inherit from standard-i-connection-point-con-
tainer somehow. define-automation-component passes
the appropriate initargs to initialize the class.

The macro do-connections can be used to iterate over the
connections (sinks) for a given interface.

Example Given the class definition

(define-automation-component clonable-component ()
 ()
 (:interfaces i-clonable)
 (:source-interfaces i-clonable-events)
)

then

(typep (make-instance 'clonable-component)
 'standard-i-connection-point-container)
=> t

See also define-automation-component

standard-i-dispatch

do-connections

define-automation-collection

standard-i-unknown

i-dispatch

standard-i-dispatch Class

Summary A complete implementation of the i-dispatch interface.

Package com

Superclasses standard-i-unknown

Subclasses standard-automation-collection
simple-i-dispatch

Description The class standard-i-dispatch provides a complete imple-
mentation of the i-dispatch interface, based on the type
information in the type library. In addition, the
i-support-error-info interface is implemented to support
error information. standard-i-dispatch inherits from
standard-i-unknown to provide the i-unknown interface.

All classes defined with the define-automation-component
and define-automation-collection macros must inherit
from standard-i-dispatch somehow. These macros pass
the appropriate initargs to initialize the class.

Example Given the class definition

(define-automation-component document-impl ()
 ()
 (:coclass document)
)

then

(typep (make-instance 'document-impl)
 'standard-i-dispatch)
=> t
 149

4 Automation Reference Entries

150
See also define-automation-component

define-automation-collection

standard-i-connection-point-container

standard-i-unknown

i-dispatch

with-coclass Macro

Summary Executes a body of code with a temporary instance of a
coclass.

Package com

Signature with-coclass disp form* => values

disp ::= (dispatch-function coclass-name
 &key interface-name punk clsctx)

Arguments disp The names of the dispatch function, coclass
etc.

dispatch-function A symbol which will be defined as a macro,
as if by with-dispatch-interface. The
macro can be used by the forms to invoke the
Automation methods of the component.

coclass-name A symbol which names the coclass. It is not
evaluated.

interface-name A symbol naming an interface in the coclass.
It is not evaluated.

punk A symbol which will be bound to the inter-
face pointer.

clsctx A CLSCTX value, which defaults to
CLSCTX_SERVER.

form A form to be evaluated.

Values values The values returned by the last form.

Description Calls create-object to make an instance of the coclass
named by the symbol coclass-name. If interface-name is given
then that interface is queried from the component, otherwise
the default interface is queried. Each form is evaluated in turn
with dispatch-function bound of a local macro for invoking
methods on the interface, as if by
with-dispatch-interface. After the forms have been eval-
uated, the interface pointer is released. If punk is given, it will
be bound to the interface pointer while the forms are being
evaluated.

Example If a type library containing the coclass TestComponent has
been converted to Lisp, then following can be used to make
an instance of component and invoke the Greet() method
on the default interface.

(with-coclass (call-it test-component)
 (call-it greet "hello"))

See also create-object

with-dispatch-interface Macro

Summary Used to simplify invocation of several methods from a partic-
ular Automation interface pointer.

Package com

Signature with-dispatch-interface disp dispinterface-ptr form* => values

disp ::= (dispatch-function dispinterface-name)

Arguments disp The names of the dispatch function and
Automation interface.
 151

4 Automation Reference Entries

152
dispatch-function A symbol which will be defined as a macro,
as if by macrolet. The macro can be used by
the forms to invoke the methods on
dispinterface-ptr.

dispinterface-name

A symbol which names the Automation
interface. It is not evaluated.

dispinterface-ptr A form which is evaluated to yield a COM
i-dispatch interface pointer.

form A form to be evaluated.

Values values The values returned by the last form.

Description When the macro with-dispatch-interface evaluates the
forms, the local macro dispatch-function can be used to
invoked the methods for the Automation interface
dispinterface-name, which should be the type or a supertype of
the actual type of the Automation interface pointer
dispinterface-ptr.

The dispatch-function macro has the following signature:

dispatch-function method-name arg* => values

where

method-name A symbol which names the method. It is not
evaluated.

arg Arguments to the method (see Section 3.3.3,
“Data conversion when calling Automation
methods” for details).

values Values from the method (see Section 3.3.3,
“Data conversion when calling Automation
methods” for details).

Example For example, in order to invoke the ReFormat method of a
MyDocument interface pointer

(with-dispatch-interface (call-doc my-document) doc
 (call-doc re-format))

See also call-dispatch-method
 153

4 Automation Reference Entries

154

5

5 Tools
The tools described in this chapter extend the LispWorks IDE to help with
debugging applications using COM/Automation. See the LispWorks IDE User
Guide for more details of common operations that can be performed within
these tools. The sections below describe each tool.

5.1 The COM Implementation Browser
The COM Implementation Browser allows prototype code for COM imple-
mentation classes to be viewed and created. This is useful when writing COM
methods because it provides a template for the method names and arguments.
155

5 Tools

156
To start the tool, choose Tools > Com Implementation Browser from the Lisp-
Works podium.

Prototype implementation

Name of class

Interface Method

Description

5.1 The COM Implementation Browser
At the top of the window is a drop down list a class names. Choosing an item
from this list will set the contents of the Description panel to show that class at
the root of the tree, with subitems for each COM interface that it implements.
The COM interfaces have subitems for their uuids and methods. The icon
used for a method in the tree indicates the status of its implementation: red
means not implemented (see Section 1.8.4 on page 17), yellow means inherited
from a superclass (see Section 1.8.5 on page 17), red and yellow means an
inherited unimplemented method and cyan means a method implemented
directly in the named class.

Selecting an item in the Description pane will display a prototype implemen-
tation for that part of the class, using the appropriate macros for COM and
Automation classes.

The New and Edit buttons allow prototype classes to be constructed and modi-
fied. Such classes are shown in the list of class names as Example class... and
are not actually defined, but the prototype code can be copied into a file and
 157

5 Tools

158
evaluated to provide a starting point for an implementation. Clicking New or
Edit displays a dialog as shown below.

The class name is displayed at the top and can be edited. For COM object
classes, the list at the bottom of the dialog shows the COM interfaces that the
class will implement. For Automation interfaces, a type library must be cho-
sen from the drop-down list and one of the Coclass or Interfaces options
selected to show the list of coclasses or interfaces that the class will imple-
ment. Click OK to confirm your choice or Cancel to discard it.

5.2 The COM Object Browser
5.2 The COM Object Browser
The COM Object Browser is used view COM objects for the classes imple-
mented by Lisp. To start the tool, choose Tools > Com Object Browser from the
LispWorks podium.

The Active COM Objects list shows all the Lisp objects that are known to the
COM runtime system. Selecting objects from this list will list the COM inter-
face pointers that have been queried for these objects. Double clicking on
either list will inspect the data. Use the Works > Object menu or the context
menu to perform other operations on the selected COM Objects.
 159

5 Tools

160
5.3 The COM Interface Browser
The COM Interface Browser allows the interfaces that have been converted to
FLI definitions to be viewed. To start the tool, choose
Tools > Com Interface Browser from the LispWorks podium.

The left hand pane shows a tree of the interfaces, with subitems for their uuids
and methods. Selecting an item will cause the right-hand pane to show proto-
type code for invoking the method(s) selected.

Prototype code for invoking methodsInterfaces and methods

5.4 Editor extensions
5.4 Editor extensions
The LispWorks editor has been enhanced to support COM.

5.4.1 Inserting GUIDs

The editor command Insert GUID can be used to insert a new GUID at the
current point. The GUID is made by calling CoCreateGUID.

5.4.2 Argument lists

The editor command Function Arglist (Alt+=) has been extended to show
the arguments for all COM methods which match the function name.
 161

5 Tools

162

Index
A
accessor functions
lisp-variant-type 127
lisp-variant-value 127

ActiveX controls vii
add-ref function 4, 27
automation-server-command-

line-action function 28
automation-server-main function

29
automation-server-top-loop

function 32

C
call-com-interface macro 4, 33
call-com-object macro 15, 24, 35
call-dispatch-get-property

macro 99
call-dispatch-method macro 100
call-dispatch-put-property

macro 102
Calling

Automation methods
using a type library 87
without using a type library 88

COM interface methods 4
COM object methods 24

check-hresult macro 36
class options
:coclass 110

:coclass-reusable-p 111
:dont-implement 50
:extra-interfaces 111
:inherit-from 49
:interface 108
:interfaces 49, 110
:item-method 108
:source-interfaces 111

classes
com-dispatch-invoke-excep-

tion-error 97
com-error 41
com-interface 42
com-object 43
simple-i-dispatch 142
standard-automation-collec-

tion 145
standard-i-connection-

point-container 148
standard-i-dispatch 149
standard-i-unknown 73

:coclass class option 110
:coclass-reusable-p class option

111
co-create-guid function 37
co-initialize function 14, 38
collections

implementing 93
using 90

COM interface types
i-dispatch 124
i-unknown 57

com-dispatch-invoke-excep-
tion-error class 97

com-dispatch-invoke-excep-
tion-error-info function

163

Index

164
98
com-error class 41
com-error-function-name func-

tion 41
com-error-hresult function 41
com-interface class 4, 42, 88, 89
com-interface-refguid function

42
com-object class 43
com-object-destructor function

16, 43
com-object-dispinterface-

invoke generic function 103
com-object-from-pointer func-

tion 44
com-object-initialize function

16, 45
com-object-query-interface

function 46
compiling IDL files 1
connection points

implementing 93
using 90

CoTaskMemAlloc 39
co-task-mem-alloc function 10, 38
CoTaskMemFree 40
co-task-mem-free function 8, 10, 40
co-uninitialize function 40
:count-function initarg 145
create-instance function 47
create-instance-with-events

function 105
create-object function 106

D
:data-function initarg 146
define-automation-collection

macro 107
define-automation-component

macro 109
define-com-implementation

macro 14, 48
define-com-method macro 14, 51
define-dispinterface-method

macro 112
defsystem member types
:midl-file 63
:midl-type-library-file 132

deliver function 2, 31, 33
destruction 16
discard-connection function 117
disconnect-standard-sink func-
tion 114
dispinterface 86, 92, 99, 101, 102, 103, 112,

152
:dll-exports Delivery keyword 2
do-collection-items macro 115
do-connections macro 116
:dont-implement class option 50
dual interface 86, 91

E
editor commands
Function Arglist 161
Insert GUID 161

environment variables
INCLUDE 62

errors
handling in Automation 91
handling in COM 12
reporting 93

events
see connection-points

:extra-interfaces class option 111

F
find-clsid function 53
find-component-tlb function 117
find-component-value function 119
FLI types
hresult 56
refguid 66
refiid 67

Function Arglist editor command
161

:function-name initarg 41
functions
add-ref 27
automation-server-command-

line-action 28
automation-server-main 29
automation-server-top-loop

32
co-create-guid 37
co-initialize 14, 38
com-dispatch-invoke-excep-

tion-error-info 98
com-error-function-name 41
com-error-hresult 41
com-interface-refguid 42
com-object-destructor 16, 43
com-object-from-pointer 44
com-object-initialize 16, 45

Index
com-object-query-interface
46

co-task-mem-alloc 10, 38
co-task-mem-free 8, 10, 40
co-uninitialize 40
create-instance 47
create-instance-with-events

105
create-object 106
discard-connection 117
disconnect-standard-sink 114
find-clsid 53
find-component-tlb 117
find-component-value 119
get-error-info 121
get-i-dispatch-name 122
get-i-dispatch-source-names

123
get-object 54
guid-equal 55
guid-to-string 56
hresult-equal 57
interface-connect 124, 125
invoke-dispatch-get-prop-

erty 127
invoke-dispatch-method 128
invoke-dispatch-put-prop-

erty 130
make-factory-entry 14, 16, 59
make-guid-from-string 60
make-lisp-variant 131
midl 2, 61
query-interface 64
query-simple-i-dispatch-

interface 133
refguid-interface-name 66
register-class-factory-

entry 14, 16, 68
register-server 68
release 70
server-can-exit-p 71
server-in-use-p 71
set-automation-server-exit-

delay 72
set-error-info 136
set-i-dispatch-event-han-

dler 137
set-variant 140
start-factories 14, 16, 74, 75
unregister-server 76

G
Garbage collection 16
generic functions
com-object-dispinterface-

invoke 103
simple-i-dispatch-callback-

object 144
get-error-info function 12, 121
get-i-dispatch-name function 122
get-i-dispatch-source-names

function 123
get-object function 54
guid-equal function 55
guid-to-string function 56

H
hresult FLI type 56
:hresult initarg 41
hresult-equal function 57

I
i-dispatch COM interface type 124
IDL

compiling 1
iid_is attribute 8
in parameters 6, 21, 24, 89
INCLUDE environment variable 62
:inherit-from class option 49
initialization

CLOS object 15
COM object 15

in-out parameters 10, 23, 25, 89
Insert GUID editor command 161
:interface class option 108
interface-connect function 124,

125
:interface-name initarg 142
interface-ref macro 58
:interfaces class option 49, 110
:invoke-callback initarg 142
invoke-dispatch-get-property

function 127
invoke-dispatch-method function

128
invoke-dispatch-put-property

function 130
:item-generator-function ini-

targ 145
:item-lookup-function initarg 146
:item-method class option 108
:items-function initarg 145
 165

Index

166
i-unknown COM interface type 57

L
lisp-variant type 126
lisp-variant-type accessor func-

tion 127
lisp-variant-value accessor func-

tion 127

M
macros
call-com-interface 33
call-com-object 15, 35
call-dispatch-get-property

99
call-dispatch-method 100
call-dispatch-put-property

102
check-hresult 36
define-automation-collec-

tion 107
define-automation-compo-

nent 109
define-com-implemenrtation

14, 48
define-com-method 14, 51
define-dispinterface-method

112
do-collection-items 115
do-connections 116
interface-ref 58
query-object-interface 15, 65
s_ok 70
succeeded 75
with-com-interface 77, 150
with-com-object 79
with-dispatch-interface 151
with-query-interface 82
with-temp-interface 81

make-factory-entry function 14,
16, 59

make-guid-from-string function
60

make-lisp-variant function 131
making a COM DLL 2
midl function 2, 61
midl.exe 2, 5, 20
:midl-file defsystem member type 63
:midl-type-library-file defsys-

tem member type 132
modules
automation 85
com 1, 85

N
name mapping 3
New in LispWorks 6.1
automation-server-command-

line-action function 28
automation-server-main func-

tion 29
automation-server-top-loop

function 32
:coclass-reusable-p class

option in define-automa-
tion-component 111

co-create-guid function 37
com-dispatch-invoke-excep-

tion-error 97
com-dispatch-invoke-excep-

tion-error-info 98
Easier way to run an Automation server

92
get-active-object 120
get-object 54
register-active-object 134
revoke-active-object 135
server-can-exit-p function 71
server-in-use-p function 71
set-automation-server-exit-

delay function 72

O
OLE vii
other applications

registering objects for 94
out parameters 7, 22, 25, 89
:outer-unknown initarg 73

P
parameter direction

in 6, 21, 24, 89
in-out 10, 23, 25, 89
out 7, 22, 25, 89

Primitive types 5, 20
propget attribute 3
propgput attribute 3
propgputref attribute 3

Q
query-interface function 4, 64
query-object-interface macro

Index
15, 65
query-simple-i-dispatch-

interface function 133
:quit-when-no-windows Delivery

keyword 33

R
refguid FLI type 66
refguid-interface-name function

66
refiid FLI type 4, 67
register-class-factory-entry

function 14, 16, 68
register-server function 68
registry

component values 119
guid 53
ProgID 53
type library versions 117

release function 4, 70
retval attribute 89

S
s_ok macro 70
save-image function 2, 31
server-can-exit-p function 71
server-in-use-p function 71
set-automation-server-exit-

delay function 72
set-error-info function 53, 94, 136
set-i-dispatch-event-handler

function 137
set-variant function 140
simple-i-dispatch class 142
simple-i-dispatch-callback-

object generic function 144
size_is attribute 6, 8, 10, 21, 22, 23, 24, 25
source attribute 111
source interfaces 93
:source-interfaces class option

111
standard-automation-collec-

tion class 145
standard-i-connection-point-

container class 148
standard-i-dispatch class 149
standard-i-unknown class 73
start-factories function 14, 16, 74,

75
string attribute 6, 8, 10, 21, 22, 23, 24, 25
succeeded macro 75

T
tools

COM Implementation Browser 155
COM Interface Browser 160
COM Object Browser 159

type libraries 85
types
lisp-variant 126

U
unregister-server function 76

W
Windows registry 53, 117, 119
with-com-interface macro 4, 77,

150
with-com-object macro 24, 79
with-dispatch-interface macro

151
with-query-interface macro 4, 82
with-temp-interface macro 4, 81
 167

Index

168

	COM/Automation User Guide and Reference Manual
	Copyright and Trademarks
	Contents
	Preface
	1 Using COM
	1.1 Prerequisites
	1.2 Including COM in a Lisp application
	1.2.1 Loading the modules
	1.2.2 Generating FLI definitions from COM definitions
	1.2.3 Standard IDL files
	1.2.4 Making a COM DLL with LispWorks

	1.3 The mapping from COM names to Lisp symbols
	1.4 Obtaining the first COM interface pointer
	1.5 Reference counting
	1.6 Querying for other COM interface pointers
	1.7 Calling COM interface methods
	1.7.1 Data conversion when calling COM methods
	1.7.1.1 In parameters
	1.7.1.2 Out parameters
	1.7.1.3 In-out parameters

	1.7.2 Error handling

	1.8 Implementing COM interfaces in Lisp
	1.8.1 Steps required to implement COM interfaces
	1.8.2 The lifecycle of a COM object
	1.8.3 Class factories
	1.8.4 Unimplemented methods
	1.8.5 Inheritance
	1.8.5.1 An example of multiple inheritance
	1.8.5.2 A second example of multiple inheritance

	1.8.6 Data conversion in define-com-method
	1.8.6.1 FLI types
	1.8.6.2 In parameters
	1.8.6.3 Out parameters
	1.8.6.4 In-out parameters

	1.9 Calling COM object methods from Lisp
	1.9.1 Data conversion when calling COM object methods
	1.9.1.1 In parameters
	1.9.1.2 Out parameters
	1.9.1.3 In-out parameters

	2 COM Reference Entries
	add-ref
	automation-server-command-line-action
	automation-server-main
	automation-server-top-loop
	call-com-interface
	call-com-object
	check-hresult
	co-create-guid
	co-initialize
	co-task-mem-alloc
	co-task-mem-free
	co-uninitialize
	com-error
	com-interface
	com-interface-refguid
	com-object
	com-object-destructor
	com-object-from-pointer
	com-object-initialize
	com-object-query-interface
	create-instance
	define-com-implementation
	define-com-method
	find-clsid
	get-object
	guid-equal
	guid-to-string
	hresult
	hresult-equal
	i-unknown
	interface-ref
	make-factory-entry
	make-guid-from-string
	midl
	:midl-file
	query-interface
	query-object-interface
	refguid
	refguid-interface-name
	refiid
	register-class-factory-entry
	register-server
	release
	s_ok
	server-can-exit-p
	server-in-use-p
	set-automation-server-exit-delay
	standard-i-unknown
	start-factories
	stop-factories
	succeeded
	unregister-server
	with-com-interface
	with-com-object
	with-temp-interface
	with-query-interface

	3 Using Automation
	3.1 Including Automation in a Lisp application
	3.1.1 Loading the modules
	3.1.2 Generating FLI definitions from COM definitions
	3.1.3 Reducing the size of the converted library

	3.2 Starting a remote Automation server
	3.3 Calling Automation methods
	3.3.1 Calling Automation methods using a type library
	3.3.2 Calling Automation methods without a type library
	3.3.3 Data conversion when calling Automation methods
	3.3.4 Using collections
	3.3.5 Using connection points
	3.3.6 Error handling

	3.4 Implementing Automation interfaces in Lisp
	3.4.1 A complete implementation of an Automation server
	3.4.2 A simple implementation of a single Automation interface
	3.4.3 Implementing collections
	3.4.4 Implementing connection points
	3.4.5 Reporting errors
	3.4.6 Registering a running object for use by other applications
	3.4.7 Automation of a CAPI application

	3.5 Examples of using Automation

	4 Automation Reference Entries
	com-dispatch-invoke-exception-error
	com-dispatch-invoke-exception-error-info
	call-dispatch-get-property
	call-dispatch-method
	call-dispatch-put-property
	com-object-dispinterface-invoke
	create-instance-with-events
	create-object
	define-automation-collection
	define-automation-component
	define-dispinterface-method
	disconnect-standard-sink
	do-collection-items
	do-connections
	find-component-tlb
	find-component-value
	get-active-object
	get-error-info
	get-i-dispatch-name
	get-i-dispatch-source-names
	i-dispatch
	interface-connect
	interface-disconnect
	lisp-variant
	invoke-dispatch-get-property
	invoke-dispatch-method
	invoke-dispatch-put-property
	make-lisp-variant
	:midl-type-library-file
	query-simple-i-dispatch-interface
	register-active-object
	revoke-active-object
	set-error-info
	set-i-dispatch-event-handler
	set-variant
	simple-i-dispatch
	simple-i-dispatch-callback-object
	standard-automation-collection
	standard-i-connection-point-container
	standard-i-dispatch
	with-coclass
	with-dispatch-interface

	5 Tools
	5.1 The COM Implementation Browser
	5.2 The COM Object Browser
	5.3 The COM Interface Browser
	5.4 Editor extensions
	5.4.1 Inserting GUIDs
	5.4.2 Argument lists

	Index

