
LispWorks®

Common Lisp Interface
Manager User Guide
Version 2.0
0

Copyright and Trademarks
Common Lisp Interface Manager 2.0 User’s Guide

Version 6.1

September 2011

Copyright © 2011 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be construed as a
commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or inaccuracies that may appear in this
publication. The software described in this book is furnished under license and may only be used or copied in accordance with the terms of
that license.

LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the registered trade-
marks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986, 1987, 1988 Xerox
Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, pro-
vided that this copyright and permission notice appear in all copies and supporting documentation, and that the name of M.I.T. not be used
in advertising or publicity pertaining to distribution of the software without specific, written prior permission. M.I.T. makes no representa-
tion about the suitability of this software for any purpose. It is provided “as is” without express or implied warranty. M.I.T. disclaims all war-
ranties with regard to this software, including all implied warranties of merchantability and fitness. In no event shall M.I.T. be liable for any
special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of con-
tract, negligence or other tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of ICU software obtained from http://source.icu-project.org and which bears the following copyright and permis-
sion notice:
ICU License - ICU 1.8.1 and later
COPYRIGHT AND PERMISSION NOTICE
Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Soft-
ware"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright
notice(s) and this permission notice appear in all copies of the Software and that both the above copyright notice(s) and this permission
notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIM-
ITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF
THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or
other dealings in this Software without prior written authorization of the copyright holder. All trademarks and registered trademarks men-
tioned herein are the property of their respective owners.

US Government Restricted Rights
The LispWorks Software is a commercial computer software program developed at private expense and is provided with restricted rights.
The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth in the accompanying End User
License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR 12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14
Alt III, as applicable. Rights reserved under the copyright laws of the United States.

Address

LispWorks Ltd
St. John’s Innovation Centre
Cowley Road
Cambridge
CB4 0WS
England

Telephone

From North America: 877 759 8839
(toll-free)

From elsewhere: +44 1223 421860

Fax
From North America: 617 812 8283
From elsewhere: +44 870 2206189

www.lispworks.com

http://www.lispworks.com

Contents
Preface xv

Chapter 1 Using CLIM ..1

1.1 Conceptual Overview ...2

1.2 Highlights of Tools and Techniques ...3

1.3 How CLIM Helps You Achieve a Portable User Interface 4

1.4 What Is CLIM? ...6
1.4.1 The Core of CLIM ...6

1.4.1.1 Application Frames ...6
1.4.1.2 Panes ...6
1.4.1.3 Sheets ..8
1.4.1.4 Enabling Input and Output ..8
1.4.1.5 Graphics ...9
1.4.1.6 Text ..9
1.4.1.7 Events ..9
1.4.1.8 Mediums ...9

1.4.2 CLIM Facilities ..10
1.4.2.1 Look and Feel ..10
1.4.2.2 Controlling Look and Feel ..10
1.4.2.3 Changing the appearance on Windows11
1.4.2.4 Changing the appearance on X11/Motif11
1.4.2.5 Streams ..11
1.4.2.6 Extended Input and Output ..12
1.4.2.7 Presentations ...12
1.4.2.8 Command Loop ..13

1.4.3 Summary ..14

1.5 Loading CLIM ..15

1.6 Testing Code Examples ...15

1.7 The CLIM demos ..16

Chapter 2 Drawing Graphics ...19

2.1 Conceptual Overview of Drawing Graphics ...20

2.1.1 Drawing Functions and Options ..20
2.1.2 The Drawing Plane ..20
2.1.3 Coordinates ..21
2.1.4 Mediums, Sheets, and Streams ..22

2.2 Examples of Using CLIM Drawing Functions 23

2.3 CLIM Drawing Functions ..24
2.3.1 Arguments ..24
2.3.2 Compound Drawing Functions ..30
2.3.3 Patterns and Stencils ..31
2.3.4 Pixmaps ..33

2.4 Graphics Protocols ...36
2.4.1 Arguments ..36
2.4.2 General Behavior of Drawing Functions 36
2.4.3 Medium-Specific Drawing Functions ...37

2.5 General Geometric Objects in CLIM ...38
2.5.1 Regions in CLIM ...38

2.5.1.1 Region Predicates in CLIM ...41
2.5.1.2 Composition of CLIM Regions ...42

2.5.2 CLIM Point Objects ..46
2.5.3 Polygons and Polylines in CLIM ...47

2.5.3.1 Constructors for CLIM Polygons and Polylines 49
2.5.3.2 Accessors for CLIM Polygons and Polylines 50

2.5.4 Lines in CLIM ...50
2.5.5 Rectangles in CLIM ...52
2.5.6 Ellipses and Elliptical Arcs in CLIM ...54

2.5.6.1 Constructor Functions for Ellipses and Elliptical Arcs in CLIM
57

2.5.6.2 Accessors for CLIM Elliptical Objects 58
2.5.7 Bounding Rectangles ..59

2.5.7.1 The Bounding Rectangle Protocol ..62
2.5.7.2 Bounding Rectangle Convenience Functions63

Chapter 3 The CLIM Drawing Environment65

3.1 CLIM Mediums ..66

3.2 Using CLIM Drawing Options ..70
<Bold>ivCLIM User Guide

3.2.1 Set of CLIM Drawing Options ..71
3.2.2 Using the :filled Option ..73

3.3 CLIM Line Styles ..74

3.4 Transformations in CLIM ...78

3.5 The Transformations Used by CLIM ..79
3.5.1 CLIM Transformation Constructors ...80
3.5.2 CLIM Transformation Protocol ..83
3.5.3 CLIM Transformation Predicates ...84
3.5.4 CLIM Transformation Functions ..85
3.5.5 Applying CLIM Transformations ...89

Chapter 4 Text Styles ...93

4.1 Conceptual Overview of Text Styles ..94

4.2 CLIM Text Style Objects ...95

4.3 CLIM Text Style Functions ...97

4.4 Text Style Binding Forms ..100

4.5 Controlling Text Style Mappings ...101

Chapter 5 Drawing in Color ...103

5.1 Conceptual Overview of Drawing With Color 104
5.1.1 Color Objects ..105
5.1.2 Rendering ..105

5.2 CLIM Operators for Drawing in Color ..106

5.3 Predefined Color Names in LispWorks CLIM 108

5.4 Indirect Inks ..108

5.5 Flipping Ink ..109

5.6 Examples of Simple Drawing Effects ..109
5.6.1 Using Flipping Ink ..111

Chapter 6 Presentation Types ...113

6.1 Conceptual Overview of CLIM Presentation Types 113

6.1.1 User Interaction With Application Objects 113
6.1.2 Presentations and Presentation Types ..114
6.1.3 Output With Its Semantics Attached ..115
6.1.4 Input Context ..115
6.1.5 Inheritance ..116
6.1.6 Presentation Translators ..116
6.1.7 What the Application Programmer Does 116

6.2 How to Specify a CLIM Presentation Type ...117

6.3 Using CLIM Presentation Types for Output ..119
6.3.1 CLOS Operators ..120
6.3.2 Additional Functions for Operating on Presentations in CLIM ..122

6.4 Using CLIM Presentation Types for Input ...124

6.5 Predefined Presentation Types ...130
6.5.1 Basic Presentation Types ..130
6.5.2 Numeric Presentation Types ...131
6.5.3 Character and String Presentation Types 132
6.5.4 Pathname Presentation Types ...133
6.5.5 One-Of and Some-Of Presentation Types 133
6.5.6 Sequence Presentation Types ..136
6.5.7 Constructor Presentation Types ..137
6.5.8 Compound Presentation Types ...137
6.5.9 Command and Form Presentation Types 138

6.6 Functions That Operate on CLIM Presentation Types 139

Chapter 7 Defining a New Presentation Type145

7.1 Conceptual Overview of Defining a New Presentation Type 146
7.1.1 CLIM Presentation Type Inheritance ...147
7.1.2 Defining an Accept for a Structure With Several Fields 148

7.2 CLIM Operators for Defining New Presentation Types 150
7.2.1 Presentation Methods in CLIM ...152
7.2.2 CLIM Operators for Defining Presentation Type Abbreviations

156

7.3 Using Views With CLIM Presentation Types 159
<Bold>viCLIM User Guide

7.4 Advanced Topics ...160

Chapter 8 Presentation Translators in CLIM163

8.1 Conceptual Overview of Presentation Translators 164

8.2 Applicability of CLIM Presentation Translators 166
8.2.1 Input Contexts in CLIM ..167
8.2.2 Nested Presentations in CLIM ..168

8.3 Pointer Gestures in CLIM ..168

8.4 CLIM Operators for Defining Presentation Translators 170

8.5 Examples of Defining Presentation Translators in CLIM 175
8.5.1 Defining a Translation from Floating Point Number to Integer ..175
8.5.2 Defining a Presentation-to-Command Translator 175
8.5.3 Defining Presentation Translators for the Blank Area 176
8.5.4 Defining a Presentation Action ..176

8.6 Advanced Topics ...177

Chapter 9 Defining Application Frames183

9.1 Conceptual Overview of CLIM Application Frames 184

9.2 Defining CLIM Application Frames ..186
9.2.1 The Application Frame Protocol ...188
9.2.2 Using the :pane Option ...189
9.2.3 Using the :panes and :layouts Options ..190
9.2.4 Example of the :pane Option to define-application-frame 192
9.2.5 Examples of the :panes and :layout Options to define-applica-

tion-frame ..192
9.2.6 Using an :accept-values Pane in a CLIM Application Frame 197

9.3 Initializing CLIM Application Frames ..197

9.4 Accessing Slots and Components of CLIM Application Frames 200

9.5 Running a CLIM Application ..200

9.6 Exiting a CLIM Application ..201

9.7 Examples of CLIM Application Frames ..201
9.7.1 Defining a CLIM Application Frame ..201

9.7.2 Constructing a Function as Part of Running an Application 203

9.8 Application Frame Operators and Accessors 203
9.8.1 CLIM Application Frame Accessors ..204
9.8.2 Operators for Running CLIM Applications 207

9.9 Frame Managers ..212
9.9.1 Finding Frame Managers ..213
9.9.2 Frame Manager Operators ..214

9.10 Advanced Topics ...216

Chapter 10 Panes and Gadgets ...219

10.1 Panes ...220
10.1.1 Basic Pane Construction ...221
10.1.2 Pane Initialization Options ..222
10.1.3 Pane Properties ...223

10.2 Layout Panes ..224
10.2.1 Layout Pane Options ...224
10.2.2 Layout Pane Classes ...226
10.2.3 Composite Pane Generic Functions ..229
10.2.4 The Layout Protocol ...230

10.3 Extended Stream Panes ..234
10.3.1 Extended Stream Pane Options ...234
10.3.2 Extended Stream Pane Classes ...237
10.3.3 Making CLIM Extended Stream Panes 238

10.4 Defining A New Pane Type: Leaf Panes ..239

10.5 Gadgets ..240
10.5.1 Abstract Gadgets ...241

10.5.1.1 Using Gadgets ...241
10.5.1.2 Implementing Gadgets ..243

10.5.2 Basic Gadget Classes ..245
10.5.3 Abstract Gadget Classes ...252

10.5.3.1 The Label Gadget ..252
10.5.3.2 The List-Pane and Option-Pane Gadgets 253
10.5.3.3 The Menu-Button Gadget ...255
10.5.3.4 The Push-Button Gadget ...255
<Bold>viiiCLIM User Guide

10.5.3.5 The Radio-Box and Check-Box Gadgets 256
10.5.3.6 The Scroll-Bar Gadget ..258
10.5.3.7 The Slider Gadget ...261
10.5.3.8 The Text-Field and Text-Editor Gadgets 262
10.5.3.9 The Toggle-Button Gadget ...263

10.5.4 Integrating Gadgets and Output Records 264

Chapter 11 Commands ...267

11.1 Introduction to CLIM Commands ...268

11.2 Defining Commands the Easy Way ...269
11.2.1 Command Names and Command Line Names 270
11.2.2 The Command-Defining Macro ...270

11.3 Command Objects ..272

11.4 CLIM Command Tables ..275

11.5 CLIM Predefined Command Tables ..278

11.6 Conditions Relating to CLIM Command Tables 279

11.7 Styles of Interaction Supported by CLIM ..280

11.8 Command-Related Presentation Types ..280

11.9 The CLIM Command Processor ..282

11.10 Advanced Topics ...285
11.10.1 CLIM Command Tables ...285
11.10.2 CLIM Command Menu Interaction Style 287
11.10.3 Mouse Interaction Via Presentation Translators 291
11.10.4 CLIM Command Line Interaction Style 292
11.10.5 CLIM Keystroke Interaction Style ...293
11.10.6 The CLIM Command Processor ...296

Chapter 12 Menus and Dialogs ..299

12.1 Conceptual Overview of Menus and Dialogs 300

12.2 CLIM Menu Operators ...300

12.3 CLIM Dialog Operators ...306

12.4 Examples of Menus and Dialogs in CLIM ..310
12.4.1 Using accepting-values ..310
12.4.2 Using accept-values-command-button 311
12.4.3 Using :resynchronize-every-pass in accepting-values 312
12.4.4 Using the third value from accept in accepting-values 313
12.4.5 Using menu-choose ..315
12.4.6 Using menu-choose-from-drawer ..317

Chapter 13 Extended Stream Output Facilities319

13.1 Basic Output Streams ..320

13.2 Extended Output Streams ..321

13.3 The Text Cursor ...323
13.3.1 The Text Cursor Protocol ...325
13.3.2 The Stream Text Cursor Protocol ...326

13.4 Text ..327
13.4.1 The Text Protocol ..327
13.4.2 Mixing Text and Graphics ..329
13.4.3 Wrapping Text Lines ..329

13.5 Attracting the User’s Attention ...331

13.6 Buffering Output ..331

13.7 CLIM Window Stream Pane Functions ...332

Chapter 14 Output Recording and Redisplay335

14.1 Conceptual Overview of Output Recording 336

14.2 CLIM Operators for Output Recording ...337
14.2.1 The Basic Output Record Protocol ...339
14.2.2 The Output Record “Database” Protocol 342
14.2.3 Types of Output Records ..343

14.2.3.1 Standard Output Record Classes 343
14.2.3.2 Graphics Displayed Output Records 344
14.2.3.3 Text Displayed Output Records ..345
14.2.3.4 Top-Level Output Records ...346

14.2.4 Output Recording Streams ..347
14.2.4.1 The Output Recording Stream Protocol 347
<Bold>xCLIM User Guide

14.2.4.2 Graphics Output Recording ..349
14.2.4.3 Text Output Recording ...349
14.2.4.4 Output Recording Utilities ..350

14.3 Conceptual Overview of Incremental Redisplay 354

14.4 CLIM Operators for Incremental Redisplay 355

14.5 Using updating-output ...357

14.6 Example of Incremental Redisplay in CLIM 359

Chapter 15 Extended Stream Input Facilities361

15.1 Basic Input Streams ...362

15.2 Extended Input Streams ...363
15.2.1 The Extended Input Stream Protocol ..364
15.2.2 Extended Input Stream Conditions ...368

15.3 Gestures and Gesture Names ..369

15.4 The Pointer Protocol ..372

15.5 Pointer Tracking ...373

Chapter 16 Input Editing and Completion Facilities381

16.1 Input Editing ..382
16.1.1 Operators for Input Editing ..384
16.1.2 Input Editor Commands ..385

16.2 Activation and Delimiter Gestures ...388

16.3 Signalling Errors Inside accept Methods ...390

16.4 Reading and Writing Tokens ..391

16.5 Completion ..393

16.6 Using with-accept-help: some examples ..399

16.7 Advanced Topics ...400

Chapter 17 Formatted Output ..403

17.1 Formatting Tables in CLIM ..404

17.1.1 Conceptual Overview of Formatting Tables 404
17.1.2 CLIM Operators for Formatting Tables 405
17.1.3 Examples of Formatting Tables ..411

17.1.3.1 Formatting a Table From a List ...411
17.1.3.2 Formatting a Table Representing a Calendar Month412
17.1.3.3 Formatting a Table With Regular Graphic Elements414
17.1.3.4 Formatting a Table With Irregular Graphics in the Cells ..415
17.1.3.5 Formatting a Table of a Sequence of Items416

17.2 Formatting Graphs in CLIM ..418
17.2.1 Conceptual Overview of Formatting Graphs 418
17.2.2 CLIM Operators for Graph Formatting 419
17.2.3 Examples of CLIM Graph Formatting 422

17.3 Formatting Text in CLIM ...424

17.4 Bordered Output in CLIM ...426

17.5 Advanced Topics ...428
17.5.1 The Table Formatting Protocol ...429

17.5.1.1 The Row and Column Formatting Protocol 431
17.5.1.2 The Cell Formatting Protocol ..432

17.5.2 The Item List Formatting Protocol ...433
17.5.3 The Graph Formatting Protocol ..434

Chapter 18 Sheets ..439

18.1 Overview of Window Facilities ...440
18.1.1 Properties of Sheets ..441
18.1.2 Sheet Protocols ...441

18.2 Basic Sheet Classes ..443

18.3 Relationships Between Sheets ...444
18.3.1 Sheet Relationship Functions ..444
18.3.2 Sheet Genealogy Classes ..447

18.4 Sheet Geometry ..448
18.4.1 Sheet Geometry Functions ..448
18.4.2 Sheet Geometry Classes ..450

18.5 Sheet Protocols: Input ..452
<Bold>xiiCLIM User Guide

18.5.1 Input Protocol Functions ..452
18.5.2 Input Protocol Classes ..454

18.6 Standard Device Events ...456

18.7 Sheet Protocols: Output ...464
18.7.1 Mediums and Output Properties ...464
18.7.2 Output Protocol Functions ..467
18.7.3 Output Protocol Classes ..467
18.7.4 Associating a Medium With a Sheet ...468

18.8 Repaint Protocol ..470
18.8.1 Repaint Protocol Functions ...470
18.8.2 Repaint Protocol Classes ..471

18.9 Sheet Notification Protocol ..472
18.9.1 Relationship to Window System Change Notifications 472
18.9.2 Sheet Geometry Notifications ...472

Chapter 19 Ports, Grafts, and Mirrored Sheets475

19.1 Introduction ...476

19.2 Ports ..477

19.3 Grafts ..480

19.4 Mirrors and Mirrored Sheets ..483
19.4.1 Mirror Functions ...483
19.4.2 Internal Interfaces for Native Coordinates 484

Appendix AGlossary ..489

Appendix BImplementation Specifics507

B.1 Setting Up Your Packages to Use CLIM ...507

B.2 CLIM Packages ...507

Appendix CThe CLIM-SYS Package509

C.1 Resources ..509
 <Bold>xi-

C.2 Multi-Processing ..511

C.3 Locks ...513

C.4 Multiple-Value Setf ..514

Appendix DCommon Lisp Streams516

D.1 Stream Classes ...516

D.2 Basic Stream Functions ..518

D.3 Character Input ...519

D.4 Character Output ..521

D.5 Binary Streams ...523

D.6 Hardcopy Streams in CLIM ...523

Appendix EWindows ...525

E.1 Window Stream Operations in CLIM ..525

E.2 Functions for Operating on Windows Directly 527

Index ...531
<Bold>xivCLIM User Guide

Preface

About the User Guide

The Common Lisp Interface Manager (CLIM) is a powerful Lisp-based toolkit that
provides a layered set of portable facilities for constructing user interfaces. The Common
Lisp Interface Manager User Guide is intended for CLIM programmers who are looking
for material arranged by concept. The Guide, based on the CLIM II Specification, is a
complete reference for the LispWorks version of CLIM. Each chapter of the User Guide
explains a key aspect of CLIM and includes summaries of conditions, constants, functions,
macros, and presentation types that pertain to the particular topic, as well as many code
examples. For a detailed syntactic description of a particular CLIM construct, refer to the
on-line CLIM manual pages.

Notational Conventions

The User Guide employs the following conventions to distinguish different types of text.

construct Lisp and CLIM constructs, such as functions or classes.

significant term Significant terms introduced for the first time. These
terms appear in the glossary.

code examples Computer-generated text, prompts, and messages, as
well as code examples and user entries.

KEYSTROKES References to keystrokes, as in META or SHIFT.
Logical keystrokes are enclosed in angle brackets. Thus
for <ABORT>, you might type CONTROL-z; for
<END>, CONTROL-]; and for <HELP>, META-?.

function arguments Arguments to functions.

specified arguments Specific values for arguments within code examples.

unspecified arguments Arguments within code examples for which the user
must supply a value.

Menu Item Menu items, as in Exit or File>Save or Up.

filename Pathnames, filenames, and parts of filenames.

Please note that <release-directory> refers to the location of CLIM in the LispWorks
library. <release-directory>/demo/puzzle.lisp should be interpreted as
<lispworks-directory>/lib/<version-number>/clim2/demo/puzzle.lisp.

Mouse pointer gestures are capitalized, as in Left or SHIFT-Middle.
<Bold>xviCLIM User Guide

Chapter 1 Using CLIM
Using CLIM

1.1 Conceptual Overview

The Common Lisp Interface Manager (CLIM) is a powerful Lisp-based toolkit that
provides a layered set of portable facilities for constructing user interfaces. These include
application building facilities; basic windowing, input, output, and graphics services;
stream-oriented input and output augmented by facilities such as output recording,
presentations, and context sensitive input; high-level “formatted output” facilities;
command processing; and a compositional toolkit similar to those found in the X world that
supports look-and-feel independence.

CLIM does not compete with the window system or toolkits of the host machine (such as
Motif or OpenLook), but rather uses their services, to the extent that it makes sense, to
integrate Lisp applications into the host’s window environment. For example, CLIM
“windows” are mapped onto one or more host windows, and input and output operations
performed on the CLIM window are ultimately carried out by the host window system.

The CLIM programmer is insulated from most of the complexities of portability.
Regardless of the operating platform (that is, the combination of Lisp system, host
computer, and host window environment), applications only need deal with CLIM objects
and functions. CLIM makes abstractions out of many of the concepts common to all
window environments. The programmer is encouraged to think in terms of these
abstractions, rather than in the specific capabilities of a particular host system. For example,
using CLIM, the programmer can specify the appearance of output in high-level terms and
those high-level descriptions are then turned into the appropriate appearance for the given
host. Thus, the application has the same fundamental interface across multiple
environments, although the details will differ from system to system.

CLIM provides a spectrum of user interface building options, all the way from detailed,
low-level specification of “what goes where,” to high-level specifications in which the
programmer leaves all of the details up to CLIM. This allows CLIM to balance ease of use
on the one hand and versatility on the other. By using high-level facilities, a programmer
can build portable user interfaces quickly, whereas by utilizing lower-level facilities, she
can customize her programming and user interfaces according to her specific needs or
requirements. For example, CLIM supports the development of applications that are
independent of look and feel, as well as the portable development of toolkit libraries that
define and implement a particular look and feel.
<Bold>2CLIM User Guide

The CLIM architecture is divided into several layers, each with an explicitly-defined
protocol. These protocols allow the programmer to customize or re-implement various
parts of CLIM.

1.2 Highlights of Tools and Techniques

The facilities provided by CLIM include:

Graphics CLIM offers a rich set of drawing functions, a wide variety of
drawing options (such as line thickness), a sophisticated ink-
ing model, and color. CLIM provides full affine transforma-
tions, so that a drawing may be arbitrarily translated, rotated,
and scaled to the extent that the underlying window system is
capable of rendering such objects.

Windowing CLIM provides a portable layer for implementing win-
dow-like objects known as sheets that are suited to support
particular high-level facilities or interfaces. The windowing
module of CLIM defines a uniform interface for creating and
managing hierarchies of these objects. This layer also pro-
vides event management.

Output Recording CLIM offers a facility for capturing all output done to a win-
dow. This facility provides the support for automatic window
repainting and scrollable windows. In addition, this facility
serves as the foundation for a variety of interesting high-level
tools, including incremental redisplay.

Formatted Output CLIM provides a set of macros and functions that enable pro-
grams to produce neatly formatted tabular and graphical dis-
plays with very little effort.

Context Sensitive Input The presentation type facility of CLIM links textual or graph-
ical output on a window with the underlying Lisp object that
it represents, so that objects may be retrieved later by select-
ing their displayed representation with the pointer. This “se-
mantic typing” of output allows the application builder to
separate the semantics of the application from the appearance
and interaction style.
 Using CLIM

Application Building CLIM provides an application framework for organizing an
application’s top-level user interface and command process-
ing loops. This framework provides support for laying out ap-
plication windows under arbitrary constraints, managing
command menus and/or menu bars, and associating user in-
terface gestures with application commands. Using these
tools, application writers can easily and quickly construct
user interfaces that can grow flexibly from prototype to deliv-
ery.

Adaptive Toolkit CLIM provides a uniform interface to the standard composi-
tional toolkits available in many commercial computer envi-
ronments. CLIM defines abstract classes that are analogous
to the gadgets or widgets of toolkits such as Motif or Open-
Look. CLIM fosters look-and-feel independence by defining
these gadgets in terms of their function, without respect to the
details of their appearance or operation. If an application uses
these gadgets, its user interface will ultimately draw upon
whatever toolkit is available in the host environment. This fa-
cility lets programmers easily construct applications that au-
tomatically conform to a variety of user interface standards.
In addition, a portable CLIM-based implementation of these
gadgets is provided.

1.3 How CLIM Helps You Achieve a Portable
User Interface

Portability is one of the features that sets CLIM apart from other interface managers.

CLIM provides a uniform interface to the standard compositional toolkits available in many
environments. By defining user interfaces in terms of CLIM objects rather than by
accessing windows and widgets of a given windowing system directly, you are able to
achieve a highly portable interface. In addition to CLIM functionality, you may also
incorporate aspects of Common Lisp and CLOS into your program. The dependencies of
your application are outlined in Figure 1.
<Bold>4CLIM User Guide

Figure 1. The Foundation of a Portable Application

The portability of your code comes from the fact that it is written in terms of standardized
packages: Common Lisp, CLOS, and CLIM. From the perspective of your application, the
details of the host windowing system, host operating system, and host computer should be
invisible. CLIM handles the interaction with the underlying windowing system. Figure 2
shows the elements of the host environment from which CLIM insulates your application.

Figure 2. How CLIM Is Layered Over the Host System

CLIM shields you from the details of any one window system by making abstractions of
the concepts that many window systems have in common. In using CLIM, you specify the
appearance of your application’s interface in general, high-level terms. CLIM then turns
your high-level description into the appearance appropriate for a given host environment.

Portable application

CLIM Common Lisp CLOS

Portable application

CLIM

Common Lisp CLOS

Operating System

Hardware Platform

Window System
 Using CLIM

For example, a request for a scroll bar pane would be interpreted as a request for the scroll
bar widget in the current windowing system.

In some cases, you may prefer to have more explicit control over the appearance of your
application. At the expense of portability, you may, at any time, bypass CLIM abstract
interface objects and directly use functions provided by the underlying windowing system.

1.4 What Is CLIM?

In the first three sections you have been given a brief introduction to CLIM and some of its
features. This section addresses the nature of CLIM in a more concrete and tangible fashion
by defining important CLIM terms and discussing the fundamental elements of CLIM, as
well as higher-level facilities that have been built from this core.

1.4.1 The Core of CLIM

1.4.1.1 Application Frames

An application frame, or simply a frame, is the locus of all application-specific knowledge.
It is a physical, bordered object that is composed of smaller, individually functioning parts,
called panes. The frame maintains information regarding the layout of these components,
keeps track of the Lisp state variables that contain the state of the application, and
optionally has an interface to the window manager.

In developing a simple application such as an on-line address book, the application frame
could be divided into several units to accomplish various tasks, as you can see in Figure
1.4.1.2. One pane could be used to accept commands; another section of the screen could
provide an index of names in the address book; another portion could be used to display a
specific address entry. We might also choose to have a general menu and a few conveniently
placed scroll bars. Each of these components of the application frame is a pane

1.4.1.2 Panes

A pane is a window-like object that knows how to behave as a component of an application
frame. That is, it supports the pane protocol operations for layout.
<Bold>6CLIM User Guide

Panes come in many different varieties. For example, gadget panes include such things as
buttons and scroll bars. Stream panes deal specifically with text. Some panes are defined
only in terms of their functionality, without regard to their specific appearance or
implementation. These panes are called abstract panes. The abstract definition allows
various instances of the pane class to take on a platform-dependent look and feel. Panes can
also be classified according to their role in pane hierarchies. Panes that can have child panes
are called composite panes; those that cannot are called leaf panes. Composite panes that
are in charge of spatially organizing their children are called layout panes.

Figure 3. An Example of Panes Within an Application Frame

interactor pane

application
 panes

menu pane

scroll bar
panes

scroller
pane
 Using CLIM

The address book application frame shows a typical pane hierarchy. There are three
instances of text panes that have associated scroll bars. For every extended stream pane, or
text field, with affiliated scroll bar panes there is an “invisible” parent pane, known as a
scroller pane, which does such things as control the layout of the child panes and ensure
that its children are given the space they need.

The ability to address space allocation and composition concerns is the primary
characteristic that sets panes apart from their superclass, sheets, to be discussed in
Subsubsection 1.4.1.3, “Sheets”. Panes, therefore, understand how much screen space they
want and need. For instance, the menu pane in the address book application has a static
height, so that if the window is resized, the menu pane will not be scaled vertically. On the
other hand, the scroller pane labeled in Figure 1.4.1.2 (the pane controlling the application
pane for the address book index and the gadget panes for the two associated scroll bars) can
be resized as long as the scroll bars are granted enough screen space to function, that is to
say, to display the minimum graphics necessary to implement scrolling.

1.4.1.3 Sheets

Panes are built from more general objects called sheets. Sheets are the fundamental
“window-like” entities that specify the areas of the screen to be used for input and output
interactions. Sheets consist of, in part, a region on the screen, a coordinate system, and
optionally a parent and/or child sheets. For a complete discussion on sheets, refer to
Chapter 18, “Sheets”. CLIM programmers will typically not need to deal with sheets
directly, but instead will use the higher-level pane objects.

1.4.1.4 Enabling Input and Output

A pane hierarchy must be attached to a display server so as to permit input and output. This
is handled by the use of ports and grafts. A port specifies the device acting as the display
server, whereas grafts are special sheets, typically representing the root window, which are
directly connected to the display server. (The term graft is derived from the horticultural
practice of grafting, in which the trunk of one tree is joined onto the rootstock of another.)
Again, a CLIM application programmer will not normally deal with these objects directly.
A call to make-application-frame automatically results in a port specification and graft
instantiation. Refer to Section 9.2, “Defining CLIM Application Frames,” for details.
<Bold>8CLIM User Guide

1.4.1.5 Graphics

Once your panes are ready to accept output, you may be interested in creating graphics.
CLIM provides elementary graphic functions such as draw-point and draw-circle as well
as higher-level graphic functions such as draw-arrow and make-elliptical-arc (see
Section 3.2, “Using CLIM Drawing Options”). CLIM also supports region operations such
as region-intersection and region-difference (see Section 2.5, “General Geometric
Objects in CLIM”).

1.4.1.6 Text

The fundamental function for displaying text is draw-text. In addition to many of the
graphic drawing options, text functions take a text-style argument that controls the font,
face, and size.

1.4.1.7 Events

An event is a CLIM object that represents some sort of user gesture (such as moving the
pointer or pressing a key on the keyboard) or that corresponds to some sort of notification
from the display server. Event objects store such things as the sheet associated with the
event, the x and y position of the pointer within that sheet, the key name or character
corresponding to a key on the keyboard, and so forth.

1.4.1.8 Mediums

Graphical operations performed on panes must ultimately be carried out by the window
system of the underlying host computer. This is accomplished primarily via communication
with an underlying object called a medium. A medium understands how to implement
CLIM graphics operations, such as draw-line, by calling the underlying host window
system’s graphics functions. A medium also contains default drawing options, such as
foreground and background colors, clipping region, transformations, line thickness, and
fonts. There are different medium classes to support different windowing systems; thus,
there is one medium class for the X Window System and a different one for the Macintosh
Common Lisp environment.
 Using CLIM

This host-specific behavior is kept in a separate medium so that the pane classes themselves
will be host-independent. Thus, when you build a new pane class, you do not have to build
one version with X graphics mixed in, another one for the Mac, an so forth.

CLIM application programmers will not usually deal with mediums directly. In most cases,
panes will automatically be allocated a medium upon creation, and output directed to the
pane will be appropriately forwarded to the medium. In situations where efficiency is a
concern, you may choose to send graphical output directly to the underlying medium. There
are also situations, particularly when a pane has infrequent output, when you may wish to
have many “light-weight” panes that share a medium.

1.4.2 CLIM Facilities

CLIM provides many higher-level facilities that are built from the fundamental CLIM
elements.

1.4.2.1 Look and Feel

CLIM offers a variety of tools and features for creating portable Lisp applications. One of
these techniques, made possible by the adaptive toolkit, is the ability to transform the look
and feel of a given application easily. Thus, an application can take on Motif characteristics
when running on a Unix workstation, can have a Microsoft Windows look and feel when
running on that platform, or can be presented in a different customized manner.

1.4.2.2 Controlling Look and Feel

Frame managers are responsible for controlling the look and feel of an application frame.
Each different kind of appearance, whether it be Motif or Microsoft Windows, is expressed
by a different frame manager. CLIM provides frame managers that interface to a large
number of host environments, including X Windows. There is also a “generic” frame
manager that allows applications to maintain a “CLIM look and feel” across all platforms,
rather than adopting the style of the underlying windowing system. Existing frame
managers can be customized, or entirely new frame managers can be created to give your
application the look and feel you desire.
<Bold>10CLIM User Guide

A frame manager is responsible for interpreting the portable, window-system-independent
layout specification of an application frame in the context of the look and feel supported by
the frame manager. The abstract gadget panes, such as the scroll bars and buttons, will be
mapped into specific pane classes that implement the gadget in terms of the native gadget
of the host window system. For example, scroll-bar is mapped onto internal classes which
uses the SCROLLBAR control on Microsoft Windows and the ScrollBar widget on Motif.

1.4.2.3 Changing the appearance on Windows

On Microsoft Windows (XP and later versions), themes can alter the appearance of a CLIM
window and the elements within it. See the function
win32:set-application-themed in the <Italic>LispWorks Reference Manual.

1.4.2.4 Changing the appearance on X11/Motif

You can change CLIM's color scheme and default fonts with X resources. Place your X
resources in a file called CLIM port (that is, nine characters including the space) on your
resource lookup path.

These are the default resources:

*buttonFontList:*times-bold-r-normal--14*
*labelFontList: *times-bold-r-normal--14*
CLIM port*CLIM-menu-bar*foreground:#000080
CLIM port*CLIM-menu-bar*background:#b3e6fd
CLIM port*CLIMprogressbar.foreground:Red
CLIM port*CLIMpointerdoctext*foreground:#000080
CLIM port*CLIMpointerdoc*background:#b3e6fd
CLIM port*foreground: Black
CLIM port*background:White

By default, CLIM windows are mostly white. This specified in the last line above.

1.4.2.5 Streams

Because Common Lisp performs its input and output on objects called streams, CLIM
does, too. In CLIM, streams are specialized sheets that implement the sheet and stream
 Using CLIM

protocols. The basic stream protocols for input and output provide fundamental
functionality such as reading and writing characters and flushing the output. Stream input
is provided by low-level events; stream output is accomplished through low-level graphics.

1.4.2.6 Extended Input and Output

Streams in CLIM also support extended input and output protocols. The extended input
stream protocol handles issues pertaining to, in part, non-character input such as mouse
clicks. The extended output stream protocol addresses advanced issues such as text cursors,
margins, text styles, inter-line spacing, and output recording.

Output recording is a facility CLIM offers for capturing all output done to an extended
stream. This information is stored in structures called output records. Output recording is
used in the implementation of scrollable windows and incremental redisplay. See Chapter
14, “Output Recording and Redisplay,” and Chapter 15, “Extended Stream Input
Facilities,” for more details.

1.4.2.7 Presentations

The presentation facility extends output recording to remember the semantics of output
displayed in a CLIM window. Presentations are specialized output records that remember
not only output, but also the Lisp object associated with the output and the semantic type
affiliated with that object. This semantic type, called the presentation type, allows display
objects to be classified. Such semantic tagging allows the user to re-use existing output on
the window to satisfy future input requests.

When a CLIM application is expecting input, an input context is established, which means
the application is awaiting input of a certain semantic type. Presentations with an
appropriate presentation type for the input context become sensitive; that is to say, clicking
on them with the mouse will cause some action to happen. For instance, in the previous
address book application example, when entering a new address, a user could type in an
address or could specify input by clicking on any sensitive presentation. Addresses would
be the only logical entry in this case, so only address presentation types will be sensitive.
Nothing would happen if you clicked on a name or a phone number.

In a specific input context, when a given presentation type is valid input, all of the
subclasses of this type are also acceptable. There are many cases, however, in which you
<Bold>12CLIM User Guide

may wish to expand the list of valid presentation types for a given input context. This is
possible by the use of presentation translators.

1.4.2.8 Command Loop

The outermost level of an application is an infinite interaction processing loop, similar to
the Lisp read-eval-print loop, called a command loop. The arguments to commands are
defined in terms of the presentation type facility, so that command arguments can be
specified via keyboard or mouse input.

It is also possible to map presentation types to commands that operate on arguments of
those types. Thus you can invoke commands by clicking on displayed data. For example,
in the address book example, as the command loop awaits commands, any command
display objects would be sensitive. By using the
define-presentation-to-command-translator macro, however, many other presentation
types can in effect be turned into commands. A click on a name in the index could represent
the “Select Address” command. Similarly, clicking on a field in the displayed address, such
as the “Number:” field, could be translated into the “Change Address Number” command,
as illustrated in Figure 4.
 Using CLIM

Figure 4. Using Presentation-to-Command Translators

1.4.3 Summary

The CLIM core, comprised of sheets, mediums, graphics, and input and output, serves as
the foundation for higher-level functionality. CLIM itself provides many advanced
capabilities that have been developed from this kernel. Presentations, streams, and gadgets
are all descendants of the fundamental CLIM kernel. This resulting hierarchy of objects and
functionality gives CLIM a layered structure. For instance, we notice that streams and
gadgets are specialized panes that are themselves specialized sheets. Similarly,
presentations are customized output records. At any point in these hierarchies, one may
customize and specialize objects by making subclasses of existing objects and adding the
<Bold>14CLIM User Guide

desired functionality. Although CLIM provides many advanced facilities, it is always
possible to return to the fundamental CLIM building blocks and start creating anew.

1.5 Loading CLIM

To load CLIM into your LispWorks image, call

(require "clim").

To load the PostScript functionality, call

(require "clim-postscript")

To load the CLIM demos, call

(require "clim-demo")

See Section 1.7, “The CLIM demos”, for information about running the demos.

Note that module names are case-sensitive. For example (require "CLIM") will not
work.

1.6 Testing Code Examples

These instructions assume that a CLIM image has already been built, or that CLIM has been
loaded. Load CLIM via (require "clim"). See the <Italic>LispWorks Release Notes
and Installation Guide for instructions on saving an image. Below

Below, '>' represents the Listener prompt which may appear differently in your Lisp image

Load the sample file provided which contains CLIM code that defines an application frame:

> (load "<library-directory>/clim2/test/template.lisp")

Next, enter the following at the Lisp prompt:

> (run-frame-top-level
 (make-application-frame ’test :width 400 :height 500))
 Using CLIM

To exit the application and return to the Lisp top level, left-click on the Exit menu item.
Enter (quit) at the Lisp prompt to quit Lisp.

1.7 The CLIM demos

To load the demo software, enter the following in a listener:

(require "clim-demo")

To run it, enter:

(clim-demo:start-demo)

This creates a new window, containing a menu listing all the demos. Choose the demo you
wish to see. The CLIM demos are quick sketches of possible applications which
demonstrate a variety of CLIM programming techniques. They are not robust,
production-quality applications with complete error checking, but they can provide you
with some ideas.

The sources for all the demos are included. The test suite is a collection of examples of
CLIM's capabilities. The testsuite examples are simple and succinct, so we recommend
examining their sources for examples of CLIM's functionality that you may want to
employ.

You can also run the demos directly, rather than using the menu, with the following function
calls:

Demo Call

Bicycle gearing (clim-user::do-bicycle-gearing)

Custom output records (clim-user::do-scigraph)

Peek (clim-user::do-peek)

Browser (clim-demo::do-ico)

Ico demo (clim-browser::do-browser)

Table 1. Function calls running each of the CLIM demos
<Bold>16CLIM User Guide

Bitmap editor (clim-demo::do-bitmap-editor)

Graphics editor (clim-graphics-editor::do-graphics-editor)

Color chooser (clim-demo::do-color-chooser)

Plotting demo (clim-demo::do-plot-demo)

Thinkadot (clim-demo::do-thinkadot)

Address book (clim-demo::do-address-book)

15 puzzle (clim-demo::do-puzzle)

Flight planner (clim-demo::do-flight-planner)

CAD demo (clim-demo::do-cad-demo)

Graphics demos (clim-demo::do-graphics-demo)

Lisp listener clim-demo::do-lisp-listener)

Test suite (clim-test::do-test-suite)

Demo Call

Table 1. Function calls running each of the CLIM demos
 Using CLIM

<Bold>18CLIM User Guide

Chapter 2 Drawing Graphics
Drawing Graphics

2.1 Conceptual Overview of Drawing Graphics

2.1.1 Drawing Functions and Options

CLIM offers a set of drawing functions that enable you to draw points, lines, polygons, rect-
angles, ellipses, circles, and text. You can affect the way the geometric objects are drawn
by supplying options to the drawing functions. The drawing options specify clipping, trans-
formation, line style, text style, ink, and other aspects of the graphic to be drawn. See Sec-
tion 3.2, “Using CLIM Drawing Options”.

2.1.2 The Drawing Plane

When drawing graphics in CLIM, you imagine that they appear on a drawing plane. The
drawing plane extends infinitely in four directions and has infinite resolution (no pixels).
The drawing plane has no material existence and cannot be viewed directly. The drawing
plane provides an idealized version of the graphics you draw. A line that you draw on the
drawing plane is infinitely thin.

Figure 5. Rendering from Drawing Plane to Window

Of course, you intend that the graphics should be visible to the user, so they must be pre-
sented on a real display device. CLIM transfers the graphics from the drawing plane to the
window via the rendering process. Because the window lives on hardware that has physical

Drawing
Functions

Drawing Plane

Screen

Rendering
<Bold>20CLIM User Guide

constraints, the rendering process is forced to compromise when it draws the graphics on
the window. The actual visual appearance of the window is only an approximation of the
idealized drawing plane.

Figure 5 shows the conceptual model of the drawing functions sending graphical output to
the drawing plane, and the graphics being transferred to a screen by rendering. The distinc-
tion between the idealized drawing plane and the real window enables you to develop pro-
grams without considering the constraints of a real window or other specific output device.
This distinction makes CLIM’s drawing model highly portable.

CLIM application programs can inquire about the constraints of a device, such as its reso-
lution and other characteristics, and modify the desired visual appearance on that basis.
This practice trades portability for a finer degree of control of the appearance on a given
device.

2.1.3 Coordinates

When producing graphic output on the drawing plane, you indicate where to place the out-
put with coordinates. Coordinates are a pair of numbers that specify the x and y placement
of a point. When a window is first created, the origin (that is, x = 0, y = 0) of the drawing
plane is positioned at the top-left corner of the window. Figure 6 shows the orientation of
the drawing plane. X extends toward the right, and Y extends downward.

Figure 6. X and Y Axes of the Drawing Plane

Each window looks into some rectangular area of its drawing plane. The specific area of
the drawing plane that is visible is determined by the window’s region and coordinate trans-
formation. As the window scrolls downward, the origin of the drawing plane moves above
the top edge of the window. Because windows can be located anywhere in the drawing

Y

X

Drawing Graphics

plane, it may be inconvenient to keep track of the coordinates of the drawing plane, and it
can be easier to think in terms of a local coordinate system.

Figure 7. Using a Local Coordinate System

For example, you might want to draw some business graphics as shown in Figure 7. For
these graphics, it is more natural to think in terms of the Y axis growing upwards, and to
have an origin other than the origin of the drawing plane, which might be very far from
where you want the graphics to appear. You can create a local coordinate system in which
to produce your graphics. The way you do this is to define a transformation that informs
CLIM how to map from the local coordinate system to the coordinates of the drawing plane.
For more information, see with-room-for-graphics.

2.1.4 Mediums, Sheets, and Streams

Mediums, sheets, and streams are classes of primary importance in the creation of graphics
in CLIM.

One of the arguments taken by drawing functions is a medium. A medium keeps track of
device-specific information necessary for creating graphics. There are different medium
classes to support different devices; thus, there is one medium class for the X Window Sys-
tem and a different one for the Macintosh Common Lisp environment. A medium imple-
ments the low-level graphic functions such as drawing a line or displaying a color. A me-
dium also keeps track of its drawing environment, which includes such things as the current
transformation, text style, line style, and foreground and background inks.

Y

X

local
Y

local X
<Bold>22CLIM User Guide

 A sheet specifies the destination for the graphical output of a medium.Whereas mediums
are device-specific, sheets are completely portable. Sheets are visible objects that have
properties such as a position, a region, a parent, and children. Interface elements such as
scrollbars and pushbuttons are subclasses of sheets. For convenience, sheets have also been
made to support the graphics protocol. A graphics function call to a sheet object, however,
simply results in the same graphics function call being made to the medium object.

Streams are specialized sheets that implement the sheet and stream protocols. A stream is
thus a sheet that supports stream methods like write-string and keeps track of additional
stream-related state information, such as current cursor position.

2.2 Examples of Using CLIM Drawing
Functions

Figure 8 shows the result of evaluating the following forms:

(clim:draw-rectangle* *my-sheet* 10 10 200 150 :filled nil
 :line-thickness 2)
(clim:draw-line* *my-sheet* 200 10 10 150)
(clim:draw-point* *my-sheet* 180 25)
(clim:draw-circle* *my-sheet* 100 75 40 :filled nil)
(clim:draw-ellipse* *my-sheet* 160 110 30 0 0 10 :filled nil)
(clim:draw-ellipse* *my-sheet* 160 110 10 0 0 30)
(clim:draw-polygon* *my-sheet* ’(20 20 50 80 40 20) :filled nil)
(clim:draw-polygon* *my-sheet* ’(30 90 40 110 20 110))

Figure 8. Simple Use of the Drawing Functions
Drawing Graphics

2.3 CLIM Drawing Functions

Many of the drawing functions come in pairs. One function in the pair takes two arguments
to specify a point by its x and y coordinates; the other function takes one argument, a point
object. The function accepting coordinates of the point has a name with an asterisk (*) ap-
pended to it, and the function accepting a point object has the same name without an aster-
isk. For example, draw-point accepts a point object, and draw-point* accepts coordinates
of a point. We expect that using the starred functions and specifying points by their coordi-
nates will be more convenient in most cases.

Any drawing functions may create an output record that corresponds to the figure being
drawn. See Chapter 15, “Extended Stream Input Facilities,” for a complete discussion of
output recording. During output recording, none of these functions capture any arguments
that are points, point sequences, coordinate sequences, or text strings. Line styles, text
styles, transformations, and clipping regions may be captured.

The drawing functions are all specified as ordinary functions, not as generic functions. This
is intended to ease the task of writing compile-time optimizations that avoid keyword argu-
ment taking, check for such things as constant drawing options, and so forth. If you need to
specialize any of the drawing methods, use define-graphics-method.

Although the functions in this section are specified to be called on sheets, they can also be
called on streams and mediums.

2.3.1 Arguments

■ point-seq is a sequence of point objects.

■ coord-seq is a sequence of coordinate pairs, which are real numbers. It is an error if co-
ord-seq does not contain an even number of elements.

■ The drawing functions take keyword arguments specifying drawing options. For infor-
mation on the drawing options, see Section 3.2, “Using CLIM Drawing Options”. If
you prefer to create and use point objects, see Subsection 2.5.2, “CLIM Point Objects”.

draw-point [Function]

Arguments: sheet point &key ink clipping-region transformation line-style line-thickness
line-unit
<Bold>24CLIM User Guide

draw-point* [Function]

Arguments: sheet x y &key ink clipping-region transformation line-style line-thickness
line-unit

Summary: These functions (structured and spread arguments, respectively) draw a single
point on the sheet sheet at the point point (or the position (x, y)).

 The unit and thickness components of the current line style (see Section 3.2,
“Using CLIM Drawing Options”) affect the drawing of the point by controlling
the number of pixels used to render the point on the display device.

draw-points [Function]

Arguments: sheet point-seq &key ink clipping-region transformation line-style
line-thickness line-unit

draw-points* [Function]

Arguments: sheet coord-seq &key ink clipping-region transformation line-style
line-thickness line-unit

Summary: These functions (structured and spread arguments, respectively) draw a set of
points on the sheet sheet.

 For convenience and efficiency, these functions exist as equivalents to

(map nil #’(lambda (point) (draw-point sheet point)) point-seq)

 and

 (do ((i 0 (+ i 2)))
 ((= i (length coord-seq)))
 (draw-point* sheet (elt coord-seq i) (elt coord-seq (+ i 1))))

draw-line [Function]

Arguments: sheet point1 point2 &key ink clipping-region transformation line-style
line-thickness line-unit line-dashes line-cap-shape

draw-line* [Function]

Arguments: sheet x1 y1 x2 y2 &key ink clipping-region transformation line-style
line-thickness line-unit line-dashes line-cap-shape

Summary: These functions (structured and spread arguments, respectively) draw a line seg-
ment on the sheet sheet from the point point1 to point2 (or from the position (x1,
y1) to (x2, y2)).
Drawing Graphics

 The current line style (see Section 3.2, “Using CLIM Drawing Options”) affects
the drawing of the line in the obvious way, except that the joint shape has no
effect. Dashed lines start dashing at point1.

draw-lines [Function]

Arguments: sheet point-seq &key ink clipping-region transformation line-style
line-thickness line-unit line-dashes line-cap-shape

draw-lines* [Function]

Arguments: sheet coord-seq &key ink clipping-region transformation line-style
line-thickness line-unit line-dashes line-cap-shape

Summary: These functions (structured and spread arguments, respectively) draw a set of
disconnected line segments. These functions are equivalent to

 (do ((i 0 (+ i 2)))
 ((= i (length point-seq)))
 (draw-line sheet (elt point-seq i) (elt point-seq (1+ i))))

 and

 (do ((i 0 (+ i 4)))
 ((= i (length coord-seq)))
 (draw-line* sheet
 (elt coord-seq i) (elt coord-seq (+ i 1))
 (elt coord-seq (+ i 2))
 (elt coord-seq (+ i 3))))

draw-polygon [Function]

Arguments: sheet point-seq &key (filled t) (closed t) ink clipping-region transformation
line-style line-thickness line-unit line-dashes line-joint-shape
line-cap-shape

draw-polygon* [Function]

Arguments: sheet coord-seq &key (filled t) (closed t) ink clipping-region transformation
line-style line-thickness line-unit line-dashes line-joint-shape
line-cap-shape

Summary: Draws a polygon or polyline on the sheet sheet. When filled is nil, this draws a
set of connected lines; otherwise, it draws a filled polygon. If closed is t (the
default) and filled is nil, it ensures that a segment is drawn that connects the end-
ing point of the last segment to the starting point of the first segment. The current
line style (see Section 3.3, “CLIM Line Styles” for details) affects the drawing
of unfilled polygons in the obvious way. The cap shape affects only the “open”
<Bold>26CLIM User Guide

vertices in the case when closed is nil. Dashed lines start dashing at the starting
point of the first segment, and may or may not continue dashing across vertices,
depending on the window system.

 If filled is t, a closed polygon is drawn and filled in. In this case, closed is
assumed to be t as well.

draw-rectangle [Function]

Arguments: sheet point1 point2 &key (filled t) ink clipping-region transformation line-style
line-thickness line-unit line-dashes line-joint-shape

draw-rectangle* [Function]

Arguments: sheet x1 y1 x2 y2 &key (filled t) ink clipping-region transformation line-style
line-thickness line-unit line-dashes line-joint-shape

Summary: Draws either a filled or unfilled rectangle on the sheet sheet that has its sides
aligned with the coordinate axes of the native coordinate system. One corner of
the rectangle is at the position (x1, y1) or point1 and the opposite corner is at (x2,
y2) or point2. The arguments x1, y1, x2, and y1 are real numbers that are canon-
icalized in the same way as for make-bounding-rectangle. filled is as for
draw-polygon*.

 The current line style (see Section 3.2, “Using CLIM Drawing Options”) affects
the drawing of unfilled rectangles in the obvious way, except that the cap shape
has no effect.

draw-rectangles [Function]

Arguments: sheet points &key ink clipping-region transformation line-style line-thickness
line-unit line-dashes line-joint-shape

draw-rectangles* [Function]

Arguments: sheet position-seq &key ink clipping-region transformation line-style
line-thickness line-unit line-dashes line-joint-shape

Summary: These functions (structured and spread arguments, respectively) draw a set of
rectangles on the sheet sheet. points is a sequence of point objects; position-seq
is a sequence of coordinate pairs. It is an error if position-seq does not contain an
even number of elements.

 Ignoring the drawing options, these functions are equivalent to:

 (do ((i 0 (+ i 2)))
 ((= i (length points)))
 (draw-rectangle sheet (elt points i) (elt points (1+ i))))
Drawing Graphics

 and

 (do ((i 0 (+ i 4)))
 ((= i (length position-seq)))
 (draw-rectangle* sheet
 (elt position-seq i)
 (elt position-seq (+ i 1))
 (elt position-seq (+ i 2))
 (elt position-seq (+ i 3))))

draw-ellipse [Function]

Arguments: sheet center-pt radius-1-dx radius-1-dy radius-2-dx radius-2-dy &key (filled t)
start-angle end-angle ink clipping-region transformation line-style
line-thickness line-unit line-dashes line-cap-shape

draw-ellipse* [Function]

Arguments: sheet center-x center-y radius-1-dx radius-1-dy radius-2-dx radius-2-dy &key
(filled t) start-angle end-angle ink clipping-region transformation
line-style line-thickness line-unit line-dashes line-cap-shape

Summary: These functions (structured and spread arguments, respectively) draw an ellipse
(when filled is t, the default) or an elliptical arc (when filled is nil) on the sheet
sheet. The center of the ellipse is the point center-pt (or the position (center-x,
center-y)).

 Two vectors, (radius-1-dx, radius-1-dy) and (radius-2-dx, radius-2-dy) specify
the bounding parallelogram of the ellipse as explained in Section 2.5, “General
Geometric Objects in CLIM.” All of the radii are real numbers. If the two vectors
are collinear, the ellipse is not well-defined and the ellipse-not-well-defined
error will be signaled. The special case of an ellipse with its major axes aligned
with the coordinate axes can be obtained by setting both radius-1-dy and
radius-2-dx to 0.

 start-angle and end-angle are real numbers that specify an arc rather than a com-
plete ellipse. Angles are measured with respect to the positive x axis. The ellip-
tical arc runs positively (counter-clockwise) from start-angle to end-angle. The
default for start-angle is 0; the default for end-angle is 2π.

 In the case of a “filled arc” (that is, when filled is t and start-angle or end-angle
are supplied and are not 0 and 2π), the figure drawn is the “pie slice” area swept
out by a line from the center of the ellipse to a point on the boundary as the
boundary point moves from start-angle to end-angle.
<Bold>28CLIM User Guide

 When drawing unfilled ellipses, the current line style (see Section 3.2, “Using
CLIM Drawing Options”) affects the drawing in the obvious way, except that the
joint shape has no effect. Dashed elliptical arcs start dashing at start-angle.

draw-circle [Function]

Arguments: sheet center-pt radius &key (filled t) start-angle end-angle ink clipping-region
transformation line-style line-thickness line-unit line-dashes
line-cap-shape

draw-circle* [Function]

Arguments: sheet center-x center-y radius &key (filled t) start-angle end-angle ink
clipping-region transformation line-style line-thickness line-unit
line-dashes line-cap-shape

Summary: These functions (structured and spread arguments, respectively) draw a circle
(when filled is t, the default) or a circular arc (when filled is nil) on the sheet
sheet. The center of the circle is center-pt or (center-x, center-y) and the radius
is radius. These are just special cases of draw-ellipse and draw-ellipse*. filled
is as for draw-ellipse*.

 start-angle and end-angle allow the specification of an arc rather than a complete
circle in the same manner as that of the ellipse functions.

 The “filled arc” behavior is the same as that of an ellipse.

draw-text [Function]

Arguments: sheet string-or-char point &key text-style (start 0) end (align-x :left) (align-y
:baseline) toward-point transform-glyphs ink clipping-region
transformation text-style text-family text-face text-size

draw-text* [Function]

Arguments: sheet string-or-char x y &key text-style (start 0) end (align-x :left) (align-y
:baseline) toward-x toward-y transform-glyphs ink clipping-region
transformation text-style text-family text-face text-size

Summary: The text specified by string-or-char is drawn on the sheet sheet starting at the
position specified by the point point (or the position (x, y)). The exact definition
of “starting at” depends on align-x and align-y. align-x is one of :left, :center, or
:right. align-y is one of :baseline, :top, :center, or :bottom. align-x defaults to
:left and align-y defaults to :baseline; with these defaults, the first glyph is
drawn with its left edge and its baseline at point.
Drawing Graphics

 text-style defaults to nil, meaning that the text will be drawn using the current text
style of the sheet’s medium.

 start and end specify the start and end of the string, in the case where
string-or-char is a string. If start is supplied, it must be an integer that is less than
the length of the string. If end is supplied, it must be an integer that is less than
the length of the string, but greater than or equal to start.

 Normally, glyphs are drawn from left to right no matter what transformation is in
effect. toward-x or toward-y (derived from toward-point in the case of
draw-text) can be used to change the direction from one glyph to the next one.
For example, if toward-x is less than the x position of point, then the glyphs will
be drawn from right to left. If toward-y is greater than the y position of point, then
the glyphs’ baselines will be positioned one above another. More precisely, the
reference point in each glyph lies on a line from point to toward-point, and the
spacing of each glyph is determined by packing rectangles along that line, where
each rectangle is “char-width” wide and “char-height” high.

 transform-glyphs is not supported in this version of CLIM.

2.3.2 Compound Drawing Functions

CLIM also provides a few compound drawing functions. The compound drawing functions
could be composed by a programmer from the basic drawing functions, but are provided by
CLIM because they are commonly used.

draw-arrow [Function]

Arguments: sheet point-1 point-2 &key ink clipping-region transformation line-style
line-thickness line-unit line-dashes line-cap-shape to-head from-head
head-length head-width

draw-arrow* [Function]

Arguments: sheet x1 y1 x2 y2 &key ink clipping-region transformation line-style
line-thickness line-unit line-dashes line-cap-shape from-head to-head
head-length head-width

Summary: These functions (structured and spread arguments, respectively) draw a line seg-
ment on the sheet sheet from the point point1 to point2 (or from the position (x1,
y1) to (x2, y2)). If to-head is t (the default), then the “to” end of the line is capped
by an arrowhead. If from-head is t (the default is nil), then the “from” end of the
<Bold>30CLIM User Guide

line is capped by an arrowhead. The arrowhead has length head-length (default
10) and width head-width (default 5).

 The current line style (see Section 3.2, “Using CLIM Drawing Options”) affects
the drawing of the line portion of the arrow in the obvious way, except that the
joint shape has no effect. Dashed arrows start dashing at point1.

draw-oval [Function]

Arguments: sheet center-pt x-radius y-radius &key (filled t) ink clipping-region
transformation line-style line-thickness line-unit line-dashes
line-capshape

draw-oval* [Function]

Arguments: sheet center-x center-y x-radius y-radius &key (filled t) ink clipping-region
transformation line-style line-thickness line-unit line-dashes
line-capshape

Summary: These functions (structured and spread arguments, respectively) draw a filled or
unfilled oval (that is, a “race-track” shape) on the sheet sheet. The oval is cen-
tered on center-pt (or (center-x, center-y)). If x-radius or y-radius is 0, then a cir-
cle is drawn with the specified non-zero radius. Otherwise, a figure is drawn that
is a rectangle with dimension x-radius by y-radius, with the two short sides
replaced by a semicircular arc of the appropriate size.

2.3.3 Patterns and Stencils

Patterning creates a bounded rectangular arrangement of designs, like a checkerboard.
Drawing a pattern draws a different design in each rectangular cell of the pattern. To create
an infinite pattern, apply make-rectangular-tile to a pattern.

A stencil is a special kind of pattern that contains only opacities.

make-pattern [Function]

Arguments: array inks
Summary: Returns a pattern ink that has (array-dimension array 0) cells in the

vertical direction and (array-dimension array 1) cells in the horizontal
direction. array must be a two-dimensional array of non-negative integers less
than the length of inks. inks must be a sequence of designs. The design in cell (i,
j) of the resulting pattern is the nth element of inks, if n is the value of (aref
Drawing Graphics

array i j). For example, array can be a bit-array and inks can be a list of two
inks, the ink drawn for 0 and the one drawn for 1.

 Each cell of a pattern can be regarded as a hole that allows the ink in it to show
through. Each cell might have a different ink in it. The portion of the ink that
shows through a hole is the portion on the part of the drawing plane where the
hole is located. In other words, incorporating an ink into a pattern does not
change its alignment to the drawing plane, and does not apply a coordinate trans-
formation to the design. Drawing a pattern collects the pieces of inks that show
through all the holes and draws the pieces where the holes lie on the drawing
plane. The pattern is completely transparent outside the area defined by the array.

 This function captures its mutable inputs; the consequences of modifying those
objects are unspecified.

Tiling repeats a rectangular portion of a pattern throughout the drawing plane.

make-rectangular-tile [Function]

Arguments: pattern width height
Summary: Returns a pattern that, when used as an ink, tiles a rectangular portion of the pat-

tern pattern across the entire drawing plane. The resulting pattern repeats with a
period of width horizontally and height vertically. width and height must both be
integers. The portion of pattern that appears in each tile is a rectangle whose
top-left corner is at (0, 0) and whose bottom-right corner is at (width, height). The
repetition of pattern is accomplished by applying a coordinate transformation to
shift pattern into position for each tile, and then extracting a width-by-height
portion of that pattern.

 Applying a coordinate transformation to a rectangular tile does not change the
portion of the argument pattern that appears in each tile. However, it can change
the period, phase, and orientation of the repeated pattern of tiles. This is so that
adjacent figures drawn using the same tile have their inks “line up.”

draw-pattern* [Function]

Arguments: sheet pattern x y &key clipping-region transformation
Summary: Draws the pattern pattern on the sheet sheet at the position (x, y). pattern is any

pattern created by make-pattern. clipping-region and transformation are as for
with-drawing-options or any of the drawing functions.
<Bold>32CLIM User Guide

 Note that transformation only affects the position at which the pattern is drawn,
not the pattern itself. If you want to affect the pattern, you should explicitly call
transform-region on the pattern.

 You draw a bitmap by drawing an appropriately aligned and scaled pattern con-
structed from the bitmap’s bits. A 1 in the bitmap corresponds to +foreground-
ink+. A 0 corresponds to +background-ink+ if an opaque drawing operation is
desired, or to +nowhere+ if a transparent drawing operation is desired.

 Drawing a (colored) raster image consists of drawing an appropriately aligned
and scaled pattern constructed from the raster array and raster color map.

 draw-pattern* could be implemented as follows, assuming that the functions
pattern-width and pattern-height return the width and height of the pattern.

 (defun draw-pattern* (sheet pattern x y &key clipping-region
 transformation)
 (check-type pattern pattern)
 (let ((width (pattern-width pattern))
 (height (pattern-height pattern)))
 (if (or clipping-region transformation)
 (with-drawing-options
 (sheet
 :clipping-region clipping-region
 :transformation transformation)
 (draw-rectangle* sheet x y
 (+ x width) (+ y height)
 :filled t :ink pattern))
 (draw-rectangle* sheet x y (+ x width) (+ y height)
 :filled t :ink pattern))))

2.3.4 Pixmaps

A pixmap can be thought of as an “off-screen window,” that is, a medium that can be used
for graphical output, but that is not visible on any display device. Pixmaps are provided to
allow a programmer to generate a piece of output associated with some display device that
can then be rapidly drawn on a real display device. For example, an electrical CAD system
might generate a pixmap that corresponds to a complex, frequently-used part in a VLSI
schematic, and then use copy-from-pixmap to draw the part as needed.

The exact representation of a pixmap is explicitly unspecified. There is no interaction be-
tween the pixmap operations and output recording; that is, displaying a pixmap on a medi-
Drawing Graphics

um is a pure drawing operation that affects only the display, not the output history. Some
mediums may not support pixmaps; in this case, an error will be signaled.

allocate-pixmap [Generic Function]

Arguments: medium width height
Summary: Allocates and returns a pixmap object that can be used on any medium that

shares the same characteristics as medium. (What constitutes “shared character-
istics” varies from host to host.) medium can be a sheet, a medium, or a stream.

 The resulting pixmap will be width units wide, height units high, and as deep as
is necessary to store the information for the medium. The exact representation of
pixmaps is explicitly unspecified. The returned value is the pixmap.

deallocate-pixmap [Generic Function]

Arguments: pixmap
Summary: Deallocates the pixmap pixmap.

pixmap-width [Generic Function]

Arguments: pixmap

pixmap-height [Generic Function]

Arguments: pixmap

pixmap-depth [Generic Function]

Arguments: pixmap
Summary: These functions return, respectively, the programmer-specified width, height,

and depth of the pixmap pixmap.

copy-to-pixmap [Generic Function]

Arguments: medium medium-x medium-y width height &optional pixmap (pixmap-x 0)
(pixmap-y 0)

Summary: Copies the pixels from the medium medium starting at the position specified by
(medium-x, medium-y) into the pixmap pixmap at the position specified by (pix-
map-x, pixmap-y). A rectangle whose width and height is specified by width and
height is copied. medium-x and medium-y are specified in user coordinates. (If
medium is a medium or a stream, then medium-x and medium-y are transformed
by the user transformation.)
<Bold>34CLIM User Guide

 If pixmap is not supplied, a new pixmap will be allocated. Otherwise, pixmap
must be an object returned by allocate-pixmap that has the appropriate charac-
teristics for medium.

 The returned value is the pixmap.

copy-from-pixmap [Generic Function]

Arguments: pixmap pixmap-x pixmap-y width height medium window-x window-y
Summary: Copies the pixels from the pixmap pixmap starting at the position specified by

(pixmap-x, pixmap-y) into the medium medium at the position (medium-x,
medium-y). A rectangle whose width and height is specified by width and height
is copied. medium-x and medium-y are specified in user coordinates. (If medium
is a medium or a stream, then medium-x and medium-y are transformed by the
user transformation.)

 pixmap must be an object returned by allocate-pixmap that has the appropriate
characteristics for medium.

 The returned value is the pixmap. This is intended to specialize on both the pix-
map and medium arguments.

copy-area [Generic Function]

Arguments: medium from-x from-y width height to-x to-y
Summary: Copies the pixels from the medium medium starting at the position specified by

(from-x, from-y) to the position (to-x, to-y) on the same medium. A rectangle
whose width and height is specified by width and height is copied. from-x,
from-y, to-x, and to-y are specified in user coordinates. (If medium is a medium
or a stream, then medium-x and medium-y are transformed by the user transfor-
mation.)

with-output-to-pixmap [Macro]

Arguments: (medium-var medium &key width height) &body body
Summary: Binds medium-var to a “pixmap medium” (that is, a medium that does output to

a pixmap with the characteristics appropriate to the medium medium) and then
evaluates body in that context. All the output done to the medium designated by
medium-var inside of body is drawn on the pixmap stream. The pixmap medium
supports the medium output protocol, including all of the graphics functions.

 width and height are integers that give the dimensions of the pixmap. If they are
omitted, the pixmap will be large enough to contain all the output done by body.
Drawing Graphics

 medium-var must be a symbol; it is not evaluated. The returned value is a pixmap
that can be drawn onto medium using copy-from-pixmap.

2.4 Graphics Protocols

Every medium implements methods for the various graphical drawing generic functions.
Furthermore, every sheet that supports the standard output protocol implements these meth-
ods as well; often, the sheet methods will simply call the same methods on the sheet’s me-
dium.

2.4.1 Arguments

■ All these generic functions take the same arguments as the non-generic spread function
equivalents, except that the arguments that are keyword arguments in the non-generic
functions are required arguments in the generic functions.

■ The drawing-function-specific arguments are either x and y positions, or a sequence of
x and y positions. Note that these positions will first be transformed by the medium’s
current transformation, and then transformed a second time by the medium’s device
transformation in order to produce the coordinates as they will actually appear on the
screen.

■ The ink, line style (or text style), and clipping regions arguments are optional, and de-
fault from the medium (medium-ink, medium-line-style (or medium-cur-
rent-text-style), and medium-clipping-region, respectively).

2.4.2 General Behavior of Drawing Functions

Using draw-line* as an example, calling any of the drawing functions specified previously
results in the following series of function calls on a non-output recording sheet:

■ A program calls draw-line* on arguments sheet, x1, y1, x2, and y2, and perhaps some
drawing options.

■ draw-line* merges the supplied drawing options into the sheet’s medium, and then
calls medium-draw-line* on the sheet. (Note that a compiler macro could detect the
<Bold>36CLIM User Guide

case where there are no drawing options or constant drawing options, and do this at
compile time.)

■ medium-draw-line* on the sheet calls the same method—medium-draw-line*—on
the medium.

■ medium-draw-line* performs the necessary user transformations by applying the me-
dium transformation to x1, y1, x2, and y2, and to the clipping region.

2.4.3 Medium-Specific Drawing Functions

All mediums and all sheets that support the standard output protocol implement methods
for the following generic functions.

medium-draw-point* [Generic Function]

Arguments: medium x y
Summary: Draws a point on the medium medium.

medium-draw-points* [Generic Function]

Arguments: medium coord-seq
Summary: Draws a set of points on the medium medium.

medium-draw-line* [Generic Function]

Arguments: medium x1 y1 x2 y2
Summary: Draws a line from (x1, y1) to (x2, y2) on the medium medium.

medium-draw-lines* [Generic Function]

Arguments: medium coord-seq
Summary: Draws a set of disconnected lines on the medium medium.

medium-draw-polygon* [Generic Function]

Arguments: medium coord-seq closed
Summary: Draws a polygon or polyline on the medium medium.

medium-draw-rectangle* [Generic Function]

Arguments: medium x1 y1 x2 y2
Summary: Draws a rectangle whose corners are at (x1, y1) and (x2, y2) on medium.
Drawing Graphics

medium-draw-ellipse* [Generic Function]

Arguments: medium center-x center-y radius-1-dx radius-1-dy radius-2-dx radius-2-dy
start-angle end-angle

Summary: Draws a rectangle on medium. The center is at (x, y). The vectors (radius-1-dx,
radius-1-dy) and (radius-2-dx, radius-2-dy) specify the radii. start-angle and
end-angle are real numbers that specify an arc, not a complete ellipse.

medium-draw-text* [Generic Function]

Arguments: medium text x y (start 0) end (align-x :left) (align-y :baseline) toward-x
toward-y transform-glyphs

Summary: Draws a character or a string on the medium medium. The text is drawn starting
at (x, y), and towards (toward-x, toward-y).

2.5 General Geometric Objects in CLIM

2.5.1 Regions in CLIM

A region is an object that denotes a set of points in the plane. Regions include their bound-
aries; that is, they are closed. Regions have infinite resolution.

A bounded region is a region that contains at least one point for which there exists a num-
ber, d, called the region’s diameter, such that if p1 and p2 are points in the region, the dis-
tance between p1 and p2 is always less than or equal to d.

An unbounded region either contains no points or contains points arbitrarily far apart. +no-
where+ and +everywhere+ are examples of unbounded regions.

Another way to describe a region is to say that it maps every (x, y) pair into either true or
false (meaning member or not a member, respectively, of the region). Later, in Chapter 5,
we will generalize a region to something called an ink that maps every point (x, y) into color
and opacity values.

CLIM classifies the various types of regions in the following way. All regions are a subclass
of region, and all bounded regions are also a subclass of either point, path, or area, as
shown in Figure 9.
<Bold>38CLIM User Guide

Figure 9. The Class Structure for All Regions

region [Protocol Class]

Summary: The protocol class that corresponds to a set of points. This includes both bounded
and unbounded regions. This is a subclass of ink (see Chapter 5, “Drawing in
Color,” for details).

 If you want to create a new class that behaves like a region, it should be a subclass
of region. Subclasses of region must obey the region protocol.

 There is no general constructor called make-region because of the impossibility
of a uniform way to specify the arguments to such a function.

regionp [Function]

Arguments: object
Summary: Returns t if object is a region; otherwise, it returns nil.

path [Protocol Class]

Summary: The protocol class path denotes bounded regions that have dimensionality 1
(that is, lines or curves). It is a subclass of region and bounding-rectangle. If

 region

everywhere nowhere path point area

polyline elliptical-arc polygon ellipse

line rectangle

unbounded-region bounded-region region-set
Drawing Graphics

you want to create a new class that behaves like a path, it should be a subclass of
path. Subclasses of path must obey the path protocol.

 Constructing a path object with no length (via make-line*, for example) canon-
icalizes it to +nowhere+.

 Some rendering models support the constructing of areas by filling a closed path.
In this case, the path needs a direction associated with it. Since CLIM does not
currently support the path-filling model, paths are directionless.

pathp [Function]

Arguments: object
Summary: Returns t if object is a path; otherwise, it returns nil.

 Note that constructing a path object with no length (by calling make-line with
two coincident points, for example) canonicalizes it to +nowhere+.

area [Protocol Class]

Summary: The protocol class area denotes bounded regions that have dimensionality 2
(that is, are flat surfaces). It is a subclass of region and bounding-rectangle. If
you want to create a new class that behaves like an area, it should be a subclass
of area. Subclasses of area must obey the area protocol.

 Note that constructing an area object with no area (by calling make-rectangle
with two coincident points, for example) canonicalizes it to +nowhere+.

areap [Function]

Arguments: object
Summary: Returns t if object is an area; otherwise, it returns nil.

coordinate [Type]

Summary: The type that represents a coordinate. All of the specific region classes and sub-
classes of bounding-rectangle will use this type to store their coordinates. How-
ever, the constructor functions for the region classes and for bounding rectangles
accept numbers of any type and coerce them to coordinate.

The following two constants represent the regions that correspond, respectively, to all of
the points on the drawing plane and to none of the points on the drawing plane.

 unbounded-region bounded-region region-set
<Bold>40CLIM User Guide

+everywhere+ [Constant]

Summary: The region that includes all the points on the infinite drawing plane.

+nowhere+ [Constant]

Summary: The empty region (the opposite of +everywhere+).

2.5.1.1 Region Predicates in CLIM

The following generic functions comprise the region predicate protocol. All classes that are
subclasses of region must either inherit or implement methods for these generic functions.

The methods for region-equal, region-contains-region-p, and region-intersects-re-
gion-p will typically specialize both the region1 and region2 arguments.

region-equal [Generic Function]

Arguments: region1 region2
Summary: Returns t if the two regions region1 and region2 contain exactly the same set of

points; otherwise, it returns nil.

region-contains-region-p [Generic Function]

Arguments: region1 region2
Summary: Returns t if all points in the region region2 are members of the region region1;

otherwise, it returns nil.

region-contains-position-p [Generic Function]

Arguments: region x y
Summary: Returns t if the point at (x, y) is contained in the region region; otherwise, it

returns nil. Since regions in CLIM are closed, this must return t if the point at (x,
y) is on the region’s boundary.

 region-contains-position-p is a special case of region-contains-region-p in
which the region is the point (x, y).

region-intersects-region-p [Generic Function]

Arguments: region1 region2
Summary: Returns nil if region-intersection of the two regions region1 and region2 would

be +nowhere+; otherwise, it returns t.
Drawing Graphics

2.5.1.2 Composition of CLIM Regions

Region composition in CLIM is the process in which two regions are combined in some
way (such as union or intersection) to produce a third region.

Since all regions in CLIM are closed, region composition is not always equivalent to simple
set operations. Instead, composition attempts to return an object that has the same dimen-
sionality as one of its arguments. If this is not possible, then the result is defined to be an
empty region, which is canonicalized to +nowhere+. (The exact details of this are specified
with each function.)

Sometimes composition of regions can produce a result that is not a simple contiguous re-
gion. For example, region-union of two rectangular regions might not be rectangular. In
order to support cases like this, CLIM has the concept of a region set, an object that repre-
sents one or more region objects related by some region operation, usually a union.

region-set [Protocol Class]

Summary: The protocol class that represents a region set; a subclass of region and bound-
ing-rectangle.

 Members of this class are immutable.

region-set-p [Function]

Arguments: object
Summary: Returns t if object is a region set; otherwise, it returns nil.

standard-rectangle-set [Class]

Summary: This instantiable subclass of region-set and bounding-rectangle represents the
union of several axis-aligned rectangles.

standard-region-union [Class]

standard-region-intersection [Class]

standard-region-difference [Class]

Summary: These three instantiable classes respectively implement the union, intersection,
and differences of regions.
<Bold>42CLIM User Guide

Region sets that are composed entirely of axis-aligned rectangles must be canonicalized
into either a single rectangle or a union of rectangles. Furthermore, the rectangles in the
union must not overlap each other.

The following generic functions comprise the region composition protocol. All classes that
are subclasses of region must implement methods for these generic functions.

The methods for region-union, region-intersection, and region-difference will typically
specialize both the region1 and region2 arguments.

region-set-regions [Generic Function]

Arguments: region &key normalize
Summary: Returns a sequence of the regions in the region set region. region can be either

a region set or a “simple” region, in which case the result is simply a sequence
of one element: region.

Note: This function returns objects that reveal CLIM’s internal state; do not modify
these objects.

 For the case of region sets that are unions of axis-aligned rectangles, the rectan-
gles returned by region-set-regions are guaranteed not to overlap.

 If normalize is supplied, it must be either :x-banding or :y-banding. If it is
:x-banding and all the regions in region are axis-aligned rectangles, the result is
normalized by merging adjacent rectangles with banding done in the x direction.
If it is :y-banding and all the regions in region are rectangles, the result is nor-
malized with banding done in the y direction. Normalizing a region set that is not
composed entirely of axis-aligned rectangles using x- or y-banding causes CLIM
to signal the region-set-not-rectangular error.
Drawing Graphics

Figure 10. Normalization of Rectangular Region Sets

map-over-region-set-regions [Generic Function]

Arguments: function region &key normalize
Summary: Calls function on each region in the region set region. This is often more efficient

than calling region-set-regions. function is a function of one argument, a region;
it has dynamic extent. region can be either a region set or a “simple” region, in
which case function is called once on region itself. normalize is as for
region-set-regions.

region-union [Generic Function]

Arguments: region1 region2
Summary: Returns a region that contains all points that are in either of the regions region1

or region2 (possibly with some points removed in order to satisfy the dimension-
ality rule). The result of region-union always has dimensionality that is the max-
imum dimensionality of region1 and region2. For example, the union of a path
and an area produces an area; the union of two paths is a path.

 region-union will return either a simple region or a member of the class stan-
dard-region-union.

A Region Consisting of Four
 Rectangles

After Normalizing
 with X-Banding

After Normalizing
 with Y-Banding
<Bold>44CLIM User Guide

 This function captures its mutable inputs; the consequences of modifying those
objects are unspecified.

region-intersection [Generic Function]

Arguments: region1 region2
Summary: Returns a region that contains all points that are in both of the regions region1

and region2 (possibly with some points removed in order to satisfy the dimen-
sionality rule). The result of region-intersection has dimensionality that is the
minimum dimensionality of region1 and region2, or is +nowhere+. For exam-
ple, the intersection of two areas is either another area or +nowhere+; the inter-
section of two paths is either another path or +nowhere+; the intersection of a
path and an area produces the path clipped to stay inside of the area.

 region-intersection will return either a simple region or a member of the class
standard-region-intersection.

 This function captures its mutable inputs; the consequences of modifying those
objects are unspecified.

region-difference [Generic Function]

Arguments: region1 region2
Summary: Returns a region that contains all points in the region region1 that are not in the

region region2 (possibly plus additional boundary points to make the result
closed). The result of region-difference has the same dimensionality as region1,
or is +nowhere+. For example, the difference of an area and a path produces the
same area; the difference of a path and an area produces the path clipped to stay
outside of the area.

 region-difference will return either a simple region, a region set, or a member of
the class standard-region-difference.

 This function captures its mutable inputs; the consequences of modifying those
objects are unspecified.
Drawing Graphics

Figure 11. Examples of Region Union, Intersection, and Difference

2.5.2 CLIM Point Objects

A point is a mathematical point in the drawing plane that is identified by its coordinates, a
pair of real numbers. Points have neither area nor length. Note that a point is not the same
thing as a pixel; CLIM’s model of the drawing plane has continuous coordinates.

You can create point objects and use them as arguments to the drawing functions. Alterna-
tively, you can use the spread versions of the drawing functions, that is, the drawing func-
tions with stars appended to their names. For example, instead of draw-point, use
draw-point*, which takes two arguments specifying a point by its coordinates. (Note that,
for performance reasons, we generally recommend the use of the spread versions.)

The operations for creating and dealing with points are:

point [Protocol Class]

Summary: The protocol class that corresponds to a mathematical point. This is a subclass
of region and bounding-rectangle. If you want to create a new class that
behaves like a point, it should be a subclass of point. Subclasses of point obey
the point protocol.

 Their Intersection Their Difference

Two Rectangular Regions Their Union (X-Banded)
<Bold>46CLIM User Guide

pointp [Function]

Arguments: object
Summary: Returns t if object is a point; otherwise, it returns nil.

standard-point [Class]

Summary: An instantiable class that implements a point. This is a subclass of point. This
is the class that make-point instantiates. Members of this class are immutable.

make-point [Function]

Arguments: x y
Summary: Returns an object of class standard-point whose coordinates are x and y. x and

y must be real numbers.

The following generic functions comprise the point Application Programmer Interface.
Only point-position is in the point protocol; that is, all classes that are subclasses of point
must implement methods for point-position, but need not implement methods for point-x
and point-y.

point-position [Generic Function]

Arguments: point
Summary: Returns both the x and y coordinates of the point point as two values.

point-x [Generic Function]

Arguments: point

point-y [Generic Function]

Arguments: point
Summary: Returns the x or y coordinate of the point point, respectively. CLIM will supply

default methods for point-x and point-y on the protocol class point that are
implemented by calling point-position.

2.5.3 Polygons and Polylines in CLIM

A polyline is a path that consists of one or more line segments joined consecutively at their
end-points. A line is a polyline that has only one segment.
Drawing Graphics

Polylines that have the end-point of their last line segment coincident with the start-point
of their first line segment are called closed; this use of the term “closed” should not be con-
fused with closed sets of points.

A polygon is an area bounded by a closed polyline.

If the boundary of a polygon intersects itself, the odd-even winding-rule defines the poly-
gon: a point is inside the polygon if a ray from the point to infinity crosses the boundary an
odd number of times.

Polylines and polygons are closed under affine transformations.

The classes that correspond to polylines and polygons are:

polyline [Protocol Class]

Summary: The protocol class that corresponds to a polyline. It is a subclass of path. If you
want to create a new class that behaves like a polyline, it should be a subclass of
polyline. Subclasses of polyline must obey the polyline protocol.

polylinep [Function]

Arguments: object
Summary: Returns t if object is a polyline; otherwise, it returns nil.

polygon [Class]

Summary: The protocol class (a subclass of area) that corresponds to a mathematical poly-
gon. If you want to create a new class that behaves like a polygon, it should be a
subclass of polygon. Subclasses of polygon must obey the polygon protocol.

polygonp [Function]

Arguments: object
Summary: Returns t if object is a polygon; otherwise, it returns nil.

standard-polyline [Class]

Summary: A class that implements a polyline. This is a subclass of polyline. This is the
class that make-polyline and make-polyline* instantiate. Members of this class
are immutable.

standard-polygon [Class]
<Bold>48CLIM User Guide

Summary: A class that implements a polygon. This is a subclass of polygon. This is the
class that make-polygon and make-polygon* instantiate. Members of this class
are immutable.

2.5.3.1 Constructors for CLIM Polygons and Polylines

The following functions can be used to create polylines and polygons:

make-polyline [Function]

Arguments: point-seq &key closed

make-polyline* [Function]

Arguments: coord-seq &key closed
Summary: Returns an object of class standard-polyline consisting of the segments con-

necting each of the points in point-seq (or the points represented by the coordi-
nate pairs in coord-seq).

 If closed is t, then the segment connecting the first point and the last point is
included in the polyline. The default for closed is nil.

 These functions capture their mutable inputs; the consequences of modifying
those objects are unspecified.

make-polygon [Function]

Arguments: point-seq

make-polygon* [Function]

Arguments: coord-seq
Summary: Returns an object of class standard-polygon consisting of the area contained in

the boundary that is specified by the segments connecting each of the points in
point-seq (or the points represented by the coordinate pairs in coord-seq).

 These functions capture their mutable inputs; the consequences of modifying
those objects are unspecified.
Drawing Graphics

2.5.3.2 Accessors for CLIM Polygons and Polylines

The following generic functions comprise the polygon and polyline protocol. All classes
that are subclasses of polygon or polyline must implement methods for them. Some of the
functions take an argument polygon-or-polyline, which may be a polygon or a polyline.

polygon-points [Generic Function]

Arguments: polygon-or-polyline
Summary: Returns a sequence of points that specify the segments in polygon-or-polyline.

This function returns objects that reveal CLIM’s internal state; do not modify
those objects.

map-over-polygon-coordinates [Generic Function]

Arguments: function polygon-or-polyline
Summary: Applies function to all of the coordinates of the vertices of polygon-or-polyline.

function is a function of two arguments, the x and y coordinates of the vertex; it
has dynamic extent.

map-over-polygon-segments [Generic Function]

Arguments: function polygon-or-polyline
Summary: Applies function to the segments that compose polygon-or-polyline. function is

a function of four arguments, the x and y coordinates of the start of the segment,
and the x and y coordinates of the end of the segment; it has dynamic extent.
When map-over-polygon-segments is called on a closed polyline, it will call
function on the segment that connects the last point back to the first point.

polyline-closed [Generic Function]

Arguments: polyline
Summary: Returns t if the polyline polyline is closed; otherwise, it returns nil.

2.5.4 Lines in CLIM

 A line is a special case of a polyline having only one segment. The functions for making
and dealing with lines are the following:

line [Protocol Class]
<Bold>50CLIM User Guide

Summary: The protocol class that corresponds to a mathematical line segment, that is, a
polyline with only a single segment. This is a subclass of polyline. If you want
to create a new class that behaves like a line, it should be a subclass of line. Sub-
classes of line must obey the line protocol.

linep [Function]

Arguments: object
Summary: Returns t if object is a line; otherwise, it returns nil.

standard-line [Class]

Summary: An instantiable class that implements a line segment. This is a subclass of line.
This is the class that make-line and make-line* instantiate. Members of this
class are immutable.

make-line [Function]

Arguments: start-point end-point

make-line* [Function]

Arguments: start-x start-y end-x end-y
Summary: Returns an object of class standard-line that connects the two points start-point

and end-point (or the positions (start-x, start-y) and (end-x, end-y)).

 These functions capture their mutable inputs; the consequences of modifying
those objects are unspecified.

The following generic functions comprise the line Application Programmer Interface. Only
line-start-point* and line-end-point* are in the line protocol; that is, all classes that are
subclasses of line must implement methods for line-start-point* and line-end-point*, but
need not implement methods for line-start-point and line-end-point.

line-start-point* [Generic Function]

Arguments: line

line-end-point* [Generic Function]

Arguments: line
Summary: Returns the starting or ending point, respectively, of the line line as two real

numbers representing the coordinates of the point.
Drawing Graphics

line-start-point [Generic Function]

Arguments: line

line-end-point [Generic Function]

Arguments: line
Summary: Returns the starting or ending point of the line line, respectively.

CLIM will supply default methods for line-start-point and line-end-point on the protocol
class line that are implemented by calling line-start-point* and line-end-point*.

2.5.5 Rectangles in CLIM

 A rectangle is a special case of a four-sided polygon whose edges are parallel to the coor-
dinate axes. A rectangle can be specified completely by four real numbers (min-x, min-y,
max-x, max-y). They are not closed under affine transformations, although they are closed
under rectilinear transformations. CLIM uses rectangles extensively for various purposes,
particularly in optimizations.

The functions for creating and dealing with rectangles are the following:

rectangle [Protocol Class]

Summary: The protocol class that corresponds to a mathematical rectangle, that is, a rect-
angular polygons whose sides are parallel to the coordinate axes. This is a sub-
class of polygon. If you want to create a new class that behaves like a rectangle,
it should be a subclass of rectangle. Subclasses of rectangle must obey the rect-
angle protocol.

rectanglep [Function]

Arguments: object
Summary: Returns t if object is a rectangle; otherwise, it returns nil.

standard-rectangle [Class]

Summary: An instantiable class that implements an axis-aligned rectangle. This is a sub-
class of rectangle. This is the class that make-rectangle and make-rectangle*
instantiate. Members of this class are immutable.
<Bold>52CLIM User Guide

make-rectangle [Function]

Arguments: point1 point2

make-rectangle* [Function]

Arguments: x1 y1 x2 y2
Summary: Returns an object of class standard-rectangle whose edges are parallel to the

coordinate axes. One corner is at the point point1 (or the position (x1, y1)) and
the opposite corner is at the point point2 (or the position (x2, y2)). There are no
ordering constraints among point1 and point2 (or x1 and x2, and y1 and y2).

 This function captures its mutable inputs; the consequences of modifying those
objects are unspecified.

The following generic functions comprise the rectangle Application Programmer Interface.
Only rectangle-edges* is in the rectangle protocol; that is, all classes that are subclasses of
rectangle must implement methods for rectangle-edges*, but need not implement meth-
ods for the remaining functions.

rectangle-edges* [Generic Function]

Arguments: rectangle
Summary: Returns the coordinates of the minimum x and y and maximum x and y of the

rectangle rectangle as four values, min-x, min-y, max-x, and max-y.

rectangle-min-point [Generic Function]

Arguments: rectangle

rectangle-max-point [Generic Function]

Arguments: rectangle
Summary: Returns the min point and max point of the rectangle rectangle, respectively. The

position of a rectangle is specified by its min point.

CLIM supplies default methods for rectangle-min-point and rectangle-max-point on the
protocol class rectangle that are implemented by calling rectangle-edges*.

rectangle-min-x [Generic Function]

Arguments: rectangle
Drawing Graphics

rectangle-min-y [Generic Function]

Arguments: rectangle

rectangle-max-x [Generic Function]

Arguments: rectangle

rectangle-max-y [Generic Function]

Arguments: rectangle
Summary: Returns (respectively) the minimum x and y coordinate and maximum x and y

coordinate of the rectangle rectangle.

CLIM supplies default methods for these four generic functions on the protocol class rect-
angle that are implemented by calling rectangle-edges*.

rectangle-width [Generic Function]

Arguments: rectangle

rectangle-height [Generic Function]

Arguments: rectangle

rectangle-size [Generic Function]

Arguments: rectangle
Summary: rectangle-width returns the width of the rectangle rectangle, which is the dif-

ference between its maximum and minimum x values. rectangle-height returns
the height, which is the difference between its maximum and minimum y values.
rectangle-size returns two values, the width and the height.

CLIM supplies default methods for these four generic functions on the protocol class rect-
angle that are implemented by calling rectangle-edges*.

2.5.6 Ellipses and Elliptical Arcs in CLIM

An ellipse is an area that is the outline and interior of an ellipse. Circles are special cases of
ellipses.

An elliptical arc is a path consisting of all or a portion of the outline of an ellipse. Circular
arcs are special cases of elliptical arcs.
<Bold>54CLIM User Guide

An ellipse is specified in a manner that is easy to transform, and treats all ellipses on an
equal basis. An ellipse is specified by its center point and two vectors that describe a bound-
ing parallelogram of the ellipse. The bounding parallelogram is made by adding and sub-
tracting the vectors from the center point in the following manner:

The special case of an ellipse with its axes aligned with the coordinate axes can be obtained
by setting dx2 and dy1 to 0, or setting dx1 and dy2 to 0.

Note that several different parallelograms specify the same ellipse, as shown here:

Figure 12. Ellipses Specified by Parallelograms

One parallelogram is bound to be a rectangle—the vectors will be perpendicular and corre-
spond to the semi-axes of the ellipse.

x coordinate y coordinate

Center of Ellipse xc yc

Vectors dx1
dx2

dy1
dy2

Corners of Parallelogram xc + dx1 + dx2
xc + dx1– dx2
xc – dx1– dx2
xc – dx1 + dx2

yc + dy1 + dy2
yc + dy1– dy2
yc– dy1 – dy2
yc – dy1 + dy2

Table 2. Bounding Parallelogram of an Ellipse
Drawing Graphics

The following classes and functions are used to represent and operate on ellipses and ellip-
tical arcs.

ellipse [Protocol Class]

Summary: The protocol class that corresponds to a mathematical ellipse. This is a subclass
of area. If you want to create a new class that behaves like an ellipse, it should
be a subclass of ellipse. Subclasses of ellipse must obey the ellipse protocol.

ellipsep [Function]

Arguments: object
Summary: Returns t if object is an ellipse; otherwise, it returns nil.

standard-ellipse [Class]

Summary: An instantiable class that implements an ellipse. This is a subclass of ellipse.
This is the class that make-ellipse and make-ellipse* instantiate. Members of
this class are immutable.

elliptical-arc [Protocol Class]

Summary: The protocol class that corresponds to a mathematical elliptical arc. This is a sub-
class of path. If you want to create a new class that behaves like an elliptical arc,
it should be a subclass of elliptical-arc. Subclasses of elliptical-arc must obey
the elliptical arc protocol.

elliptical-arc-p [Function]

Arguments: object
Summary: Returns t if object is an elliptical arc; otherwise, it returns nil.

standard-elliptical-arc [Class]

Summary: An instantiable class that implements an elliptical arc. This is a subclass of ellip-
tical-arc. This is the class that make-elliptical-arc and make-elliptical-arc*
instantiate. Members of this class are immutable.
<Bold>56CLIM User Guide

2.5.6.1 Constructor Functions for Ellipses and Elliptical Arcs in
CLIM

make-ellipse [Function]

Arguments: center-point radius-1-dx radius-1-dy radius-2-dx radius-2-dy &key start-angle
end-angle

make-ellipse* [Function]

Arguments: center-x center-y radius-1-dx radius-1-dy radius-2-dx radius-2-dy &key
start-angle end-angle

Summary: Returns an object of class standard-ellipse. The center of the ellipse is at the
point center-point (or the position (center-x, center-y)).

 Two vectors, (radius-1-dx, radius-1-dy) and (radius-2-dx, radius-2-dy) specify
the bounding parallelogram of the ellipse as explained previously. All of the radii
are real numbers. If the two vectors are collinear, the ellipse is not well-defined
and the ellipse-not-well-defined error will be signaled. The special case of an
ellipse with its axes aligned with the coordinate axes can be obtained by setting
both radius-1-dy and radius-2-dx to 0.

 If start-angle or end-angle are supplied, the ellipse is the “pie slice” area swept
out by a line from the center of the ellipse to a point on the boundary as the
boundary point moves from the angle start-angle to end-angle. Angles are mea-
sured counter-clockwise with respect to the positive x axis. If end-angle is sup-
plied, the default for start-angle is 0; if start-angle is supplied, the default for
end-angle is 2π; if neither is supplied, then the region is a full ellipse and the
angles are meaningless.

 This function captures its mutable inputs; the consequences of modifying those
objects are unspecified.

make-elliptical-arc [Function]

Arguments: center-point radius-1-dx radius-1-dy radius-2-dx radius-2-dy &key start-angle
end-angle

make-elliptical-arc* [Function]

Arguments: center-x center-y radius-1-dx radius-1-dy radius-2-dx radius-2-dy &key
start-angle end-angle

Summary: Returns an object of class standard-elliptical-arc. The center of the ellipse is
at the point center-point (or the position (center-x, center-y)).
Drawing Graphics

 Two vectors, (radius-1-dx, radius-1-dy) and (radius-2-dx, radius-2-dy), specify
the bounding parallelogram of the ellipse as explained previously. All of the radii
are real numbers. If the two vectors are collinear, the ellipse is not well-defined
and the ellipse-not-well-defined error will be signaled. The special case of an
elliptical arc with its axes aligned with the coordinate axes can be obtained by
setting both radius-1-dy and radius-2-dx to 0.

 If start-angle and start-angle are supplied, the arc is swept from start-angle to
end-angle. Angles are measured counter-clockwise with respect to the positive x
axis. If end-angle is supplied, the default for start-angle is 0; if start-angle is sup-
plied, the default for end-angle is 2π; if neither is supplied, then the region is a
closed elliptical path and the angles are meaningless.

 This function captures its mutable inputs; the consequences of modifying those
objects are unspecified.

2.5.6.2 Accessors for CLIM Elliptical Objects

The following functions apply to both ellipses and elliptical arcs. In all cases, the name el-
liptical-object means that the argument may be an ellipse or an elliptical arc. These generic
functions comprise the ellipse protocol. All classes that are subclasses of either ellipse or
elliptical-arc must implement methods for these functions.

ellipse-center-point* [Generic Function]

Arguments: elliptical-object
Summary: Returns the center point of elliptical-object as two values representing the coor-

dinate pair.

ellipse-center-point [Generic Function]

Arguments: elliptical-object
Summary: Returns the center point of elliptical-object.

 ellipse-center-point is part of the ellipse Application Programmer Interface, but
not part of the ellipse protocol. CLIM will supply default methods for ellipse-
center-point on the protocol classes ellipse and elliptical-arc that are imple-
mented by calling ellipse-center-point*.

ellipse-radii [Generic Function]

Arguments: elliptical-object
<Bold>58CLIM User Guide

Summary: Returns four values corresponding to the two radius vectors of elliptical-arc.
These values may be canonicalized in some way, and so may not be the same as
the values passed to the constructor function.

ellipse-start-angle [Generic Function]

Arguments: elliptical-object
Summary: Returns the start angle of elliptical-object. If elliptical-object is a full ellipse or

closed path, then ellipse-start-angle will return nil; otherwise the value will be
a number greater than or equal to zero, and less than 2π.

ellipse-end-angle [Generic Function]

Arguments: elliptical-object
Summary: Returns the end angle of elliptical-object. If elliptical-object is a full ellipse or

closed path, then ellipse-end-angle will return nil; otherwise the value will be a
number greater than zero, and less than or equal to 2π.

2.5.7 Bounding Rectangles

Every bounded region in CLIM has a derived bounding rectangle, which is the smallest
rectangle that contains every point in the region and which may contain additional points
as well. Unbounded regions do not have any bounding rectangle. For example, all windows
and output records have bounding rectangles whose coordinates are relative to the bound-
ing rectangle of the parent of the window or output record.

The coordinate system in which the bounding rectangle is maintained depends on the con-
text. For example, the coordinates of the bounding rectangle of a sheet are expressed in the
sheet’s parent’s coordinate system. For output records, the coordinates of the bounding rect-
angle are maintained in the coordinate system of the stream with which the output record
is associated.

Note that the bounding rectangle of a transformed region is not in general the same as the
result of transforming the bounding rectangle of a region, as shown in Figure 13. For trans-
formations that satisfy rectilinear-transformation-p, the following equality holds. For all
other transformations, it does not hold.
Drawing Graphics

(region-equal
 (transform-region transformation
 (bounding-rectangle region))
 (bounding-rectangle (transform-region
 transformation region)))

Figure 13. The Bounding Rectangle of an Output Record

CLIM uses bounding rectangles for a variety of purposes. For example, repainting of win-
dows is driven from the bounding rectangle of the window’s viewport, intersected with a
“damage” region. The formatting engines used by formatting-table and formatting-
graph operate on the bounding rectangles of the output records in the output. Bounding
rectangles are also used internally by CLIM to achieve greater efficiency. For instance,
when performing hit detection to see if the pointer is within the region of an output record,
CLIM first checks to see if the pointer is within the bounding rectangle of the output record.

Note that the bounding rectangle for an output record may have a different size depending
on the medium on which the output record is rendered. Consider the case of rendering text
on different output devices; the font chosen for a particular text style may vary considerably
in size from one device to another.

bounding-rectangle [Protocol Class]

Summary: The protocol class that represents a bounding rectangle. If you want to create a
new class that behaves like a bounding rectangle, it should be a subclass of
bounding-rectangle. Subclasses of bounding-rectangle must obey the bound-
ing rectangle protocol.

Bounding Rectangles

A polygon and
its bounding
rectangle The bounding

rectangle after
the polygon has
been rotated
<Bold>60CLIM User Guide

 Note that bounding rectangles are not a subclass of rectangle, nor even a subclass
of region. This is because, in general, bounding rectangles do not obey the
region protocols. However, all bounded regions and sheets that obey the bound-
ing rectangle protocol are subclasses of bounding-rectangle.

 Bounding rectangles are immutable, but since they reflect the live state of such
mutable objects as sheets and output records, bounding rectangles are volatile.
Therefore, programmers must not depend on the bounding rectangle associated
with a mutable object remaining constant.

bounding-rectangle-p [Function]

Arguments: object
Summary: Returns t if object is a bounding rectangle (that is, supports the bounding rect-

angle protocol); otherwise, it returns nil.

standard-bounding-rectangle [Class]

Summary: An instantiable class that implements a bounding rectangle. This is a subclass of
both bounding-rectangle and rectangle; that is, standard bounding rectangles
obey the rectangle protocol.

 make-bounding-rectangle returns an object of this class.

 The representation of bounding rectangles in CLIM is chosen to be efficient.
CLIM represents such rectangles by storing the coordinates of two opposing cor-
ners of the rectangle, namely, the “min point” and the “max point.” Because this
representation is not sufficient to represent the result of arbitrary transformations
of arbitrary rectangles, CLIM returns a polygon as the result of such a transfor-
mation. (The most general class of transformations that is guaranteed to always
turn a rectangle into another rectangle is the class of transformations that satisfy
rectilinear-transformation-p.)

make-bounding-rectangle [Function]

Arguments: x1 y1 x2 y2
Summary: Returns an object of the class standard-bounding-rectangle with the edges

specified by x1, y1, x2, and y2, which must be real numbers.

 x1, y1, x2, and y2 are “canonicalized” in the following way. The min point of the
rectangle has an x coordinate that is the smaller of x1 and x2 and a y coordinate
that is the smaller of y1 and y2. The max point of the rectangle has an x coordi-
nate that is the larger of x1 and x2 and a y coordinate that is the larger of y1 and
y2. (Therefore, in a right-handed coordinate system the canonicalized values of
Drawing Graphics

x1, y1, x2, and y2 correspond to the left, top, right, and bottom edges of the rect-
angle, respectively.)

 This function returns fresh objects that may be modified.

2.5.7.1 The Bounding Rectangle Protocol

The following generic functions comprise the bounding rectangle protocol. All classes that
participate in this protocol (including all subclasses of region that are bounded regions) im-
plement a method for bounding-rectangle*.

These functions take the argument region, which must be either a bounded region (such as
a line or an ellipse) or some other object that obeys the bounding rectangle protocol, such
as a sheet or an output record.

bounding-rectangle* [Generic Function]

Arguments: region
Summary: Returns the bounding rectangle of region as four real numbers specifying the x

and y coordinates of the min point and the x and y coordinates of the max point
of the rectangle.

 The four returned values min-x, min-y, max-x, and max-y satisfy the inequalities:

 min-x ≤ max-x

 min-y ≤ max-y

bounding-rectangle [Generic Function]

Arguments: region
Summary: Returns the bounding rectangle of region as an object that is a subclass of rect-

angle (described in Subsection 2.5.5, “Rectangles in CLIM”). Since bounding
rectangles are volatile, programmers should not depend on the object returned by
bounding-rectangle remaining constant.

 bounding-rectangle is part of the bounding rectangle Application Programmer
Interface, but is not part of the bounding rectangle protocol. CLIM supplies a
default method for bounding-rectangle on the protocol class bounding-rectan-
gle that calls bounding-rectangle*.
<Bold>62CLIM User Guide

2.5.7.2 Bounding Rectangle Convenience Functions

The following functions are part of the bounding rectangle Application Programmer Inter-
face, but are not part of the bounding rectangle protocol. They are provided as a conve-
nience to programmers who wish to specialize classes that participate in the bounding rect-
angle protocol, but they will not complicate the task of those programmers who define their
own types (such as sheet classes) that participate in this protocol.

CLIM supplies default methods for all of these generic functions on the protocol class
bounding-rectangle that are implemented by calling bounding-rectangle*.

with-bounding-rectangle* [Macro]

Arguments: (min-x min-y max-x max-y) region &body body
Summary: Binds min-x, min-y, max-x, and max-y to the edges of the bounding rectangle of

region, and then executes body in that context. The argument region must be
either a bounded region (such as a line or an ellipse) or some other object that
obeys the bounding rectangle protocol, such as a sheet or an output record.

 The arguments min-x, min-y, max-x, and max-y are not evaluated. body may have
zero or more declarations as its first forms.

 with-bounding-rectangle* calls bounding-rectangle*.

bounding-rectangle-position [Generic Function]

Arguments: region
Summary: Returns the position of the bounding rectangle of region. The position of a

bounding rectangle is specified by its min point.

bounding-rectangle-min-x [Generic Function]

Arguments: region

bounding-rectangle-min-y [Generic Function]

Arguments: region

bounding-rectangle-max-x [Generic Function]

Arguments: region
Drawing Graphics

bounding-rectangle-max-y [Generic Function]

Arguments: region
Summary: Returns (respectively) the x and y coordinates of the min point and the x and y

coordinates of the max point of the bounding rectangle of region. The argument
region must be either a bounded region or some other object that obeys the
bounding rectangle protocol.

bounding-rectangle-width [Generic Function]

Arguments: region

bounding-rectangle-height [Generic Function]

Arguments: region

bounding-rectangle-size [Generic Function]

Arguments: region
Summary: Returns the width, height, or size (as two values, the width and height) of the

bounding rectangle of region, respectively. region must be either a bounded
region or some other object that obeys the bounding rectangle protocol.

 The width of a bounding rectangle is the difference between its maximum x coor-
dinate and its minimum x coordinate. The height is the difference between the
maximum y coordinate and its minimum y coordinate.
<Bold>64CLIM User Guide

Chapter 3 The CLIM Drawing
Environment

The CLIM Drawing Environment

3.1 CLIM Mediums

Drawing in CLIM is done through a medium. A medium can be thought of as an object that
knows how to draw on a specific device. For example, a medium translates a CLIM
draw-rectangle call into the appropriate draw-rectangle call to the underlying graphics
host. Mediums also keep track of default drawing options, such as a drawing plane, fore-
ground and background inks, a transformation, a clipping region, a line style, and a text
style. These default values are used when these function-call parameters are left otherwise
unspecified. For related information, refer to Subsection 2.1.4, “Mediums, Sheets, and
Streams.”

The drawing environment is dynamic. The CLIM facilities for affecting the drawing envi-
ronment do so within their dynamic extent. For example, any drawing done by the user
function draw-stuff (as well as any drawing performed by its callees) will be affected by
the scaling transformation:

 (clim:with-scaling (medium 2 1) (draw-stuff medium))

The medium has components that are used to keep track of the drawing environment. The
drawing environment is controlled through the use of drawing options that can be provided
as keyword arguments to all of the drawing functions.

Each CLIM medium contains components that correspond to the drawing options. These
components provide the default values for the drawing options. When drawing functions
are called and some options are unspecified, the options default to the values maintained by
the medium.

CLIM provides accessors that enable you to read and write the values of these components.
Also, these components are temporarily bound within a dynamic context by using
with-drawing-options, with-text-style, and related forms. Using setf on a component
while it is temporarily bound takes effect immediately but is undone when the dynamic
context is exited.

The following functions read and write components of a medium related to drawing op-
tions. While these functions are defined for mediums, they can also be called on sheets that
support the sheet output protocol and on streams that output to such sheets. All classes that
support the medium protocol implement methods for these generic functions. Often, a sheet
class that supports the output protocol will implement a “trampoline” method that passes
the operation directly on to sheet-medium of the sheet.
<Bold>66CLIM User Guide

medium-foreground [Generic Function]

Arguments: medium

medium-background [Generic Function]

Arguments: medium
Summary: Returns the foreground and background inks (which are designs) for the medium

medium, respectively. The foreground ink is the default ink used when drawing.
The background ink is the ink used when erasing. See Chapter 5, “Drawing in
Color,” for a more complete description of designs.

 Any indirect inks are resolved against the foreground and background at the time
a design is rendered.

(setf medium-foreground) [Generic Function]

Arguments: ink medium

(setf medium-background) [Generic Function]

Arguments: ink medium
Summary: Sets the foreground and background ink, respectively, for the medium medium

to ink. You may not set medium-foreground or medium-background to an
indirect ink.

 Changing the foreground or background of a sheet that supports output recording
causes the contents of the stream’s viewport to be erased and redrawn using the
new foreground and background.

medium-ink [Generic Function]

Arguments: medium
Summary: The current drawing ink for the medium medium, which can be any design. The

drawing functions draw with the color and pattern that this specifies. See Chapter
5, “Drawing in Color,” for a more complete description of inks. The :ink draw-
ing option temporarily changes the value of medium-ink.

(setf medium-ink) [Generic Function]

Arguments: ink medium
Summary: Sets the current drawing ink for the medium medium to ink. ink is as for

medium-foreground, and may be an indirect ink as well.
The CLIM Drawing Environment

medium-transformation [Generic Function]

Arguments: medium
Summary: The current user transformation for the medium medium. This is used to trans-

form the coordinates supplied as arguments to drawing functions to the coordi-
nate system of the drawing plane. See Section 3.5, “The Transformations Used
by CLIM,” for a complete description of transformations. The :transformation
drawing option temporarily changes the value of medium-transformation.

(setf medium-transformation) [Generic Function]

Arguments: transformation medium
Summary: Sets the current user transformation for the medium medium to the transforma-

tion transformation.

medium-clipping-region [Generic Function]

Arguments: medium
Summary: The current clipping region for the medium medium. The drawing functions do

not affect the drawing plane outside this region. The :clipping-region drawing
option temporarily changes the value of medium-clipping-region.

 The clipping region is expressed in user coordinates.

(setf medium-clipping-region) [Generic Function]

Arguments: region medium
Summary: Sets the current clipping region for the medium medium to region. region must

be a subclass of area.

medium-line-style [Generic Function]

Arguments: medium
Summary: The current line style for the medium medium. The line and arc drawing func-

tions render according to this line style. See Section 3.3, “CLIM Line Styles,” for
a complete description of line styles. The :line-style drawing option temporarily
changes the value of medium-line-style.

(setf medium-line-style) [Generic Function]

Arguments: line-style medium
Summary: Sets the current line style for the medium medium to the line style line-style.
<Bold>68CLIM User Guide

medium-default-text-style [Generic Function]

Arguments: medium
Summary: The default text style for the medium medium. medium-default-text-style will

return a fully specified text style, unlike medium-text-style, which may return a
text style with null components. Any text styles that are not fully specified by the
time they are used for rendering are merged against medium-default-text-style
using merge-text-styles.

 The default value for medium-default-text-style for any medium is *default-
text-style*.

 See Chapter 4 for a complete description of text styles.

(setf medium-default-text-style) [Generic Function]

Arguments: text-style medium
Summary: Sets the default text style for the medium medium to the text style text-style.

text-style must be a fully specified text style.

medium-text-style [Generic Function]

Arguments: medium
Summary: The current text style for the medium medium. The text drawing functions,

including ordinary stream output, render text as directed by this text style merged
against the default text style. This controls both graphical text (such as that
drawn by draw-text*) and stream text (such as that written by write-string). See
Chapter 4 for a complete description of text styles. The :text-style drawing
option temporarily changes the value of medium-text-style.

(setf medium-text-style) [Generic Function]

Arguments: text-style medium
Summary: Sets the current text style for the medium medium to the text style text-style.

text-style need not be a fully merged text style.

medium-current-text-style [Generic Function]

Arguments: medium
Summary: The current, fully merged text style for the medium medium. This is the text style

that will be used when drawing text output, and is the result of merging
medium-text-style against medium-default-text-style.
The CLIM Drawing Environment

3.2 Using CLIM Drawing Options

Drawing options control various aspects of the drawing process. You can supply drawing
options in a number of ways:

■ The medium (the destination for graphic output) itself has default drawing options. If a
drawing option is not supplied elsewhere, the medium supplies the value. See the pre-
ceding section, “Components of CLIM Mediums.”

■ You can use with-drawing-options to bind the drawing options of the medium tempo-
rarily. In many cases, it is convenient to use with-drawing-options to surround several
calls to drawing functions, each using the same options.

■ You can supply the drawing options as keyword arguments to the drawing functions.
These override the drawing options specified by with-drawing-options.

In some cases, it is important to distinguish between drawing options and suboptions. Both
text and lines have an option that controls the complete specification of the text and line
style, and there are suboptions that can affect one aspect of the text or line style. For exam-
ple, the value of the :text-style option is a text style object, which describes a complete text
style consisting of family, face, and size. There are also suboptions called :text-family,
:text-face, and :text-size. Each suboption specifies a single aspect of the text style, while
the option specifies the entire text style. Line styles are analogous to text styles; there is a
:line-style option and some suboptions.

In a given call to with-drawing-options or a drawing function, you would normally supply
either the :text-style option or a text style suboption (or more than one suboption), but not
both. If you do supply both, then the text style comes from the result of merging the subop-
tions with the :text-style option, and then merging that with the prevailing text style.

with-drawing-options [Macro]

Arguments: (medium &rest drawing-options) &body body
Summary: Binds the state of the medium designated by medium to correspond to the sup-

plied drawing options, and executes the body with the new drawing options spec-
ified by drawing-options in effect. Each option causes binding of the
corresponding component of the medium for the dynamic extent of the body. The
drawing functions effectively do a with-drawing-options when drawing option
arguments are supplied to them.
<Bold>70CLIM User Guide

 medium can be a medium, a sheet that supports the sheet output protocol, or a
stream that outputs to such a sheet. The medium argument is not evaluated, and
must be a symbol that is bound to a sheet or medium. If medium is t, *standard-
output* is used. body may have zero or more declarations as its first forms.

 with-drawing-options expands into a call to invoke-with-drawing-options,
supplying a function that executes body as the continuation argument to invoke-
with-drawing-options.

invoke-with-drawing-options [Generic Function]

Arguments: medium continuation &rest drawing-options
Summary: Binds the state of the medium medium to correspond to the supplied drawing

options, and then calls the function continuation with the new drawing options
in effect. continuation is a function of one argument, the medium; it has dynamic
extent. drawing-options is a list of alternating keyword-value pairs, and must
have even length. Each option in drawing-options causes binding of the corre-
sponding component of the medium for the dynamic extent of the body.

 medium can be a medium, a sheet that supports the sheet output protocol, or a
stream that outputs to such a sheet. All classes that obey the medium protocol
implement a method for invoke-with-drawing-options.

 drawing-options can be any of the following, plus any of the suboptions for line
and text styles. The default value specified for a drawing option is the value to
which the corresponding component of a medium is normally initialized.

3.2.1 Set of CLIM Drawing Options

Drawing options can be any of the following, plus any of the line-style or text-style subop-
tions.

:ink [Option]

Summary: The drawing functions draw with the color and pattern that this ink specifies.
The default value is +foreground-ink+. See Chapter 5, “Drawing in Color,” for
a complete description of inks.

 The :ink drawing option temporarily changes the value of (medium-ink
medium) to ink, replacing (not combining) the previous ink.
The CLIM Drawing Environment

:transformation [Option]

Summary: This transforms the coordinates used as arguments to drawing functions to the
coordinate system of the drawing plane. The default value is +identity-transfor-
mation+. See Section 3.5, “The Transformations Used by CLIM,” for a com-
plete description of transformations.

 The :transformation xform drawing option temporarily changes the value of
(medium-transformation medium) to:

(compose-transformations (medium-transformation medium) xform)

:clipping-region [Option]

Summary: The drawing functions do not affect the drawing plane outside this region, which
must be an area. Rendering is clipped both by this clipping region and by other
clipping regions associated with the mapping from the target drawing plane to
the viewport that displays a portion of the drawing plane. The default is +every-
where+, or in other words, no clipping occurs in the drawing plane, only in the
viewport.

 The :clipping-region region drawing option temporarily changes the value of
(medium-clipping-region medium) to:

 (region-intersection
 (transform-region
 (medium-transformation medium) region)
 (medium-clipping-region medium))

 If both a clipping region and a transformation are supplied in the same set of
drawing options, the clipping region argument is transformed by the newly com-
posed transformation before calling region-intersection.

:line-style [Option]

Summary: The line- and arc-drawing functions render according to this line style. The line
style suboptions and default are defined in Section 3.3, “CLIM Line Styles.”

 The :line-style ls drawing option temporarily changes the value of
(medium-line-style medium) to ls, replacing the previous line style;
the new and old line styles are not combined in any way.

 If line-style suboptions are supplied, they temporarily change the value of
(medium-line-style medium) to a line style constructed from the spec-
ified suboptions. Components not specified by suboptions default from the
:line-style drawing option, if it is supplied, or else from the previous value of
<Bold>72CLIM User Guide

(medium-line-style medium). That is, if both the :line-style option and
line-style suboptions are supplied, the suboptions take precedence over the com-
ponents of the :line-style option.

:text-style [Option]

Summary: The text drawing functions, including ordinary stream output, render text as
directed by this text style merged against the default text style. The default value
has all null components. See Chapter 4, “Text Styles,” for a complete description
of text styles, including the text style suboptions.

 The :text-style ts drawing option temporarily changes the value of
(medium-text-style medium) to:

 (merge-text-styles ts (medium-text-style medium))

 If text-style suboptions are supplied, they temporarily change the value of
(medium-text-style medium) to a text style constructed from the spec-
ified suboptions, merged with the :text-style drawing option if it is specified, and
then merged with the previous value of (medium-text-style medium).
That is, if both the :text-style option and text-style suboptions are supplied, the
suboptions take precedence over the components of the :text-style option.

3.2.2 Using the :filled Option

Certain drawing functions can draw either an area or the outline of that area. This is con-
trolled by the :filled keyword argument to these functions. If the value is t (the default),
then the function paints the entire area. If the value is nil, then the function outlines the area
under the control of the line-style drawing option.

The :filled keyword argument is not a drawing option and cannot be specified to
with-drawing-options.

The following functions have a :filled keyword argument:

■ draw-circle

■ draw-circle*

■ draw-ellipse

■ draw-ellipse*

■ draw-polygon
The CLIM Drawing Environment

■ draw-polygon*

■ draw-rectangle*

3.3 CLIM Line Styles

A line is a one-dimensional object. In order to be visible, however, the rendering of a line
must occupy some non-zero area on the display hardware. CLIM uses a line style object to
represent the advice supplied to the rendering substrate on how to perform the rendering.

It is often useful to create a line style object that represents a style you wish to use frequent-
ly, rather than continually specifying the corresponding line style suboptions.

line-style [Protocol Class]

Summary: The protocol class for line styles. If you want to create a new class that behaves
like a line style, it should be a subclass of line-style. Subclasses of line-style
must obey the line style protocol.

line-style-p [Function]

Arguments: object
Summary: Returns t if object is a line style; otherwise, it returns nil.

standard-line-style [Class]

Summary: An instantiable class that implements line styles. A subclass of line-style, this is
the class that make-line-style instantiates. Members of this class are immutable.

make-line-style [Function]

Arguments: &key unit thickness joint-shape cap-shape dashes
Summary: Returns an object of class standard-line-style with the supplied characteristics.

The arguments and their default values are described in Subsection 3.3, “CLIM
Line Styles.”

Each of the following suboptions has a corresponding reader that can be used to extract a
particular component from a line style. The following generic functions comprise the line
style protocol; all subclasses of line-style implement methods for these generic functions.
<Bold>74CLIM User Guide

:line-unit [Option]

line-style-unit [Generic Function]

Arguments: line-style
Summary: Gives the unit used for measuring line thickness and dash pattern length for the

line style. Possible values are as follows:

• :normal—thicknesses and lengths are given in a relative measure in terms of
the usual or “normal” line thickness, which is the thickness of the “comfortably
visible thin line,” a property of the underlying rendering substrate. (This is the
default value.)

• :point—thicknesses and lengths are given in an absolute measure in terms of
printer’s points (approximately 1/72 of an inch). This measure was chosen so
that CLIM implementors who interface CLIM to an underlying rendering en-
gine (the window system) may legitimately choose to make it render as 1 pixel
on current (1992) display devices.

• :coordinate—the same units should be used for line thickness as are used for
coordinates. In this case, the line thickness is scaled by the medium’s current
transformation, whereas :normal and :point do not scale the line thickness.

:line-thickness [Option]

line-style-thickness [Generic Function]

Arguments: line-style
Summary: The thickness, in the units indicated by line-style-unit, of the lines or arcs drawn

by a drawing function. The thickness must be a real number. The default is 1,
which, when combined with the default unit of :normal, means that the default
line drawn is the “comfortably visible thin line.”

:line-joint-shape [Option]

line-style-joint-shape [Generic Function]

Arguments: line-style
Summary: Specifies the shape of joints between segments of unfilled figures. The possible

shapes are :miter, :bevel, :round, and :none; the default is :miter. Note that the
joint shape is implemented by the host window system, so not all platforms will
necessarily fully support it.
The CLIM Drawing Environment

Figure 14. Line Joint Shapes

:line-cap-shape [Option]

line-style-cap-shape [Generic Function]

Arguments: line-style
Summary: Specifies the shape for the ends of lines and arcs drawn by a drawing function,

one of :butt, :square, :round, or :no-end-point; the default is :butt. Note that
the cap shape is implemented by the host window system, so not all platforms
will necessarily fully support it.

Figure 15. Line Cap Shapes

:line-dashes [Option]

line-style-dashes [Generic Function]

Arguments: line-style

 :miter :bevel :round

 :square:butt :round :no-end-point
<Bold>76CLIM User Guide

Summary: Controls whether lines or arcs are drawn as dashed figures, and if so, what the
dashing pattern is. Possible values are:

• nil—lines are drawn solid, with no dashing. This is the default.

• t—lines are drawn dashed, with a dash pattern that is unspecified and may vary
with the rendering engine. This allows the underlying display substrate to pro-
vide a default dashed line for the programmer whose only requirement is to
draw a line that is visually distinguishable from the default solid line.

• A sequence—specifies a sequence, usually a vector, controlling the dash pat-
tern of a drawing function. It is an error if the sequence does not contain an
even number of elements. The elements of the sequence are lengths (as real
numbers) of individual components of the dashed line or arc. The odd elements
specify the length of inked components; the even elements specify the gaps.
All lengths are expressed in the units described by line-style-unit.

make-contrasting-dash-patterns [Function]

Arguments: n &optional k
Summary: If k is not supplied, this returns a vector of n dash patterns with recognizably

different appearance. Elements of the vector are guaranteed to be acceptable val-
ues for :dashes, and do not include nil, but their class is not otherwise specified.
The vector is a fresh object that may be modified.

 If k is supplied, it must be an integer between 0 and n–1 (inclusive), in which case
make-contrasting-dash-patterns returns the kth dash-pattern rather than return-
ing a vector of dash-patterns.

 CLIM has at least 8 different contrasting dash patterns. If n is greater than 8,
make-contrasting-dash-patterns signals an error.

contrasting-dash-pattern-limit [Generic Function]

Arguments: port
Summary: Returns the number of contrasting dash patterns that can be rendered on any

medium on the port port. It is at least 8. All classes that obey the port protocol
implement a method for this generic function.
The CLIM Drawing Environment

3.4 Transformations in CLIM

One of the features of CLIM’s graphical capabilities is the use of coordinate system trans-
formations. By using transformations, you can often write simpler graphics code because
you can choose a coordinate system in which to express the graphics that simplifies the de-
scription of the drawing.

A transformation is an object that describes how one coordinate system is related to anoth-
er. A graphic function performs its drawing in the current coordinate system of the stream.
A new coordinate system is defined by describing its relationship to the old one (the trans-
formation). The drawing can now take place in the new coordinate system. The basic con-
cept of graphic transformations is illustrated in Figure 16.

Figure 16. Graphic Transformation

For example, you might define the coordinates of a five-pointed star and a function to draw
it.

(defvar *star* '(0 3 2 -3 -3 1/2 3 1/2 -2 -3))

(defun draw-star (stream)
 (clim:draw-polygon* stream *star* :closed t :filled nil))

Transformation

The Original Coordinate
System

Original Graphics Graphics under the Transformation

The Transformed Coordinate System
<Bold>78CLIM User Guide

Without any transformation, the function draws a small star centered around the origin. By
applying a transformation, the same function can be used to draw a star of any size, any-
where. For example:

(clim:with-room-for-graphics (stream)
 (clim:with-translation (stream 100 100)
 (clim:with-scaling (stream 10)
 (draw-star stream)))
 (clim:with-translation (stream 240 110)
 (clim:with-rotation (stream -0.5)
 (clim:with-scaling (stream 12 8)
 (draw-star stream)))))

will draw a picture somewhat like Figure 16 on stream.

3.5 The Transformations Used by CLIM

The type of transformations that CLIM uses are called affine transformations. An affine
transformation is a transformation that preserves straight lines. In other words, if you take
a number of points that fall on a straight line and apply an affine transformation to their co-
ordinates, the transformed coordinates will fall on a straight line in the new coordinate sys-
tem. Affine transformations include translations, scalings, rotations, and reflections.

A translation is a transformation that preserves the length, angle, and orientation of all geo-
metric entities.

A rotation is a transformation that preserves the length and angles of all geometric entities.
Rotations also preserve one point and the distance of all entities from that point. You can
think of that point as the “center of rotation”; it is the point around which everything rotates.

There is no single definition of a scaling transformation. Transformations that preserve all
angles and multiply all lengths by the same factor (preserving the “shape” of all entities)
are certainly scaling transformations. However, scaling is also used to refer to transforma-
tions that scale distances in the x direction by one amount and distances in the y direction
by another amount.

A reflection is a transformation that preserves lengths and magnitudes of angles but chang-
es the sign (or “handedness”) of angles. If you think of the drawing plane on a transparent
sheet of paper, a reflection is a transformation that “turns the paper over.”
The CLIM Drawing Environment

If we transform from one coordinate system to another, then from the second to a third co-
ordinate system, we can regard the resulting transformation as a single transformation re-
sulting from composing the two component transformations. It is an important and useful
property of affine transformations that they are closed under composition.

Note that composition is not commutative; in general, the result of applying transformation
A and then applying transformation B is not the same as applying B first, then A.

Any arbitrary transformation can be built up by composing a number of simpler transfor-
mations, but that same transformation can often be constructed by a different composition
of different transformations.

Transforming a region applies a coordinate transformation to that region, thus moving its
position on the drawing plane, rotating it, or scaling it. Note that this creates a new region,
but it does not affect the region argument.

The user interface to transformations is the :transformation option to the drawing func-
tions. Users can create transformations with constructors. See Subsection 3.5.1, “CLIM
Transformation Constructors”. The other operators documented in this section are used by
CLIM itself, and are not often needed by users.

3.5.1 CLIM Transformation Constructors

The following functions create transformation objects that can be used, for instance, in a
call to compose-transformations. The transformation constructors do not capture any of
their inputs. The constructors all create objects that are subclasses of transformation.

make-translation-transformation [Function]

Arguments: translation-x translation-y
Summary: A translation is a transformation that preserves the length, angle, and orientation

of all geometric entities.

 make-translation-transformation returns a transformation that translates all
points by translation-x in the x direction and translation-y in the y direction.
translation-x and translation-y must be real numbers.

make-rotation-transformation [Function]

Arguments: angle &optional origin
<Bold>80CLIM User Guide

make-rotation-transformation* [Function]

Arguments: angle &optional origin-x origin-y
Summary: A rotation is a transformation that preserves the length and angles of all geomet-

ric entities. Rotations also preserve one point (the origin) and the distance of all
entities from that point.

 make-rotation-transformation returns a transformation that rotates all points
by angle (which is a real number indicating an angle in radians) around the point
origin. If origin is supplied it must be a point; if not supplied, it defaults to (0, 0).
origin-x and origin-y must be real numbers.

make-scaling-transformation [Function]

Arguments: scale-x scale-y &optional origin

make-scaling-transformation* [Function]

Arguments: scale-x scale-y &optional origin-x origin-y
Summary: As discussed previously, there is no single definition of a scaling transformation.

make-scaling-transformation returns a transformation that multiplies the
x-coordinate distance of every point from origin by scale-x and the y-coordinate
distance of every point from origin by scale-y. scale-x and scale-y must be real
numbers. If origin is supplied it must be a point; if not supplied, it defaults to (0,
0). origin-x and origin-y must be real numbers.

make-reflection-transformation [Function]

Arguments: point1 point2

make-reflection-transformation* [Function]

Arguments: x1 y1 x2 y2
Summary: A reflection is a transformation that preserves lengths and magnitudes of angles,

but changes the sign (or “handedness”) of angles. If you think of the drawing
plane on a transparent sheet of paper, a reflection is a transformation that “turns
the paper over.”

 make-reflection-transformation returns a transformation that reflects every
point through the line passing through the points point1 and point2 (or through
the positions (x1, y1) and (x2, y2) in the case of the spread version).
The CLIM Drawing Environment

make-transformation [Function]

Arguments: mxx mxy myx myy tx ty
Summary: Returns a general transformation whose effect is:

 where x and y are the coordinates of a point before the transformation and and
 are the coordinates of the corresponding point after.

 All of the arguments to make-transformation must be real numbers.

make-3-point-transformation [Function]

Arguments: point-1 point-2 point-3 point-1-image point-2-image point-3-image
Summary: Returns a transformation that takes points point-1 into point-1-image, point-2

into point-2-image, and point-3 into point-3-image. Three non-collinear points
and their images under the transformation are enough to specify any affine trans-
formation.

 If point-1, point-2, and point-3 are collinear, the transformation-underspecified
error will be signaled. If point-1-image, point-2-image, and point-3-image are
collinear, the resulting transformation will be singular (that is, will have no
inverse), but this is not an error.

make-3-point-transformation* [Function]

Arguments: x1 y1 x2 y2 x3 y3 x1-image y1-image x2-image y2-image x3-image y3-image
Summary: Returns a transformation that takes the points at the positions (x1, y1) into

(x1-image, y1-image), (x2, y2) into (x2-image, y2-image) and (x3, y3) into
(x3-image, y3-image). Three non-collinear points and their images under the
transformation are enough to specify any affine transformation.

 If the positions (x1, y1), (x2, y2), and (x3, y3) are collinear, the transforma-
tion-underspecified error will be signaled. If (x1-image, y1-image), (x2-image,
y2-image), and (x3-image, y3-image) are collinear, the resulting transformation
will be singular, but this is not an error.

 This is the spread version of make-3-point-transformation.

x′ mxxx mxyy tx+ +=

y′ myxx myyy ty+ +=

x′
y′
<Bold>82CLIM User Guide

3.5.2 CLIM Transformation Protocol

transformation [Protocol Class]

Summary: The protocol class of all transformations. There are one or more subclasses of
transformation that implement transformations, the exact names of which are
explicitly unspecified. If you want to create a new class that behaves like a trans-
formation, it should be a subclass of transformation. Subclasses of transfor-
mation obey the transformation protocol.

 All of the instantiable transformation classes provided by CLIM are immutable.

transformationp [Function]

Arguments: object
Summary: Returns t if object is a transformation; otherwise, it returns nil.

+identity-transformation+ [Constant]

Summary: An instance of a transformation that is guaranteed to be an identity transforma-
tion, that is, the transformation that “does nothing.”

transformation-error [Error Condition]

Summary: The class that is the superclass of the following three conditions. This class is a
subclass of error.

transformation-underspecified [Error Condition]

Summary: The error that is signaled when make-3-point-transformation is given three
collinear image points.

reflection-underspecified [Error Condition]

Summary: The error that is signaled when make-reflection-transformation is given two
coincident points.

singular-transformation [Error Condition]

Summary: The error that is signaled when invert-transformation is called on a singular
transformation, that is, a transformation that has no inverse.
The CLIM Drawing Environment

3.5.3 CLIM Transformation Predicates

The following predicates are provided in order to be able to determine whether or not a
transformation has a particular characteristic.

transformation-equal [Generic Function]

Arguments: transformation1 transformation2
Summary: Returns t if the two transformations have equivalent effects (that is, are mathe-

matically equal); otherwise, it returns nil.

identity-transformation-p [Generic Function]

Arguments: transformation
Summary: Returns t if transformation is equal (in the sense of transformation-equal) to

the identity transformation; otherwise, it returns nil.

translation-transformation-p [Generic Function]

Arguments: transformation
Summary: Returns t if transformation is a pure translation, that is, a transformation that

moves every point by the same distance in x and the same distance in y. Other-
wise, it returns nil.

invertible-transformation-p [Generic Function]

Arguments: transformation
Summary: Returns t if transformation has an inverse; otherwise, it returns nil.

reflection-transformation-p [Generic Function]

Arguments: transformation
Summary: Returns t if transformation inverts the “handedness” of the coordinate system;

otherwise, it returns nil. Note that this is a very inclusive category—transforma-
tions are considered reflections even if they distort, scale, or skew the coordinate
system, as long as they invert the handedness.

rigid-transformation-p [Generic Function]

Arguments: transformation
Summary: Returns t if transformation transforms the coordinate system as a rigid object,

that is, as a combination of translations, rotations, and pure reflections. Other-
wise, it returns nil.
<Bold>84CLIM User Guide

 Rigid transformations are the most general category of transformations that pre-
serve magnitudes of all lengths and angles.

even-scaling-transformation-p [Generic Function]

Arguments: transformation
Summary: Returns t if transformation multiplies all x-lengths and y-lengths by the same

magnitude; otherwise, it returns nil. This includes pure reflections through ver-
tical and horizontal lines.

scaling-transformation-p [Generic Function]

Arguments: transformation
Summary: Returns t if transformation multiplies all x-lengths by one magnitude and all

y-lengths by another magnitude; otherwise, it returns nil. This category includes
even scalings as a subset.

rectilinear-transformation-p [Generic Function]

Arguments: transformation
Summary: Returns t if transformation will always transform any axis-aligned rectangle into

another axis-aligned rectangle; otherwise, it returns nil. This category includes
scalings as a subset, and also includes 90 degree rotations.

 Rectilinear transformations are the most general category of transformations for
which the bounding rectangle of a transformed object can be found by transform-
ing the bounding rectangle of the original object.

3.5.4 CLIM Transformation Functions

compose-transformations [Generic Function]

Arguments: transformation1 transformation2
Summary: Returns a transformation that is the mathematical composition of its arguments.

Composition is in right-to-left order; that is, the resulting transformation repre-
sents the effects of applying the transformation transformation2 followed by the
transformation transformation1.

invert-transformation [Generic Function]

Arguments: transformation
The CLIM Drawing Environment

Summary: Returns a transformation that is the inverse of the transformation transformation.
The result of composing a transformation with its inverse is equal to the identity
transformation.

 If transformation is singular, invert-transformation will signal the singular-
transformation error, with a named restart that is invoked with a transformation
and makes invert-transformation return that transformation. This is to allow a
drawing application, for example, to use a generalized inverse to transform a
region through a singular transformation.

 Note that with finite-precision arithmetic there are several low-level conditions
that might occur during the attempt to invert a singular or “almost singular”
transformation. (These include computation of a zero determinant, floating-point
underflow during computation of the determinant, or floating-point overflow
during subsequent multiplication.) invert-transformation signals the singu-
lar-transformation error for all of these cases.

compose-translation-with-transformation [Function]

Arguments: transformation dx dy

compose-scaling-with-transformation [Function]

Arguments: transformation sx sy &optional origin

compose-rotation-with-transformation [Function]

Arguments: transformation angle &optional origin
Summary: These functions create a new transformation by composing the transformation

transformation with a given translation, scaling, or rotation, respectively. The
order of composition is that the translation, scaling, or rotation “transformation”
is first, followed by transformation.

 dx and dy are as for make-translation-transformation. sx and sy are as for
make-scaling-transformation. angle and origin are as for make-rotation-
transformation.

 Note that these functions could be implemented by using the various construc-
tors. They are provided because it is common to build up a transformation as a
series of simple transformations.

compose-transformation-with-translation [Function]

Arguments: transformation dx dy
<Bold>86CLIM User Guide

compose-transformation-with-scaling [Function]

Arguments: transformation sx sy &optional origin

compose-transformation-with-rotation [Function]

Arguments: transformation angle &optional origin
Summary: These functions create a new transformation by composing a given translation,

scaling, or rotation, respectively, with the transformation transformation. The
order of composition is transformation first, followed by the translation, scaling,
or rotation “transformation.”

 dx and dy are as for make-translation-transformation. sx and sy are as for
make-scaling-transformation. angle and origin are as for make-rotation-
transformation.

 Note that these functions could be implemented by using the various constructors
and compose-transformations. They are provided because it is common to
build up a transformation as a series of simple transformations.

The following three functions are no different than using with-drawing-options with the
:transformation keyword argument supplied. However, they are sufficiently useful that
they are provided as a convenience to programmers.

In order to preserve referential transparency, these three forms apply the translation, rota-
tion, or scaling transformation first, then the rest of the transformation from (medi-
um-transformation medium). That is, the following two forms would return the
same transformation (assuming that the medium’s transformation in the second example is
the identity transformation):

(compose-transformations
 (make-translation-transformation dx dy)
 (make-rotation-transformation angle))

(with-translation (medium dx dy)
 (with-rotation (medium angle)
 (medium-transformation medium)))

with-translation [Macro]

Arguments: (medium dx dy) &body body
Summary: Establishes a translation on the medium medium that translates by dx in the x

direction and dy in the y direction, and then executes body with that transforma-
tion in effect.

 dx and dy are as for make-translation-transformation.
The CLIM Drawing Environment

 The medium argument is not evaluated, and must be a symbol that is bound to a
sheet or medium. If medium is t, *standard-output* is used. body may have
zero or more declarations as its first forms.

with-scaling [Macro]

Arguments: (medium sx &optional sy origin) &body body
Summary: Establishes a scaling transformation on the medium medium that scales by sx in

the x direction and sy in the y direction, and then executes body with that trans-
formation in effect. If sy is not supplied, it defaults to sx. If origin is supplied, the
scaling is about that point; if it is not supplied, it defaults to (0, 0).

 sx and sy are as for make-scaling-transformation.

 The medium argument is not evaluated, and must be a symbol that is bound to a
sheet or medium. If medium is t, *standard-output* is used. body may have
zero or more declarations as its first forms.

with-rotation [Macro]

Arguments: (medium angle &optional origin) &body body
Summary: Establishes a rotation on the medium medium that rotates by angle, and then exe-

cutes body with that transformation in effect. If origin is supplied, the rotation is
about that point; if it is not supplied, it defaults to (0, 0).

 angle and origin are as for make-rotation-transformation.

 The medium argument is not evaluated, and must be a symbol that is bound to a
sheet or medium. If medium is t, *standard-output* is used. body may have
zero or more declarations as its first forms.

These two functions also compose a transformation into the current transformation of a
stream, but have more complex behavior.

with-local-coordinates [Macro]

Arguments: (medium &optional x y) &body body
Summary: Binds the dynamic environment to establish a local coordinate system on the

medium medium with the origin of the new coordinate system at the position (x,
y). The “directionality” of the coordinate system is otherwise unchanged. x and
y are real numbers, and both default to 0.
<Bold>88CLIM User Guide

 The medium argument is not evaluated, and must be a symbol that is bound to a
sheet or medium. If medium is t, *standard-output* is used. body may have
zero or more declarations as its first forms.

with-first-quadrant-coordinates [Macro]

Arguments: (medium &optional x y) &body body
Summary: Binds the dynamic environment to establish a local coordinate system on the

medium medium with the positive x axis extending to the right and the positive
y axis extending upward, with the origin of the new coordinate system at the
position (x, y). x and y are real numbers, and both default to 0.

 The medium argument is not evaluated, and must be a symbol that is bound to a
sheet or medium. If medium is t, *standard-output* is used. body may have
zero or more declarations as its first forms.

3.5.5 Applying CLIM Transformations

Transforming a region applies a coordinate transformation to that region, thus moving its
position on the drawing plane, rotating it, or scaling it. Note that transforming a region does
not affect the region argument; it is free to either create a new region or return an existing
(cached) region.

These generic functions are implemented for all classes of transformations. Furthermore,
all subclasses of region and ink implement methods for transform-region and untrans-
form-region. That is, methods for the following generic functions will typically specialize
both the transformation and region arguments.

transform-region [Generic Function]

Arguments: transformation region
Summary: Applies transformation to the region region, and returns the transformed region.

untransform-region [Generic Function]

Arguments: transformation region
Summary: This is exactly equivalent to:

(transform-region (invert-transformation transformation) region)

 CLIM provides a default method for untransform-region on the transforma-
tion protocol class that does exactly this.
The CLIM Drawing Environment

transform-position [Generic Function]

Arguments: transformation x y
Summary: Applies the transformation transformation to the point whose coordinates are

the real numbers x and y, and returns two values, the transformed x coordinate
and the transformed y coordinate.

 transform-position is the spread version of transform-region in the case where
the region is a point.

untransform-position [Generic Function]

Arguments: transformation x y
Summary: This is exactly equivalent to:

(transform-position (invert-transformation transformation) x y)

 CLIM provides a default method for untransform-position on the transforma-
tion protocol class that does exactly this.

transform-distance [Generic Function]

Arguments: transformation dx dy
Summary: Applies the transformation transformation to the distance represented by the real

numbers dx and dy, and returns two values, the transformed dx and the trans-
formed dy.

 A distance represents the difference between two points. It does not transform
like a point.

untransform-distance [Generic Function]

Arguments: transformation dx dy
Summary: This is exactly equivalent to:

(transform-distance (invert-transformation transformation) dx dy)

 CLIM provides a default method for untransform-distance on the transforma-
tion protocol class that does exactly this.

transform-rectangle* [Generic Function]

Arguments: transformation x1 y1 x2 y2
Summary: Applies the transformation transformation to the rectangle specified by the four

coordinate arguments, which are real numbers. The arguments x1, y1, x2, and y2
are canonicalized in the same way as for make-bounding-rectangle. Returns
<Bold>90CLIM User Guide

four values that specify the minimum and maximum points of the transformed
rectangle in the order min-x, min-y, max-x, and max-y.

 It is an error if transformation does not satisfy rectilinear-transformation-p.

 transform-rectangle* is the spread version of transform-region in the case
where the transformation is rectilinear and the region is a rectangle.

untransform-rectangle* [Generic Function]

Arguments: transformation x1 y1 x2 y2
Summary: This is exactly equivalent to:

(transform-rectangle* (invert-transformation transformation) x1 y1
x2 y2)

 CLIM provides a default method for untransform-rectangle* on the transfor-
mation protocol class that does exactly this.
The CLIM Drawing Environment

<Bold>92CLIM User Guide

Chapter 4 Text Styles
Text Styles

4.1 Conceptual Overview of Text Styles

CLIM’s model for the appearance of text is that the application program should describe
how the text should appear in high-level terms, and that CLIM will take care of the details
of choosing a specific device font. This approach emphasizes portability.

You specify the appearance of text by giving it an abstract text style. Each CLIM medium
defines a mapping between these abstract style specifications and particular device-specific
fonts. At runtime, CLIM chooses an appropriate device font to represent the characters.
However, some programmers may require direct access to particular device fonts. The
text-style mechanism allows you to specify device fonts by name, thus trading portability
for control.

A text style is a combination of three characteristics that describe how characters appear.
Text style objects have components for family, face, and size:

family Characters of the same family have a typographic integrity,
so that all characters of the same family resemble one anoth-
er. One of :fix, :serif, :sans-serif, or nil.

face A modification of the family, such as bold or italic. One of
:roman (meaning normal), :bold, :italic, (:bold :italic), or
nil.

size The size of the character. One of the logical sizes (:tiny,
:very-small, :small, :normal, :large, :very-large, :huge,
:smaller, :larger), or a real number representing the size in
printer’s points, or nil.

Not all of these attributes need be specified for a given text style object. Text styles can be
merged in much the same way as pathnames are merged; unspecified components in the
style object (that is, components that have nil in them) may be filled in by the components
of a “default” style object.

default-text-style [Variable]

Summary: This is the default text style used by all streams.

Note that the sizes :smaller and :larger are treated differently than the others, in that they
are merged with the default text style size to produce a size that is discernibly smaller or
<Bold>94CLIM User Guide

larger. For example, a text style size of :larger would merge with a default text size of
:small to produce the resulting size :normal.

A text style object is called fully specified if none of its components is nil and the size com-
ponent is not a relative size (that is, neither :smaller nor :larger).

When text is rendered on a medium, the text style is mapped to some medium-specific de-
scription of the glyphs for each character. This description is usually that medium’s concept
of a font object. This mapping is mostly transparent to the application developer, but it is
worth noting that not all text styles have mappings associated with them on all mediums. If
the text style used does not have a mapping associated with it on the given medium, a spe-
cial text style reserved for this case will be used.

undefined-text-style [Variable]

Summary: The text style that is used as a fallback if no mapping exists for some other text
style when some text is about to be rendered on a display device (via
write-string and draw-string*, for example). This text style must be fully
merged, and it must have a mapping for all display devices.

4.2 CLIM Text Style Objects

It is often useful to create a text style object that represents a style you wish to use frequent-
ly, rather than continually specifying the corresponding text style suboptions.

For example, if you want to write on a stream with a particular family, face, and size, you
can create a text style object using make-text-style:

(clim:with-text-style
 ((clim:make-text-style :fix :bold :large) my-stream)
 (write-string "Here is a text-style example." my-stream))

Note that text style objects are interned. That is, two different invocations of make-text-
style with the same combination of family, face and size will result in the same (in the sense
of eq) text style object. For this reason, you should not modify text style objects.

=> Here is a text-style example.
Text Styles

text-style [Protocol Class]

Summary: The protocol class for text styles. If you want to create a new class that behaves
like a text style, it should be a subclass of text-style. Subclasses of text-style
must obey the text style protocol.

text-style-p [Function]

Arguments: object
Summary: Returns t if object is a text style; otherwise, it returns nil.

standard-text-style [Class]

Summary: An instantiable class that implements text styles. It is a subclass of text-style.
This is the class that make-text-style instantiates. Members of this class are
immutable.

make-text-style [Function]

Arguments: family face size
Summary: Returns an object of class standard-text-style with a family of family, a face of

face, and a size of size.

 family is one of :fix, :serif, :sans-serif, or nil.

 face is one of :roman, :bold, :italic, (:bold :italic), or nil.

 size is a real number representing the size in printer’s points, one of the logical
sizes (:normal, :tiny, :very-small, :small, :large, :very-large, :huge), a rela-
tive size (:smaller or :larger), or nil.

You can use text style suboptions to specify characteristics of a text style object. Each text
style suboption has a reader function which returns the current value of that component
from a text style object. The suboptions are listed as follows.

:text-family [Option]

text-style-family [Generic Function]

Arguments: text-style
Summary: Specifies the family of the text style text-style.
<Bold>96CLIM User Guide

:text-face [Option]

text-style-face [Generic Function]

Arguments: text-style
Summary: Specifies the face of the text style text-style.

:text-size [Option]

text-style-size [Generic Function]

Arguments: text-style
Summary: Specifies the size of the text style text-style.

4.3 CLIM Text Style Functions

The following functions can be used to parse, merge, and create text-style objects, as well
as to read the components of the objects.

parse-text-style [Generic Function]

Arguments: style-spec
Summary: Returns a text-style object. style-spec may be a text-style object or a device font,

in which case it is returned as is, or it may be a list of the family, face, and size
(that is, a “style spec”), in which case it is “parsed” and a text-style object is
returned.

 This function is for efficiency, since a number of common functions that take a
style object as an argument can also take a style spec, in particular draw-text.

merge-text-styles [Generic Function]

Arguments: style1 style2
Summary: Merges the text styles style1 with style2; that is, returns a new text style that is

the same as style1, except that unspecified components in style1 are filled in from
style2. For convenience, the two arguments may be also be style specs.

 When merging the sizes of two text styles, if the size from style1 is a relative size,
the resulting size is either the next smaller or next larger size than is specified by
style2. The ordering of sizes, from smallest to largest, is :tiny, :very-small,
:small, :normal, :large, :very-large, and :huge.
Text Styles

 Merging font faces is also possible. For example, merging bold and italic faces
results in a bold-italic face. When the faces are mutually exclusive, the face spec-
ified by style1 prevails.

text-style-components [Generic Function]

Arguments: text-style
Summary: Returns the components of text-style as three values (family, face, and size).

text-style-family [Generic Function]

Arguments: text-style
Summary: Returns the family component of text-style.

text-style-face [Generic Function]

Arguments: text-style
Summary: Returns the face component of text-style.

text-style-size [Generic Function]

Arguments: text-style
Summary: Returns the size component of text-style.

text-style-ascent [Generic Function]

Arguments: text-style medium
Summary: The ascent (an integer) of text-style as it would be rendered on medium medium.

Summary: The ascent of a text style is the ascent of the medium’s font corresponding to
text-style. The ascent of a font is the distance between the top of the tallest char-
acter in that font and the baseline.

text-style-descent [Generic Function]

Arguments: text-style medium
Summary: The descent (an integer) of text-style as it would be rendered on medium

medium.

 The descent of a text style is the descent of the medium’s font corresponding to
text-style. The descent of a font is the distance between the baseline and the bot-
tom of the lowest descending character (usually “y,” “q,” “p,” or “g”).
<Bold>98CLIM User Guide

text-style-height [Generic Function]

Arguments: text-style medium
Summary: Returns the height (an integer) of the “usual character” in text-style on medium

medium.

 The height of a text style is the sum of its ascent and descent.

text-style-width [Generic Function]

Arguments: text-style medium
Summary: Returns the width (an integer) of the “usual character” in text-style on medium

medium.

text-style-fixed-width-p [Generic Function]

Arguments: text-style medium
Summary: Returns t if text-style will map to a fixed-width font on medium medium; other-

wise, it returns nil.

 The methods for this generic function will typically specialize both the text-style
and port arguments. CLIM provides a “trampoline” for this generic function for
mediums and output sheets which will simply call the method for the port.

text-size [Generic Function]

Arguments: medium string &key text-style (start 0) end
Summary: Computes the “cursor motion” in device units that would take place if string

(which may be either a string or a character) were output to the medium medium
starting at the position (0, 0).

 Five values are returned: the total width of the string in device units, the total
height of the string in device units, the final x cursor position (which is the same
as the width if there are no #\Newline characters in the string), the final y cur-
sor position (which is 0 if the string has no #\Newline characters in it, and is
incremented by the line height of medium for each #\Newline character in the
string), and the string’s baseline.

 text-style specifies what text style is to be used when doing the output, and
defaults to medium-merged-text-style of the medium. text-style must be a fully
specified text style. start and end may be used to specify a substring of string.

 Programmers needing to account for kerning or the ascent or descent of the text
style should measure the size of the bounding rectangle of the text rendered on
medium.
Text Styles

 All mediums and output sheets implement a method for this generic function.

4.4 Text Style Binding Forms

CLIM provides several forms with which you can establish a binding of a text style or a
text-style component. The extent of the binding is the dynamic extent of the particular bind-
ing form.

with-text-style [Macro]

Arguments: (medium text-style) &body body
Summary: Binds the current text style of the medium medium to correspond to the new text

style. text-style may either be a text style object or a style spec (that is, a list of a
family, a face, and a size). body is executed with the new text style in effect.

 The medium argument is not evaluated, and must be a symbol that is bound to a
sheet or medium. If medium is t, *standard-output* is used. body may have
zero or more declarations as its first forms.

 with-text-style expands into a call to invoke-with-text-style and supplies a func-
tion that executes body as the continuation argument to invoke-with-text-style.

invoke-with-text-style [Generic Function]

Arguments: medium continuation text-style
Summary: Binds the current text style of the medium medium to correspond to the new text

style, and calls the function continuation with the new text style in effect. text-
style may either be a text style object or a style spec (that is, a list of a family, a
face, and a size). continuation is a function of one argument, the medium; it has
dynamic extent.

 medium can be a medium, a sheet that supports the sheet output protocol, or a
stream that outputs to such a sheet. All classes that obey the medium protocol
implement a method for invoke-with-text-style.

The following macros are “convenience” forms of with-text-style that expand into calls to
invoke-with-text-style.

The medium argument of these macros is not evaluated, and must be a symbol that is bound
to a sheet or medium. If medium is t, *standard-output* is used. body may have zero or
more declarations as its first forms.
<Bold>100CLIM User Guide

with-text-face [Macro]

Arguments: (medium face) &body body
Summary: Binds the current text face of medium to correspond to the new text face face,

within the body. face is one of :roman, :bold, :italic, (:bold :italic), or nil.

with-text-family [Macro]

Arguments: (medium family) &body body
Summary: Binds the current text family of medium to correspond to the new text family

family, within the body. family is one of :fix, :serif, :sans-serif, or nil.

with-text-size [Macro]

Arguments: (medium size) &body body
Summary: Binds the current text size of medium to correspond to the new text size size,

within the body.

4.5 Controlling Text Style Mappings

Text styles are mapped to fonts using the text-style-mapping function, which takes a port
and a text style, and returns a font object. All ports implement methods for the following
generic functions, for all classes of text style.

The objects used to represent a font mapping are unspecified and are likely to vary from
port to port. For instance, a mapping might be some sort of font object on one type of port,
or might simply be the name of a font on another. Part of initializing a port is to define the
mappings between text styles and font names for the port’s host window system.

text-style-mapping [Generic Function]

Arguments: port text-style
Summary: Returns the font mapping that will be used when rendering characters in the text

style text-style on any medium on the port port. If there is no mapping associated
with text-style on port, then some other object will be returned that corresponds
to the “unmapped” text style.

(setf text-style-mapping) [Generic Function]

Arguments: mapping port text-style
Text Styles

Summary: Sets the text style mapping for port and text-style to mapping. port and text-style
are as for text-style-mapping. mapping is either a font name or a list of the form
(:style family face size); in the latter case, the given style is translated at runtime
into the font represented by the specified style.

make-device-font-text-style [Function]

Arguments: display-device device-font-name
Summary: Returns a text style object that will be mapped directly to the specified device

font when text is output to the display device with this style. Device font styles
do not merge with any other kind of style. As the specified font is device-spe-
cific, the use of this function may result in non-portable applications.

 This code creates a device font text style and applies it to a string of characters.

(let ((my-device-font
(make-device-font-text-style
(port my-sheet)
(gp:make-font-description :family "courier"
:size 14
:weight :medium
:slant :italic))))
(draw-text* my-sheet "This appears in the specified device font."
10 10 :text-style my-device-font))
<Bold>102CLIM User Guide

Chapter 5 Drawing in Color
Drawing in Color

5.1 Conceptual Overview of Drawing With
Color

This chapter describes the :ink drawing option and the simpler values that can be supplied
for that option, such as colors.

To draw in color, you supply the :ink drawing option to CLIM’s drawing functions (see
Chapter 2, “Drawing Graphics in CLIM,” for details). :ink can take as its value:

■ a color

■ the constant +foreground-ink+

■ the constant +background-ink+

■ a flipping ink

The drawing functions work by selecting a region of the drawing plane and painting it with
color. The region is clipped by the current :clipping-region drawing option in effect, and
is then transformed by the current :transformation drawing option (see Chapter 3, “The
CLIM Drawing Environment,” for the rules controlling these options). The shape can be a
graphical area (such as a rectangle or an ellipse), a path (such as a line segment or the out-
line of an ellipse), or the letter forms of text. Any viewports or dataports attached to this
drawing plane are updated accordingly. The :ink drawing option is never affected by the
:transformation drawing option nor by the sheet transformation; this ensures that stipple
patterns on adjacent sheets join seamlessly.

Along with its drawing plane, a medium has a foreground and a background. The fore-
ground is the default ink when the :ink drawing option is not specified. The background is
drawn all over the drawing plane before any output is drawn. You can erase by drawing the
background over the region to be erased. You can change the foreground or background at
any time. This changes the contents of the drawing plane. The effect is as if everything on
the drawing plane is erased, the background is drawn on the entire drawing plane, and then
everything that was ever drawn (provided it was saved in the output history) is redrawn us-
ing the new foreground and background.
<Bold>104CLIM User Guide

5.1.1 Color Objects

A color in CLIM is an object representing the intuitive definition of color: white, black, red,
pale yellow, and so forth. The visual appearance of a single point is completely described
by its color.

A color can be specified by three real numbers between 0 and 1 inclusive, giving the
amounts of red, green, and blue. Three 0’s mean black; three 1’s mean white. A color can
also be specified by three numbers giving the intensity, hue, and saturation. A totally unsat-
urated color (a shade of gray) can be specified by a single real number between 0 and 1,
giving the amount of white.

You can obtain a color object by calling one of make-rgb-color, make-ihs-color, or
make-gray-color, or by using one of the predefined colors listed in Section 5.3, “Pre-
defined Color Names in LispWorks CLIM,” or . Specifying a color object as the :ink draw-
ing option, the foreground, or the background causes CLIM to use that color in the appro-
priate drawing operations.

color [Protocol Class]

Summary: The color class is the protocol class for a color. If you want to create a new class
that behaves like a color, it should be a subclass of color. Subclasses of color
must obey the color protocol.

 All of the standard instantiable color classes provided by CLIM are immutable.

colorp [Function]

Arguments: object
Summary: Returns t if object is a color; otherwise, it returns nil.

5.1.2 Rendering

When CLIM renders the graphics and text in the drawing plane onto a real display device,
physical limitations of the display device force the visual appearance to be an approxima-
tion of the drawing plane. Colors that the hardware doesn’t support might be approximated
by using a different color or by using a stipple pattern. Even primary colors such as red and
green can’t be guaranteed to have distinct visual appearance on all devices, so if device in-
dependence is desired, it is best to use make-contrasting-inks (which produces designs of
different appearances) rather than a fixed palette of colors.
Drawing in Color

The line style and text style respectively control the region of the display device that is col-
ored when a path or text is rendered.

5.2 CLIM Operators for Drawing in Color

The following functions create colors. These functions produce objects that have equivalent
effects and are indistinguishable when drawn; the only difference is in how the color com-
ponents are specified. Whether these functions use the specified values exactly or approx-
imate them because of limited color resolution is unspecified. Whether these functions cre-
ate a new object or return an existing object with equivalent color component values is also
unspecified.

make-rgb-color [Function]

Arguments: red green blue
Summary: Returns a member of the class color. The red, green, and blue arguments are real

numbers between 0 and 1 (inclusive) that specify the values of the corresponding
color components.

make-ihs-color [Function]

Arguments: intensity hue saturation
Summary: Returns a member of class color. The intensity argument is a real number

between 0 and (inclusive). The hue and saturation arguments are real num-
bers between 0 and 1 (inclusive).

make-gray-color [Function]

Arguments: luminance
Summary: Returns a member of class color. luminance is a real number between 0 and 1

(inclusive). On a black-on-white display device, 0 means black, 1 means white,
and the other values are shades of gray. On a white-on-black display device, 0
means white, 1 means black, and the other values are shades of gray.

make-contrasting-inks [Function]

Arguments: n &optional k
Summary: If k is not supplied, this returns a vector of n designs with recognizably different

appearance. Elements of the vector are guaranteed to be acceptable values for the
:ink argument to the drawing functions, and will not include +foreground-ink+,

3

<Bold>106CLIM User Guide

+background-ink+, or nil. Their class is otherwise unspecified. The vector is a
fresh object that may be modified.

 If k is supplied, it must be an integer between 0 and n š– 1 (inclusive), in which
case make-contrasting-inks returns the kth design rather than returning a vector
of designs.

 CLIM supports at least 8 different contrasting inks. If n is greater than the number
of contrasting inks, make-contrasting-inks signals an error.

 The rendering of the design may be a color or a stippled pattern, depending on
whether the output medium supports color.

contrasting-inks-limit [Generic Function]

Arguments: port
Summary: Returns the number of contrasting colors (or stipple patterns if port is mono-

chrome or grayscale) that can be rendered on any medium on the port port. All
classes that obey the medium protocol implement a method for this generic func-
tion.

The following two functions comprise the color protocol. Both of them return the compo-
nents of a color. All subclasses of color implement methods for these generic functions.

color-rgb [Generic Function]

Arguments: color
Summary: Returns three values, the red, green, and blue components of the color color. The

values are real numbers between 0 and 1 (inclusive).

color-ihs [Generic Function]

Arguments: color
Summary: Returns three values, the intensity, hue, and saturation components of the color

color. The first value is a real number between 0 and (inclusive). The second
and third values are real numbers between 0 and 1 (inclusive).

3

Drawing in Color

5.3 Predefined Color Names in LispWorks
CLIM

The following color constants are provided in LispWorks CLIM: +black+, +white+, +red+,
+blue+, +green+, +cyan+, +magenta+, and +yellow+. Other predefined colors are available
through the facility of a palette. Application programs can define other colors.

5.4 Indirect Inks

Drawing with an indirect ink is the same as drawing another design named directly. For
example, +foreground-ink+ is a design that draws the medium’s foreground design and is
the default value of the :ink drawing option.

Indirect ink is a useful abstraction that enables your code to ignore the issue of what specific
ink to use. It is also useful for output recording. For example, you can draw with +fore-
ground-ink+, change to a different medium-foreground, and replay the output record; the
replayed output will come out in the new color.

You can change the foreground or background design of a medium at any time. This chang-
es the contents of the medium’s drawing plane. The effect is as if everything on the drawing
plane is erased, the background design is drawn onto the drawing plane, and then every-
thing that was ever drawn (provided it was saved in the output history) is drawn over again,
using the medium’s new foreground and background.

If an infinite recursion is created using an indirect ink, an error is signaled when the recur-
sion is created, when the design is used for drawing, or both. Two indirect inks have been
defined:

+foreground-ink+ [Constant]

Summary: An indirect ink that uses the medium’s foreground design.

+background-ink+ [Constant]

Summary: An indirect ink that uses the medium’s background design.
<Bold>108CLIM User Guide

5.5 Flipping Ink

Use “flipping ink” to exchange the colors of two inks. You can also use it to exchange the
values of +foreground-ink+ and +background-ink+. For an example of its use, see Sub-
section 5.6.1.

+flipping-ink+ [Constant]

Summary: A flipping ink that flips +foreground-ink+ and +background-ink+.

make-flipping-ink [Function]

Arguments: ink1 ink2
Summary: Returns a design that interchanges occurrences of the two designs ink1 and ink2.

 Drawing a flipping ink over a background changes the color in the background
that would have been drawn by ink1 at that point into the color that would have
been drawn by ink2 at that point, and vice versa. The effect on any color other
than the colors determined by those two inks is unspecified; however, drawing
the same figure twice using the same flipping ink is guaranteed to be an “iden-
tity” operation. If either ink1 or ink2 is not solid, the consequences are unspeci-
fied. The purpose of flipping is to allow the use of (xor) operations for
temporary changes to the display.

 If ink1 and ink2 are equivalent, the result can be +nowhere+.

5.6 Examples of Simple Drawing Effects

To draw in the foreground color, use the default, or specify :ink +foreground-ink+.

To erase, specify :ink +background-ink+.

To draw in color, specify :ink +green+, :ink (make-rgb-color 0.6 0.0
0.4), and so forth.

To draw an opaque gray, specify :ink (make-gray-color 0.25). This will draw
a shade of gray independent of the window’s foreground color. On a non-color, non-gray-
scale display this will generally turn into a stipple.
Drawing in Color

To draw a stipple of little bricks, specify :ink bricks, where bricks is defined as:

(make-rectangular-tile
 (make-pattern #2a(0 0 0 0 1 0 0 0 0)
 (0 0 0 1 0 0 0 0)
 (0 0 0 1 0 0 0 0)
 (1 1 1 1 1 1 1 1)
 (0 0 0 0 0 0 0 1)
 (0 0 0 0 0 0 0 1)
 (0 0 0 0 0 0 0 1)
 (1 1 1 1 1 1 1 1))
 (list +background+ +foreground+)) 8 8)

To draw a tiled pattern, specify :ink (make-rectangular-tile (make-pat-
tern array colors)).

To draw a pixmap, use (draw-design (make-pattern array colors) me-
dium).
<Bold>110CLIM User Guide

5.6.1 Using Flipping Ink

(defun cmd-rubberband ()
 (let ((x1 0) ; x1, y1 represents the fix point
 (y1 0)
 (x2 0) ; x2,y2 represents the point that is changing
 (y2 0)
 (mouse-button-press nil)
 ;; press to select pivot
 (stream (get-frame-pane *application-frame* ’main)))
 (tracking-pointer (stream)
 (:pointer-button-press
 (event x y)
 (setf x1 x y1 y x2 x y2 y)
 (draw-line* stream x1 y1 x2 y2
 :ink +flipping-ink+)
 (setf mouse-button-press t))
 (:pointer-motion
 (window x y)
 (when Mouse-button-press
 ;;erase
 (draw-line* stream x1 y1 x2 y2
 :ink +flipping-ink+)
 ;; draw
 (draw-line* stream x1 y1 x y
 :ink +flipping-ink+)
 (setf x2 x y2 y)))
 (:pointer-button-release
 (event x y)
 (cond
 ((eq mouse-button-press t)
 (return
 (list x1 y1 x2 y2))))))))
Drawing in Color

<Bold>112CLIM User Guide

Chapter 6 Presentation Types

6.1 Conceptual Overview of CLIM Presentation
Types

6.1.1 User Interaction With Application Objects

In object-oriented programming systems, applications are built around internal objects that
model something in the real world. For example, an application that models a university has
objects representing students, professors, and courses. A CAD system for designing circuits
has objects representing gates, resistors, and so on. A desktop publishing system has objects
representing paragraphs, headings, and illustrations.
Presentation Types

Figure 17. User Interaction With Application Objects

Application objects have to be presented to the user, and the user has to be able to interact
with them. In CLIM, an interface enables the user to see visual representations of the ap-
plication objects and, via these representations, operate on the application objects them-
selves.

A very basic part of designing a CLIM user interface is specifying how the user will interact
with application objects. There are two directions of interaction: you must present applica-
tion objects to the user as output, and you must accept input from the user that indicates
application objects. This is done with two basic functions, present and accept, plus some
related functions.

6.1.2 Presentations and Presentation Types

CLIM keeps track of the association between a visual representation of an object and the
object itself. CLIM maintains this association in a data structure called a presentation. A
presentation embodies three things:

■ The underlying application object

■ Its presentation type

■ Its visual representation

Application
Object

Presentation

presentaccept
<Bold>114CLIM User Guide

In other words, a presentation is a special kind of output record that remembers not only
output, but the object associated with the output and the semantic type associated with that
object.

A presentation type can be thought of as a CLOS class that has some additional function-
ality pertaining to its roles in the user interface of an application. In defining a presentation
type, the application programmer defines all of the user interface components of the entity:

■ Its displayed representation, textual or graphical

■ Textual representation, for user input via the keyboard

■ Pointer sensitivity, for user input via the pointer

In other words, the application programmer describes in one place all the information about
an object necessary to display it to the user and interact with the user for object input.

6.1.3 Output With Its Semantics Attached

For example, a university application has a “student” application object. The user sees a vi-
sual representation of a student, which might be a textual representation, a graphical repre-
sentation (such as a form with name, address, and student id number), or even an image of
the face of the student. The presentation type of the student is “student”; that is, the seman-
tic type of the object that appears on the screen is “student.” Since the type of a displayed
object is known, CLIM knows which operations are appropriate to perform on the dis-
played object. For example, when a student is displayed, it is possible to perform operations
such as send-tuition-bill or show-transcript.

6.1.4 Input Context

Presentations are the basis of many of the higher-level application-building tools that use
accept to get input and present to display output. A command that takes arguments as input
specifies the presentation type of each argument. When a call to accept is made, CLIM es-
tablishes an “input-context” based on the presentation type. This input context is used to
determine which presentations will be sensitive to mouse clicks. For instance, when a user
gives the send-tuition-bill command, the input context is of type “student,” so any students
displayed—both those being displayed for the first time and those that have been displayed
before—are sensitive. This is because presentations that have been output in previous user
Presentation Types

interactions retain their semantics; that is, CLIM has recorded the fact that a student has
been displayed and has saved this information.

6.1.5 Inheritance

CLIM presentation types are designed to use inheritance, just as CLOS classes do. For ex-
ample, a university might need to model “night-student,” which is a subclass of “student.”
When the input context is looking for a student, night-students are sensitive because they
are represented as a subtype of student.

The set of presentation types forms a type lattice, an extension of the Common Lisp CLOS
type lattice. When a new presentation type is defined as a subtype of another presentation
type, it inherits all the attributes of the supertype except those explicitly overridden in the
definition.

6.1.6 Presentation Translators

You can define presentation translators to make the user interface of your application more
flexible. For example, suppose the input context is expecting a command. In this input con-
text, all displayed commands are sensitive, so the user can point to one to execute it. How-
ever, suppose the user points to another kind of displayed object, such as a student. In the
absence of a presentation translator, the student is not sensitive because only commands can
be entered to this input context.

In the presence of a presentation translator that translates from students to commands, how-
ever, both students and commands would be sensitive. When the student is highlighted, the
middle pointer button might execute the command show-transcript for that student.

6.1.7 What the Application Programmer Does

By the time you get to the point of designing the user interface, you have probably designed
the rest of the application and know what the application objects are. At this point, you need
to do the following:

1. Decide what types of application objects will be presented to the user as output and ac-
cepted from the user as input.
<Bold>116CLIM User Guide

2. For each type of application object that the user will see, assign a corresponding pre-
sentation type. In many cases, this means simply using a predefined presentation type.
In other cases, you need to define a new presentation type yourself. Usually the presen-
tation type is the same as the class of the application object.

3. Use the application-building tools to specify the windows, menus, commands, and oth-
er elements of the user interface. Most of these elements will use the presentation types
of your objects.

6.2 How to Specify a CLIM Presentation Type

This section describes how to specify a CLIM presentation type. For a complete description
of CLIM presentation types, options, and parameters, see Section 6.5, “Predefined Presen-
tation Types”.

Several CLIM operators take presentation types as arguments. You specify them using a
presentation type specifier.

Most presentation type specifiers are also Common Lisp type specifiers. For example, the
boolean presentation type is a Common Lisp type specifier. Not all presentation types are
Common Lisp types, and not all Common Lisp types are presentation types (e.g., hash-ta-
bles), but there is a lot of overlap (e.g., commands, numbers, and strings).

A presentation type specifier appears in one of the following three patterns:

■ name

■ (name parameters...)

■ ((name parameters...) options...)

The first pattern, name, indicates a simple presentation type, which can be one of the pre-
defined presentation types or a user-defined presentation type. Examples of the first pattern
are:

integer A predefined presentation type

pathname A predefined presentation type

boolean A predefined presentation type
Presentation Types

student A user-defined presentation type

The second pattern, (name parameters...), supports parameterized presentation
types, which are analogous to parameterized Common Lisp types such as (integer 0
9) in method lambda lists. The function presentation-typep uses the parameters to check
object membership in a type. Adding parameters to a presentation type specifier produces
a subtype that contains some but not necessarily all of the objects that are members of the
unparameterized type. Thus the parameters can turn off the sensitivity of some presenta-
tions that would otherwise be sensitive. The parameters state a restriction on the presenta-
tion type, so a parameterized presentation type is a specialization or a subset of the unpa-
rameterized presentation type of that name.

Examples of the second pattern are:

(integer 0 10) A parameterized type indicating an integer in the range of
zero through ten.

(string 25) A parameterized type indicating a string whose length is 25.

(member :yes :no :maybe)

A parameterized type that can be one of the three given val-
ues: :yes, :no, and :maybe.

The third pattern, ((name parameters...) options...), enables you to specify
options that affect the use or appearance of the presentation, but not its semantic meaning.
The options are keyword/value pairs, and are defined by the presentation type. All presen-
tation types accept the :description option, which enables you to provide a string describ-
ing the presentation type. If provided, this option overrides the description specified in the
define-presentation-type form, and also overrides the describe-presentation-type pre-
sentation method.

For example, you can use this form to specify an octal integer from 0 to 10:

((integer 0 10) :base 8)

While in theory some presentation type options may appear as an option in any presentation
type specifier, currently the only such option is :description.

Each presentation type has a name, which is usually a symbol naming the presentation type.
The name can also be a CLOS class object (but not a built-in class object); this usage pro-
vides the support for anonymous CLOS classes.
<Bold>118CLIM User Guide

Every presentation type is associated with a CLOS class. If name is a class object or the
name of a class, and that class is not a built-in class, that class is used as the associated class.
Otherwise, define-presentation-type defines a class with the metaclass clim:presenta-
tion-type-class and superclasses determined by the presentation type definition. This class
is not named name, since that could interfere with built-in Common Lisp types such as
and, member, and integer. class-name of this class returns a list of the form (presen-
tation-type name). clim:presentation-type-class is a subclass of standard-class.

Programmers are required to evaluate the defclass form first in the case when the same
name is used in both a defclass and a define-presentation-type.

Every CLOS class (except for built-in classes) is a presentation type, as is its name. Unless
it has been defined with define-presentation-type, it allows no parameters and no options.

Presentation type inheritance is used both to inherit methods (“what parser should be used
for this type?”), and to establish the semantics for the type (“what objects are sensitive in
this input context?”). Inheritance of methods is the same as in CLOS and thus depends only
on the type name, not on the parameters and options.

During presentation method combination, presentation type inheritance arranges to trans-
late the parameters of a subtype into a new set of parameters for its supertype, and translates
the options of the subtype into a new set of options for the supertype.

6.3 Using CLIM Presentation Types for Output

Presentations for program output so that the objects presented will be acceptable to input
functions. Suppose, for example, you present an object, such as 5, as a TV channel. When
a command that takes a TV channel as an argument is issued or when a presentation trans-
lation function is “looking for” such a thing, the system will make that object sensitive. Al-
so, when a command that is looking for a different kind of object (such as a highway num-
ber), the object 5 is not sensitive, because that object represents a TV channel, not a high-
way number.

A presentation includes not only the displayed representation itself, but also the object pre-
sented and its presentation type. When a presentation is output to a CLIM window, the ob-
ject and presentation type are “remembered”—that is, the object and type of the display at
a particular set of window coordinates are recorded in the window’s output history. Because
Presentation Types

this information remains available, previously presented objects are themselves available
for input to functions for accepting objects.

An application can use the following operators to produce output that will be associated
with a given Lisp object and declared to be of a specified presentation type. This output is
saved in the window’s output history as a presentation. Specifically, the presentation re-
members the output that was performed (by saving the associated output record), the Lisp
object associated with the output, and the presentation type specified at output time. The
object can be any Lisp object.

6.3.1 CLOS Operators

CLOS provides these top-level facilities for presenting output. with-output-as-presenta-
tion is the most general operator, and present and present-to-string support common idi-
oms.

with-output-as-presentation [Macro]

Arguments: (stream object type &key modifier single-box allow-sensitive-inferiors
record-type) &body body

Summary: The output of body to the extended output recording stream stream is used to
generate a presentation whose underlying object is object and whose presenta-
tion type is type. Each invocation of this macro results in the creation of a pre-
sentation object in the stream’s output history unless output recording has been
disabled or :allow-sensitive-inferiors nil was specified at a higher level, in
which case the presentation object is not inserted into the history. with-out-
put-as-presentation returns the presentation corresponding to the output.

 The stream argument must be a symbol that is bound to an extended output
stream or output recording stream. If stream is t, *standard-output* is used.
body may have zero or more declarations as its first forms.

 type is a presentation type specifier and may be an abbreviation.

 modifier, which defaults to nil, is a function that describes how the presentation
object might be modified. For example, it might be a function of one argument
(the new value) that can be called in order to store a new value for object after a
user somehow “edits” the presentation. modifier must have indefinite extent.

 single-box is used to specify the presentation-single-box component of the
resulting presentation. It can take on the values described under presenta-
tion-single-box.
<Bold>120CLIM User Guide

 When the boolean allow-sensitive-inferiors is nil, nested calls to present or
with-output-as-presentation inside this one will not generate presentations.
The default is t.

 record-type specifies the class of the presentation output record to be created. It
defaults to standard-presentation. This argument should only be supplied by a
programmer if there is a new class of output record that supports the updating
output record protocol.

 All arguments of this macro are evaluated:

 (with-output-as-presentation (stream #p"foo" ’pathname)
 (princ "FOO" stream))

present [Function]

Arguments: object &optional type &key stream view modifier acceptably
for-context-type single-box allow-sensitive-inferiors sensitive record-type

Summary: The object of presentation type type is presented to the extended output stream
stream (which defaults to *standard-output*), using the type’s present method
for the supplied view view. type is a presentation type specifier, and can be an
abbreviation. It defaults to (presentation-type-of object). The other arguments
and overall behavior of present are as for stream-present.

 The returned value of present is the presentation object that contains the output
corresponding to the object.

 present expands any presentation type abbreviations (type and for-context-type),
and then calls stream-present on stream, object, type, and the remaining key-
word arguments.

stream-present [Generic Function]

Arguments: stream object type &key view modifier acceptably for-context-type single-box
allow-sensitive-inferiors sensitive record-type

Summary: stream-present is the per-stream implementation of present, analogous to the
relationship between write-char and stream-write-char. All extended output
streams and output recording streams implement a method for stream-present.
The default method (on standard-extended-output-stream) is as follows.

 The object object of type type is presented to the stream stream by calling the
type’s present method for the supplied view view. The returned value is the pre-
sentation containing the output corresponding to the object.

 type is a presentation type specifier.
Presentation Types

 view is a view object that defaults to stream-default-view of stream.

 for-context-type is a presentation type specifier that is passed to the present
method for type, which can use it to tailor how the object will be presented.
for-context-type defaults to type.

 modifier, single-box, allow-sensitive-inferiors, and record-type are the same as
for with-output-as-presentation.

 acceptably defaults to nil, which requests the present method to produce text
designed to be read by human beings. If acceptably is t, it requests the present
method to produce text that is recognized by the accept method for for-con-
text-type. This makes no difference to most presentation types.

 The boolean sensitive defaults to t. If it is nil, no presentation is produced.

present-to-string [Function]

Arguments: object &optional type &key view acceptably for-context-type string index
Summary: Same as present inside with-output-to-string. If string is supplied, it must be

a string with a fill pointer. When index is supplied, it is used as an index into
string. view, acceptably, and for-context-type are as for present.

 The first returned value is the string. When string is supplied, a second value is
returned, the updated index.

6.3.2 Additional Functions for Operating on
Presentations in CLIM

The following functions can be used to examine or modify presentations:

presentation [Protocol Class]

Summary: The protocol class that corresponds to a presentation and is a subclass of out-
put-record. If you want to create a new class that behaves like a presentation, it
should be a subclass of presentation. Subclasses of presentation obey the pre-
sentation protocol.

presentationp [Function]

Arguments: object
Summary: Returns t if and only if object is of type presentation.
<Bold>122CLIM User Guide

presentation-object [Generic Function]

Arguments: presentation
Summary: Returns the object represented by the presentation presentation.

(setf presentation-object) [Generic Function]

Arguments: object presentation
Summary: Changes the object associated with the presentation presentation to object.

presentation-type [Generic Function]

Arguments: presentation
Summary: Returns the presentation type of the presentation presentation.

(setf presentation-type) [Generic Function]

Arguments: type presentation
Summary: Changes the type associated with the presentation presentation to type.

presentation-single-box [Generic Function]

Arguments: presentation
Summary: Returns the “single box” attribute of the presentation presentation, which con-

trols how the presentation is highlighted and when it is sensitive. This will be one
of four values:

• nil (the default)—if the pointer is pointing at a visible piece of the output that
was drawn as part of the presentation, then it is considered to be pointing at the
presentation. The presentation is highlighted by highlighting each visible part
of the output that was drawn as part of the presentation.

• t—if the pointer is inside the bounding rectangle of the presentation, it is con-
sidered to be pointing at the presentation. The presentation is highlighted by
drawing a thin border around the bounding rectangle.

• :position—like t for determining whether the pointer is pointing at the presen-
tation, but like nil for highlighting.

• :highlighting—like nil for determining whether the pointer is pointing at the
presentation, but like t for highlighting.

(setf presentation-single-box) [Generic Function]

Arguments: single-box presentation
Summary: Changes the “single box” attribute of the presentation presentation to single-box.
Presentation Types

presentation-modifier [Generic Function]

Arguments: presentation
Summary: Returns the “modifier” associated with the presentation presentation. The mod-

ifier is some sort of object that describes how the presentation object might be
modified. For example, it might be a function of one argument (the new value)
that can be called in order to store a new value for object after a user somehow
“edits” the presentation.

standard-presentation [Class]

Summary: The output record class that represents presentations. present normally creates
output records of this class. Members of this class are mutable.

:object [Initarg]

:type [Initarg]

:view [Initarg]

:single-box [Initarg]

:modifier [Initarg]

All presentation classes must handle these five initargs, which are used to specify, respec-
tively, the object, type, view, single-box, and modifier components of a presentation.

6.4 Using CLIM Presentation Types for Input

The primary means for getting input from the end user is accept. Characters typed in at the
keyboard in response to a call to accept are parsed, and the application object they represent
is returned to the calling function. (The parsing is done by the accept method for the pre-
sentation type.) Alternatively, if a presentation of the type specified by the accept call has
previously been displayed, the user can click on it with the pointer and accept returns it di-
rectly (that is, no parsing is required).

Examples:
<Bold>124CLIM User Guide

=>(clim:accept ’string)
Enter a string: abracadabra
"abracadabra"
=>(clim:accept ’string)
Enter a string [default abracadabra]: abracadabra
"abracadabra"

In the first call to accept, abracadabra was typed at the keyboard. In the second call to
accept, the user clicked on the keyboard-entered string of the first function. In both cases,
the string object "abracadabra" was returned.

Typically, not all objects are acceptable as input. Only an object of the presentation type
specified in the current accept function (or one of its subtypes) can be input. In other words,
the accept function establishes the current input context. For example, if the call to accept
specifies an integer presentation type, only an entered or displayed integer is acceptable.
Numbers displayed as integer presentations would, in this input context, be sensitive, but
those displayed as part of some other kind of presentation, such as a file pathname, would
not. In this manner, accept controls the input context and the sensitivity of displayed pre-
sentations.

It is possible, however, to click on a presentation of a type different from the current input
context and invoke a presentation translator that would produce a type acceptable to the in-
put context. For example, you could make a presentation of a file pathname translate to an
integer—say, its length—if you want. It is very common to translate to a command that op-
erates on a presented object. For more information on presentation translators, see Section
6.5, “Predefined Presentation Types”.

We said previously that the range of acceptable input is typically restricted, but how re-
stricted is up to you, the programmer. Using compound presentation types like and and or,
as well as other predefined or specially devised presentation types, gives you a high degree
of flexibility and control over the input context.

CLIM provides the following top-level operators for accepting typed input. The most gen-
eral operator is with-input-context, and accept and accept-from-string support common
idioms.

Note that, in general, CLIM accept operators do not insert newlines. If you want each call
to accept to appear on a new line, use terpri.

input-context [Variable]
Presentation Types

Summary: The current input context. This will be a list, each element of which corresponds
to a single call to with-input-context. The first element of the list is the context
established by the most recent call to with-input-context, and the last element
is the least recent call to with-input-context. This ordering of input contexts is
called “nesting.”

 The exact format of the elements in the list is unspecified, but will typically be a
list of a presentation type and a tag that corresponds to the point in the control
structure of CLIM at which the input context was established. *input-context*
and the elements in it may have dynamic extent.

with-input-context [Macro]

Arguments: (type &key override) (&optional object-var type-var event-var options-var)
form &body pointer-cases

Summary: Establishes an input context of presentation type type; this is done by binding
input-context to reflect the new input context. When the boolean override is
nil (the default), this invocation of with-input-context adds its context presen-
tation type to the current context. In this way an application can solicit more than
one type of input at the same time. Alternatively, when override is t, it overrides
the current input context rather than nesting inside the current input context.

 type can be a presentation type abbreviation.

 After establishing the new input context, form is evaluated. If no pointer gestures
are made by the user during the evaluation of form, the values of form are
returned. Otherwise, one of the pointer-cases is executed (based on the presen-
tation type of the object that was clicked on) and its value is returned. (See the
descriptions of call-presentation-menu and throw-highlighted-presentation.)
pointer-cases is constructed like a typecase statement clause list whose keys are
presentation types; the first clause whose key satisfies the condition (presenta-
tion-subtypep type key) is the one that is chosen.

 During the execution of one of the pointer-cases, object-var is bound to the object
that was clicked on (the first returned value from the presentation translator that
was invoked), type-var is bound to its presentation type (the second returned
value from the translator), and event-var is bound to the pointer button event that
was used. options-var is bound to any options that a presentation translator might
have returned (the third value from the translator), and will be either nil or a list
of keyword-value pairs. object-var, type-var, event-var, and options-var must all
be symbols.

 type, stream, and override are evaluated, but the others are not:
<Bold>126CLIM User Guide

 (with-input-context (’pathname)
 (path)
 (read)
 (pathname
 (format t
 "~&The pathname ~A was clicked on."
 path)))

accept [Function]

Arguments: type &key stream view default default-type provide-default insert-default
replace-input history prompt prompt-mode display-default
query-identifier activation-gestures additional-activation-gestures
delimiter-gestures additional-delimiter-gestures

Summary: Requests input of type type from the stream stream, which defaults to
query-io. accept returns two values, the object representing the input and its
presentation type. type is a presentation type specifier, and can be an abbrevia-
tion. The other arguments and overall behavior of accept are as for accept-1.

 accept first expands any presentation type abbreviations (type, default-type, and
history), handles the interactions between the default, default type, and presenta-
tion history, prompts the user by calling prompt-for-accept, and then calls
stream-accept on stream, type, and the remaining keyword arguments.

Note: The reason accept is specified as a three-function “trampoline” is to allow close
tailoring of the behavior of accept. accept itself is the function that should be
called by application programmers. stream-accept exists so that CLIM imple-
mentors can specialize on a per-stream basis. (For example, the behavior of
accepting-values can be implemented by creating a special class of stream that
turns calls to accept into fields of a dialog.) accept-1 is provided as a conve-
nient function for the stream-accept methods to call when they require the
default behavior.

stream-accept [Generic Function]

Arguments: stream type &key view default default-type provide-default insert-default
replace-input history prompt prompt-mode display-default
query-identifier activation-gestures additional-activation-gestures
delimiter-gestures additional-delimiter-gestures

Summary: stream-accept is the per-stream implementation of accept, analogous to the
relationship between read-char and stream-read-char. All extended input
streams implement a method for stream-accept. The default method (on stan-
dard-extended-input-stream) simply calls accept-1.

 The arguments and overall behavior of stream-accept are as for accept-1.
Presentation Types

accept-1 [Function]

Arguments: stream type &key view default default-type provide-default insert-default
replace-input history prompt prompt-mode display-default
query-identifier activation-gestures additional-activation-gestures
delimiter-gestures additional-delimiter-gestures

Summary: Requests input of type type from the stream stream. type must be a presentation
type specifier. view is a view object that defaults to stream-default-view of
stream. accept-1 returns two values, the object representing the input and its pre-
sentation type. (If frame-maintain-presentation-histories is true for the current
frame, then the returned object is also pushed on to the presentation history for
that object.)

 accept-1 establishes an input context via with-input-context, and then calls the
accept presentation method for type and view. accept allows input editing when
called on an interactive stream; see Section 16.1 for a discussion of input editing.
The call to accept will be terminated when the accept method returns or the user
clicks on a sensitive presentation. The typing of an activation and delimiter char-
acter is typically one way in which a call to an accept method is terminated.

 A top-level accept satisfied by keyboard input discards the terminating keyboard
gesture (which will be either a delimiter or an activation gesture). A nested call
to accept leaves the terminating gesture unread.

 If the user clicked on a matching presentation, accept-1 will insert the object into
the input buffer by calling presentation-replace-input on the object and type
returned by the presentation translator, unless either the boolean replace-input is
nil or the presentation translator returned an :echo option of nil. replace-input
defaults to t, but this default is overridden by the translator explicitly returning
an :echo option of nil.

 If default is supplied, then it and default-type are returned as values from
accept-1 when the input is empty. default-type must be a presentation type spec-
ifier. If default is not supplied and provide-default is t (the default is nil), then the
default is determined by taking the most recent item from the presentation type
history specified by history. If insert-default is t and there is a default, the default
will be inserted into the input stream by calling presentation-replace-input. It
will be editable.

 history must be either nil, meaning that no presentation type history will be used,
or a presentation type (or abbreviation) that names a history to be used for the
call to accept. history defaults to type.

 prompt can be t, which prompts by describing the type, nil, which suppresses
prompting, or a string, which is displayed as a prompt (via write-string). The
<Bold>128CLIM User Guide

default is t, which produces Enter a type: in a top-level call to accept or
“(type)” in a nested call to accept.

 If the boolean display-default is t, the default is displayed (if one was supplied).
If display-default is nil, the default is not displayed. display-default defaults to t
if prompt was provided; otherwise, it defaults to nil.

 prompt-mode can be :normal (the default) or :raw, which suppresses putting a
colon after the prompt and/or default in a top-level accept and suppresses putting
parentheses around the prompt and/or default in a nested accept.

 query-identifier is used within accepting-values to identify the field within the
dialog.

 activation-gestures is a list of gesture names that will override the current activa-
tion gestures, which are stored in *activation-gestures*. additional-activa-
tion-gestures can be supplied to add activation gestures without overriding the
current ones. See Subsection 16.2 for a discussion of activation gestures.

 delimiter-gestures is a list of gesture names that will override the current delim-
iter gestures, which are stored in *delimiter-gestures*. additional-delim-
iter-gestures can be supplied to add delimiter gestures without overriding the
current ones. See Subsection 16.2 for a discussion of delimiter gestures.

accept-from-string [Function]

Arguments: type string &key view default default-type start end
Summary: Like accept, except that the input is taken from string, starting at the position

specified by start and ending at end. view, default, and default-type are as for
accept.

 accept-from-string returns an object and a presentation type (as in accept), but
also returns a third value, the index at which input terminated.

prompt-for-accept [Generic Function]

Arguments: stream type view &rest accept-args &allow-other-keys
Summary: Called by accept to prompt the user for input of presentation type type on the

stream stream for the view view. accept-args are all of the keyword arguments
supplied to accept. The default method (on standard-extended-input-stream)
simply calls prompt-for-accept-1.
Presentation Types

prompt-for-accept-1 [Function]

Arguments: stream type &key default default-type display-default prompt prompt-mode
&allow-other-keys

Summary: Prompts the user for input of presentation type type on the stream stream.

 If the boolean display-default is t, then the default is displayed; otherwise it is
not. When the default is being displayed, default and default-type are taken as the
object and presentation type of the default to display. display-default defaults to
t if prompt is non-nil; otherwise, it defaults to nil.

 If prompt is nil, no prompt is displayed. If it is a string, that string is displayed as
the prompt. If prompt is t (the default), the prompt is generated by calling
describe-presentation-type to produce a prompt of the form Enter a type:
in a top-level call to accept, or “(type)” in a nested call to accept.

 prompt-mode can be :normal (the default) or :raw, which suppresses putting a
colon after the prompt and/or default in a top-level accept and suppresses putting
parentheses around the prompt and/or default in a nested accept.

6.5 Predefined Presentation Types

This section documents predefined CLIM presentation types, presentation type options,
and parameters. For more information on how to use these presentation types, see Section
6.2, “How to Specify a CLIM Presentation Type”.

Note that any presentation type with the same name as a Common Lisp type accepts the
same parameters as the Common Lisp type (and additional parameters in a few cases).

6.5.1 Basic Presentation Types

These basic presentation types correspond to the Common Lisp types of the same name.

t [Presentation Type]

Summary: The supertype of all other presentation types.

nil [Presentation Type]
<Bold>130CLIM User Guide

Summary: The subtype of all other presentation types. This has no printed representation,
and is useful only in writing “context independent” translators, that is, translators
whose to-type is nil.

null [Presentation Type]

Summary: The presentation type that represents “nothing.” The single object associated
with this type is nil, and its printed representation is “None.”

boolean [Presentation Type]

Summary: The presentation type that represents t or nil. The textual representation is “Yes”
and “No,” respectively.

symbol [Presentation Type]

Summary: The presentation type that represents a symbol.

keyword [Presentation Type]

Summary: The presentation type that represents a symbol in the keyword package. It is a
subtype of symbol.

blank-area [Presentation Type]

Summary: The type that represents all the places in a window where there is no presentation
that is applicable in the current input context. CLIM provides a single “null pre-
sentation” as the object associated with this type.

null-presentation [Variable]

Summary: The null presentation, which occupies all parts of a window in which there are
no applicable presentations. This will have a presentation type of blank-area.

6.5.2 Numeric Presentation Types

The following presentation types represent the Common Lisp numeric types of the same
name.

number [Presentation Type]
Presentation Types

Summary: The presentation type that represents a general number. It is the supertype of all
the number types described here.

complex [Presentation Type]

Summary: The presentation type that represents a complex number.

rational [Presentation Type]

Arguments: &optional low high
Summary: The presentation type that represents either a ratio or an integer between low and

high. Options to this type are base and radix, which are the same as for the inte-
ger type.

integer [Presentation Type]

Arguments: &optional low high
Summary: The presentation type that represents an integer between low and high. Options

to this type are base (default 10) and radix (default nil), which correspond to
print-base and *print-radix*, respectively. It is a subtype of rational.

ratio [Presentation Type]

Arguments: &optional low high.

 The presentation type that represents a ratio between low and high. Options to
this type are base and radix, which are the same as for the integer type. It is a
subtype of rational.

float [Presentation Type]

Arguments: &optional low high.

 The presentation type that represents a floating point number between low and
high.

6.5.3 Character and String Presentation Types

These two presentation types can be used for reading and writing characters and strings.

character [Presentation Type]
<Bold>132CLIM User Guide

Summary: The presentation type that represents a Common Lisp character object.

string [Presentation Type]

Arguments: &optional length
Summary: The presentation type that represents a string. If length is specified, the string

must have exactly that many characters.

6.5.4 Pathname Presentation Types

pathname [Presentation Type]

Summary: The presentation type that represents a pathname.

 The options are default-version, which defaults to :newest, default-type, which
defaults to nil, and merge-default, which defaults to t. If merge-default is nil,
accept returns the exact pathname that was entered; otherwise, accept merges
against the default and default-version. If no default is supplied, it defaults to
default-pathname-defaults. pathname has a default preprocessor that
merges the options into the default.

6.5.5 One-Of and Some-Of Presentation Types

The “one-of” and “some-of” presentation types can be used to accept and present one or
more items from a set of items. The set of items can be specified as a “rest” argument, a
sequence, or an alist.

This table summarizes single (“one-of”) and multiple (“some-of”) selection presentation
types. Each row represents a type of presentation. Columns contain the associated single
and multiple selection presentation types.
Presentation Types

completion [Presentation Type]

Arguments: sequence &key test value-key
Summary: The presentation type that selects one from a finite set of possibilities, with

“completion” of partial inputs. Several types are implemented in terms of the
completion type, including token-or-type, null-or-type, member, mem-
ber-sequence, and member-alist.

 sequence is a list or vector whose elements are the possibilities. Each possibility
has a printed representation, called its name, and an internal representation,
called its value. accept reads a name and returns a value. present is given a value
and outputs a name.

 test is a function that compares two values for equality. The default is eql.

 value-key is a function that returns a value, given an element of sequence. The
default is identity.

 The following presentation type options are available:

• name-key is a function that returns a name as a string, given an element of se-
quence. The default is a function that behaves as follows:

string -> the string

null -> “NIL”

cons -> string of the car

symbol -> string-capitalize of its name

otherwise -> princ-to-string of it

Arguments Single Multiple

most general completion subset-completion

&rest elements member subset

sequence member-sequence subset-sequence

alist member-alist subset-alist

Table 3. One-Of and Some-Of Selection Presentation Types
<Bold>134CLIM User Guide

• documentation-key is a function that returns either nil or a descriptive string,
given an element of sequence. The default always returns nil.

• test, value-key, name-key, and documentation-key must have indefinite extent.

• partial-completers is a possibly empty list of characters that delimit portions of
a name that can be completed separately. The default is a list of one character,
#\Space.

member [Presentation Type Abbreviation]

Arguments: &rest elements
Summary: The presentation type that specifies one of elements. The options are the same

as for completion.

member-sequence [Presentation Type Abbreviation]

Arguments: sequence &key test
Summary: Like member, except that the set of possibilities is the sequence sequence. The

parameter test and the options are the same as for completion.

member-alist [Presentation Type Abbreviation]

Arguments: alist &key test
Summary: Like member, except that the set of possibilities is the alist alist. Each element

of alist is either an atom, as in member-sequence, or a list whose car is the name
of that possibility and whose cdr is one of the following:

• The value (which must not be a cons)

• A list of one element, the value

• A property list that can contain the following properties:

:value—the value

:documentation—a descriptive string

 The test parameter and the options are the same as for completion except that
value-key and documentation-key default to functions that support the specified
alist format.

subset-completion [Presentation Type]

Arguments: sequence &key test value-key
Summary: The type that selects one or more from a finite set of possibilities, with “comple-

tion” of partial inputs. The parameters and options are the same as for comple-
Presentation Types

tion, plus the additional options separator and echo-space, which are as for the
sequence type. The subset types that follow are implemented in terms of the sub-
set-completion type.

subset [Presentation Type Abbreviation]

Arguments: &rest elements
Summary: The presentation type that specifies a subset of elements. Values of this type are

lists of zero or more values chosen from the possibilities in elements. The printed
representation is the names of the elements separated by commas. The options
are the same as for completion.

subset-sequence [Presentation Type Abbreviation]

Arguments: sequence &key test
Summary: Like subset, except that the set of possibilities is the sequence sequence. The

parameter test and the options are the same as for completion.

subset-alist [Presentation Type Abbreviation]

Arguments: alist &key test
Summary: Like subset, except that the set of possibilities is the alist alist.

6.5.6 Sequence Presentation Types

The following two presentation types can be used to accept and present a sequence of ob-
jects.

sequence [Presentation Type]

Arguments: type
Summary: The presentation type that represents a sequence of elements of type type. type

can be a presentation type abbreviation. The printed representation of a sequence
type is the elements separated by commas. accept returns a list.

 The options to this type are separator and echo-space. separator is used to spec-
ify a character that will act as the separator between elements of the sequence;
the default is the comma character #\,. echo-space is t or nil; when it is t (the
<Bold>136CLIM User Guide

default) a space will be automatically inserted into the input buffer when the user
types a separator character.

sequence-enumerated [Presentation Type]

Arguments: &rest types
Summary: sequence-enumerated is like sequence, except that the type of each element in

the sequence is individually specified.The elements of types can be presentation
type abbreviations. accept returns a list.

 The options to this type are separator and echo-space, which are as for the
sequence type.

6.5.7 Constructor Presentation Types

or [Presentation Type]

Arguments: &rest types
Summary: The presentation type that is used to specify one of several types, for example,

(or (member :all :none) integer). The elements of types can be
presentation type abbreviations. accept returns one of the possible types as its
second value, not the original or presentation type specifier.

and [Presentation Type]

Arguments: &rest types
Summary: The type that is used for “multiple inheritance.” and is frequently used in con-

junction with satisfies, for example: (and integer (satisfies
oddp)). The elements of types can be presentation type abbreviations.

 The and type has special syntax that supports the two “predicates,” satisfies and
not. satisfies and not cannot stand alone as presentation types and cannot be first
in types. not can surround either satisfies or a presentation type.

 The first type in types is the type whose methods will be used during calls to
accept and present.

6.5.8 Compound Presentation Types

The following compound presentation types are provided because they implement some
common idioms.
Presentation Types

token-or-type [Presentation Type Abbreviation]

Arguments: tokens type
Summary: A compound type that is used to select one of a set of special tokens, or an object

of type type. tokens is anything that can be used as the sequence parameter to
member-alist; typically it is a list of symbols.

null-or-type [Presentation Type Abbreviation]

Arguments: type
Summary: A compound type that is used to select nil, whose printed representation is the

special token “None,” or an object of type type.

type-or-string [Presentation Type Abbreviation]

Arguments: type
Summary: A compound type that is used to select an object of type type or an arbitrary

string, for example: (clim:type-or-string integer). Any input that
accept cannot parse as the representation of an object of type type is returned as
a string.

6.5.9 Command and Form Presentation Types

The command and form presentation types are complex types provided primarily for use
by the top-level interactor of an application.

expression [Presentation Type]

Summary: The presentation type used to represent any Lisp object. The textual view of this
type looks like what the standard print and read functions produce and accept.
The standard print and read functions produce and accept the textual view of
this type.

 A separate presentation history for each instance of an application frame is main-
tained for the expression presentation type.

form [Presentation Type]
<Bold>138CLIM User Guide

Summary: The presentation type used to represent a Lisp form. This is a subtype of expres-
sion and is equivalent to it, except that some presentation translators produce
quote forms.

command [Presentation Type]

Arguments: &key command-table
Summary: The presentation type used to represent a command processor command and its

arguments.

 A separate presentation history for each instance of an application frame is main-
tained for the command presentation type.

command-name [Presentation Type]

Arguments: &key command-table
Summary: The presentation type used to represent the name of a command processor com-

mand in the command table command-table.

command-or-form [Presentation Type]

Arguments: &key command-table
Summary: The presentation type used to represent either a Lisp form or a command pro-

cessor command and its arguments.

6.6 Functions That Operate on CLIM
Presentation Types

These are some general-purpose functions that operate on CLIM presentation types.

describe-presentation-type [Function]

Arguments: type &optional stream plural-count
Summary: Describes the presentation type type on the stream, which defaults to *stan-

dard-output*. If stream is nil, a string containing the description is returned.
plural-count is either nil (that is, the description should be the singular form of
the name), t (meaning that the description should the plural form of the name),
or an integer greater than zero (the number of items to be described). The default
is 1.

 type can be a presentation type abbreviation.
Presentation Types

presentation-type-name [Function]

Arguments: type
Summary: Returns the presentation type name of the presentation type specifier type. This

function is provided as a convenience. It could be implemented as follows:

(defun presentation-type-name (type)
 (with-presentation-type-decoded (name) type name))

presentation-type-parameters [Function]

Arguments: type-name &optional env
Summary: Returns a lambda-list of the parameters specified when the presentation type or

presentation type abbreviation whose name is type-name was defined. type-name
is a symbol or a class. env is a macro-expansion environment, as in find-class.

presentation-type-options [Function]

Arguments: type-name &optional env
Summary: Returns the list of options specified when the presentation type or presentation

type abbreviation whose name is type-name was defined. This does not include
the standard options unless the presentation-type definition mentioned them
explicitly. type-name is a symbol or a class. env is a macro-expansion environ-
ment, as in find-class.

presentation-typep [Function]

Arguments: object type
Summary: Returns t if object is of the type specified by type, otherwise returns nil. type

may not be a presentation type abbreviation. This is analogous to the Common
Lisp typep function.

with-presentation-type-decoded [Macro]

Arguments: (name-var &optional parameters-var options-var) type &body body
Summary: The specified variables are bound to the components of the presentation type

specifier, the forms in body are executed, and the values of the last form are
returned. name-var, if non-nil, is bound to the presentation type name. parame-
ters-var, if non-nil, is bound to a list of the parameters. options-var, if non-nil, is
bound to a list of the options. When supplied, name-var, parameters-var, and
options-var must be symbols.

 The name-var, parameters-var, and options-var arguments are not evaluated.
body may have zero or more declarations as its first forms.
<Bold>140CLIM User Guide

with-presentation-type-options [Macro]

Arguments: (type-name type) &body body
Summary: Variables with the same name as each option in the definition of the presentation

type are bound to the option values in type, if present, or else to the defaults spec-
ified in the definition of the presentation type. The forms in body are executed in
the scope of these variables and the values of the last form are returned.

 The value of the form type must be a presentation type specifier whose name is
type-name. The type-name and type arguments are not evaluated. body may have
zero or more declarations as its first forms.

with-presentation-type-parameters [Macro]

Arguments: (type-name type) &body body
Summary: Variables with the same name as each parameter in the definition of the presen-

tation type are bound to the parameter values in type, if present, or else to the
defaults specified in the definition of the presentation type. The forms in body
are executed in the scope of these variables and the values of the last form are
returned.

 The value of the form type must be a presentation type specifier whose name is
type-name. The type-name and type arguments are not evaluated. body may have
zero or more declarations as its first forms.

presentation-type-specifier-p [Function]

Arguments: object
Summary: Returns t if object is a valid presentation type specifier; otherwise, it returns nil.

presentation-type-of [Function]

Arguments: object
Summary: Returns a presentation type of which object is a member, in particular the most

specific presentation type that can be conveniently computed and is likely to be
useful to the programmer. This is often the class name of the class of the object.

 presentation-type-of returns an expression when possible and t otherwise.

 This is analogous to the Common Lisp type-of function.

presentation-subtypep [Function]

Arguments: type putative-supertype
Presentation Types

Summary: Answers the question “is the type specified by the presentation type specifier
type a subtype of the type specified by the presentation type specifier puta-
tive-supertype?” presentation-subtypep returns two values, subtypep and
known-p. When known-p is t, subtypep can be either t (meaning that type is def-
initely a subtype of putative-supertype) or nil (meaning that type is definitely not
a subtype of putative-supertype). When known-p is nil, then subtypep must also
be nil; this means that the answer cannot reliably be determined.

 type may not be a presentation type abbreviation.

 This is analogous to the Common Lisp subtypep function.

map-over-presentation-type-supertypes [Function]

Arguments: function type
Summary: Calls the function function on the presentation type specifier type and each of its

supertypes. function is called with two arguments, the name of a type and a pre-
sentation type specifier for that type with the parameters and options filled in.
function has dynamic extent; its two arguments are permitted to have dynamic
extent. The traversal of the type lattice is done in the order specified by the CLOS
class precedence rules, and visits each type in the lattice exactly once.

presentation-type-direct-supertypes [Function]

Arguments: type
Summary: Returns a sequence of the names of all the presentation types that are direct

supertypes of the presentation type specifier type, or nil if type has no supertypes.
The consequences of modifying the returned sequence are unspecified.

find-presentation-type-class [Function]

Arguments: name &optional (errorp t) environment
Summary: Returns the class corresponding to the presentation type named name, which

must be a symbol or a class object. errorp and environment are as for find-class.

class-presentation-type-name [Function]

Arguments: class &optional environment
Summary: Returns the presentation type name corresponding to the class class. This is the

inverse of find-presentation-type-class. environment is as for find-class.

default-describe-presentation-type [Function]

Arguments: description stream plural-count
<Bold>142CLIM User Guide

Summary: Performs the default actions for describe-presentation-type, notably pluraliza-
tion and prepending an indefinite article if appropriate. description is a string or
a symbol, typically the :description presentation type option or the :description
option to define-presentation-type. plural-count is as for describe-presenta-
tion-type.

make-presentation-type-specifier [Function]

Arguments: type-name-and-parameters &rest options
Summary: A convenient way to assemble a presentation type specifier with only

non-default options included. For a full description of this function, see the end
of Subsection 7.2.1, “Presentation Methods in CLIM.”
Presentation Types

<Bold>144CLIM User Guide

Chapter 7 Defining a New Presentation
Type
Defining a New Presentation Type

7.1 Conceptual Overview of Defining a New
Presentation Type

CLIM’s standard set of presentation types will be useful in many cases, but most applica-
tions will need customized presentation types to represent the objects modeled in the appli-
cation.

In defining a presentation type, you define all the user interface components of the entity:

■ A displayed representation, for example, textual or graphical

■ Pointer sensitivity for user input via the pointer

■ A textual representation for user input via the keyboard (optional)

In other words, in one place you provide all the information about an object necessary to
display it to the user and to accept it as input from the user.

The set of presentation types forms a type lattice, an extension of the Common Lisp CLOS
type lattice. When a new presentation type is defined as a subtype of another presentation
type, it inherits all the attributes of the supertype except those explicitly overridden in the
definition.

To define a new presentation type, you follow these steps:

1. Use the define-presentation-type macro.

a. Name the new presentation type.

b. Supply parameters that further restrict the type (if appropriate).

c. Supply options that affect the appearance of the type (if appropriate).

d. State the supertypes of this type, to make use of inheritance (if appropriate).

2. Define the CLIM presentation methods.

a. Specify how objects are displayed with a present presentation method. (You
must define a present method, unless the new presentation type inherits a
method that is appropriate for it.)

b. Specify how objects are parsed with an accept presentation method. (In most
cases, you must define an accept method, unless the new presentation type in-
herits a method that is appropriate for it. If it will never be necessary to enter
<Bold>146CLIM User Guide

the object by typing its representation on the keyboard, you don’t need to pro-
vide this method.)

c. Specify the type/subtype relationships of this type and its related types, if nec-
essary, with presentation-typep and presentation-subtypep presentation
methods. (You must define or inherit these methods when defining a presenta-
tion type that has parameters.)

7.1.1 CLIM Presentation Type Inheritance

Every presentation type is associated with a CLOS class. In the common case, the name of
the presentation type is a class object or the name of a class, and that class is not a
clos:built-in-class. In this case, the presentation type is associated with that CLOS class.

Otherwise, define-presentation-type defines a class with metaclass clim:presenta-
tion-type-class and superclasses determined by the presentation type definition. This class
is not named name, since that could interfere with built-in Common Lisp types such as and,
member, and integer. clos:class-name of this class returns a list (presentation-type
name). clim:presentation-type-class is a subclass of clos:standard-class.

Note: If the same name is defined with both clos:defclass (or defstruct) and
define-presentation-type, the clos:defclass (or defstruct) must be done
first.

Every CLOS class (except for built-in classes) is a presentation type, as is its name. If it has
not been defined with define-presentation-type, it allows no parameters and no options.
As in CLOS, inheriting from a built-in class does not work unless you specify the same in-
heritance that the built-in class already has; you may want to do this in order to add presen-
tation-type parameters to a built-in class.

If you define a presentation type that does not have the same name as a CLOS class, you
must define a presentation-typep presentation method for it. The function (as opposed to
the presentation method) presentation-typep uses find-class if the presentation type is
piggybacking on a CLOS type. Otherwise it depends on the user-defined presentation meth-
od.

If you define a presentation type that has parameters, you must define a presentation-sub-
typep for it. As noted previously, CLOS does not allow you to parameterize types, so you
must provide a presentation-subtype method even for presentation types based on CLOS
classes.
Defining a New Presentation Type

Note that CLIM itself depends on these methods for its own presentation-based utilities.

If your presentation type has the same name as a class, doesn’t have any parameters or op-
tions, doesn’t have a history, and doesn’t need a special description, you do not need to call
define-presentation-type.

During method combination, presentation type inheritance is used both to inherit methods
(“what parser should be used for this type?”), and to establish the semantics for the type
(“what objects are sensitive in this context?”). Inheritance of methods is the same as in
CLOS and thus depends only on the type name, not on the parameters and options.

Presentation type inheritance translates the parameters of the subtype into a new set of pa-
rameters for the supertype, and translates the options of the subtype into a new set of op-
tions for the supertype.

7.1.2 Defining an Accept for a Structure With Several
Fields

The following code shows how to define an accept for a structure (instance) with several
fields. That accept is then used within another similar accept call.

A presentation type called ticket is defined. The accept method has two recursive calls
to accept, one to read the name of a candidate for president and another to read the name
of the running mate. We provide two possible accept methods; in order to compare them,
you will have to compile first one and then the other. The first reads the two names sepa-
rated by a comma on the same line. The second reads the two names on separate lines, de-
limited by RETURN. They both do completion within the field. That is, if you do (accept
’ticket :stream win) with the first accept method, and type "Bu,Qu<RETURN>",
the screen appearance will be "Bush,Quayle" and the return value will be (BUSH
QUAYLE).

If you use the second accept method and type:

"Cl
Go
"

the window will contain:
<Bold>148CLIM User Guide

"Clinton
Gore"

and the return value will be (CLINTON GORE).

This example also demonstrates simple cross-field constraints by insisting that the two can-
didates be of the same party.

For key implementation details, read the comments in the code.

(in-package :clim-user)

(define-presentation-type ticket ())

(setf (get ’bush ’party) ’republican)
(setf (get ’quayle ’party) ’republican)
(setf (get ’clinton ’party) ’democrat)
(setf (get ’gore ’party) ’democrat)

;;; separated by comma version
(define-presentation-method accept ((type ticket) stream view &key
&allow-other-keys)
 (declare (ignore view))
 (let ((president (accept ’(member bush clinton) :stream stream :prompt nil
 ;; add comma as a completing delimiter
 :blip-characters ’(#,))))
 ;; Make sure that the names were separated by a comma
 (unless (eql (read-gesture :stream stream) #,)
 (simple-parse-error "Ticket members must be separated by commas"))
 (let ((veep (accept ’(member quayle gore) :stream stream :prompt nil)))
 ;; Validate party affiliations
 (unless (eql (get president ’party) (get veep ’party))
 (simple-parse-error "Ticket members must be of the same party"))
 (list president veep))))

 ;;; Separated by Return version
(define-presentation-method accept ((type ticket) stream view &key
 &allow-other-keys)
 (declare (ignore view))
 (let ((president (accept ’(member bush clinton) :stream stream :prompt nil
 ;; Remove Newline from activation characters
 :activation-characters ‘()
 ;; Add Newline as a delimiter, so that we get
 ;; completion and move-to-next-field behavior
 ;; when Return is typed.
 :blip-characters ‘(#\Return #\Newline))))
Defining a New Presentation Type

 (unless (eql (read-gesture :stream stream) #\Newline)
 (simple-parse-error
 "Ticket members must be entered on separate lines"))
 (let ((veep (accept ’(member quayle gore) :stream stream :prompt nil)))
 ;; Validate party affiliations
 (unless (eql (get president ’party) (get veep ’party))
 (simple-parse-error "Ticket members must be of the same party"))
 (list president veep))))

7.2 CLIM Operators for Defining New
Presentation Types

define-presentation-type [Macro]

Arguments: name parameters &key options inherit-from description history
parameters-are-types

Summary: Defines a presentation type whose name is the symbol or class name and whose
parameters are specified by the lambda-list parameters. These parameters are
visible within inherit-from and within the methods created with define-presen-
tation-method. For example, the parameters are used by presentation-typep
and presentation-subtypep methods to refine their tests for type inclusion.

 options is a list of option specifiers. It defaults to nil. An option specifier is either
a symbol or a list of the form (symbol &optional default supplied-p presenta-
tion-type accept-options), where symbol, default, and supplied-p are as in a nor-
mal lambda-list. If presentation-type and accept-options are present, they specify
how to accept a new value for this option from the user. symbol can also be spec-
ified in the (keyword variable) form allowed for Common Lisp lambda lists.
symbol is a variable that is visible within inherit-from and within most of the
methods created with define-presentation-method. The keyword correspond-
ing to symbol can be used as an option in the third form of a presentation type
specifier. An option specifier for the standard option :description is automati-
cally added to options if an option with that keyword is not present; however, it
does not produce a visible variable binding.

 Unsupplied optional or keyword parameters default to * (as in deftype) if no
default is specified in parameters. Unsupplied options default to nil if no default
is specified in options.

 inherit-from is a form that evaluates to a presentation type specifier for another
type from which the new type inherits. inherit-from can access the parameter
<Bold>150CLIM User Guide

variables bound by the parameters lambda list and the option variables specified
by options. If name is or names a CLOS class (other than a built-in-class), then
inherit-from must specify the class’s direct superclasses (using and to specify
multiple inheritance). It is useful to do this when you want to parameterize pre-
viously defined CLOS classes.

 If inherit-from is unsupplied, the default behavior is that if name is or names a
CLOS class, then the type inherits from the presentation type corresponding to
the direct superclasses of that CLOS class (using and to specify multiple inher-
itance). Otherwise, the type named by name inherits from standard-class.

 description is a string or nil. This should be the term for an instance for the type
being defined. If it is nil or unsupplied, a description is automatically generated;
it will be a “prettied up” version of the type name, for example, small-integer
would become "small integer". You can also write a describe-presenta-
tion-type presentation method. description is implemented by the default
describe-presentation-type method, so description only works in presentation
types where that default method is not shadowed.

 history can be t (the default), meaning that this type has its own history of previ-
ous inputs; nil, meaning that this type keeps no history; or the name of another
presentation type whose history is shared by this type. More complex histories
can be specified by writing a presentation-type-history presentation method.

 If the boolean parameters-are-types is t, this means that the parameters to the pre-
sentation type are themselves presentation types. If they are not presentation
types, parameters-are-types should be supplied as nil. Types such as and, or, and
sequence will specify this as t.

 Every presentation type must define or inherit presentation methods for accept
and present if the type is going to be used for input and output. For presentation
types that are only going to be used for input via the pointer, the accept need not
be defined.

 If a presentation type has parameters, it must define presentation methods for
presentation-typep and presentation-subtypep that handle the parameters, or
inherit appropriate presentation methods. In many cases it should also define pre-
sentation methods for describe-presentation-type and presenta-
tion-type-specifier-p.

 There are certain restrictions on the inherit-from form, to allow it to be analyzed
at compile time. The form must be a simple substitution of parameters and
options into positions in a fixed framework. It cannot involve conditionals or
computations that depend on valid values for the parameters or options; for
Defining a New Presentation Type

example, it cannot require parameter values to be numbers. It cannot depend on
the dynamic or lexical environment. The form will be evaluated at compile time
with uninterned symbols used as dummy values for the parameters and options.
In the type specifier produced by evaluating the form, the type name must be a
constant that names a type, the type parameters cannot derive from options of the
type being defined, and the type options cannot derive from parameters of the
type being defined. All presentation types mentioned must be already defined.
and can be used for multiple inheritance, but or, not, and satisfies cannot be
used.

 None of the arguments, except inherit-from, are evaluated.

7.2.1 Presentation Methods in CLIM

Use define-presentation-method to define presentation methods.

define-presentation-method [Macro]

Arguments: name qualifiers* specialized-lambda-list &body body
Summary: Defines a presentation method for the function named name on the presentation

type named in specialized-lambda-list.

 specialized-lambda-list is a CLOS specialized lambda list for the method, and its
contents vary depending on what name is. qualifiers* is zero or more of the usual
CLOS method qualifier symbols. define-presentation-method supports stan-
dard method combination (the :before, :after, and :around method qualifiers).

 body defines the body of the method. body may have zero or more declarations
as its first forms.

All presentation methods have an argument named type that must be specialized with the
name of a presentation type. The value of type is a presentation type specifier, which can
be for a subtype that inherited the method.

All presentation methods except those for presentation-subtypep have lexical access to
the parameters from the presentation type specifier. Presentation methods for the functions
accept, present, describe-presentation-type, presentation-type-specifier-p, and ac-
cept-present-default also have lexical access to the options from the presentation type
specifier.
<Bold>152CLIM User Guide

Presentation methods inherit and combine in the same way as ordinary CLOS methods.
However, they do not resemble ordinary CLOS methods with respect to the type argument.
The parameter specializer for type is handled in a special way, and presentation method in-
heritance arranges the type parameters and options seen by each method.

 For example, consider three types int, rrat, and num defined as follows:

(define-presentation-type int (low high)
 :inherit-from ‘(rrat ,high ,low))

(define-presentation-method presentation-typep :around (object (type int))
 (and (call-next-method)
 (integerp object)
 (<= low object high)))

(define-presentation-type rrat (high low)
 :inherit-from ‘num)

(define-presentation-method presentation-typep :around (object
 (type rrat))
 (and (call-next-method)
 (rationalp object)
 (<= low object high)))

(define-presentation-type num ())

(define-presentation-method presentation-typep (object (type num))
 (numberp object))

(If the user were to evaluate the form (presentation-typep X ’(int 1 5)),
then the type parameters will be (1 5) in the presentation-typep method for int, (5
1) in the method for rrat, and nil in the method for num. The value for type will be
((int 1 5)) in each of the methods.

Following are the names of the various presentation methods defined by define-presenta-
tion-method, along with the lambda-list for each method. For all of the presentation meth-
ods, the type will always be specialized. Where appropriate, view may be specialized as
well. The other arguments are not usually specialized.

accept [Presentation Method]

Arguments: type stream view &key default default-type
Summary: This presentation method is responsible for “parsing” the representation of type

for a particular view view on the stream stream.The accept method returns a sin-
Defining a New Presentation Type

gle value (the object that was “parsed”), or two values, the object and its type (a
presentation type specifier). The method’s caller takes care of establishing the
input context, defaulting, prompting, and input editing.

 The accept method can specialize on the view argument in order to define more
than one input view for the data.

 Note that accept presentation methods can call the function accept recursively.
In this case, the programmer should be careful to specify nil for :prompt and
:display-default unless recursive prompting is really desired.

present [Presentation Method]

Arguments: object type stream view &key acceptably for-context-type
Summary: This presentation method is responsible for displaying the representation of

object having type type for a particular view view; see the function accept.

 The present method can specialize on the view argument in order to define more
than one view of the data. For example, a spreadsheet program might define a
presentation type for revenue, which can be displayed either as a number or a bar
of a certain length in a bar graph. Typically, at least one canonical view should
be defined for a presentation type.

describe-presentation-type [Presentation Method]

Arguments: type stream plural-count
Summary: This presentation method is responsible for textually describing the type type.

stream is a stream, and will not be nil as it can be for the describe-presenta-
tion-type function.

presentation-type-specifier-p [Presentation Method]

Arguments: type
Summary: This presentation method is responsible for checking the validity of the param-

eters and options for the presentation type type. The default method returns t.

presentation-typep [Presentation Method]

Arguments: object type
Summary: This presentation method is called when the presentation-typep function

requires type-specific knowledge. If the type name in the presentation type type
is or names a CLOS class, the method is called only if object is a member of the
class and type contains parameters. The method simply tests whether object is a
member of the subtype specified by the parameters. For non-class types, the
method is always called.
<Bold>154CLIM User Guide

 For example, the type method will not get called in (presentation-typep
1.0 ‘(integer 10)) because 1.0 is not an integer. The method will get
called by (presentation-typep 10 ‘(integer 0 5)).

presentation-subtypep [Presentation Method]

Arguments: type putative-supertype
Summary: This presentation method is called when the presentation-subtypep function

requires type-specific knowledge.

 presentation-subtypep walks the type lattice (using map-over-presenta-
tion-supertypes) to determine whether or not the presentation type type is a sub-
type of the presentation type putative-supertype, without looking at the type
parameters. When a supertype of type has been found whose name is the same as
the name of putative-supertype, then the subtypep method for that type is called
in order to resolve the question by looking at the type parameters (that is, if the
subtypep method is called, type and putative-supertype are guaranteed to be the
same type, differing only in their parameters). If putative-supertype is never
found during the type walk, then presentation-subtypep will never call the pre-
sentation-subtypep presentation method for putative-supertype.

 Unlike all other presentation methods, presentation-subtypep receives a type
argument that has been translated to the presentation type for which the method
is specialized; type is never a subtype. The method is only called if puta-
tive-supertype has parameters and the two presentation type specifiers do not
have equal parameters. The method must return the two values that presenta-
tion-subtypep returns.

 Since presentation-subtypep takes two type arguments, the parameters are not
lexically available as variables in the body of a presentation method.

map-over-presentation-type-supertypes [Presentation Method]

Arguments: function type
Summary: This method is called in order to apply function to the superclasses of the pre-

sentation type type.

accept-present-default [Presentation Method]

Arguments: type stream view default default-supplied-p present-p query-identifier
Summary: This method specializes the kind of default that is to be presented to the user. It

is called when accept turns into present inside accepting-values. The default
method calls present or describe-presentation-type, depending on whether
default-supplied-p is t or nil, respectively.
Defining a New Presentation Type

 The boolean default-supplied-p will be t only in the case when the :default
option was explicitly supplied in the call to accept that invoked
accept-present-default.

 present-p and query-identifier are arguments that are called internally by the
accept-values mechanism that this method needs to handle. The form of
present-p as it is handed down (internally) from accepting-values is a list of the
presentation type of the accepting-values query (accept-values-choice) and the
query object itself, e.g., (list ’accept-values-choice
<AV-query-object>). The value of query-identifier is an internal
accept-values query identifier object.

presentation-type-history [Presentation Method]

Arguments: type
Summary: This method returns a history object for the presentation type type, or nil if there

is none.

presentation-refined-position-test [Presentation Method]

Arguments: (record presentation-type x y)
Summary: This method is supplied when the user wants a more precise test of whether the

supplied coordinate arguments (x and y) are “contained” by the record argument.
Without this test, whether or not a position is within a record is determined by
simply by seeing if the position is inside the bounding-rectangle of that record.

highlight-presentation [Presentation Method]

Arguments: type record stream state
Summary: This method is responsible for drawing a highlighting box around the presenta-

tion record on the output recording stream stream. state will be either :highlight
or :unhighlight.

See Section 7.4, “Advanced Topics,” for more in-depth material relating to defining pre-
sentation methods.

7.2.2 CLIM Operators for Defining Presentation Type
Abbreviations

You can define an abbreviation for a presentation type for the purpose of naming a com-
monly used cliche. The abbreviation is simply another name for a presentation type speci-
fier.
<Bold>156CLIM User Guide

Exported functions that call expand-presentation-type-abbreviation allow abbreviations.

■ accept

■ accept-from-string

■ with-output-as-presentation

■ with-input-context

■ present

■ describe-presentation-type

■ presentation-type-history

■ presentation-default-preprocessor

■ define-presentation translator

define-presentation-type-abbreviation [Macro]

Arguments: name parameters equivalent-type &key options
Summary: Defines a presentation type that is an abbreviation for the presentation type spec-

ifier that is the value of equivalent-type.

 Where presentation type abbreviations are allowed, equivalent-type and abbrevi-
ations are exactly equivalent and can be used interchangeably.

 name must be a symbol and must not be the name of a CLOS class.

 The equivalent-type form might be evaluated at compile time if presentation type
abbreviations are expanded by compiler optimizers. Unlike inherit-from, equiv-
alent-type can perform arbitrary computations and is not called with dummy
parameter and option values. The type specifier produced by evaluating equiva-
lent-type can be a real presentation type or another abbreviation. If the type spec-
ifier doesn’t include the standard option :description, the option is automatically
copied from the abbreviation to its expansion.

 Note that you cannot define any presentation methods on a presentation type
abbreviation. If you need methods, use define-presentation-type instead.

 define-presentation-type-abbreviation is used to name a commonly used cli-
che. For example, a presentation type to read an octal integer might be defined
as:
Defining a New Presentation Type

 (define-presentation-type-abbreviation octal-integer
 (&optional low high)
 ‘((integer ,low ,high) :base 8
 :description "octal integer"))

 None of the arguments, except equivalent-type, is evaluated.

When writing presentation type abbreviations, it is sometimes useful to let CLIM include
or exclude defaults for parameters and options. In some cases, you may also find it neces-
sary to “expand” a presentation type abbreviation. The following three functions are useful
in these circumstances.

expand-presentation-type-abbreviation-1 [Function]

Arguments: type &optional environment
Summary: If the presentation type specifier type is a presentation type abbreviation, or is

an and, or, sequence, or sequence-enumerated that contains a presentation
type abbreviation, then expand-presentation-type-abbreviation-1 expands the
type abbreviation once and returns two values, the expansion and t. If type is not
a presentation type abbreviation, then the values type and nil are returned. env is
a macro-expansion environment, as in macroexpand.

expand-presentation-type-abbreviation [Function]

Arguments: type &optional environment
Summary: expand-presentation-type-abbreviation is like expand-presenta-

tion-type-abbreviation-1, except that type is repeatedly expanded until all pre-
sentation type abbreviations have been removed.

make-presentation-type-specifier [Function]

Arguments: type-name-and-parameters &rest options
Summary: A convenient way to make a presentation type specifier including only

non-default options. This is only useful for abbreviation expanders, not for the
:inherit-from clause of define-presentation-type. type-name-and-parameters
is a presentation type specifier that must be in the form of:

(type-name parameters...)

 options is a list of alternating keywords and values that are added as options to
the specifier. If a value is equal to type-name’s default, that option is omitted,
producing a more concise presentation type specifier.
<Bold>158CLIM User Guide

7.3 Using Views With CLIM Presentation Types

The present and accept presentation methods can define more than one view of the data.
For example, a spreadsheet program might define a presentation type for revenue, which
can be displayed either as a number or as a bar of a certain length in a bar graph. These two
views might be implemented by specializing the view arguments for the textu-
al-menu-view class and the user-defined bar-graph-view class. Typically, at least one ca-
nonical view should be defined for a presentation type. For example, the present method
for the textual-menu-view view should be defined if the programmer wants to allow ob-
jects of that type to be displayed textually. A more concrete example is the dialog view of
the member presentation type, which presents the choices in a “radio push-button” style.

CLIM currently supports textual, menu, and dialog views. Operators for views of CLIM
presentation types are listed as follows.

view [Protocol Class]

Summary: The protocol class for view objects. If you want to create a new class that
behaves like a view, it should be a subclass of view. Subclasses of view must
obey the view protocol. All of the view classes are immutable.

viewp [Function]

Arguments: object
Summary: Returns t if object is a view; otherwise, it returns nil.

stream-default-view [Generic Function]

Arguments: stream
Summary: Returns the default view for the extended stream stream. accept and present get

the default value for the view argument from this.

(setf stream-default-view) [Generic Function]

Arguments: view stream
Summary: Changes the default view for stream to the view view.

textual-menu-view [Class]

Summary: The class that represents the default view used inside menu-choose for frame
managers that are not using a gadget-type look and feel.
Defining a New Presentation Type

textual-dialog-view [Class]

Summary: The class that represents the default view used inside accepting-values dialogs
for frame managers that are not using a gadget-type look and feel.

gadget-menu-view [Class]

Summary: The class that represents the default view used inside menu-choose for frame
managers using a gadget-type look and feel.

gadget-dialog-view [Class]

Summary: This subclass of gadget-view represents the default view used inside accept-
ing-values dialogs for frame managers that are using a gadget-type look and feel.

pointer-documentation-view [Class]

Summary: The class that represents the default view that is used when computing pointer
documentation.

+textual-menu-view+ [Constant]

+textual-dialog-view+ [Constant]

+gadget-menu-view+ [Constant]

+gadget-dialog-view+ [Constant]

+pointer-documentation-view+ [Constant]

Summary: These are objects of class textual-menu-view, textual-dialog-view, gad-
get-menu-view, gadget-dialog-view, and pointer-documentation-view,
respectively.

7.4 Advanced Topics

Material in this section is advanced; most CLIM programmers can skip this section entirely.
The following constructs apply to defining presentation types, discussed in Section 7.2.

presentation-default-preprocessor [Presentation Method]
<Bold>160CLIM User Guide

Arguments: default type &key default-type
Summary: This method is responsible for taking the object default and coercing it to match

the presentation type type (which is the type being accepted) and default-type
(which is the presentation type of default). This is useful when you want to
change the default gotten from the presentation type’s history so that it conforms
to parameters or options in type and default-type. The method returns two values,
the new object to be used as the default, and a new presentation type, which
should be at least as specific as type.

define-presentation-generic-function [Macro]

Arguments: generic-function-name presentation-function-name lambda-list &rest options
Summary: Defines a generic function that will be used for presentation methods.

generic-function-name is a symbol that names the generic function that will be
used internally by CLIM for the individual methods. presentation-function-name
is a symbol that names the function that programmers will call to invoke the
method, and lambda-list and options are as for defgeneric.

 There are some “special” arguments in lambda-list that the presentation type sys-
tem knows about. The first argument in lambda-list must be either type-key or
type-class; CLIM uses this argument to implement method dispatching. The sec-
ond argument may be parameters, meaning that when the method is invoked,
the type parameters will be passed to it. The third argument may be options,
meaning that when the method is invoked, the type options will be passed to it.
Finally, an argument named type must be included in lambda-list; when the
method is called, type argument will be bound to the presentation type specifier.

 For example, the present presentation generic function might be defined thus:

 (define-presentation-generic-function present-method present
 (type-key parameters options object type stream view
 &key acceptably for-context-type))

 None of the arguments are evaluated.

define-default-presentation-method [Macro]

Arguments: name qualifiers* specialized-lambda-list &body body
Summary: Like define-presentation-method, except that it is used to define a default

method that will be used only if there are no more specific methods.

funcall-presentation-generic-function [Macro]

Arguments: presentation-function-name &rest arguments
Defining a New Presentation Type

Summary: Calls the presentation generic function named by presentation-function-name on
the arguments arguments. arguments must match the arguments specified by the
define-presentation-generic-function that were used to define the presentation
generic function, excluding the type-key, type-class, parameters, and options
arguments, which are filled in by CLIM.

 funcall-presentation-generic-function is analogous to funcall.

 The presentation-function-name argument is not evaluated.

 To call the present presentation generic function, one might use the following:

 (funcall-presentation-generic-function
 present object presentation-type stream view)

apply-presentation-generic-function [Macro]

Arguments: presentation-function-name &rest arguments
Summary: Like funcall-presentation-generic-function, except that apply-presenta-

tion-generic-function is analogous to apply. The presentation-function-name
argument is not evaluated.
<Bold>162CLIM User Guide

Chapter 8 Presentation Translators in
CLIM

Presentation Translators in CLIM

8.1 Conceptual Overview of Presentation
Translators

CLIM provides a mechanism for “translating” between presentation types. In other words,
within an input context for type A, the translator mechanism allows a programmer to have
presentations of some other type B treated as though they were objects of type A.

You can define presentation translators to make the user interface of your application more
flexible. For example, suppose the input context is expecting a command. In this input con-
text, all displayed commands are sensitive, so the user can point to one to execute it. How-
ever, suppose the user points to another kind of displayed object, such as a student. In the
absence of a presentation translator, the student is not sensitive because only commands can
be entered to this input context.

If you used a presentation translator that translates from students to commands, however,
both students and commands would be sensitive. When the student is highlighted, the mid-
dle pointer button might execute the command show-transcript for that student.

A presentation translator defines how to translate from one presentation type to another. In
the previous scenario, the input context is command. A user-defined presentation translator
states how to translate from the student presentation type to the command presentation
type.

The concept of translating from an arbitrary presentation type to a command is so useful
that CLIM provides the special define-presentation-to-command-translator macro for
this purpose. You can think of these presentation-to-command translators as a convenience
for the users; users can select the command and give the argument at the same time.

Note that presentation-to-command translators make it easier to write applications that give
a “direct manipulation” feel to the user.

A presentation that appears on the screen can be sensitive. This means that the presentation
can be operated on directly by using the pointer. A sensitive presentation will be highlight-
ed when the pointer is over it. (In rare cases, the highlighting of some sensitive presenta-
tions is turned off.)
<Bold>164CLIM User Guide

Sensitivity is controlled by three factors:

■ Input context type—a presentation type describes the type of input currently being ac-
cepted.

■ Pointer location—the pointer is pointing at a presentation or a blank area on the screen.

■ Modifier keys (CONTROL, META, and SHIFT)—these keys expand the space of avail-
able gestures beyond what is available from the pointer buttons.

Presentation translators link these three factors.

A presentation translator specifies the conditions under which it is applicable, a description
to be displayed, and what to do when it is invoked by clicking the pointer.

A presentation is sensitive (and highlighted) if there is at least one applicable translator that
could be invoked by clicking a button with the pointer at its current location and the mod-
ifier keys in their current state. If there is no applicable translator, there is no sensitivity and
no highlighting.

Each presentation translator has two associated presentation types, its from-presenta-
tion-type and to-presentation-type, which are the primary factors in its applicability. Since
a presentation translator translates an output presentation into an input presentation, a pre-
sentation translator is applicable if the type of the presentation at the pointer “matches” the
from-presentation-type and the input context type “matches” the to-presentation-type. (We
define what “match” means in the next section.) Each presentation translator is attached to
a particular pointer gesture, which is a combination of a pointer button and a set of modifier
keys. Clicking the pointer button while holding down the modifier keys invokes the trans-
lator.

Note that a translator produces an input presentation consisting of an object and a presen-
tation type to satisfy the program accepting input. The result of a translator might be re-
turned from accept, or it might be absorbed by a parser and provide only part of the input.
An input presentation is not actually represented as an object. Instead, a translator’s body
returns two values. The object is the first value. The presentation type is the second value;
it defaults to the to-presentation-type if the body returns only one value.
Presentation Translators in CLIM

8.2 Applicability of CLIM Presentation
Translators

When CLIM is waiting for input (inside a with-input-context) it is responsible for deter-
mining what translators are applicable to which presentations in a given input context. This
loop both provides feedback in the form of highlighting sensitive presentations and is re-
sponsible for calling the applicable translator when the user presses a pointer button.

with-input-context uses frame-find-innermost-applicable-presentation (via high-
light-applicable-presentation) as its “input wait” handler, and frame-input-context-but-
ton-press-handler as its button press “event handler.”

Given a presentation, an input context established by with-input-context, and a user ges-
ture, translator matching proceeds as follows.

The set of candidate translators is initially those translators accessible in the command table
in use by the current application. For more information, see Section 11.3, “Command Ob-
jects”.

A translator “matches” if all of the following are true. Note that these tests are performed
in the order listed.

■ The presentation’s type is presentation-subtypep of the translator’s from-presenta-
tion-type, ignoring type parameters (for example, if from-presentation-type is number
and the presentation’s type is integer or float, or if from-presentation-type is (or inte-
ger string) and presentation’s type is integer).

■ The translator’s to-presentation-type is presentation-subtypep of the input context
type, ignoring type parameters.

■ The translator’s gesture either is t or is the same as the gesture that the user could per-
form with the current chord of modifier keys.

■ The presentation’s object is presentation-typep of the translator’s from-presenta-
tion-type, if the from-presentation-type has parameters. The translator’s tester returned
a non-nil value. If there is no tester, the translator behaves as though the tester always
returns t.

■ If there are parameters in the input context type and the :tester-definitive option is not
used in the translator, the value returned by the body of the translator must be presen-
<Bold>166CLIM User Guide

tation-typep of the input context type. In define-presentation-to-command-transla-
tor and define-presentation-action, the tester is always definitive.

The algorithm is somewhat more complicated in the case of nested presentations and nested
input contexts. In this situation, the sensitive presentation is the smallest presentation that
matches the innermost input context.

When there are several translators that match for the same gesture, the one with the highest
:priority is chosen (see define-presentation-translator).

8.2.1 Input Contexts in CLIM

Roughly speaking, the current input context indicates what type of input CLIM is asking
the user for. You can establish an input context in CLIM with the following constructs:

■ accept

■ accept-from-string

■ present (with an accept inside)

■ The command loop of an application

■ with-input-context

The input context designates a presentation type. However, the way to accept one type of
object may involve accepting other types of objects as part of the procedure. (Consider the
request to accept a complex number, which is likely to involve accepting two real numbers.)
Such input contexts are called nested. In the case of a nested input context, several different
context presentation types can be available to match the to-presentation-types of presenta-
tion translators.

Each level of input context is established by a call to accept. The macro with-input-con-
text also establishes a level of input context.

The most common cause of input context nesting is accepting compound objects. For ex-
ample, you might define a command called Show File, which reads a sequence of path-
names. When reading the argument to the Show File command, the input context con-
tains pathname nested inside of (sequence clim:pathname). Acceptable keyboard
input is a sequence of pathnames separated by commas. A presentation translator that trans-
lates to a (sequence clim:pathname) supplies the entire argument to the command,
and the command processor moves on to the next argument. A presentation translator that
Presentation Translators in CLIM

translates to a pathname is also applicable. It supplies a single element of the sequence be-
ing built up, and the command processor awaits additional input for this argument, or the
entry of a SPACE or RETURN to terminate the argument.

When the input context is nested, sensitivity considers only the innermost context type that
has any applicable presentation translators for the currently pressed chord of modifier keys.

8.2.2 Nested Presentations in CLIM

Presentations can overlap on the screen, so there can be more than one presentation at the
pointer location. Often when two presentations overlap, one is nested inside the other.

One cause of nesting is presentations of compound objects. For example, a sequence of
pathnames has one presentation for the sequence, and another for each pathname.

When there is more than one candidate presentation at the pointer location, CLIM must de-
cide which presentation is the sensitive one. It starts with the innermost presentation at the
pointer location and works outwards through levels of nesting until a sensitive presentation
is discovered. This is the innermost presentation that has any applicable presentation trans-
lators to any of the nested input context types for the currently pressed chord of modifier
keys. Searching in this way ensures that a more specific presentation is sensitive. Note that
nested input contexts are searched first, before nested presentations. For presentations that
overlap, the most recently presented is searched first.

8.3 Pointer Gestures in CLIM

A gesture is an input action by the user, such as typing a character or clicking a pointer but-
ton. A pointer gesture refers to those gestures that involve using the pointer.

An event is a CLIM object that represents a gesture by the user. (The most important pointer
events are those of class pointer-button-event.)

A gesture name is a symbol that names a gesture. CLIM defines the following gesture
names (the corresponding gesture appears in parentheses) and their uses:
<Bold>168CLIM User Guide

:select (left click) For the most commonly used translator on an object. For ex-
ample, use the :select gesture while reading an argument to
a command to use the indicated object as the argument.

:describe (middle click) For translators that produce a description of an object (such
as showing the current state of an object). For example, use
the :describe gesture on an object in a CAD program to dis-
play the parameters of that object.

:menu (right click) For translators that pop up a menu

:delete (SHIFT-middle click) For translators that delete an object

:edit (META-right click) For translators that edit an object

The special gesture name nil is used in translators that are not directly invokable by a point-
er gesture. Such a translator can be invoked only from a menu.

The special gesture name t means that the translator is available on every gesture.

You can use define-gesture-name (see Section 15.3, “Gestures and Gesture Names”) to
define your own pointer gesture name.

Note that with the exception of the define-gesture-name forms (which you can use to map
gesture names to keys and buttons), the application is independent of which platform it runs
on. It uses keywords to give names to gestures, rather than making references to specific
pointer buttons and keyboard keys.

The following operators can be used to add or remove new pointer gesture names. See
Chapter 15, “Extended Stream Input Facilities,” for details about the pointer and gestures.

add-pointer-gesture-name [Function]

Arguments: gesture-name button shifts &key (action :click) (unique t)
Summary: Adds a pointer gesture named gesture-name (a symbol) for the pointer button

being clicked on the pointer while the shifts shift keys are being held down on.

remove-pointer-gesture-name [Function]

Arguments: gesture-name
Summary: Removes the pointer gesture named gesture-name.
Presentation Translators in CLIM

8.4 CLIM Operators for Defining Presentation
Translators

define-presentation-translator supports presentation translators in general, and de-
fine-presentation-to-command-translator supports a common idiom.

define-presentation-translator [Macro]

Arguments: name (from-type to-type command-table &key gesture tester tester-definitive
documentation pointer-documentation menu priority) arglist &body body

Summary: Defines a presentation translator named name that translates from objects of type
from-type to objects of type to-type. from-type and to-type are presentation type
specifiers, but must not include any presentation type options. from-type and
to-type may be presentation type abbreviations.

 command-table is a command table designator. The translator created by this
invocation of define-presentation-translator will be stored in the command
table command-table.

 gesture is a gesture name that names a pointer gesture (described in Section 15.3,
“Gestures and Gesture Names”). The body of the translator will be run only if
the translator is applicable and gesture used by the user matches the gesture name
in the translator. gesture defaults to :select.

 tester is either a function or a list of the form (tester-arglist . tester-body) where
tester-arglist takes the same form as arglist and tester-body is the body of the
tester. The tester must return either t or nil. If it returns nil, then the translator is
definitely not applicable. If it returns t, then the translator might be applicable,
and the body of the translator might be run (if tester-definitive is nil) in order to
decide definitively whether the translator is applicable. If no tester is supplied,
CLIM supplies a tester that always returns t.

 When the boolean tester-definitive is t, the body of the translator is not run in
order to decide whether the translator is applicable; that is, the tester is assumed
to definitively decide whether the translator applies. The default is nil.

 Both documentation and pointer-documentation are objects that will be used for
documenting the translator. pointer-documentation will be used to generate doc-
umentation for the pointer documentation window; the documentation generated
by pointer-documentation should be very brief, and computing it should be very
fast and preferably not cons. documentation is used to generate such things as
<Bold>170CLIM User Guide

items in the :menu-gesture menu. If the object is a string, the string itself will be
used as the documentation. Otherwise, the object must be the name of a function
or a list of the form (doc-arglist . doc-body) where doc-arglist takes the same
form as arglist, but includes a named (keyword) stream argument as well, and
doc-body is the body of the documentation function. The body of the documen-
tation function should write the documentation to stream. The default for docu-
mentation is nil, meaning that there is no explicitly supplied documentation; in
this case, CLIM is free to generate the documentation in other ways. The default
for pointer-documentation is documentation.

 menu must be t or nil. When it is t, the translator will be included in the
:menu-gesture menu if it matches. When it is nil, the translator will not be
included in the :menu-gesture menu. Other non-nil values are reserved for
future extensions to allow multiple presentation translator menus.

 priority is either nil (the default, which corresponds to 1) or an integer that rep-
resents the priority of the translator. When there are several translators that match
for the same gesture, the one with the highest priority is chosen.

 arglist, tester-arglist, and doc-arglist are argument lists that must “match” the
“canonical” argument list (object &key presentation context-type frame event
window x y). In order to do so, there must be a single positional argument that
corresponds to the presentation’s object, and several named arguments that must
match the canonical names listed previously (using string-equal to do the com-
parison).

 In the body of the translator (or the tester), the positional object argument will be
bound to the presentation’s object. The named arguments presentation will be
bound to the presentation that was clicked on, context-type will be bound to the
presentation type of the context that actually matched, frame will be bound to the
application frame that is currently active (usually *application-frame*), event
will be bound to the pointer button event that the user used, window will be
bound to the window stream from which the event came, and x and y will be
bound to the x and y positions within window that the pointer was at when the
event occurred. The special variable *input-context* will be bound to the cur-
rent input context. Note that context-type and *input-context* will have
dynamic extent, so programmers should not store without first copying them.

 body is the body of the translator, and is run in the context of the application. body
may have zero or more declarations as its first forms. It returns either one, two,
or three values. The first value is an object that must be presentation-typep of
to-type. The second value is a presentation type that must be presentation-sub-
Presentation Translators in CLIM

typep of to-type. The first two returned values of body are in effect used as the
returned values for the call to accept that established the matching input context.

 The third value returned by body must either be nil or a list of options (as key-
word-value pairs) that will be interpreted by accept. The only option defined so
far is :echo, whose value must be either t (the default) or nil. If it is t, the object
returned by the translator will be “echoed” by accept, which will use presenta-
tion-replace-input to insert the textual representation of the object into the input
buffer. If it is nil, the object will not be echoed.

 None of define-presentation-translator’s arguments are evaluated.

define-presentation-to-command-translator [Macro]

Arguments: name (from-type command-name command-table &key gesture tester
documentation pointer-documentation menu priority echo) arglist &body
body

Summary: This resembles define-presentation-translator, except that the to-type will be
derived to be the command named by command-name in the command table
command-table. command-name is the name of the command that this translator
will translate to.

 The echo option is a boolean value (the default is t) that indicates whether the
command line should be echoed when a user invokes the translator.

 The other arguments to define-presentation-to-command-translator are the
same as for define-presentation-translator. Note that the tester for command
translators is always assumed to be definitive, so there is no :tester-definitive
option. The default for pointer-documentation is the string command-name with
dash characters replaced by spaces, and each word capitalized (as in add-com-
mand-to-command-table).

 The body of the translator returns a list of the arguments to the command named
by command-name. body is run in the context of the application. The returned
value of the body, appended to the command name, is passed to exe-
cute-frame-command. body may have zero or more declarations as its first
forms.

 None of this macro’s arguments are evaluated.

define-presentation-action [Macro]

Arguments: name (from-type to-type command-table &key gesture tester documentation
pointer-documentation menu priority) arglist &body body
<Bold>172CLIM User Guide

Summary: define-presentation-action is similar to define-presentation-translator,
except that the body of the action is not intended to return a value, but instead
affects some sort of application state.

 A presentation action does not satisfy a request for input the way an ordinary
translator does. Instead, an action is something that happens while waiting for
input. After the action has been executed, the program continues to wait for the
same input that it was waiting for prior to executing the action.

 The other arguments to define-presentation-action are the same as for
define-presentation-translator. Note that the tester for presentation actions is
always assumed to be definitive.

 None of define-presentation-action’s arguments are evaluated.

define-drag-and-drop-translator [Macro]

Arguments: name from-type to-type destination-type command-table &key gesture tester
before-drag-tester documentation pointer-documentation menu priority
feedback highlighting arglist &body body

Summary: Defines a presentation translator named name that will be run when a presenta-
tion is dragged with the mouse and dropped on top of another presentation. The
presentation types of the “dragged” (from-type) and “dropped on” (to-type) pre-
sentations are used to determine which translator (destination-type) is invoked.
from-type, to-type, and destination-type are presentation type specifiers, but must
not include any presentation type options. from-type, to-type and destina-
tion-type may be presentation type abbreviations.

 The interaction style used by these translators is that a user points to a “from pre-
sentation” with the pointer, picks it up by pressing a pointer button matching ges-
ture, drags the “from presentation” to a “to presentation” by moving the pointer,
and then drops the “from presentation” onto the “to presentation.” The dropping
might be accomplished by either releasing the pointer button or clicking again,
depending on the frame manager. When the pointer button is released, the trans-
lator whose destination-type matches the presentation type of the “to presenta-
tion” is chosen. For example, dragging a file to the TrashCan on a Macintosh
could be implemented by a drag and drop translator.

 When the user drags a “from presentation” over potential targets, the function or
list specified by tester is invoked. This tester is identical to tester for define-pre-
sentation-translator except that it can take two additional arguments: destina-
tion-object and destination-presentation.
Presentation Translators in CLIM

 When the user points at a potential “from presentation” to drag, the function or
list specified by before-drag-tester is invoked. The before-drag-tester takes the
same arguments as tester for define-presentation-translator.

 While the pointer is being dragged, the function specified by feedback is invoked
to provide feedback to the user. The function is called with eight arguments: the
application frame object, the “from presentation,” the stream, the initial x and y
positions of the pointer, the current x and y positions of the pointer, and a feed-
back state (either :highlight to draw feedback, or :unhighlight to erase it). The
feedback function is called to draw some feedback the first time pointer moves,
and is then called twice each time the pointer moves thereafter (once to erase the
previous feedback, and then to draw the new feedback). It is called a final time
to erase the last feedback when the pointer button is released. feedback defaults
to frame-drag-and-drop-feedback.

 When the “from presentation” is dragged over any other presentation that has a
direct manipulation translator, the function specified by highlighting is invoked
to highlight that object. The function is called with four arguments: the applica-
tion frame object, the “to presentation” to be highlighted or unhighlighted, the
stream, and a highlighting state (either :highlight or :unhighlight). highlighting
defaults to frame-drag-and-drop-highlighting.

 Note that it is possible for there to be more than one drag and drop translator that
applies to the same from-type, to-type, and gesture. In this case, the exact trans-
lator that is chosen for use during the dragging phase is unspecified. If these
translators have different feedback, highlighting, documentation, or pointer doc-
umentation, the exact behavior is unspecified.

 The other arguments to define-drag-and-drop-translator are the same as for
define-presentation-translator.
<Bold>174CLIM User Guide

8.5 Examples of Defining Presentation
Translators in CLIM

8.5.1 Defining a Translation from Floating Point
Number to Integer

Here is an example that defines a presentation translator to accept an integer object from a
float presentation. Users have the options of typing in a float or integer to the input prompt
or clicking on any float or integer presentation.

(define-presentation-translator integer-to-float
 (integer float my-command-table
 :documentation "Integer as float"
 :gesture :select
 :tester ((object) (integerp object))
 :tester-definitive t)
 (object)
 (float object))

(clim:present most-positive-fixnum)

(clim:accept ’float)

8.5.2 Defining a Presentation-to-Command Translator

The following example defines the delete-file presentation-to-command translator:

(clim:define-presentation-to-command-translator
 delete-file
 (pathname com-delete-file my-command-table
 :documentation "Delete this file"
 :gesture :delete)
 (object)
 (list object))
Presentation Translators in CLIM

8.5.3 Defining Presentation Translators for the Blank
Area

You can also write presentation translators that apply to blank areas of the window, that is,
areas where there are no presentations. Use blank-area as the from-presentation-type.
There is no highlighting when such a translator is applicable, since there is no presentation
to highlight. You can write presentation translators that apply in any context by supplying
nil as the to-presentation-type.

When you are writing an interactive graphics routine, you will probably encounter the need
to have commands available when the mouse is not over any object. To do this, you write
a translator from the blank area.

The presentation type of the blank area is blank-area. You probably want the :x and :y ar-
guments to the translator.

For example:

(clim:define-presentation-to-command-translator
 add-circle-here
 (clim:blank-area com-add-circle my-command-table
 :documentation "Add a circle here.")
 (x y)
 ‘(,x ,y))

8.5.4 Defining a Presentation Action

Presentation actions are only rarely needed. Often a presentation-to-command translator is
more appropriate. One example where actions are appropriate is when you wish to pop up
a menu during command input. Here is how CLIM’s general menu action could be imple-
mented:

(clim:define-presentation-action
 presentation-menu
 (t nil clim:global-command-table
 :tester-definitive t :documentation "Menu"
 :menu nil :gesture :menu)
 (presentation frame window x y)
 (clim:call-presentation-menu presentation clim:*input-context*
 frame window x y :for-menu t))
<Bold>176CLIM User Guide

8.6 Advanced Topics

The material in this section is advanced; most CLIM programmers can skip to the next
chapter. This section discusses low-level functions for CLIM presentation translators.

Some applications may wish to deal directly with presentation translators, for example, if
you are tracking the pointer yourself and wish to locate sensitive presentations, or want to
generate a list of applicable translators for a menu. The following functions are useful for
finding and calling presentation translators directly.

find-presentation-translators [Function]

Arguments: from-type to-type command-table
Summary: Returns a list of all of the translators in the command table command-table that

translate from from-type to to-type, without taking into account any type param-
eters or testers. from-type and to-type are presentation type specifiers, and must
not be abbreviations. frame must be an application frame.

test-presentation-translator [Function]

Arguments: translator presentation context-type frame window x y &key event
modifier-state for-menu

Summary: Returns t if the translator translator applies to the presentation presentation in
input context type context-type, otherwise returns nil. (There is no from-type
argument because it is derived from presentation.) x and y are the x and y posi-
tions of the pointer within the window stream window.

 event and modifier-state are a pointer button event and modifier state (see
event-modifier-key-state), and are compared against the translator’s gesture.
event defaults to nil, and modifier-state defaults to 0, meaning that no modifier
keys are held down. Only one of event or modifier-state may be supplied.

 If for-menu is t, the comparison against event and modifier-state is not done.

 presentation, context-type, frame, window, x, y, and event are passed along to the
translator’s tester if and when the tester is called.

 test-presentation-translator matches type parameters and calls the translator’s
tester. Under some circumstances, test-presentation-translator may also call
the body of the translator to ensure that its value matches to-type.
Presentation Translators in CLIM

find-applicable-translators [Function]

Arguments: presentation input-context frame window x y &key event modifier-state
for-menu fastp

Summary: Returns an object that describes the translators that definitely apply to the pre-
sentation presentation in the input context input-context. The result is a list
whose elements are each of the form (translator the-presentation context-type
tag) where translator is a presentation translator, the-presentation is the presen-
tation that the translator applies to (and which can be different from presentation
due to nesting of presentations), context-type is the context type in which the
translator applies, and tag is a tag used internally by CLIM. translator, the-pre-
sentation, and context-type can be passed to such functions as call-presenta-
tion-translator and document-presentation-translator.

 Since input contexts can be nested, find-applicable-translators must iterate
over all the contexts in input-context. window, x, and y are as for test-presenta-
tion-translator. event and modifier-state (which default to nil and the current
modifier state for window, respectively) are used to further restrict the set of
applicable translators. (Only one of event or modifier-state may be supplied; it is
unspecified what will happen if both are supplied.)

 When for-menu is non-nil, the value of for-menu is matched against the presen-
tation’s menu specification, and only those translators that match are returned.
event and modifier-state are disregarded in this case. for-menu defaults to nil.

 When the boolean fastp is t, find-applicable-translators will simply return t if
there are any translators. When fastp is nil (the default), the list of translators
returned by find-applicable-translators must be in order of their “desirability”;
that is, translators having more specific from-types and/or higher priorities must
precede translators having less specific from-types and lower priorities.

 The rules used for ordering the translators returned by find-applicable-transla-
tors are as follows (in order):

1. Translators with a higher “high order” priority precede translators with a
lower “high order” priority. This allows programmers to set the priority of a
translator in such a way that it always precedes all other translators.

2. Translators with a more specific “from type” precede translators with a less
specific “from type.”

3. Translators with a higher “low order” priority precede translators with a lower
“low order” priority. This allows programmers to break ties between
translators that translate from the same type.
<Bold>178CLIM User Guide

4. Translators from the current command table precede translators inherited
from superior command tables.

presentation-matches-context-type [Function]

Arguments: presentation context-type frame window x y &key event modifier-state
Summary: Returns t if there are any translators that translate from the presentation presen-

tation’s type to the input context type context-type; otherwise, it returns nil.
(There is no from-type argument because it is derived from presentation.) frame,
window, x, y, event, and modifier-state are as for test-presentation-translator.

 If there are no applicable translators, presentation-matches-context-type will
return nil.

call-presentation-translator [Function]

Arguments: translator presentation context-type frame event window x y
Summary: Calls the function that implements the body of the translator translator on the

presentation presentation’s object, and passes presentation, context-type, frame,
event, window, x, and y to the body of the translator as well.

 The returned values are the same as the values returned by the body of the trans-
lator, namely, the translated object and the translated type.

document-presentation-translator [Function]

Arguments: translator presentation context-type frame event window x y &key stream
documentation-type

Summary: Computes the documentation string for the translator translator and outputs it to
the stream stream, which defaults to *standard-output*. presentation, con-
text-type, frame, event, window, x, and y are as for test-presentation-translator.

 documentation-type must be either :normal or :pointer. If it is :normal, the
usual translator documentation function is called. If it is :pointer, the translator’s
pointer documentation is called.

call-presentation-menu [Function]

Arguments: presentation input-context frame window x y &key for-menu label
Summary: Finds all the applicable translators for the presentation presentation in the input

context input-context, creates a menu that contains all of the translators, and pops
up the menu from which the user can choose a translator. After the translator is
chosen, it is called with the arguments supplied to call-presentation-menu, and
the matching input context established by with-input-context is terminated.
Presentation Translators in CLIM

 window, x, y, and event are as for find-applicable-translators. for-menu, which
defaults to t, is used to decide which of the applicable translators will go into the
menu; only those translators whose :menu option matches menu will be
included.

 label is either a string to use as a label for the menu, or is nil (the default), mean-
ing the menu will not be labelled.

The following functions are useful for finding an application presentation in an output his-
tory:

find-innermost-applicable-presentation [Function]

Arguments: input-context window x y &key frame modifier-state event
Summary: Given an input context input-context, an output recording window stream win-

dow, x and y positions x and y, returns the innermost presentation whose sensitiv-
ity region contains x and y that matches the innermost input context, using the
translator matching algorithm described later. If there is no such presentation,
this function will return nil.

 event and modifier-state are a pointer button event and modifier state (see
event-modifier-key-state). event defaults to nil, and modifier-state defaults to
the current modifier state for window. Only one of event or modifier-state may
be supplied; it is unspecified what will happen if both are supplied.

 frame defaults to the current frame, *application-frame*.

 The default method for frame-find-innermost-applicable-presentation will
call this function.

throw-highlighted-presentation [Function]

Arguments: presentation input-context button-press-event
Summary: Given a presentation presentation, input context input-context, and a button

press event (which contains the window, pointer, x and y position of the pointer
within the window, the button pressed, and the modifier state), finds the transla-
tor that matches the innermost presentation in the innermost input context, then
calls the translator to produce an object and a presentation type. Finally, the
matching input context that was established by with-input-context will be ter-
minated.

 Note that it is possible that more than one translator having the same gesture may
be applicable to presentation in the specified input context. In this case, the trans-
<Bold>180CLIM User Guide

lator having the highest priority will be chosen. If there is more than one having
the same priority, it is unspecified what translator will be chosen.

highlight-applicable-presentation [Function]

Arguments: frame stream input-context &optional prefer-pointer-window
Summary: This is the core of the “input wait” handler used by with-input-context on

behalf of the application frame frame. It locates the innermost applicable presen-
tation on stream in the input context input-context, unhighlighting presentations
that are not applicable and highlighting the presentation that is applicable. Typi-
cally on entry to highlight-applicable-presentation, input-context will be the
value of *input-context* and frame will be the value of *application-frame*.

 prefer-pointer-window is a boolean. If it is t (the default), CLIM will highlight
the applicable presentation on the same window that the pointer is located over.
Otherwise, CLIM will highlight an applicable presentation on stream.

set-highlighted-presentation [Function]

Arguments: stream presentation &optional prefer-pointer-window
Summary: Highlights the presentation presentation on stream. This must call high-

light-presentation methods if that is appropriate.

unhighlight-highlighted-presentation [Function]

Arguments: stream &optional prefer-pointer-window
Summary: Unhighlights any highlighted presentations on stream.

Presentation Translators in CLIM

<Bold>182CLIM User Guide

Chapter 9 Defining Application Frames
Defining Application Frames

9.1 Conceptual Overview of CLIM Application
Frames

Application frames (or simply frames) are the central abstraction defined by CLIM for pre-
senting an application’s user interface. Many of the other features and facilities provided by
CLIM (for example, the generic command loop, gadgets, look-and-feel independence) can
be conveniently accessed through the frame facility. Frames can be displayed as either
top-level windows or regions embedded within the space of the user interfaces of other ap-
plications. In addition to controlling the screen real estate managed by an application, a
frame keeps track of the Lisp state variables that contain the state of the application.

The contents of a frame is established by defining a hierarchy of panes. CLIM panes are
interactive objects that are analogous to the windows, gadgets, or widgets of other toolkits.
Application builders can compose their application’s user interface from a library of stan-
dard panes or by defining and using their own pane types. Application frames can use a
number of different types of panes, including layout panes for organizing space, extended
stream panes for presenting application-specific information, and gadget panes for dis-
playing data and obtaining user input. Panes are described in greater detail in Chapter 10,
“Panes and Gadgets.”

Frames are managed by special applications called frame managers. Frame managers con-
trol the realization of the look and feel of a frame. The frame manager interprets the spec-
ification of the application frame in the context of the available window system facilities,
taking into account preferences expressed by the user. In addition, the frame manager takes
care of attaching the pane hierarchy of an application frame to an appropriate place in a win-
dow hierarchy. The most common type of frame manager is one that allows the user to ma-
nipulate the frames of other applications. This type of application is typically called a desk-
top manager, or in X Windows terminology, a window manager. In many cases, the window
manager will be a non-Lisp application. In these cases, the frame manager will act as a me-
diator between the Lisp application and the host desktop manager.

Some applications may act as frame managers that allow the frames of other applications
to be displayed with their own frames. For example, a text editor might allow figures gen-
erated by a graphic editor to be edited in place by managing the graphics editor’s frame
within its own frame.

Application frames provide support for a standard interaction processing loop, like the Lisp
“read-eval-print” loop, called a command loop. The application programmer only has to
<Bold>184CLIM User Guide

write the code that implements the frame-specific commands and output display functions.
A key aspect of the command loop is the separation of the specification of the frame’s com-
mands from the specification of the end-user interaction style.

The standard interaction loop consists of reading an input “sentence” (the command and all
of its operands), executing the command, and updating the displayed information as appro-
priate.

To write an application that uses the standard interaction loop provided by CLIM, you need
to:

■ Define the presentation types that correspond to the user-interface entities of the appli-
cation.

■ Define the commands that correspond to the visible operations of the application, spec-
ifying the presentation types of the operands involved in each command.

■ Define the set of frames and panes needed to support the application.

■ Define the output display functions associated with each of the panes (possibly using
other facilities such as the incremental redisplay).

In the case of a simple ECAD program, the programmer would first define the appropriate
presentation types, such as wires, input and output signals, gates, resistors, and so forth. She
would then define the program’s commands in terms of these types. For example, the “Con-
nect” command might take two operands, one of type “component” and the other of type
“wire.” The programmer may wish to specify the interaction style for invoking each com-
mand, for example, direct manipulation via translators, or selection of commands from
menus. After defining an application frame that includes a CLIM stream pane, the program-
mer then writes the frame-specific display routine that displays the circuit layout. Now the
application is ready to go. The end-user selects a command (via a menu, command-line, or
whatever), the top-level loop takes care of collecting the operands for that command (via a
variety of user gestures), and then the application invokes the command. The command
may affect the frame’s “database” of information, which can in turn affect the output dis-
played by the redisplay phase.

Note that this definition of the standard interaction loop does not constrain the interaction
style to be a command-line interface. The input sentence may be entered via single key-
strokes, pointer input, menu selection, dialogs, or by typing full command lines.
Defining Application Frames

9.2 Defining CLIM Application Frames

define-application-frame [Macro]

Arguments:name superclasses slots &rest options
Summary: Defines a frame and CLOS class named by the symbol name that inherits from

superclasses and has state variables specified by slots. superclasses is a list of
superclasses that the new class will inherit from (as in defclass). When super-
classes is nil, it behaves as though a superclass of standard-application-frame
was supplied. slots is a list of additional slot specifiers, whose syntax is the same
as the slot specifiers in defclass. Each instance of the frame will have slots as
specified by these slot specifiers. These slots will typically hold any per-instance
frame state.

 options is a list of defclass-style options, and can include the usual defclass
options, plus any of the following:

• :pane form, where form specifies the single pane in the application. The de-
fault is nil, meaning that there are either no panes or there are multiple panes.
This is the simplest way to define a pane hierarchy. The :pane option cannot
be used with the :panes and :layouts options. See Subsection 9.2.2 for a com-
plete description of the :pane option.

• :panes form, where form is an alist that specifies names and panes of the ap-
plication. The default is nil, meaning that there are no named panes. The
:panes and :pane options are mutually exclusive. See Subsection 9.2.3 for a
complete description of the :panes option.

• :layouts form, where form specifies the layout. The default layout is to lay out
all of the named panes in horizontal strips. The :layouts and :pane options are
mutually exclusive. See Subsection 9.2.3 for a complete description of the
:layouts option.

• :command-table name-and-options, where name-and-options is a list consist-
ing of the name of the application frame’s command table followed by some
keyword-value pairs. The keywords can be :inherit-from or :menu (which are
as in define-command-table). The default is to create a command table with
the same name as the application frame.

• :menu-bar form is used to specify what commands will appear in a “menu
bar.” It typically specifies the top-level commands of the application. form is
either nil, meaning there is no menu bar; t, meaning that the menu from frame’s
command table (from the :command-table option) should be used; a symbol
<Bold>186CLIM User Guide

that names a command table, meaning that that command table’s menu should
be used. The default is t.

• :disabled-commands commands, where commands is a list of command
names that are initially disabled in the application frame.

• :command-definer value, where value either nil, t, or another symbol. When
it is nil, no command-defining macro is defined. When it is t, a command-de-
fining macro is defined, whose name is of the form define-<name>-command.
When it is another symbol, the symbol names the command-defining macro.
The default is t.

• :top-level form, where form is a list whose first element is the name of a func-
tion to be called to execute the top-level loop. The function must take at least
one argument, the frame. The rest of the list consists of additional arguments
to be passed to the function. The default function is default-frame-top-level.

 The name, superclasses, and slots arguments are not evaluated. The values of
each of the options are evaluated.

make-application-frame [Function]

Arguments:frame-name &rest options &key pretty-name frame-manager enable state left
top right bottom width height save-under frame-class
&allow-other-keys

Summary: Makes an instance of the application frame of type frame-class. If frame-class is
not supplied, it defaults to frame-name.

 The size options left, top, right, bottom, width, and height can be used to specify
the size of the frame.

 options are passed as additional arguments to make-instance, after the
pretty-name, frame-manager, enable, state, save-under, frame-class, and size
options have been removed.

 If save-under is t, then the sheets used to implement the user interface of the
frame will have the “save under” property, if the host window system supports it.

 If frame-manager is provided, then the frame is adopted by the specified frame
manager. If the frame is adopted and either enable or state is provided, the frame
is pushed into the given state. See Section 9.9, “Frame Managers.”

 Once a frame has been created, run-frame-top-level can be called to make the
frame visible and run its top-level function.
Defining Application Frames

application-frame [Variable]

Summary: The current application frame. The global value is CLIM’s default application,
which serves only as a repository for whatever internal state is needed by CLIM
to operate properly. This variable is typically used in the bodies of commands to
gain access to the state variables of the application frame, usually in conjunction
with with-slots or slot-value.

with-application-frame [Macro]

Arguments:(frame) &body body
Summary: This macro provides lexical access to the “current” frame for use with the :pane,

:panes, and :layouts options. frame is bound to the current frame within the con-
text of one of those options.

 frame is a symbol; it is not evaluated. body may have zero or more declarations
as its first forms.

9.2.1 The Application Frame Protocol

application-frame [Protocol Class]

Summary: The protocol class that corresponds to an application frame. If you want to create
a new class that behaves like an application frame, it should be a subclass of
application-frame. Subclasses of application-frame must obey the application
frame protocol.

 All application frame classes are mutable.

application-frame-p [Function]

Arguments:object
Summary: Returns t if object is an application frame; otherwise, it returns nil.

:name [Initarg]

:pretty-name [Initarg]

:command-table [Initarg]

:disabled-commands [Initarg]
<Bold>188CLIM User Guide

:panes [Initarg]

:menu-bar [Initarg]

:calling-frame [Initarg]

:state [Initarg]

:properties [Initarg]

Summary: All subclasses of application-frame must handle these initargs, which specify,
respectively, the name, pretty name, command table, initial set of disabled com-
mands, panes, menu bar, calling frame, state, and initial properties for the frame.

standard-application-frame [Class]

Summary: The standard class that implements application frames. By default, most applica-
tion frame classes will inherit from this class, unless a non-nil value for super-
classes is supplied to define-application-frame.

9.2.2 Using the :pane Option

The panes of a frame can be specified in one of two different ways. If the frame has a single
layout and no need of named panes, then the :pane option can be used. Otherwise, if named
panes or multiple layouts are required, the :panes and :layouts options can be used. Note
that the :pane option cannot be used with :panes and :layouts. It is meaningful to define
frames that have no panes at all; the frame will simply serve as a repository for state and
commands.

The value of the :pane option is a form that is used to create a single (albeit arbitrarily com-
plex) pane. For example:
Defining Application Frames

(vertically ()
 (tabling ()
 ((horizontally ()
 (make-pane ’toggle-button)
 (make-pane ’toggle-button)
 (make-pane ’toggle-button))
 (make-pane ’text-field))
 ((make-pane ’push-button :label "a button")
 (make-pane ’slider)))
 (scrolling ()
 (make-pane ’application-pane
 :display-function
 ’a-display-function))
 (scrolling ()
 (make-pane ’interactor-pane)))

9.2.3 Using the :panes and :layouts Options

If the :pane option is not used, a set of named panes can be specified with the :panes op-
tion. Optionally, :layouts can also be used to describe different layouts of the set of panes.

The value of the :panes option is an alist, each entry of which is of the form (name . body).
name is a symbol that names the pane, and body specifies how to create the pane. body is
either a list containing a single element that is itself a list, or a list consisting of a symbol
followed by zero or more keyword-value pairs. In the first case, the body is a form exactly
like the form used in the :pane option. In the second case, body is a pane abbreviation,
where the initial symbol names the type of pane, and the keyword-value pairs are pane op-
tions. For gadgets, the pane type is the class name of the abstract gadget (for example, slid-
er or push-button). For CLIM extended stream panes, the following abbreviations are de-
fined:

■ :interactor—a pane of type interactor-pane

■ :application—a pane of type application-pane

■ :command-menu—a pane of type command-menu-pane

■ :pointer-documentation—a pane suitable for displaying pointer documentation, if the
host window system does not provide this

■ :title—a pane suitable for displaying the title of the application. If the host window sys-
tem provides this, the title will be displayed with the window decorations supplied by
the window manager, and the CLIM title pane will be omitted.
<Bold>190CLIM User Guide

■ :accept-values—a pane that can hold a “modeless” accepting-values dialog

See Chapter 10, “Panes and Gadgets,” for more information on the individual pane and gad-
get classes and the options they support.

An example of the use of :panes is:

(:panes
 (buttons
 (horizontally ()
 (make-pane ’push-button :label "Press me")
 (make-pane ’push-button :label "Squeeze me")))
 (toggle toggle-button
 :label "Toggle me")
 (interactor :interactor
 :width 300 :height 300)
 (application :application
 :display-function ’another-display-function
 :incremental-redisplay t))

The value of the :layouts option is an alist, each entry of which is of the form (name . lay-
out). name is a symbol that names the layout, and layout specifies the layout. layout is a
form like the form used in the :pane option, with the extension to the syntax such that the
name of a named pane can be used wherever a pane may appear. For example, assuming a
frame that uses the :panes example, the following layouts could be specified:

(:layouts
 (default
 (vertically ()
 button toggle
 (scrolling () application)
 interactor))
 (alternate
 (vertically ()
 (scrolling () application)
 (scrolling () interactor)
 (horizontally ()
 button toggle))))
Defining Application Frames

9.2.4 Example of the :pane Option to
define-application-frame

Here is an example of how to use the :pane option of define-application-frame:

(define-application-frame test-frame ()
 ()
 (:pane
 (vertically ()
 (make-clim-interactor-pane
 :foreground +green+
 :background +red+)
 (make-pane ’push-button
 :label "press me"
 :background +black+
 :foreground +purple+
 :activate-callback
 #’(lambda (button)
 (frame-exit *application-frame*))
 :text-style
 (make-text-style :serif :roman 20)))))

9.2.5 Examples of the :panes and :layout Options to
define-application-frame

Here are some examples of how to use the :panes and :layouts options of define-applica-
tion-frame to describe the appearance of your application.

We begin by showing Figure 18, an example of how CLIM supplies a default layout when
you don’t explicitly specify one in your frame definition. The default layout is a single col-
umn of panes, in the order (top to bottom) that you specified them in the :panes option.
Command menus are allocated only enough space to display their contents, while the re-
maining space is divided among the other types of panes equally.
<Bold>192CLIM User Guide

(define-application-frame test () ()
 (:panes
 (main :application
 :incremental-redisplay NIL
 :display-function ’display-main)
 (test-menu :command-menu)
 (listener :interactor))
 (:layouts
 (:default
 (vertically () main test-menu listener)))
 (:command-table
 (test-menu
 :inherit-from (user-command-table)
 :menu
 (("EXIT" :command cmd-exit)))))

Figure 18. The Default Layout for the Graphic-Demo Example
When No Explicit :layout Is Specified

Now we take the same example as before and in Figure 19 add an explicit :layout option
to the frame definition. The pane named explanation occupies the bottom sixth of the
screen. The remaining five-sixths are occupied by the demo and commands panes, which
lie side by side, with the command pane to the right. The commands pane is only as wide
as is needed to display the command menu.

_ _ _
main

 test-menu

listener
Defining Application Frames

(define-application-frame graphics-demo () ()
 (:menu-bar nil)
 (:panes
 (commands :command-menu)
 (demo :application)
 (explanation :application :scroll-bars nil))
 (:layouts
 (:default (vertically ()
 (:fill
 (horizontally ()
 (:fill demo)
 (1/5 commands)))
 (1/6 explanation)))))

Figure 19. The Layout for the Graphic-Demo Example With an Explicit :layout

Finally, here is a stripped-down version of the application frame definition for the CAD
demo (in the file <release-directory>/demo/new-cad-demo.lisp) which implements an ex-
tremely simplistic computer-aided logic circuit design tool.

There are four panes defined for the application. The pane named title displays the string
“Mini-CAD” and serves to remind the user which application is running. The pane named
menu provides a menu of commands for the application. The pane named design-area is
the actual “work surface” of the application on which various objects (logic gates and
wires) can be manipulated. A pane named documentation is provided to inform the user

demo

explanation commands
<Bold>194CLIM User Guide

about what actions can be performed using the pointing device (typically the mouse) and is
updated based on what object is currently being pointed to.

The application has two layouts, one named main and one named other. Both layouts have
their panes arranged in vertical columns. At the top of both layouts is the title pane, which
is of the smallest height necessary to display the title string “Mini-CAD.” Both layouts have
the documentation pane at the bottom.

The two layouts differ in the arrangement of the menu and design-area panes. In the layout
named main, the menu pane appears just below the title pane and extends for the width of
the screen. Its height will be computed so as to be sufficient to hold all the items in the
menu. The design-area pane occupies the remaining screen real estate, extending from the
bottom of the menu pane to the top of the documentation pane, and is as wide as the
screen.

To see the layout named other, enter (setf (frame-current-layout *appli-
cation-frame*) :other). This differs from the main layout in the shape of the de-
sign-area pane. Here the implementor of the CAD demo realized that, depending on what
was being designed, either a short, wide area or a narrower but taller area might be more
appropriate. The other layout provides the narrower, taller alternative by rearranging the
menu and design-area panes to be side by side (forming a row of the two panes). The
menu and design-area panes occupy the space between the bottom of the title pane and
the top of the documentation pane, with the menu pane to the left and occupying as much
width as is necessary to display all the items of the menu and the design-area occupying
the remaining width.
Defining Application Frames

(define-application-frame cad-demo () ()
 (:menu-bar nil)
 (:panes
 (title :title :display-string "Mini-CAD")
 (menu :command-menu)
 (design-area :application)
 (documentation :pointer-documentation))
 (:layouts
 (:main (vertically ()
 (1/8 title)
 (1/8 menu)
 (:fill design-area)
 (1/8 documentation)))
 (:other (vertically ()
 (1/8 title)
 (:fill
 (horizontally ()
 (1/4 menu)
 (:fill design-area)))
 (1/8 documentation)))))

Figure 20. The Two Layouts of the Mini-CAD Demo

 Mini-CAD Mini-CAD
- -
- -
- -
- -
- -
- -

- - - - - - - -

design area

 documentation

menu

 title
<Bold>196CLIM User Guide

9.2.6 Using an :accept-values Pane in a CLIM
Application Frame

Frame :accept-values panes are used when you want one of the panes of your application
to be in the form of an accepting-values dialog.

There are several things to remember when using an :accept-values pane in your applica-
tion frame:

■ For an :accept-values pane to work, your frame’s command table must inherit from the
accept-values-pane command table.

■ The :display-function option for an :accepting-values pane will typically be some-
thing like:

 (clim:accept-values-pane-displayer
 :displayer my-acceptor-function)

where my-acceptor-function is a function that you write. It contains calls to
accept just as they would appear inside a accepting-values for a dialog. It takes two
arguments, the frame and a stream. my-acceptor-function doesn’t need to call
accepting-values itself, since that is done automatically.

See Chapter 12, “Menus and Dialogs,” especially the function
accept-values-pane-displayer.

■ While inside the display function for an :accept-values pane, *application-frame* is
not bound to your application. Instead, it is bound to an application that implements ac-
cepting-values. Therefore, you cannot use with-frame-state-variables in the display
function for an :accept-values pane. Use with-slots on the frame argument instead.

■ Don’t use :display-after-commands with :accept-values panes, because the redisplay
for those panes is managed at a slightly lower level for efficiency.

9.3 Initializing CLIM Application Frames

There are several ways to initialize an application frame:

1. The value of an application frame’s slot can be initialized using the :initform slot
option in the slot’s specifier in the define-application-frame form. This technique is
suitable if the slot’s initial value does not depend on the values of other slots,
calculations based on the values of initialization arguments, or other information that
Defining Application Frames

cannot be determined until after the application frame is created. See the macro
clos:defclass to learn about slot-specifiers.

2. For initializations that depend on information which may not be available until the
application frame has been created, an :after method can be defined for
clos:initialize-instance on the application frame’s class. Note that the special variable
application-frame is not bound to the application, since the application is not yet
running. The macro with-frame-state-variables cannot be used in this context, either.
You may use clos:with-slots, clos:with-accessors, or any slot readers or accessors that
have been defined.

3. A :before method for run-frame-top-level on the application’s frame is probably the
most versatile place to perform application frame initialization. This method will not
be executed until the application starts running. *application-frame* will be bound to
the application frame, and you can use with-frame-state-variables in this context.

4. If the application frame employs its own top-level function, then this function can
perform initialization tasks at the beginning of its body. This top-level function may
call default-frame-top-level to achieve the standard behavior for application frames.

Of course, these are only suggestions. There might be other techniques which might be
more appropriate for your application. Of those listed, the :before method on
run-frame-top-level is probably the best for most circumstances.

Although application frames are CLOS classes, do not use clos:make-instance to create
them. To instantiate an application frame, always use make-application-frame. This func-
tion provides important initialization arguments specific to application frames that
clos:make-instance does not. make-application-frame passes any keyword value pairs
which it does not handle itself on to clos:make-instance, so it will respect any initialization
options which you give it, just as clos:make-instance would.

Here is an example of how an application frame’s behavior might be modified by inherit-
ance from a superclass. Suppose we wanted our application to record all the commands that
were performed while it was executing, because the program is for the financial industry,
where it is important to keep audit trails for all transactions. As this is a useful functionality
that might be added to any of a number of different applications, we will make it into a spe-
cial class that implements the desired behavior. This class can then be used as a superclass
for any application that needs to keep a log of its actions.

The class has an initialization option, :pathname, which specifies the name of the log file.
It also has a slot named transaction-stream whose value is a stream opened to the log file
when the application is running.
<Bold>198CLIM User Guide

(defclass transaction-recording-mixin ()
 ((transaction-pathname :type pathname
 :initarg :pathname
 :reader transaction-pathname)
 (transaction-stream :accessor transaction-stream)))

We use an :around method on run-frame-top-level, which opens a stream to the log file
and stores it in the transaction-stream slot. unwind-protect is used to clear the value of
the slot when the stream is closed.

(defmethod clim:run-frame-top-level :around
 ((frame transaction-recording-mixin))
 (with-slots (transaction-pathname transaction-stream)
 frame (with-open-file (stream transaction-pathname
 :direction :output)
 (unwind-protect
 (progn (setq transaction-stream stream)
 (call-next-method))
 (setq transaction-stream nil)))))

This is where the actual logging takes place. The command loop in default-frame-top-lev-
el calls execute-frame-command to execute a command. Here we add a :before method
that will log the command.

(defmethod clim:execute-frame-command :before
 ((frame transaction-recording-mixin) command)
 (format (transaction-stream frame) "~&Command: ~a" command))

It is now an easy matter to alter the definition of an application to add the command logging
behavior. Here is the definition of the puzzle application frame from the CLIM demos suite
(from the file <release-directory>/demo/puzzle.lisp). We use the superclasses argument to
specify that the puzzle application frame should inherit from transaction-recording-mix-
in. Because we are using the superclass argument, we must also explicitly include applica-
tion-frame, which was included by default when the superclasses argument was empty.

(define-application-frame puzzle
 (transaction-recording-mixin application-frame)
 ((puzzle :initform (make-array ’(4 4))
 :accessor puzzle-puzzle))
 (:default-initargs :pathname "puzzle-log.text")
 (:panes (title :title)
 (menu :command-menu)
 (display :application
 :default-text-style ’(:fix :bold :very-large)
 :incremental-redisplay t
 :display-function draw-puzzle)))
Defining Application Frames

Also note the use of (:default-initargs :pathname "puzzle-log.text")
to provide a default value for the log file name if the user doesn’t specify one.

The user might run the application by executing the following:

(run-frame-top-level
 (make-application-frame ’puzzle
 :width 400
 :height 500
 :pathname "my-puzzle-log.text"))

Here the :pathname initialization argument is used to override the default name for the log
file (as was specified by the :default-initargs clause in the previously defined application
frame) and to use the name my-puzzle-log.text instead.

9.4 Accessing Slots and Components of CLIM
Application Frames

A call to the define-application-frame macro creates a subclass of the standard-applica-
tion-frame class. CLIM application frames are instances of these generated subclasses.
You explicitly specify accessors for the slots you have designated for storing applica-
tion-specific state information. The use of the accessors is as for any other CLOS instance.
Other CLIM defined components of standard-application-frame subclass instances are
accessed via documented functions. Such components include frame-panes, command-ta-
bles, the top-level window, and layouts.

9.5 Running a CLIM Application

You can run a CLIM application using the functions make-application-frame and
run-frame-top-level. Here is a code fragment that illustrates this technique:

(clim:run-frame-top-level
 (clim:make-application-frame
 ’frame-name))

run-frame-top-level will not return until the application exits.
<Bold>200CLIM User Guide

Note that *application-frame* is not bound until run-frame-top-level is invoked.

For more information, see Section E.2, “Functions for Operating on Windows Directly.”

9.6 Exiting a CLIM Application

You can exit an application and make the window disappear by using frame-exit or dis-
able-frame.

9.7 Examples of CLIM Application Frames

This section contains examples of how to use CLIM application frames.

9.7.1 Defining a CLIM Application Frame

Here is an example of an application frame. This frame has three slots: pathname, integer,
and member. It has two panes, an :accept-values pane named avv and an :application
pane named display. It uses a command table named dingus, which will automatically be
defined for it (see define-command-table) and which inherits from the accept-val-
ues-pane command table so that the accept-values pane will function properly.

(clim:define-application-frame
 dingus ()
 ((pathname :initform #p"foo")
 (integer :initform 10)
 (member :initform :one))
 (:panes
 (avv :accept-values
 :display-function '(clim:accept-values-pane-displayer
 :displayer display-avv))
 (display :application :display-function 'draw-display
 :display-after-commands :no-clear))

 (:command-table (dingus :inherit-from (clim:accept-values-pane)))) (:command-table
(dingus :inherit-from (clim:accept-values-pane))))The following is the display function for
the display pane of the “dingus” application. It just prints out the values of the three slots
defined for the application.
Defining Application Frames

(defmethod draw-display ((frame dingus) stream)
 (with-slots (pathname integer member) frame
 (fresh-line stream)
 (clim:present pathname ’pathname :stream stream)
 (write-string ", " stream)
 (clim:present integer ’integer :stream stream)
 (write-string ", " stream)
 (clim:present member ’(member :one :two :three)
 :stream stream)
 (write-string "." stream)))

The following is the display function for the avv pane. It invokes accept for each of the
application’s slots so that the user can alter their values in the avv pane.

(defmethod display-avv ((frame dingus) stream)
 (with-slots (pathname integer member) frame
 (fresh-line stream)
 (setq pathname
 (clim:accept ’pathname :prompt "A pathname"
 :default pathname :stream stream))
 (fresh-line stream)
 (setq integer
 (clim:accept ’integer :prompt "An integer"
 :default integer :stream stream))
 (fresh-line stream)
 (setq member
 (clim:accept ’(member :one :two :three)
 :prompt "One, Two, or Three"
 :default member :stream stream))
 (fresh-line stream)
 (clim:accept-values-command-button
 (stream :documentation "You wolf")
 (write-string "Wolf whistle" stream)
 (beep))))

The following function will start up a new “dingus” application.

(defun run-dingus (root)
 (let ((dingus (clim:make-application-frame
 ’dingus :width 400 :height 400)))
 (clim:run-frame-top-level dingus)))

All this application does is allow the user to alter the values of the three application slots,
pathname, integer, and member, using the avv pane. The new values will automatically
be reflected in the display pane.
<Bold>202CLIM User Guide

9.7.2 Constructing a Function as Part of Running an
Application

You can supply an alternate top level (which initializes some things and then calls the reg-
ular top level) to construct a function as part of running the application. Note that when you
use this technique, you can close the function over other pieces of the Lisp state that might
not exist until application runtime.

(clim:define-application-frame
 different-prompts ()
 ((prompt-state ...) ...)
 (:top-level (different-prompts-top-level)) ...)

(defmethod different-prompts-top-level
 ((frame different-prompts) &rest options)
 (flet ((prompt (stream frame)
 (with-slots (prompt-state) frame
 (apply
 #’clim:default-frame-top-level frame
 :prompt #’prompt options)))
 ...)))

9.8 Application Frame Operators and Accessors

The following operators are used to define and instantiate application frames. They are dis-
cussed in detail in Section 9.2, “Defining CLIM Application Frames.”

define-application-frame [Macro]

Arguments: name superclasses slots &rest options
Summary: Defines an application frame. You can specify a name for the application class,

the superclasses (if any), the slots of the application class, and options.

make-application-frame [Function]

Arguments:frame-name &rest options &key pretty-name frame-manager enable state left
top right bottom width height save-under frame-class
&allow-other-keys

Summary: Makes an instance of the application frame of type frame-class. If frame-class is
not supplied, it defaults to frame-name.
Defining Application Frames

9.8.1 CLIM Application Frame Accessors

The following functions may be used to access and modify the state of the application frame
itself, such as what the currently exposed panes are, what the current layout is, what com-
mand table is being used, and so forth.

application-frame [Variable]

Summary: The current application frame. The value is CLIM’s default application. This
variable is typically used in the bodies of commands and translators to gain
access to the state variables of the application, usually in conjunction with
clos:with-slots or clos:slot-value.

frame-name [Generic Function]

Arguments:frame
Summary: Returns the name of the frame frame, which is a symbol.

frame-pretty-name [Generic Function]

Arguments:frame
Summary: Returns the “pretty name” of the frame frame, which is a string.

(setf frame-pretty-name) [Generic Function]

Arguments:name frame
Summary: Sets the pretty name of the frame frame to name, which must be a string.

frame-command-table [Generic Function]

Arguments:frame
Summary: Returns the command table for the frame frame.

(setf frame-command-table) [Generic Function]

Arguments:command-table frame
Summary: Sets the command table for the frame frame to command-table. Changing the

frame’s command table will redisplay the command menus (or menu bar) as
needed. command-table is a command table designator.

frame-standard-input [Generic Function]

Arguments:frame
<Bold>204CLIM User Guide

Summary: Returns the stream that will be used for *standard-input* for the frame frame.
The default method (on standard-application-frame) returns the first named
pane of type interactor-pane that is exposed in the current layout; if there is no
such pane, the value returned by frame-standard-output is used.

frame-standard-output [Generic Function]

Arguments:frame
Summary: Returns the stream that will be used for *standard-output* for the frame frame.

The default method (on standard-application-frame) returns the first named
pane of type application-pane that is exposed in the current layout; if there is no
such pane, it returns the first pane of type interactor-pane that is exposed in the
current layout.

 To redirect standard input or output, simply redefine the corresponding frame
generic function. For example, the following form specifies the pane in
my-frame named output-pane as the destination for standard output.

 (defmethod frame-standard-output ((frame my-frame))
 (get-frame-pane frame ’output-pane))

frame-query-io [Generic Function]

Arguments:frame
Summary: Returns the stream that will be used for *query-io* for the frame frame. The

default method (on standard-application-frame) returns the value returned by
frame-standard-input; if that is nil, it returns the value returned by frame-stan-
dard-output.

frame-error-output [Generic Function]

Arguments:frame
Summary: Returns the stream that will be used for *error-output* for the frame frame. The

default method (on standard-application-frame) returns the same value as
frame-standard-output.

pointer-documentation-output [Variable]

Summary: This will be bound either to nil or to a stream on which pointer documentation
will be displayed.

frame-pointer-documentation-output [Generic Function]

Arguments:frame
Defining Application Frames

Summary: Returns the stream that will be used for *pointer-documentation-output* for
the frame frame. The default method (on standard-application-frame) returns
the first pane of type pointer-documentation-pane. If this returns nil, no pointer
documentation will be generated for this frame.

frame-calling-frame [Generic Function]

Arguments:frame
Summary: Returns the application frame that invoked the frame frame.

frame-parent [Generic Function]

Arguments:frame
Summary: Returns the object that acts as the parent for the frame frame. This often, but not

always, returns the same value as frame-manager.

frame-panes [Generic Function]

Arguments:frame
Summary: Returns the pane that is the top-level pane in the current layout of the frame

frame's named panes. This function returns objects that reveal CLIM's internal
state; do not modify those objects.

frame-current-panes [Generic Function]

Arguments:frame
Summary: Returns a list of those named panes in the frame frame’s current layout. If there

are no named panes (that is, the :pane option was used), only the single, top-level
pane is returned. This function returns objects that reveal CLIM’s internal state;
do not modify those objects.

get-frame-pane [Generic Function]

Arguments:frame pane-name
Summary: Returns the CLIM stream pane in the frame frame whose name is pane-name.

find-pane-named [Generic Function]

Arguments:frame pane-name
Summary: Returns the pane in the frame frame whose name is pane-name. This can return

any type of pane, not just CLIM stream panes.
<Bold>206CLIM User Guide

frame-top-level-sheet [Generic Function]

Arguments:frame
Summary: Returns the sheet that is the top-level sheet for the frame frame. This is the sheet

that has as its descendants all of the panes of frame.

frame-current-layout [Generic Function]

Arguments:frame
Summary: Returns the current layout for the frame frame. The layout is named by a symbol.

(setf frame-current-layout) [Generic Function]

Arguments:layout frame
Summary: Sets the layout of the frame frame to be the new layout specified by new-layout.

layout must be a symbol that names one of the possible layouts.

Changing the layout of the frame causes a recomputation of what panes are used for the
bindings of the standard stream variables (such as *standard-input*). After the new layout
has been computed, the contents of each pane are displayed to the degree necessary to en-
sure that all output is visible.

layout-frame [Generic Function]

Arguments:frame &optional width height
Summary: Resizes the frame and lays out the current pane hierarchy using the layout spec-

ified by frame-current-layout, according to the layout protocol described in
Section 10.2.4. This function is automatically invoked on a frame when it is
adopted, after its pane hierarchy has been generated.

 If width and height are provided, then this function resizes the frame to the spec-
ified size. It is an error to provide just width. If no optional arguments are pro-
vided, this function resizes the frame to the preferred size of the top-level pane
as determined by the space composition pass of the layout protocol.

 In either case, after the frame is resized, the space allocation pass of the layout
protocol is invoked on the top-level pane.

9.8.2 Operators for Running CLIM Applications

The following functions are used to start up an application frame, exit from it, and control
the “read-eval-print” loop of the frame (for example, redisplay the panes of the frame, and
read, execute, enable, and disable commands).
Defining Application Frames

run-frame-top-level [Generic Function]

Arguments:frame
Summary: Runs the top-level function for the frame frame. The default method on applica-

tion-frame simply invokes the top-level function for the frame (which defaults
to default-frame-top-level).

run-frame-top-level [:Around Method]

Arguments: (frame application-frame)
Summary: The :around method of run-frame-top-level on the application-frame class

establishes the initial dynamic bindings for the application, including (but not
limited to) binding *application-frame* to frame, binding *input-context* to
nil, resetting the delimiter and activation gestures, and binding
input-wait-test, *input-wait-handler*, and *pointer-button-press-han-
dler* to nil.

default-frame-top-level [Generic Function]

Arguments:frame &key command-parser command-unparser partial-command-parser
prompt

Summary: The default top-level function for application frames, this runs a
“read-eval-print” loop that displays a prompt, calls read-frame-command and
then execute-frame-command, and finally redisplays all the panes that need it.
See Section 11.9, “The CLIM Command Processor,” for further details.

 default-frame-top-level also establishes a simple restart for abort and binds the
standard stream variables as follows. *standard-input* will be bound to the
value returned by frame-standard-input. *standard-output* will be bound to
the value returned by frame-standard-output. *query-io* will be bound to the
value returned by frame-query-io. *error-output* will be bound to the value
returned by frame-error-output. It is unspecified what *terminal-io*,
debug-io, and *trace-output* will be bound to.

 prompt is either a string to use as the prompt (defaulting to Command:) or a
function of two arguments, a stream and the frame.

 command-parser, command-unparser, and partial-command-parser are the same
as for read-command. command-parser defaults to command-line-com-
mand-parser if there is an interactor; otherwise, it defaults to menu-only-com-
mand-parser. command-unparser defaults to
command-line-command-unparser. partial-command-parser defaults to com-
mand-line-read-remaining-arguments-for-partial-command if there is an
interactor; otherwise, it defaults to menu-only-read-remaining-argu-
<Bold>208CLIM User Guide

ments-for-partial-command. default-frame-top-level binds *com-
mand-parser*, *command-unparser*, and *partial-command-parser* to the
values of command-parser, command-unparser, and partial-command-parser.

read-frame-command [Generic Function]

Arguments:frame stream
Summary: Reads a command from the stream stream on behalf of the frame frame. The

returned value is a command object.

 The default method (on standard-application-frame) for read-frame-com-
mand simply calls read-command, supplying frame’s current command table as
the command table.

execute-frame-command [Generic Function]

Arguments:frame command
Summary: Executes the command command on behalf of the frame frame. command is a

command object, that is, a cons of a command name and a list of the command’s
arguments.

 The default method (on standard-application-frame) for execute-frame-com-
mand simply applies the command-name of command to command-argu-
ments of command.

command-enabled [Generic Function]

Arguments:command-name frame
Summary: Returns t if the command named by command-name is presently enabled in the

frame frame; otherwise, it returns nil. If command-name is not accessible to the
command table being used by frame, command-enabled returns nil.

 Whether or not a particular command is currently enabled is stored independently
for each instance of an application frame; this status can vary between frames
that share a single command table.

(setf command-enabled) [Generic Function]

Arguments:enabled command-name frame
Summary: If enabled is nil, this disables the use of the command named by command-name

while in the frame frame. If enabled is t, the use of the command is enabled. After
the command has been enabled (or disabled), note-command-enabled (or
note-command-disabled) is invoked on the frame manager in order to update
the appearance of the interface.
Defining Application Frames

 If command-name is not accessible to the command table being used by frame,
using setf on command-enabled does nothing.

display-command-menu [Generic Function]

Arguments:frame stream &key command-table initial-spacing max-width max-height
n-rows n-columns (cell-align-x :left) (cell-align-y :top)

Summary: Displays the menu associated with the specified command table on stream by
calling display-command-table-menu. If command-table is not supplied, it
defaults to (frame-command-table stream). This function is generally used as
the display function for panes that contain command menus.

 initial-spacing, max-width, max-height, n-rows, n-columns, cell-align-x, and
cell-align-y are as for formatting-item-list.

frame-exit [Restart]

Summary: The restart that is invoked when frame-exit is called.

frame-exit [Generic Function]

Arguments:frame
Summary: Exits from the frame frame. The default method (on standard-applica-

tion-frame) invokes the frame-exit restart.

panes-need-redisplay [Generic Function]

Arguments:frame

pane-needs-redisplay [Generic Function]

Arguments:frame pane
Summary: panes-need-redisplay indicates that all the panes in the frame frame should be

redisplayed the next time around the command loop. pane-needs-redisplay
causes only the pane pane within frame to be redisplayed; in this case, pane is
either a pane or the name of a named pane.

redisplay-frame-pane [Generic Function]

Arguments:frame pane &key force-p
Summary: Causes the pane pane within the frame frame to be redisplayed immediately.

pane is either a pane or the name of a named pane. When the boolean force-p is
t, the maximum level of redisplay is forced and the pane is displayed “from
scratch."
<Bold>210CLIM User Guide

redisplay-frame-panes [Generic Function]

Arguments:frame &key force-p
Summary: redisplay-frame-panes causes all of the panes in the frame frame to be redis-

played immediately by calling redisplay-frame-pane on each of the panes in
frame that are visible in the current layout. When the boolean force-p is t, the
maximum level of redisplay is forced and the pane is displayed “from scratch.”

frame-replay [Generic Function]

Arguments:frame stream &optional region
Summary: Replays the contents of stream in the frame frame within the region specified by

the region region, which defaults to the viewport of stream.

notify-user [Generic Function]

Arguments:frame message &key associated-window title documentation exit-boxes style
text-style

Summary: Notifies the user of some event on behalf of the frame frame.

 This function provides a look-and-feel independent way for applications to com-
municate messages to the user. For example, a frame manager might provide a
top-level message window for each frame, or it might pop up an alert box.

 frame is a CLIM application frame, message is a message string, associated-win-
dow is the window with which the notification will be associated, title is a title
string to include in the notification, documentation is not implemented in the cur-
rent version of CLIM, exit-boxes indicates what sort of exit boxes should appear
in the notification, style is the style in which to display the notification, and
text-style is the text style in which to display the notification.

frame-manager-notify-user [Generic Function]

Arguments:frame message &key associated-window title documentation exit-boxes style
text-style

Summary: The generic function used by notify-user. The default method on stan-
dard-frame-manager will display a dialog or an alert box that contains the mes-
sage and has exit boxes that will allow the user to dismiss the notification.

 frame is a CLIM application frame, message is a message string, associated-win-
dow is the window with which the notification will be associated, title is a title
string to include in the notification, documentation is not implemented in the cur-
rent version of CLIM, exit-boxes indicates what sort of exit boxes should appear
in the notification, style is the style in which to display the notification, and
text-style is the text style in which to display the notification.
Defining Application Frames

frame-properties [Generic Function]

Arguments:frame property

(setf frame-properties) [Generic Function]

Arguments:value frame property
Summary: Frame properties can be used to associate frame specific data with frames with-

out adding additional slots to the frame’s class. CLIM may use frame properties
internally to store information for its own purposes.

9.9 Frame Managers

Frames may be adopted by a frame manager, which involves invoking a protocol for gen-
erating the pane hierarchy of the frame. This protocol provides for selecting pane types for
abstract gadget panes based on the style requirements imposed by the frame manager. That
is, the frame manager is responsible for the look and feel of a frame. Each frame manager
is associated with one specific port. However, a single port may have multiple frame man-
agers managing various frames associated with the port.

After a frame is adopted it can be in any of the three following states: enabled, disabled, or
shrunk. An enabled frame is visible unless it is occluded by other frames or the user is
browsing outside of the portion of the frame manager’s space that the frame occupies. A
shrunken frame provides a cue or handle for the frame, but generally will not show the en-
tire contents of the frame. For example, the frame may be iconified, or an item for the frame
may be placed in a special suspended frame menu. A disabled frame is not visible, nor is
there any user-accessible handle for enabling the frame.

Frames may also be disowned, which involves releasing the frame’s panes as well as all as-
sociated foreign resources.

frame-manager [Protocol Class]

Summary: The protocol class that corresponds to a frame manager. If you want to create a
new class that behaves like a frame manager, it should be a subclass of
frame-manager. Subclasses of frame-manager must obey the frame manager
protocol.

 There are no advertised standard frame manager classes. Each port implements
one or more frame managers that correspond to the look and feel for the port.
<Bold>212CLIM User Guide

frame-manager-p [Function]

Arguments:object
Summary: Returns t if object is a frame manager; otherwise, it returns nil.

9.9.1 Finding Frame Managers

Most frames need to deal directly with frame managers only to the extent that they need to
find a frame manager into which they can insert themselves. Since frames will usually be
invoked by some user action that is handled by a frame manager, finding an appropriate
frame manager is usually straightforward.

Some frames will support the embedding of other frames within themselves. Such frames
not only use frames but also act as frame managers. In this case, the embedded frames are
mostly unaware that they are nested within other frames, but only know that they are con-
trolled by a particular frame manager.

The find-frame-manager function provides a flexible means for locating a frame manager
to adopt an application’s frames. There are a variety of ways that the user or the application
can influence where an application’s frame is adopted:

■ An application can establish an application default frame manager using
with-frame-manager. A frame’s top-level loop automatically establishes the frame’s
frame manager.

■ The programmer or user can influence what frame manager is found by setting *de-
fault-frame-manager* or *default-server-path*.

find-frame-manager [Function]

Arguments:&rest options &key port &allow-other-keys
Summary: Finds an appropriate frame manager that conforms to the options, including the

port argument. Furthermore, CLIM applications may set up dynamic contexts
that affect what find-frame-manager will return.

 port defaults to the value returned by find-port applied to the remaining options.

 A frame manager is found using the following rules in the order listed:

1. If a current frame manager has been established via an invocation of
with-frame-manager, as is the case within a frame’s top-level, and that frame
manager conforms to the options, it is returned. The exact definition of “con-
forming to the options” varies from one port to another, but it may include
Defining Application Frames

such things as matching the console number, color or resolution properties,
and so forth. If the options are empty, then any frame manager will conform.

1. If *default-frame-manager* is bound to a currently active frame manager and
it conforms to the options, it is returned.

2. If port is nil, a port is found and an appropriate frame manager is constructed
using *default-server-path*.

default-frame-manager [Variable]

Summary: This variable provides a convenient point for allowing a programmer or user to
override the frame manager type that would normally be selected. Most users
will not set this variable, since they can set *default-server-path* to indicate
which host window system they want to use and are willing to use whatever
frame manager is the default for the particular port. However, some users may
want to use a frame manager that isn’t the typical frame manager. For example,
a user may want to use both an OpenLook frame manager and a Motif frame
manager on a single port.

with-frame-manager [Macro]

Arguments:(frame-manager) &body body
Summary: Generates a dynamic context that causes all calls to find-frame-manager to

return frame-manager if the where argument passed to it conforms to frame-man-
ager. Nested calls to with-frame-manager shadow outer contexts. body may
have zero or more declarations as its first forms.

9.9.2 Frame Manager Operators

frame-manager [Generic Function]

Arguments:frame
Summary: Returns frame’s current frame manager if it is adopted; otherwise, it returns nil.

(setf frame-manager) [Generic Function]

Arguments:frame-manager frame
Summary: Changes the frame manager of frame to frame-manager. In effect, the frame is

disowned from its old frame manager and is adopted into the new frame manager.
Transferring a frame preserves its frame-state; for example, if the frame was
previously enabled, it will be enabled in the new frame manager.
<Bold>214CLIM User Guide

frame-manager-frames [Generic Function]

Arguments:frame-manager
Summary: Returns a list of all the frames being managed by frame-manager. This function

returns objects that reveal CLIM’s internal state; do not modify those objects.

adopt-frame [Generic Function]

Arguments:frame-manager frame

disown-frame [Generic Function]

Arguments:frame-manager frame
Summary: These functions insert or remove a frame from a frame manager’s control. These

functions allow a frame manager to allocate and deallocate resources associated
with a frame. For example, removing a frame from a frame manager that is talk-
ing to a remote server allows it to release all remote resources used by the frame.

frame-state [Generic Function]

Arguments:frame
Summary: Returns one of :disowned, :enabled, :disabled, or :shrunk, indicating the cur-

rent state of frame.

enable-frame [Generic Function]

Arguments:frame

disable-frame [Generic Function]

Arguments:frame

shrink-frame [Generic Function]

Arguments:frame
Summary: These functions force a frame into the enabled, disabled, or shrunken states. A

frame in the enabled state may be visible if it is not occluded or placed out of the
user’s focus of attention. A disabled frame is never visible. A shrunk frame is
accessible to the user for re-enabling, but may be represented in some abbrevi-
ated form, such as an icon or a menu item.

 These functions call note-frame-state-changed to notify the frame manager that
the state of the frame changed.
Defining Application Frames

note-frame-state-changed [Generic Function]

Arguments:frame-manager frame new-state
Summary: Notifies the frame manager frame-manager that the frame frame has changed its

state to state.

generate-panes [Generic Function]

Arguments:frame-manager frame
Summary: This function is invoked by a standard method of adopt-frame. It is the respon-

sibility of the frame implementor to provide a method that invokes setf on
frame-panes on the frame with a value of type pane. define-application-frame
automatically supplies a generate-panes method if either the :pane or :panes
option is used in the define-application-frame.

find-pane-for-frame [Generic Function]

Arguments:frame-manager frame
Summary: This function is invoked by a standard method of adopt-frame. It must return the

root pane of the frame’s layout. It is the responsibility of the frame implementor
to provide a method that constructs the frame’s top-level pane. define-applica-
tion-frame automatically supplies a a method for this function if either the :pane
or :panes option is used.

note-command-enabled [Generic Function]

Arguments:frame-manager frame command-name

note-command-disabled [Generic Function]

Arguments:frame-manager frame command-name
Summary: Notifies the frame manager frame-manager that the command named by com-

mand-name has been enabled or disabled (respectively) in the frame frame. The
frame manager can update the appearance of the user interface as appropriate, for
instance, by “graying out” a newly disabled command from a command menu or
menu bar.

9.10 Advanced Topics

The material in this section is advanced; most CLIM programmers can skip to the next sec-
tion. It describes the functions that interface application frames to the presentation type sys-
<Bold>216CLIM User Guide

tem. All classes that inherit from application-frame must inherit or implement methods for
all of these functions. See “Application Frame Operators and Accessors,” Section 9.8.

frame-maintain-presentation-histories [Generic Function]

Arguments:frame
Summary: Returns t if the frame frame maintains histories for its presentations; otherwise,

it returns nil. The default method (on standard-application-frame) returns t if
and only if the frame has at least one interactor pane.

frame-find-innermost-applicable-presentation [Generic Function]

Arguments:frame input-context stream x y &key event
Summary: Locates and returns the innermost applicable presentation on the window stream

whose sensitivity region contains the point (x, y), on behalf of the frame frame in
the input context input-context. event defaults to nil, and is as for find-inner-
most-applicable-presentation.

 The default method (on standard-application-frame) simply calls find-inner-
most-applicable-presentation.

frame-input-context-button-press-handler [Generic Function]

Arguments:frame stream button-press-event
Summary: This function handles user pointer events on behalf of the frame frame in the

input context *input-context*. stream is the window on which but-
ton-press-event took place.

 The default implementation (on standard-application-frame) unhighlights any
highlighted presentations, finds the applicable presentation by calling
frame-find-innermost-applicable-presentation-at-position, and then calls
throw-highlighted-presentation to execute the translator on that presentation
that corresponds to the user’s gesture.

 If frame-input-context-button-press-handler is called when the pointer is not
over any applicable presentation, throw-highlighted-presentation must be
called with a presentation of *null-presentation*.

frame-document-highlighted-presentation [Generic Function]

Arguments:frame presentation input-context window x y stream
Summary: This function produces pointer documentation on behalf of the frame frame in

the input context input-context on the window window at the point (x, y). The
documentation is displayed on the stream stream.
Defining Application Frames

 The default method (on standard-application-frame) produces documentation
that corresponds to calling document-presentation-translator on all of the
applicable translators in the input context input-context. presentation, window, x,
y, and stream are as for document-presentation-translator.

 Typical pointer documentation consists of a brief description of each translator
that is applicable to the specified presentation in the specified input context,
given the current modifier state for the window. For example, the following doc-
umentation might be produced when the pointer is pointing to the Lisp expres-
sion ’(1 2 3) when the input context is form:

Left: ’(1 2 3); Middle: (DESCRIBE ’(1 2 3)); Right: Menu

frame-drag-and-drop-feedback [Generic Function]

Arguments:frame presentation stream initial-x initial-y new-x new-y state
Summary: The default feedback function for translators defined by

define-drag-and-drop-translator, which provides visual feedback during the
dragging phase of such translators on behalf of the frame frame. presentation is
the presentation being dragged on the stream stream. The pointing device was
initially at the position specified by initial-x and initial-y, and is at the position
specified by new-x and new-y when frame-drag-and-drop-feedback is
invoked. (Both positions are supplied for “rubber-banding,” if that is the sort of
desired feedback.) state will be either :highlight, meaning that the feedback
should be drawn, or :unhighlight, meaning that the feedback should be erased.

frame-drag-and-drop-highlighting [Generic Function]

Arguments:frame presentation stream state
Summary: The default highlighting function for translators defined by

define-drag-and-drop-translator, which is invoked when a “to object” should
be highlighted during the dragging phase of such translators on behalf of the
frame frame. presentation is the presentation over which the pointing device is
located on the stream stream. state will be either :highlight, meaning that the
highlighting for the presentation should be drawn, or :unhighlight, meaning that
the highlighting should be erased.
<Bold>218CLIM User Guide

Chapter 10 Panes and Gadgets
Panes and Gadgets

10.1 Panes

CLIM panes are similar to the gadgets or widgets of other toolkits. They can be used to
compose the top-level user interface of applications as well as auxiliary components such
as menus and dialogs. The application programmer provides an abstract specification of the
pane hierarchy, which CLIM uses in conjunction with user preferences and other factors to
select a specific “look and feel” for the application. In many environments, a CLIM appli-
cation can use the facilities of the host window system toolkit via a set of adaptive panes,
allowing a portable CLIM application to take on the look and feel of a native application
user interface.

Panes are rectangular objects that are implemented as special sheet classes. An application
will typically create a tree of panes that divide up the application frame’s screen space.
Panes can be structurally classified according to their location in pane hierarchies. Panes
that can have child panes are called composite panes; those that cannot are called leaf
panes. Composite panes are used to provide a mechanism for spatially organizing (“laying
out”) other panes. Some leaf panes implement gadgets that have some appearance and react
to user input by invoking application code. Another kind of leaf pane, known as an extend-
ed stream pane, provides an area of the application’s screen real estate for the presentation
of text and graphics.

Abstract panes are panes that are defined only in terms of their programmer interface, or
behavior. The protocol for an abstract pane (that is, the specified set of initialization op-
tions, accessors, and callbacks) is designed to specify the pane in terms of its overall pur-
pose, rather then in terms of its specific appearance or particular interactive details. This
abstract definition allows multiple implementations of the abstract pane to define their own
specific look and feel individually. CLIM can then select the appropriate pane implemen-
tation based on factors outside of the application domain, such as user preferences or the
look and feel of the host operating environment. A subset of the abstract panes, the adaptive
panes, have been defined to integrate well across all CLIM operating platforms.

CLIM provides a general mechanism for automatically selecting the particular implemen-
tation of an abstract pane selected by an application based on the current frame manager.
The application programmer can override the selection mechanism by using the name of a
specific pane implementation in place of the abstract pane name when specifying the appli-
cation frame’s layout. By convention, the name of the basic, portable implementation of an
abstract pane class can be determined by adding the suffix -pane to the name of the abstract
class.
<Bold>220CLIM User Guide

10.1.1 Basic Pane Construction

Applications typically define the hierarchy of panes used in their frames with the :pane or
:panes options of define-application-frame. These options generate the body of methods
on functions that are invoked when the frame is being adopted into a particular frame man-
ager, so the frame manager can select the specific implementations of the abstract panes.

There are two basic interfaces for constructing a pane: make-pane of an abstract pane class
name, or make-instance of a “concrete” pane class. The former approach is generally pref-
erable, since it results in more portable code. However, in some cases the programmer may
wish to instantiate panes of a specific class (such as an hbox-pane or a vbox-pane). In this
case, using make-instance directly circumvents the abstract pane selection mechanism.
However, the make-instance approach requires the application programmer to know the
name of the specific pane implementation class that is desired, and so is inherently less por-
table. By convention, all of the concrete pane class names, including those of the imple-
mentations of abstract pane protocol specifications, end in -pane.

Using make-pane instead of make-instance invokes the “look and feel” realization pro-
cess to select and construct a pane. Normally this process is implemented by the frame man-
ager, but it is possible for other “realizers” to implement this process. make-pane is typi-
cally invoked using an abstract pane class name, which by convention is a symbol in the
CLIM package that doesn’t include the -pane suffix. (This naming convention distinguish-
es the names of the abstract pane protocols from the names of classes that implement them.)
Programmers, however, are allowed to pass any pane class name to make-pane, in which
case the frame manager will generally instantiate that specific class.

pane [Protocol Class]

Summary: The protocol class that corresponds to a pane, a subclass of sheet. A pane is a
special kind of sheet that implements the pane protocols, including the layout
protocols. If you want to create a new class that behaves like a pane, it should be
a subclass of pane. Subclasses of pane must obey the pane protocol.

 All of the subclasses of pane are mutable.

panep [Function]

Arguments:object
Summary: Returns t if object is a pane; otherwise, it returns nil.

basic-pane [Class]
Panes and Gadgets

Summary: The basic class on which all CLIM panes are built, a subclass of pane. This class
is an abstract class, intended only to be subclassed, not instantiated.

make-pane [Function]

Arguments:abstract-class-name &rest initargs
Summary: Selects a class that implements the behavior of the abstract pane

abstract-class-name and constructs a pane of that class. make-pane must be
used either within the dynamic scope of a call to with-look-and-feel-realiza-
tion, or within the :pane or :panes options of a define-application-frame
(which implicitly invokes with-look-and-feel-realization).

make-pane-1 [Generic Function]

Arguments:realizer frame abstract-class-name &rest initargs
Summary: The generic function that is invoked by a call to make-pane. The object that real-

izes the pane, realizer, is established by with-look-and-feel-realization. Usually
realizer is a frame manager, but it could be another object that implements the
pane realization protocol. frame is the frame for which the pane will be created,
and abstract-class-name is the type of pane to create.

with-look-and-feel-realization [Macro]

Arguments:(realizer frame) &body forms
Summary: Establishes a dynamic context that installs realizer as the object responsible for

realizing panes. All calls to make-pane within the context of
with-look-and-feel-realization result in make-pane-1 being invoked on real-
izer. This macro can be nested dynamically; inner uses shadow outer uses. body
may have zero or more declarations as its first forms.

 realizer is usually a frame manager, but in some cases realizer may be some other
object. For example, within the implementation of a pane that uses its own sub-
panes to achieve its functionality, this form might be used with realizer being the
pane itself.

10.1.2 Pane Initialization Options

The following options must be accepted by all pane classes.
<Bold>222CLIM User Guide

:foreground [Option]

:background [Option]

Summary: These options specify the default foreground and background inks for a pane.
Client code should be cautious about passing values for these two options, since
the desktop’s look and feel or the user’s preferences should usually determine
these values.

:text-style [Option]

Summary: This option specifies the default text style that should be used for any sort of pane
that supports text output. Panes that do not support text output ignore this option.
Client code should be cautious about passing values for this option, since the
desktop’s look and feel or the user’s preferences should usually determine this
value.

:name [Option]

Summary: This option specifies the name of the pane. It defaults to nil.

10.1.3 Pane Properties

pane-frame [Generic Function]

Arguments:pane
Summary: Returns the frame that “owns” the pane. pane-frame can be invoked on any pane

in a frame’s pane hierarchy, but it can only be invoked on “active” panes, that is,
those panes that are currently adopted into the frame’s pane hierarchy.

pane-name [Generic Function]

Arguments:pane
Summary: Returns the name of the pane.

pane-foreground [Generic Function]

Arguments:pane
Summary: Returns the foreground ink of the pane.

pane-background [Generic Function]

Arguments:pane
Panes and Gadgets

Summary: Returns the background ink of the pane.

10.2 Layout Panes

This section describes the various layout panes provided by CLIM and the protocol that
these panes obey.

The layout panes described in this section are all composite panes that are responsible for
positioning their children according to various layout rules. Layout panes can be selected
in the same way as other panes by using make-pane or make-instance. For convenience
and readability of pane layouts, many of these panes also provide a macro that expands into
a make-pane form, passing a list of the panes created in the body of the macro as the :con-
tents argument. For example, you can express a layout of a vertical column of two label
panes either as:

(make-instance ’vbox-pane
 :contents (list
 (make-instance ’label-pane :text "One")
 (make-instance ’label-pane :text "Two")))

or as:

(vertically ()
 (make-instance ’label-pane :text "One")
 (make-instance ’label-pane :text "Two"))

10.2.1 Layout Pane Options

:contents [Option]

Summary: All layout pane classes accept the :contents options, which specifies the child
panes to be laid out.
<Bold>224CLIM User Guide

:width [Option]

:max-width [Option]

:min-width [Option]

:height [Option]

:max-height [Option]

:min-height [Option]

Summary: These options control the space requirement parameters for laying out the pane.
The :width and :height options specify the preferred horizontal and vertical
sizes. The :max-width and :max-height options specify the maximum amount
of space that may be consumed by the pane, and give CLIM’s pane layout engine
permission to grow the pane beyond the preferred size. The :min-width and
:min-height options specify the minimum amount of space that may be con-
sumed by the pane, and give CLIM’s pane layout engine permission to shrink the
pane below the preferred size.

 If either the :max-width or the :min-width option is not supplied, it defaults to
the value of the :width option. If either the :max-height or the :min-height
option is not supplied, it defaults to the value of the :height option.

 :max-width, :min-width, :max-height, and :min-height can also be specified
as a relative size by supplying a list of the form (number :relative). In this case,
the number indicates the number of device units that the pane is willing to stretch
or shrink.

 The values of these options are specified in the same way as the :x-spacing and
:y-spacing options to formatting-table. (Note that :character and :line may
only be used on those panes that display text, such as a clim-stream-pane or a
label-pane.)

+fill+ [Constant]

Summary: Use this constant as a value to any of the relative size options. It indicates that
pane’s willingness to adjust an arbitrary amount in the specified direction.
Panes and Gadgets

:align-x [Option]

:align-y [Option]

Summary: The :align-x option is one of :right, :center, or :left. The :align-y option is one
of :top, :center, or :bottom. These specify how child panes are aligned within
the parent pane. These have the same semantics as for formatting-cell.

:x-spacing [Option]

:y-spacing [Option]

:spacing [Option]

Summary: These spacing options apply to hbox-pane, vbox-pane, table-pane, and indicate
the amount of horizontal and vertical spacing (respectively) to leave between the
items in boxes or rows and columns in table. The values of these options are spec-
ified in the same way as the :x-spacing and :y-spacing options to format-
ting-table. :spacing specifies both the x and y spacing at once.

10.2.2 Layout Pane Classes

hbox-pane [Composite Pane]

horizontally [Macro]

Arguments:(&rest options &key spacing &allow-other-keys) &body contents
Summary: The hbox-pane class lays out all its child panes horizontally from left to right.

The horizontally macro is a convenient interface for creating an hbox-pane.

 contents is one or more forms that are the child panes. Each form in contents is
of the form:

• A pane—the pane is inserted at this point and its space requirements are used
to compute the size.

• A number—the specified number of device units should be allocated at this
point.

• The symbol +fill+ —an arbitrary amount of space can be absorbed at this point
in the layout.
<Bold>226CLIM User Guide

• A list whose first element is a number and whose second element evaluates to
a pane—if the number is less than 1, then it means that percentage of excess
space or deficit should be allocated to the pane. If the number is greater than or
equal to 1, then that many device units are allocated to the pane. For example:

 (horizontally ()
 (1/3 (make-pane ’label-button-pane))
 (2/3 (make-pane ’label-button-pane)))

would create a horizontal stack of two button panes. The first button takes
one-third of the space, and the second takes two-thirds of the space.

vbox-pane [Composite Pane]

vertically [Macro]

Arguments:(&rest options &key spacing &allow-other-keys) &body contents
Summary: The vbox-pane class lays out all of its child panes vertically, from top to bottom.

The vertically macro serves as a convenient interface for creating an vbox-pane.

 contents is as for horizontally.

table-pane [Composite Pane]

tabling [Macro]

Arguments:(&rest options) &body contents
Summary: This pane lays out its child panes in a two-dimensional table arrangement. Each

column of the table is specified by an extra level of list in contents. For example:

(tabling ()
 ((make-pane 'label :text "Red")
 (make-pane 'label :text "Green")
 (make-pane 'label :text "Blue"))
 ((make-pane 'label :text "Intensity")
 (make-pane 'label :text "Hue")
 (make-pane 'label :text "Saturation")))

spacing-pane [Composite Pane]

spacing [Macro]

Arguments:(&rest options &key thickness &allow-other-keys) &body contents
Panes and Gadgets

Summary: This pane reserves some margin space around a single child pane. The space
requirement keys that are passed in indicate the requirements for the surrounding
space, not including the requirements of the child.

outlined-pane [Composite Pane]

outlining [Macro]

Arguments:(&rest options &key thickness &allow-other-keys) &body contents
Summary: This layout pane puts an outline of thickness thickness around its contents.

 Use the :background option to control the ink used to draw the background.

bboard-pane [Composite Pane]

Summary: A pane that allows its children to be any size and lays them out wherever they
want to be (for example, a desktop manager).

scroller-pane [Composite Pane]

scrolling [Macro]

Arguments:(&rest options) &body contents
Summary: Creates a composite pane that allows the single child specified by contents to be

scrolled. options may include a :scroll-bar option. The value of this option may
be t (the default), which indicates that both horizontal and vertical scroll bars
should be created; :vertical, which indicates that only a vertical scroll bar should
be created; or :horizontal, which indicates that only a horizontal scroll bar
should be created.

 The pane created by the scrolling includes a scroller-pane that has as children
the scroll bars and a viewport. The viewport of a pane is the area of the window’s
drawing plane that is currently visible to the user. The viewport has as its child
the specified contents.

hrack-pane [Composite Pane]

vrack-pane [Composite Pane]

Summary: Similar to the hbox-pane and vbox-pane classes, except that these ensure that
all children are the same size in the minor dimension. In other words, these panes
are used to create stacks of same-sized items, such as menu items.
<Bold>228CLIM User Guide

 An hrack-pane is created when the :equalize-height option to horizontally is
t. A vrack-pane is created when the :equalize-width option to vertically is t.

Note: hrack-pane and vrack-pane are available only in Liquid CLIM.

restraining-pane [Composite Pane]

restraining [Macro]

Arguments:(&rest options) &body contents
Summary: Wraps the contents with a pane that prevents changes to the space requirements

for contents from causing re-layout of panes outside the restraining context. This
prevents the size constraints of the child from propagating up beyond this point.

Note: restraining-pane and restraining are available only in Liquid CLIM.

10.2.3 Composite Pane Generic Functions

pane-viewport [Generic Function]

Arguments:pane
Summary: Returns the pane’s viewport, if one exists.

pane-viewport-region [Generic Function]

Arguments:pane
Summary: If a viewport for the pane exists, the viewport’s region is returned.

pane-scroller [Generic Function]

Arguments:pane
Summary: Checks to see whether a pane has an associated scroller pane, and returns it if it

does.

scroll-extent [Generic Function]

Arguments:pane x y
Summary: If the pane argument has an associated viewport, it resets the viewport to display

the portion of the underlying stream starting at (x, y).
Panes and Gadgets

10.2.4 The Layout Protocol

The layout protocol is triggered by layout-frame, which is called when a frame is adopted
by a frame manager.

CLIM uses a two-pass algorithm to lay out a pane hierarchy. In the first pass (called space
composition), the top-level pane is asked how much space it requires. This may in turn lead
to the same question being asked recursively of all the panes in the hierarchy, with the an-
swers being composed to produce the top-level pane’s answer. Each pane answers the query
by returning a space requirement (or space-requirement) object, which specifies the
pane’s desired width and height, as well as its willingness to shrink or grow along its width
and height.

In the second pass (called space allocation), the frame manager attempts to obtain the re-
quired amount of space from the host window system. The top-level pane is allocated the
space that is actually available. Each pane, in turn, allocates space recursively to each of its
descendants in the hierarchy according to the pane’s rules of composition.

For many types of panes, the application programmer can indicate the space requirements
of the pane at creation time by using the space requirement options, as well as by calling
the change-space-requirements function. Panes are used to display application-specific
information, so the application can determine how much space should normally be given to
them.

Other pane types automatically calculate their space needs based on the information they
have to present. For example, the space requirement for a label pane is a function of the text
to be displayed.

A composite pane calculates its space requirement based on the requirements of its children
and its own particular rule for arranging them. For example, a pane that arranges its children
in a vertical stack would return as its desired height the sum of the heights of its children.
Note, however, that a composite pane is not required by the layout protocol to respect the
space requests of its children; in fact, composite panes aren’t even required to ask their chil-
dren.

Space requirements are expressed for each of the two dimensions as a preferred size, a min-
imum size below which the pane cannot be shrunk, and a maximum size above which the
pane cannot be grown. (The minimum and maximum sizes can also be specified as relative
amounts.) All sizes are specified as a real number indicating the number of device units
(such as pixels).
<Bold>230CLIM User Guide

space-requirement [Protocol Class]

Summary: The protocol class of all space requirement objects. There are one or more sub-
classes of space-requirement with implementation-dependent names that
implement space requirements. The exact names of these classes is explicitly
unspecified. If you want to create a new class that behaves like a space require-
ment, it should be a subclass of space-requirement. Subclasses of
space-requirement must obey the space requirement protocol.

 All the instantiable space requirement classes provided by CLIM are immutable.

make-space-requirement [Function]

Arguments:&key (width 0) (max-width 0) (min-width 0) (height 0) (max-height 0)
(min-height 0)

Summary: Constructs a space requirement object with the given characteristics :width,
:height, and so on.

space-requirement-width [Function]

Arguments:space-req

(setf space-requirement-width) [Function]

Arguments:size space-req

space-requirement-max-width [Function]

Arguments:space-req

(setf space-requirement-max-width) [Function]

Arguments:size space-req

space-requirement-min-width [Function]

Arguments:space-req

(setf space-requirement-min-width) [Function]

Arguments:size space-req

space-requirement-height [Function]

Arguments:space-req
Panes and Gadgets

(setf space-requirement-height) [Function]

Arguments:size space-req

space-requirement-max-height [Function]

Arguments:space-req

(setf space-requirement-max-height) [Function]

Arguments:size space-req

space-requirement-min-height [Function]

Arguments:space-req

(setf space-requirement-min-height) [Function]

Arguments:size space-req
Summary: These read or modify the components of the space requirement space-req.

space-requirement-components [Generic Function]

Arguments:space-req
Summary: Returns the components of the space requirement space-req as six values: the

width, minimum width, maximum width, height, minimum height, and maxi-
mum height.

space-requirement-combine [Function]

Arguments:function sr1 sr2
Summary: Returns a new space requirement, each component of which is the result of

applying the function function to each of the components of the two space
requirements sr1 and sr2.

 function is a function of two arguments, both of which are real numbers. It has
dynamic extent.

space-requirement+ [Function]

Arguments:sr1 sr2
Summary: Returns a new space requirement whose components are the sum of each of the

components of the two space requirements sr1 and sr2.

space-requirement+* [Function]

Arguments:space-req &key width max-width min-width height max-height min-height
<Bold>232CLIM User Guide

Summary: Returns a new space requirement whose components are the sum of each of the
components of space-req added to the appropriate keyword argument (for exam-
ple, the width component of space-req is added to width). This is intended to be
a more efficient, spread version of space-requirement+.

change-space-requirements [Generic Function]

Arguments:pane &key resize-frame &rest space-req-keys
Summary: This function can be invoked to indicate that the space requirements for pane

have changed. Any of the options that applied to the pane at creation time can be
passed into this function as well.

 resize-frame determines whether the frame should be resized to accommodate the
new space requirement of the hierarchy. If resize-frame is t, then layout-frame
will be invoked on the frame. If resize-frame is nil, then the frame may or may
not get resized depending on the pane hierarchy and the :resize-frame option
that was supplied to define-application-frame.

note-space-requirements-changed [Generic Function]

Arguments:sheet pane
Summary: This function is invoked whenever pane’s space requirements have changed.

sheet must be the parent of pane. Invoking this function essentially means that
compose-space will be reinvoked on pane, and it will reply with a space require-
ment that is not equal to the reply that was given on the last call to com-
pose-space.

 This function is automatically invoked by change-space-requirements in the
cases that layout-frame isn’t invoked. In the case that layout-frame is invoked,
it isn’t necessary to call note-space-requirements-changed, since a complete
re-layout of the frame will be executed.

changing-space-requirements [Macro]

Arguments:(&key resize-frame layout) &body body
Summary: This macro supports batching the invocation of the layout protocol by calls to

change-space-requirements. Within the body, all calls to
change-space-requirements change the internal structures of the pane and are
recorded. When the body is exited, the layout protocol is invoked appropriately.
body may have zero or more declarations as its first forms.
Panes and Gadgets

compose-space [Generic Function]

Arguments:pane
Summary: During the space composition pass, a composite pane will typically ask each of

its children how much space it requires by calling compose-space. They answer
by returning space-requirement objects. The composite will then form its own
space requirement by composing the space requirements of its children accord-
ing to its own rules for laying out its children.

allocate-space [Generic Function]

Arguments:pane width height
Summary: During the space allocation pass, a composite pane will arrange its children

within the available space and allocate space to them according to their space
requirements and its own composition rules by calling allocate-space on each of
the child panes. width and height are the width and height of pane in device units.

10.3 Extended Stream Panes

In addition to the various layout panes and gadgets, an application usually needs some
space to display textual and graphic output as well as to receive application-specific input
from the user. For example, a paint program needs a “canvas” pane for displaying the pic-
ture and handling “mouse strokes.” This can be accomplished in CLIM through the use of
extended stream panes.

This section describes the basic CLIM extended stream pane types. Programmers are free
to customize pane behavior by defining subclasses of these pane classes. Writing methods
to change the repaint or event-handling behavior is a possible starting place.

10.3.1 Extended Stream Pane Options

CLIM extended stream panes accept the :foreground, :background, and :text-style op-
tions as well as those options applicable to layout panes. The space requirement options
(:width, :height, and so forth) can also take a size specification of :compute, which causes
CLIM to run the display function for the pane and make the pane large enough to hold the
output of the display function.
<Bold>234CLIM User Guide

In addition to those listed previously, CLIM extended stream frames accept the following
options:

:display-after-commands [Option]

Summary: This specifies how the display function will be run. If t, the “print” part of the
read-eval-print loop runs the display function; this is the default for most pane
types. If nil, you are responsible for implementing the display after commands.

 Do not use :display-after-commands with accept-values panes, as the redisplay
for those panes is managed at a slightly lower level for efficiency. Avoid code
such as the following:

 (in-package :clim-user)

 (define-application-frame test-frame () ()
 (:command-table (test-frame :inherit-from
 (clim:accept-values-pane)))
 (:command-definer t)
 (:panes
 (test-input-pane :accept-values :display-function
 ’(clim:accept-values-pane-displayer
 :displayer test-input)
 ;; THIS WILL NOT WORK
 :display-after-commands t)
 (dummy :application)
 (menu :command-menu
 :display-function ’(display-command-menu :n-rows 1))
 (mouse :pointer-documentation))
 (:layouts (:default
 (vertically ()
 menu test-input-pane DUMMY mouse))))
 (defmethod test-input ((frame test-frame) stream)
 (accept ’integer :stream stream :prompt "prompt" :default 1)
 (terpri stream)
 (accept ’integer :stream stream :prompt "foo" :default 1)
 (terpri stream))

 (defun test-it (&key (port (find-port)))
 (run-frame-top-level

 (make-application-frame 'test-frame
 :frame-manager
 (find-frame-manager :port port))))
Panes and Gadgets

:display-function [Option]

Summary: This specifies a function to be called in order to display the contents of a CLIM
stream pane. CLIM’s default top-level function, default-frame-top-level, will
invoke the pane’s display function at the appropriate time (see the :display-time
option). The value of this option is either the name of a function to invoke, or a
cons whose car is the name of a function and whose cdr is additional arguments
to the function. The function will be invoked on the frame, the pane, and the addi-
tional function arguments, if any. The default for this option is nil.

:display-time [Option]

Summary: This tells CLIM when the pane’s display function should be run. If it is :com-
mand-loop, CLIM erases the pane’s contents and runs the display function after
each time a frame command is executed. If it is t, the pane is displayed once but
not again until pane-needs-redisplay is called on the pane. If it is nil, CLIM
waits until it is explicitly requested, either via pane-needs-redisplay or redis-
play-frame-pane. The default value varies according to the pane type.

:display-string [Option]

Summary: For title-panes only, you can use this option instead of :display-function to
specify a constant string to be displayed in the title-pane.

:incremental-redisplay [Option]

Summary: When t, the redisplay function will initially be executed inside of an invocation
to updating-output and the resulting output record will be saved. Subsequent
calls to redisplay-frame-pane will simply use redisplay to redisplay the pane.
The default for this option is nil.

:text-margin [Option]

Summary: This specifies the default text margin, that is, how much space is left around the
inside edge of the pane. The default for :text-margin is the width of the window.

:vertical-spacing [Option]

Summary: This specifies the default vertical spacing for the pane, that is, how much space
there is between each text line. The default for :vertical-spacing is 2.
<Bold>236CLIM User Guide

:end-of-line-action [Option]

Summary: This specifies the end-of-line action to be used. The default is :wrap. (The other
possible value is :allow.)

:end-of-page-action [Option]

Summary: This specifies the end-of-page action to be used. The default is :scroll. (The other
possible value is :allow.)

:output-record [Option]

Summary: This names the output record class to be used for the output history of the pane.
The default is standard-tree-output-history.

:draw [Option]

:record [Option]

Summary: These options specify whether the pane should initially allow drawing and output
recording, respectively. The default for both options is t.

10.3.2 Extended Stream Pane Classes

clim-stream-pane [Leaf Pane]

Summary: This class implements a pane that supports the CLIM graphics, extended input
and output, and output recording protocols. Any extended stream panes used will
most commonly be subclasses of this class.

The five following panes classes are subclasses of clim-stream-pane. Fundamentally,
these panes have the same capabilities; however, by convention, the different pane classes
have distinct roles. For instance, interactor panes are used for standard input, whereas ap-
plication panes, by default, specify the destination for standard output.

interactor-pane [Leaf Pane]

Summary: The pane class that implements “interactor” panes. The default method for
frame-standard-input will return the first pane of this type.

 The default for :display-time is nil and for :scroll-bars is :vertical.
Panes and Gadgets

application-pane [Leaf Pane]

Summary: The pane class that implements “application” panes. The default method for
frame-standard-output will return the first pane of this type.

 The default for :display-time is :command-loop and for :scroll-bars is t.

command-menu-pane [Leaf Pane]

Summary: The pane class that implements command menu panes that are not menu bars.
The default display function for panes of this type is display-command-menu.

 For command-menu-pane, the default for :display-time is :command-loop,
the default for :incremental-redisplay is t, and the default for :scroll-bars is t.

title-pane [Leaf Pane]

Summary: The pane class that implements a title pane. The default display function for
panes of this type is display-title. If the title to be displayed will not change, it
can be supplied using the option :display-string described in Section 10.3.1,
“Extended Stream Pane Options”. If neither :display-function or :dis-
play-string is supplied, the title will be taken from frame-pretty-name (see
Section 9.9.1, “Finding Frame Managers”).

 The default for :display-time is t and for :scroll-bars is nil.

pointer-documentation-pane [Leaf Pane]

Summary: The pane class that implements the pointer documentation pane.

 The default for :display-time is nil and for :scroll-bars is nil.

10.3.3 Making CLIM Extended Stream Panes

Most CLIM extended stream panes will contain more information than can be displayed in
the allocated screen space, so scroll bars are nearly always desirable. CLIM therefore pro-
vides a convenient form for creating composite panes that include a CLIM stream pane,
scroll bars, labels, and so forth. For window stream pane functions, see Section 13.7,
“CLIM Window Stream Pane Functions.”

make-clim-stream-pane [Function]

Arguments:&rest options &key type label scroll-bars &allow-other-keys
<Bold>238CLIM User Guide

Summary: Creates a pane of type type, which defaults to clim-stream-pane. If label is sup-
plied, it is a string used to label the pane. scroll-bars may be t to indicate that both
vertical and horizontal scroll bars should be included, :vertical (the default) to
indicate that vertical scroll bars should be included, or :horizontal to indicate
that horizontal scroll bars should be included.

 The other options may include all the valid CLIM extended stream pane options.

make-clim-interactor-pane [Function]

Arguments:&rest options
Summary: Like make-clim-stream-pane, but the type is forced to be interactor-pane.

make-clim-application-pane [Function]

Arguments:&rest options
Summary: Like make-clim-stream-pane, but the type is forced to be application-pane.

10.4 Defining A New Pane Type: Leaf Panes

To define a gadget pane implementation, first define the appearance and layout behavior of
the gadget, next define the callbacks, and last define the specific user interactions that trig-
ger the callbacks.

For example, to define an odd new kind of button that displays itself as a circle and is acti-
vated whenever the mouse is moved over it, proceed as follows:

;; A new kind of button
(defclass sample-button-pane (gadget-pane) ())

;; An arbitrary size parameter
(defparameter *sample-button-radius* 10)

;; Define the sheet's repaint method to draw the button.
(defmethod handle-repaint ((button sample-button-pane) region
 &key medium &allow-other-keys)
 (let ((radius *sample-button-radius*)
 (half (round *sample-button-radius* 2)))
 ;; Larger circle with small one in the center.
 (draw-circle* medium radius radius radius :filled nil)
 (draw-circle* medium radius radius half :filled t)))
Panes and Gadgets

;;; Define the pane's compose-space method to always request the
;;; fixed size of the pane.
(defmethod compose-space ((pane sample-button-pane))
 (make-space-requirement :width (* 2 *sample-button-radius*)
 :height (* 2 *sample-button-radius*)))

The previous code is enough to allow you to instantiate the button pane in an application
frame. It will fit in with the space composition protocol of, for example, an hbox-pane. It
will display itself as two nested circles.

The next step is to define the callbacks supported by this gadget, and the user interaction
that triggers them. The resulting pane is a leaf pane.

;; This default method is defined so that the callback can be invoked
;; on an arbitrary client value without error.
(defmethod value-change-callback
 ((button sample-button-pane) client id value)
 (declare (ignore client id value)))

;; This event processing method defines the rather odd interaction
;; style of this button, to wit: it triggers the activate callback
;; whenever the mouse moves into it.
(defmethod enter-region
 ((pane sample-button-pane) &key &allow-other-keys)
 (value-change-callback pane
 (gadget-client pane) (gadget-id pane) nil))

10.5 Gadgets

Gadgets are panes that implement such common toolkit components as push buttons or
scroll bars. Each gadget class has a set of associated generic functions that serve the same
role that callbacks serve in traditional toolkits. (A callback is a function that informs an ap-
plication that one of its gadgets has been used.) For example, a push button has an “acti-
vate” callback function that is invoked when its button is “pressed;” a scroll bar has a “value
changed” callback that is invoked after its indicator has been moved.

The gadget definitions specified by CLIM are abstract; that is, the gadget definition does
not specify the exact user interface of the gadget, but only specifies the semantics that the
gadget should provide. For instance, it is not defined whether the user clicks on a push but-
ton with the mouse, or moves the mouse over the button and then presses some key on the
keyboard to invoke the “activate” callback. Each toolkit implementation will specify the
<Bold>240CLIM User Guide

look and feel of their gadgets. Typically, the look and feel will be derived directly from the
underlying toolkit.

Each of CLIM’s abstract gadgets has at least one standard implementation that is written
using the facilities provided solely by CLIM itself. The gadgets’ appearances are achieved
via calls to the CLIM graphics functions, and their interactive behavior is defined in terms
of the CLIM input event processing mechanism. Since these gadget implementations are
written entirely in terms of CLIM, they are portable across all supported CLIM host win-
dow systems. Furthermore, since the specific look and feel of each such gadget is “fixed”
in CLIM Lisp code, the gadget implementation will look and behave the same in all envi-
ronments.

10.5.1 Abstract Gadgets

The push button and slider gadgets alluded to previously are abstract gadgets. The callback
interface to all of the various implementations of the gadget is defined by the abstract class.
In the :panes clause of define-application-frame, the abbreviation for a gadget is the name
of the abstract gadget class.

At pane creation time (that is, make-pane), the frame manager resolves the abstract class
into a specific implementation class; the implementation classes specify the detailed look
and feel of the gadget. Each frame manager will keep a mapping from abstract gadgets to
an implementation class; if the frame manager does not implement its own gadget for the
abstract gadget classes in the following sections, it will use the portable class provided by
CLIM. Since every implementation of an abstract gadget class is a subclass of the abstract
class, they all share the same programmer interface.

10.5.1.1 Using Gadgets

Every gadget has a client that is specified when the gadget is created. The client is notified
via the callback mechanism when any important user interaction takes place. Typically, a
gadget’s client will be an application frame or a composite pane. Each callback generic
function is invoked on the gadget, its client, the gadget id, and other arguments that vary
depending on the callback.

For example, the argument list for activate-callback looks like (gadget client gadget-id).
Assuming the programmer has defined an application frame called button-test that has a
CLIM stream pane in the slot output-pane, she could write the following method:
Panes and Gadgets

(defmethod activate-callback
 ((button push-button) (client button-test) gadget-id)
 (with-slots (output-pane) client
 (format output-pane
 "The button ~S was pressed, client ~S, id ~S."
 button client gadget-id)))

One problem with this example is that it differentiates on the class of the gadget, not on the
particular gadget instance. That is, the same method will run for every push button that has
the button-test frame as its client.

One way to distinguish between the various gadgets is via the gadget id, which is also spec-
ified when the gadget is created. The value of the gadget id is passed as the third argument
to each callback generic function. In this case, if we have two buttons, we might install start
and stop as the respective gadget ids and then use eql specializers on the gadget ids. We
could then refine the previous method as:

(defmethod activate-callback
 ((button push-button) (client button-test)
 (gadget-id (eql ’start)))
 (start-test client))

(defmethod activate-callback
 ((button push-button) (client button-test)
 (gadget-id (eql ’stop)))
 (stop-test client))

;; Create the start and stop push buttons
(make-pane ’push-button
 :label "Start"
 :client frame :id ’start)
(make-pane ’push-button
 :label "Stop"
 :client frame :id ’stop)

Another way to distinguish between gadgets is to specify explicitly what function should
be called when the callback is invoked. This is done by supplying an appropriate initarg
when the gadget is created. The previous example could then be written as follows:

;; No callback methods needed; just create the push buttons.
(make-pane ’push-button
 :label "Start"
 :client frame :id ’start
 :activate-callback
 #’(lambda (gadget)
 (start-test (gadget-client gadget))))
<Bold>242CLIM User Guide

(make-pane ’push-button
 :label "Stop"
 :client frame :id ’stop
 :activate-callback
 #’(lambda (gadget)
 (stop-test (gadget-client gadget))))

10.5.1.2 Implementing Gadgets

The following shows how a push button gadget might be implemented.

;; A PUSH-BUTTON uses the ACTIVATE-CALLBACK, and has a label.
;; This is the abstract class
(defclass push-button (action-gadget labelled-gadget) ())

;; Here is a concrete implementation of a PUSH-BUTTON.
;; The "null" frame manager create a pane of type PUSH-BUTTON-PANE when
;; asked to create a PUSH-BUTTON.
(defclass push-button-pane
 (push-button leaf-pane space-requirement-mixin)
 ((show-as-default :initarg :show-as-default
 :accessor push-button-show-as-default)
 (armed :initform nil)))

;; General highlight-by-inverting method
(defmethod highlight-button ((pane push-button-pane) medium)
 (with-bounding-rectangle* (left top right bottom) (sheet-region pane)
 (draw-rectangle*
 medium left top right bottom
 :ink +flipping-ink+ :filled t)))

;; Compute the amount of space required by a PUSH-BUTTON-PANE
(defmethod compose-space ((pane push-button-pane) &key width height)
 (multiple-value-bind (width height)
 (compute-gadget-label-size pane)
 (make-space-requirement :width width :height height)))
Panes and Gadgets

;; This gets invoked to draw the push button.
(defmethod repaint-sheet ((pane push-button-pane) region)
 (declare (ignore region))
 (with-sheet-medium (medium pane)
 (let ((text (gadget-label pane))
 (text-style (slot-value pane ’text-style))
 (armed (slot-value pane ’armed))
 (region (sheet-region pane)))
 (multiple-value-call #’draw-rectangle*
 medium (bounding-rectangle*
 (sheet-region pane))
 :filled nil)
 (draw-textmedium
 text
 (clim-utils::bounding-rectangle-center region)
 :text-style text-style
 :align-x ’:center
 :align-y ’:top)
 (when (eql armed ’:button-press)
 (highlight-button pane medium)))))

;; When we enter the push button’s region, arm it.
(defmethod handle-event ((pane push-button-pane)
 (event pointer-enter-event))
 (with-slots (armed) pane
 (unless armed
 (setf armed t)
 (armed-callback
 pane (gadget-client pane) (gadget-id pane)))))

;; When we leave the push button’s region, disarm it.
(defmethod handle-event ((pane push-button-pane)
 (event pointer-exit-event))
 (with-slots (armed) pane
 (when armed
 (when (eql armed ’:button-press)
 (highlight-button pane medium))
 (setf armed nil)
 (disarmed-callback
 pane (gadget-client pane) (gadget-id pane)))))
<Bold>244CLIM User Guide

;; When the user presses a pointer button, ensure that the button
;; is armed, and highlight it.
(defmethod handle-event ((pane push-button-pane)
 (event pointer-button-press-event))
 (with-slots (armed) pane
 (unless armed
 (setf armed ’:button-press)
 (armed-callback
 pane (gadget-client pane) (gadget-id pane))
 (with-sheet-medium (medium pane)
 (highlight-button pane medium)))))

;; When the user releases the button and the button is still armed,
;; call the activate callback.
(defmethod handle-event ((pane push-button-pane)
 (event pointer-button-release-event))
 (with-slots (armed) pane
 (when (eql armed ’:button-press)
 (activate-callback
 pane (gadget-client pane) (gadget-id pane))
 (setf armed t)
 (with-sheet-medium (medium pane)
 (highlight-button pane medium)))))

10.5.2 Basic Gadget Classes

The following are the basic gadget classes upon which all abstract gadgets are built.

gadget [Protocol Class]

Summary: The protocol class that corresponds to a gadget, a subclass of pane. If you want
to create a new class that behaves like a gadget, it should be a subclass of gadget.
Subclasses of gadget must obey the gadget protocol.

 All of the subclasses of gadget are mutable.

gadgetp [Function]

Arguments:object
Summary: Returns t if object is a gadget; otherwise. it returns nil.

basic-gadget [Class]

Summary: The base class on which all CLIM gadget classes are built.
Panes and Gadgets

:id [Initarg]

:client [Initarg]

:armed-callback [Initarg]

:disarmed-callback [Initarg]

Summary: All subclasses of gadget must handle these four initargs, which are used to spec-
ify, respectively, the gadget id, client, armed callback, and disarmed callback of
the gadget.

gadget-id [Generic Function]

Arguments:gadget

(setf gadget-id) [Generic Function]

Arguments:id gadget
Summary: Returns (or sets) the gadget id of the gadget gadget. The id is typically a simple

Lisp object that uniquely identifies the gadget.

gadget-client [Generic Function]

Arguments:gadget

(setf gadget-client) [Generic Function]

Arguments:client gadget
Summary: Returns the client of the gadget gadget. The client is usually an application

frame, but it could be another gadget (for example, a push button contained in a
radio box).

gadget-armed-callback [Generic Function]

Arguments:gadget

gadget-disarmed-callback [Generic Function]

Arguments:gadget
Summary: Returns the functions that will be called when the armed or disarmed callback,

respectively, are invoked. These functions will be invoked with a single argu-
ment, the gadget.
<Bold>246CLIM User Guide

 When these functions return nil, there is no armed (or disarmed) callback for the
gadget.

armed-callback [Callback]

Arguments:gadget client gadget-id

disarmed-callback [Callback]

Arguments:gadget client gadget-id
Summary: These callbacks are invoked when the gadget gadget is, respectively, armed or

disarmed. The exact definition of arming and disarming varies from gadget to
gadget, but typically a gadget becomes armed when the pointer is moved into its
region, and disarmed when the pointer moves out of its region.

 The default methods (on basic-gadget) call the function stored in gad-
get-armed-callback or gadget-disarmed-callback with one argument, the gad-
get.

activate-gadget [Generic Function]

Arguments:gadget
Summary: Causes the host gadget to become active, that is, available for input.

deactivate-gadget [Generic Function]

Arguments:gadget
Summary: Causes the host gadget to become inactive, that is, unavailable for input. In some

environments this may cause the gadget to become grayed over; in others, no
visual effect may be detected.

gadget-active-p [Generic Function]

Arguments:gadget
Summary: Returns t if gadget is active, that is, has been activated with activate-gadget.

note-gadget-activated [Generic Function]

Arguments:client gadget
Summary: This function is invoked after a gadget is made active.

note-gadget-deactivated [Generic Function]

Arguments:client gadget
Summary: This function is invoked after a gadget is made inactive.
Panes and Gadgets

value-gadget [Class]

Summary: The class used by gadgets that have a value; a subclass of basic-gadget.

:value [Initarg]

:value-changed-callback [Initarg]

Summary: All subclasses of value-gadget must handle these two initargs, which specify,
respectively, the initial value and the value changed callback of the gadget.

gadget-value [Generic Function]

Arguments:value-gadget
Summary: Returns the value of the gadget value-gadget. The interpretation of the value var-

ies from gadget to gadget. For example, a scroll bar’s value might be a number
between 0 and 1, while a toggle button’s value is either t or nil. (The documen-
tation of each individual gadget specifies how to interpret the value.)

(setf gadget-value) [Generic Function]

Arguments:value value-gadget &key invoke-callback
Summary: Sets the gadget’s value to the specified value. In addition, if invoke-callback is t

(the default is nil), the value-changed callback for the gadget is invoked. The
syntax for using (setf gadget-value) is:

(setf (gadget-value gadget :invoke-callback t) new-value)

gadget-value-changed-callback [Generic Function]

Arguments:value-gadget
Summary: Returns the function that will be called when the value changed callback is

invoked. This function will be invoked with two arguments, the gadget and the
new value.

 When this function returns nil, there is no value-changed callback for the gadget.

value-changed-callback [Callback]

Arguments:value-gadget client gadget-id value
Summary: This callback is invoked whenever the value of a gadget is changed.

 The default method (on value-gadget) calls the function stored in gad-
get-value-changed-callback with two arguments, the gadget and the new value.
<Bold>248CLIM User Guide

 CLIM implements or inherits a method for value-changed-callback for every
gadget that is a subclass of value-gadget.

action-gadget [Class]

Summary: The class used by gadgets that perform some kind of action, such as a push but-
ton; a subclass of basic-gadget.

:activate-callback [Initarg]

Summary: All subclasses of action-gadget must handle this initarg, which specifies the
activate callback of the gadget.

gadget-activate-callback [Generic Function]

Arguments:action-gadget
Summary: Returns the function that will be called when the gadget is activated. This func-

tion will be invoked with one argument, the gadget.

 When this function returns nil, there is no value-activate callback for the gadget.

activate-callback [Callback]

Arguments:action-gadget client gadget-id
Summary: This callback is invoked when the gadget is activated.

 The default method (on action-gadget) calls the function stored in gadget-acti-
vate-callback with one argument, the gadget.

 CLIM implements or inherits a method for activate-callback for every gadget
that is a subclass of action-gadget.

oriented-gadget-mixin [Class]

Summary: The class that is mixed into a gadget that has an orientation associated with it, for
example, a slider. This class is not intended to be instantiated.

:orientation [Initarg]

Summary: All subclasses of oriented-gadget-mixin must handle this initarg, which is used
to specify the orientation of the gadget. The value is either :horizontal or :ver-
tical.
Panes and Gadgets

gadget-orientation [Generic Function]

Arguments:oriented-gadget
Summary: Returns the orientation of the gadget oriented-gadget. Typically, this will be a

keyword such as :horizontal or :vertical.

labelled-gadget-mixin [Class]

Summary: The class that is mixed into a gadget that has a label, for example, a push button.
This class is not intended to be instantiated.

:label [Initarg]

:align-x [Initarg]

:align-y [Initarg]

Summary: All subclasses of labelled-gadget-mixin must handle these initargs, which are
used to specify the label and its x and y alignment. Labelled gadgets will also
have a text style for the label, but this is managed by the usual text-style mecha-
nism for panes.

gadget-label [Generic Function]

Arguments:labelled-gadget

(setf gadget-label) [Generic Function]

Arguments:label labelled-gadget
Summary: Returns (or sets) the label of the gadget labelled-gadget. The label must be a

string. Changing the label of a gadget may result in invoking the layout protocol
on the gadget and its ancestor sheets.

gadget-label-align-x [Generic Function]

Arguments:labelled-gadget

(setf gadget-label-align-x) [Generic Function]

Arguments:alignment labelled-gadget

gadget-label-align-y [Generic Function]

Arguments:labelled-gadget
<Bold>250CLIM User Guide

(setf gadget-label-align-y) [Generic Function]

Arguments:alignment labelled-gadget
Summary: Returns (or sets) the alignment of the label of the gadget labelled-gadget. Chang-

ing the alignment a gadget may result in invoking the layout protocol on the gad-
get and its ancestor sheets.

gadget-label-text-style [Generic Function]

Arguments:labelled-gadget

(setf gadget-label-text-style) [Generic Function]

Arguments:text-style labelled-gadget
Summary: Returns (or sets) the text style of the label of the gadget labelled-gadget. This

must be a CLIM text style object. Changing the label text style of a gadget may
result in invoking the layout protocol on the gadget and its ancestor sheets.

range-gadget-mixin [Class]

Summary: The class that is mixed into a gadget that has a range, for example, a slider.

:min-value [Initarg]

:max-value [Initarg]

Summary: All subclasses of range-gadget-mixin must handle these two initargs, which are
used to specify the minimum and maximum value of the gadget.

gadget-min-value [Generic Function]

Arguments:range-gadget

(setf gadget-min-value) [Generic Function]

Arguments:min-value range-gadget
Summary: Returns (or sets) the minimum value of the gadget range-gadget, a real number.

gadget-max-value [Generic Function]

Arguments:range-gadget

(setf gadget-max-value) [Generic Function]

Arguments:max-value range-gadget
Panes and Gadgets

Summary: Returns (or sets) the maximum value of the gadget range-gadget, a real number.

gadget-range [Generic Function]

Arguments:range-gadget
Summary: Returns the range of range-gadget, that is, the difference of the maximum value

and the minimum value.

gadget-range* [Generic Function]

Arguments:range-gadget
Summary: Returns the the minimum value and the maximum value of range-gadget as two

values.

10.5.3 Abstract Gadget Classes

CLIM supplies a set of gadgets that have been designed to be compatible with a variety of
user interface toolkits, including Xt widget-based toolkits (such as Motif), OpenLook, and
the MacToolbox.

Each gadget maps to an implementation-specific object that is managed by the underlying
toolkit. For example, when a CLIM program manipulates an object of class scroll-bar, the
underlying implementation-specific object might be a Motif ScrollBar widget. As events
are processed on the underlying object, the corresponding generic operations are applied to
the Lisp gadget.

Note that not all operations will necessarily be generated by particular toolkit implementa-
tions. For example, a user interface toolkit that is designed for a 3-button mouse may gen-
erate significantly more gadget events than one designed for a 1-button mouse.

10.5.3.1 The Label Gadget

label-pane [Leaf Pane]

labelling [Macro]

Arguments:(&rest options &key label label-alignment &allow-other-keys) &body
contents

Summary: Creates a pane that consists of the specified label, which is a string.
<Bold>252CLIM User Guide

 Valid options are :align-x (one of :left, :right, or :center) and :text-style.

 label-alignment may be one of :top or :bottom),

 contents must be a single (but possibly compound) pane.

10.5.3.2 The List-Pane and Option-Pane Gadgets

A list pane is a list of buttons. An option pane is a single button that, when pressed, pops
up a menu of selections.

list-pane [Class]

Summary: The class that implements an abstract list pane. It is a subclass of value-gadget.

:mode [Initarg]

Summary: Either :one-of or :some-of. When it is :one-of, the list pane acts like a radio box;
that is, only one item can be selected. When it is :some-of (the default), zero or
more items can be selected at a time.

:items [Initarg]

:name-key [Initarg]

:value-key [Initarg]

:test [Initarg]

Summary: The :items initarg specifies a sequence of items to use as the items of the list
pane. The name of the item is extracted by the function that is the value of the
:name-key initarg, which defaults to princ-to-string. The value of the item is
extracted by the function that is the value of the :value-key initarg, which
defaults to identity. The :test initarg specifies a function of two argument that is
used to compare items; it defaults to eql. For example:

(make-pane ’list-pane
 :value ’("Lisp" "C++")
 :mode :some-of
 :items ’("Lisp" "Fortran" "C" "C++" "Cobol" "Ada")
 :test ’string=)
Panes and Gadgets

gadget-value [Generic Function]

Arguments:(button list-pane)
Summary: Returns the single selected item when the mode is :one-of, or a sequence of

selected items when the mode is :some-of.

generic-list-pane [Class]

Summary: The class that implements a portable list pane; a subclass of list-pane.

option-pane [Class]

Summary: The class that implements an abstract option pane. It is a subclass of value-gad-
get.

:items [Initarg]

:name-key [Initarg]

:value-key [Initarg]

:test [Initarg]

Summary: The :items initarg specifies a sequence of items to use as the items of the option
pane. The name of the item is extracted by the function that is the value of the
:name-key initarg, which defaults to princ-to-string. The value of the item is
extracted by the function that is the value of the :value-key initarg, which
defaults to identity. The :test initarg specifies a function of two argument that is
used to compare items; it defaults to eql.

gadget-value [Generic Function]

Arguments:(button option-pane)
Summary: Returns the single selected item.

generic-option-pane [Class]

Summary: The class that implements a portable option pane; a subclass of option-pane.
<Bold>254CLIM User Guide

10.5.3.3 The Menu-Button Gadget

Note: The Menu-Button gadget is available only in Liquid CLIM.

The menu-button gadget provides similar behavior to the toggle-button gadget, except
that it is intended for items in menus. The returned value is generally the item chosen from
the menu.

arm-callback will be invoked when the menu button becomes armed (such as when the
pointer moves into it, or a pointer button is pressed over it). When the menu button is actu-
ally activated (by releasing the pointer button over it), value-changed-callback will be in-
voked. Finally, disarm-callback will be invoked after value-changed-callback, or when
the pointer is moved outside of the menu button.

menu-button [Class]

Summary: The class that implements an abstract menu button. It is a subclass of value-
gadget and labelled-gadget-mixin.

menu-button-pane [Class]

Summary: The class that implements a portable menu button; a subclass of menu-button.

10.5.3.4 The Push-Button Gadget

The push-button gadget provides press-to-activate switch behavior.

arm-callback will be invoked when the push button becomes armed (such as when the
pointer moves into it, or a pointer button is pressed over it). When the button is actually
activated (by releasing the pointer button over it), activate-callback will be invoked. Fi-
nally, disarm-callback will be invoked after activate-callback, or when the pointer is
moved outside of the button.

push-button [Class]

Summary: The class that implements an abstract push button. It is a subclass of active-gad-
get and labelled-gadget-mixin.

:show-as-default [Initarg]

Summary: This initializes the “show as default” property for the gadget.
Panes and Gadgets

push-button-show-as-default [Generic Function]

Arguments:push-button
Summary: Returns the “show as default” property for the push button gadget. When t, the

push button will be drawn with a heavy border, which indicates that this button
is the “default operation.”

push-button-pane [Class]

Summary: The class that implements a portable push button; a subclass of push-button.

10.5.3.5 The Radio-Box and Check-Box Gadgets

A radio box is a special kind of gadget that constrains one or more toggle buttons. At any
one time, only one of the buttons managed by the radio box may be “on.” A radio box is
responsible for laying out its contents (the buttons that it contains). So that the value of the
radio box can be properly computed, it is a client of each of its buttons. As the current se-
lection changes, the previously selected button and the newly selected button both have
their value-changed-callback handlers invoked.

Like a radio box, a check box is a gadget that constrains a number of toggle buttons, but
unlike a radio box, a check box may have zero or more of its buttons selected at a time.

radio-box [Class]

Summary: The class that implements a radio box. It is a subclass of value-gadget and ori-
ented-gadget-mixin.

:current-selection [Initarg]

Summary: This is used to specify which button, if any, should be initially selected.

radio-box-current-selection [Generic Function]

Arguments:radio-box

(setf radio-box-current-selection) [Generic Function]

Arguments:button radio-box
Summary: Returns (or sets) the current selection for the radio box. The current selection will

be one of the toggle buttons in the box.
<Bold>256CLIM User Guide

radio-box-selections [Generic Function]

Arguments:radio-box
Summary: Returns a sequence of all the selections in the radio box. The elements of the

sequence will be toggle buttons.

gadget-value [Generic Function]

Arguments:(button radio-box)
Summary: Returns the selected button (i.e., returns the same value as radio-box-cur-

rent-selection).

radio-box-pane [Class]

Summary: The class that implements a portable radio box; it is a subclass of radio-box.

check-box [Class]

Summary: The class that implements a check box. check-box is a subclass of value-gadget
and oriented-gadget-mixin.

:current-selection [Initarg]

Summary: This is used to specify which button, if any, should be initially selected.

check-box-current-selection [Generic Function]

Arguments:check-box

(setf check-box-current-selection) [Generic Function]

Arguments:button check-box
Summary: Returns (or sets) the current selection for the check box. The current selection

will be a list of zero or more of the toggle buttons in the box.

check-box-selections [Generic Function]

Arguments:check-box
Summary: Returns a sequence of all the selections in the check box. The elements of the

sequence will be toggle buttons.

gadget-value [Generic Function]

Arguments:(button check-box)
Summary: Returns the selected buttons as a list (i.e., returns the same value as

check-box-current-selection).
Panes and Gadgets

check-box-pane [Class]

Summary: The class that implements a portable check box; it is a subclass of check-box.

with-radio-box [Macro]

Arguments:(&rest options &key (type one-of) &allow-other-keys) &body body
Summary: Creates a radio box whose buttons are created by the forms in body. The macro

radio-box-current-selection can be wrapped around one of forms in body in
order to indicate that that button is the current selection.

 A radio box will be created if type is :one-of, a check box if :some-of.

 For example, the following creates a radio box with three buttons in it, the second
of which is initially selected.

 (with-radio-box ()
 (make-pane ’toggle-button :label "Mono")
 (radio-box-current-selection
 (make-pane ’toggle-button :label "Stereo"))
 (make-pane ’toggle-button :label "Quad"))

 The following simpler form can be used when you do not need to control the
appearance of each button closely.

 (with-radio-box () "Mono" "Stereo" "Quad")

10.5.3.6 The Scroll-Bar Gadget

The scroll-bar gadget corresponds to a scroll bar.

scroll-bar [Class]

Summary: The class that implements a scroll bar. This is a subclass of value-gadget, ori-
ented-gadget-mixin, and range-gadget-mixin.
<Bold>258CLIM User Guide

:drag-callback [Initarg]

:scroll-to-bottom-callback [Initarg]

:scroll-to-top-callback [Initarg]

:scroll-down-line-callback [Initarg]

:scroll-up-line-callback [Initarg]

:scroll-down-page-callback [Initarg]

:scroll-up-page-callback [Initarg]

Summary: Specifies the various callbacks for the scroll bar.

scroll-bar-drag-callback [Generic Function]

Arguments:scroll-bar
Summary: Returns the function that will be called when the indicator of the scroll bar is

dragged. This function will be invoked with a two arguments, the scroll bar and
the new value.

scroll-bar-scroll-to-bottom-callback [Generic Function]

Arguments:scroll-bar

scroll-bar-scroll-to-top-callback [Generic Function]

Arguments:scroll-bar

scroll-bar-scroll-down-line-callback [Generic Function]

Arguments:scroll-bar

scroll-bar-scroll-up-line-callback [Generic Function]

Arguments:scroll-bar

scroll-bar-scroll-down-page-callback [Generic Function]

Arguments:scroll-bar
Panes and Gadgets

scroll-bar-scroll-up-page-callback [Generic Function]

Arguments:scroll-bar
Summary: Returns the functions that will be used as callbacks when various parts of the

scroll bar are clicked on. These are all functions of one argument, the scroll bar.

 When any of these functions returns nil, there is no callback of that type for the
gadget.

drag-callback [Callback]

Arguments:scroll-bar client gadget-id value
Summary: This callback is invoked when the value of the scroll bar is changed while the

indicator is being dragged. The function stored in scroll-bar-drag-callback is
called with two arguments, the scroll bar and the new value.

 The value-changed-callback is invoked only after the indicator is released after
dragging it.

scroll-to-top-callback [Callback]

Arguments:scroll-bar client gadget-id

scroll-to-bottom-callback [Callback]

Arguments:scroll-bar client gadget-id

scroll-up-line-callback [Callback]

Arguments:scroll-bar client gadget-id

scroll-up-page-callback [Callback]

Arguments:scroll-bar client gadget-id

scroll-down-line-callback [Callback]

Arguments:scroll-bar client gadget-id

scroll-down-page-callback [Callback]

Arguments:scroll-bar client gadget-id
Summary: All the callbacks above are invoked when appropriate parts of the scroll bar are

clicked on. Note that each implementation may not have “hot spots” correspond-
ing to each of these callbacks.
<Bold>260CLIM User Guide

gadget-value [Generic Function]

Arguments:(button scroll-bar)
Summary: Returns a real number within the specified range.

scroll-bar-pane [Class]

Summary: The class that implements a portable scroll bar; it is a subclass of scroll-bar.

10.5.3.7 The Slider Gadget

The slider gadget corresponds to a slider.

slider [Class]

Summary: The class that implements a slider. This is a subclass of value-gadget, ori-
ented-gadget-mixin, range-gadget-mixin, and labelled-gadget-mixin.

:drag-callback [Initarg]

:show-value-p [Initarg]

:decimal-places [Initarg]

Summary: Specifies the drag callback for the slider, whether the slider should show its cur-
rent value, and how many decimal places to the right of the decimal point should
be displayed when the slider is showing its current value.

slider-drag-callback [Generic Function]

Arguments:slider
Summary: Returns the function that will be called when the slider’s indicator is dragged.

This function will be invoked with two arguments, the slider and the new value.

 When this function returns nil, there is no drag callback for the gadget.

drag-callback [Callback]

Arguments:slider client gadget-id value
Summary: This callback is invoked when the value of the slider is changed while the indi-

cator is being dragged. The function stored in slider-drag-callback is called
with two arguments, the slider and the new value.
Panes and Gadgets

 The value-changed-callback is invoked only after the indicator is released after
dragging it.

gadget-value [Generic Function]

Arguments:(button slider)
Summary: Returns a real number that is the value of button.

slider-pane [Class]

Summary: The class that implements a portable slider; a subclass of slider.

:number-of-tick-marks [Initarg]

:number-of-quanta [Initarg]

Summary: Specifies the number of tick marks that should be drawn on the scroll bar, and the
number of quanta in the scroll bar. If the scroll bar is quantized, it will consist of
discrete (rather than continuous) values.

Note: :number-of-tick-marks and :number-of-quanta are available only in Liquid
CLIM.

gadget-show-value-p [Generic Function]

Arguments:slider
Summary: Returns t if the slider shows its value; otherwise, it returns nil.

Note: gadget-show-value-p is available only in Liquid CLIM.

10.5.3.8 The Text-Field and Text-Editor Gadgets

The text-field gadget corresponds to a small field containing text. The text-editor gadget
corresponds to a large field containing multiple lines of text.

text-field [Class]

Summary: The class that implements a text field. This is a subclass of value-gadget and
action-gadget. The value of a text field is the text string.
<Bold>262CLIM User Guide

:editable-p [Initarg]

Summary: Specifies whether or not the text field can be edited.

gadget-value [Generic Function]

Arguments:(value-gadget text-field)
Summary: Returns the resulting string.

text-field-pane [Class]

Summary: The instantiable class that implements a portable text field; it is a subclass of
text-field.

text-editor [Class]

Summary: The instantiable class that implements an abstract large text field. This is a sub-
class of text-field.

 The value of a text editor is the text string.

:ncolumns [Initarg]

:nlines [Initarg]

Summary: Specifies the width and height of the text editor in columns and number of lines.

gadget-value [Generic Function]

Arguments:(value-gadget text-editor)
Summary: Returns the resulting string.

text-editor-pane [Class]

Summary: The instantiable class that implements a portable text editor; it is a subclass of
text-editor.

10.5.3.9 The Toggle-Button Gadget

The toggle-button gadget provides “on/off” switch behavior. This gadget typically appears
as a recessed or prominent box. If the box is recessed, the gadget’s value is t; if it is prom-
inent, the value is nil.
Panes and Gadgets

arm-callback will be invoked when the toggle button becomes armed (such as when the
pointer moves into it, or a pointer button is pressed over it). When the toggle button is ac-
tually activated (by releasing the pointer button over it), value-changed-callback will be
invoked. Finally, disarm-callback will be invoked after value-changed-callback, or when
the pointer is moved outside of the toggle button.

toggle-button [Class]

Summary: The class that implements an abstract toggle button. It is a subclass of value-gad-
get and labelled-gadget-mixin.

:indicator-type [Initarg]

Summary: This initializes the indicator type property for the gadget.

toggle-button-indicator-type [Generic Function]

Arguments:toggle-button
Summary: Returns the indicator type for the toggle button. This will be either :one-of or

:some-of. The indicator type controls the appearance of the toggle button. For
example, many toolkits present a one-of-many choice differently from a
some-of-many choice.

gadget-value [Generic Function]

Arguments:(value-gadget toggle-button)
Summary: Returns t if the button is selected; otherwise, it returns nil.

toggle-button-pane [Class]

Summary: The class that implements a portable toggle button; a subclass of toggle-button.

10.5.4 Integrating Gadgets and Output Records

In addition to gadget panes, CLIM allows gadgets to be used inside of CLIM stream panes.
For instance, an accepting-values pane whose fields consist of gadgets may appear in an
ordinary CLIM stream pane.

Note that many of the functions in the output record protocol must correctly manage the
case where output records contain gadgets. For example, (setf output-record-position)
may need to notify the host window system that the toolkit object representing the gadget
has moved, window-clear needs to deactive any gadgets, and so forth.
<Bold>264CLIM User Guide

gadget-output-record [Class]

Summary: The instantiable class that represents an output record class that contains a gad-
get. This is a subclass of output-record.

with-output-as-gadget [Macro]

Arguments:(stream &rest options) &body body
Summary: Invokes body to create a gadget, and then creates a gadget output record that con-

tains the gadget and installs it into the output history of the output recording
stream stream. The returned value of body must be the gadget.

 The options in options are passed as initargs to the call to invoke-with-new-out-
put-record that is used to create the gadget output record.

 The stream argument is not evaluated, and must be a symbol that is bound to an
output recording stream. If stream is t, *standard-output* is used. body may
have zero or more declarations as its first forms.

 For example, the following could be used to create an output record containing a
radio box that contains several toggle buttons:

 (with-output-as-gadget
 (stream)
 (let* ((radio-box
 (make-pane ’radio-box
 :client stream :id ’radio-box)))
 (dolist (item sequence)
 (make-pane ’toggle-button
 :label (princ-to-string (item-name item))
 :value (item-value item)
 :id item :parent radio-box))
 radio-box))

 An example of a push button that calls back into the presentation type system to
execute a command might be as follows:

 (with-output-as-gadget
 (stream)
 (make-pane ’push-button
 :label "Click here to exit"
 :activate-callback
 #’(lambda (button)
 (frame-exit (pane-frame button)))))
Panes and Gadgets

<Bold>266CLIM User Guide

Chapter 11 Commands
Commands

11.1 Introduction to CLIM Commands

In CLIM, users interact with applications through the use of commands. Commands are a
way of representing an operation in an application.

Commands are performed by the command loop, which accepts input of presentation type
command and then executes the accepted command. Section 11.3, “Command Objects,”
discusses how commands are represented.

CLIM also supports actions, which are performed directly by the user interface. Actions are
seldom necessary, as it is usually the functionality of commands that is desired. See the
macro define-presentation-action for a discussion of when presentation actions are appro-
priate.

CLIM supports four main styles of interaction:

■ Mouse interaction via command menus

A command is invoked by clicking on an item in a menu.

■ Mouse interaction via command translators

A command can be invoked by clicking on any object displayed by the interface. The
particular combination of mouse-buttons and modifier keys (e.g., SHIFT, CONTROL)
is called a gesture. As part of the presentation system, a command translator turns a
gesture on an object into a command.

■ Keyboard interaction using a command-line processor

The user types a complete textual representation of command names and arguments.
The text is parsed by the command-line processor to form a command. A special
character (usually NEWLINE) indicates to the command-line processor that the text is
ready to be parsed.

■ Keyboard interaction using keystroke accelerators

A single keystroke invokes the associated command.

The choice of interaction styles is independent of the command loop or the set of com-
mands. The relationship between a user’s interactions and the commands to be executed is
governed by command tables. A command table is an object that mediates between a com-
mand input context (e.g., the top level of an application frame), a set of commands, and
these interaction styles.
<Bold>268CLIM User Guide

For simple CLIM applications, define-application-frame will automatically create a com-
mand table and a top-level command input context, and define a command-defining macro
for you.

Following a discussion of the simple approach, this chapter discusses command tables and
the command processor in detail. This information is provided for the curious and for those
who feel they require further control over their application’s interactions. These are some
circumstances that might suggest something beyond the simple approach:

■ Your application requires more than one command table if, for example, it has multiple
modes with different sets of commands available in each mode.

■ If you have sets of commands that are common among several modes or even among
several applications, you could use several command tables and inheritance to help or-
ganize your command sets.

■ Your application may be complex enough that you may want to develop more powerful
tools for examining and manipulating command tables.

If you do not require this level of detail, only read Section 11.2, “Defining Commands the
Easy Way.”

11.2 Defining Commands the Easy Way

The easiest way to define commands is to use define-application-frame, which automati-
cally creates a command table for your application. This behavior is controlled by the :com-
mand-table option. It also defines the command-defining macro you will use to define the
commands for your application. This is controlled by the :command-definer option.

This command-definer macro behaves similarly to define-command, but automatically
uses your application’s command table, so you needn’t specify one.

Here is a code fragment illustrating the use of define-application-frame, which defines an
application named editor. A command table named editor-command-table is defined to
mediate the user’s interactions with the editor application. define-application-frame also
defines a macro named define-editor-command, which you will use to define commands
for the editor application and install them in the command table editor-command-table.

(clim:define-application-frame editor () ()
 (:command-table editor-command-table)
 (:command-definer define-editor-command) ...)
Commands

Note that for this particular example, the :command-table and :command-definer options
are not specified, since the names that they specify are the ones that would be generated by
default. Provide these options only when you want different names than the default ones,
you don’t want a command definer, or you want to specify which command tables the ap-
plication’s command table inherits from. See the macro define-application-frame, in Sec-
tion 9.2, “Defining CLIM Application Frames,” for a description of these options.

11.2.1 Command Names and Command Line Names

Every command has a command name, which is a symbol. The symbol names the function
that implements the command. The body of the command is the function definition of that
symbol.

By convention, commands are named with a com- prefix, although CLIM does not enforce
this convention.

To avoid collisions among command names, each application should live in its own pack-
age; for example, there might be several commands named com-show-chart defined
for each of a spreadsheet, a navigation program, and a medical application.

CLIM supports a command line name which is the "command" that the end user sees and
uses, as opposed to the construct that is the command’s actual name. For example, the com-
mand com-show-chart would have a command-line name of Show Chart. When de-
fining a command using define-command (or the application’s command defining macro),
you can have a command line name generated automatically. As you can see from this ex-
ample, the automatically generated command line name consists of the command’s name
with the hyphens replaced by spaces and the words capitalized. Any com- prefix is re-
moved.

11.2.2 The Command-Defining Macro

The define-editor-command macro, automatically generated by the define-applica-
tion-frame code previously, is used to define a command for the editor application. It is
just like define-command, except that you don’t need to specify editor-command-table
as the command table in which to define the command. define-editor-command will au-
tomatically use editor-command-table.
<Bold>270CLIM User Guide

Through the appropriate use of the options to define-editor-command (see define-com-
mand for details), you can provide the command via any number of the previously men-
tioned interaction styles. For example, you could install the command in the editor appli-
cation’s menu, as well as specifying a single keystroke command accelerator character for
it.

The following example defines a command whose command name is com-save-file.
The com-save-file command will appear in the application’s command menu as
Save File. (The command-menu name is derived from the command name in the same
way as the command-line name.) The single keystroke CONTROL-s is also defined to in-
voke the command.

(define-editor-command
 (com-save-file :menu t
 :keystroke #\c-\s) () ...)

Here, a command line name of Save File is associated with the com-save-file
command. The user can then type Save File to the application’s interaction pane to in-
voke the command.

(define-editor-command
 (com-save-file :name "Save File") () ...)

Since the command processor works by establishing an input context of presentation type
command and executing the resulting input, any displayed presentation can invoke a com-
mand, so long as there is a translator defined that translates from the presentation type of
the presentation to the presentation type command. In this way, you can associate a com-
mand with a pointer gesture when it is applied to a displayed presentation. (See Chapter 8,
“Presentation Translators in CLIM,” for details.)

define-presentation-to-command-translator [Macro]

Arguments: name (from-type command-name command-table &key (:gesture ’:select)
:tester :documentation :pointer-documentation (:menu t) :priority (:echo
t)) arglist &body body

Summary: Defines a presentation translator that translates a displayed presentation into a
command.
Commands

11.3 Command Objects

A command is an object that represents a single user interaction. Each command has a com-
mand name, which is a symbol. A command can also have both positional and keyword ar-
guments.

CLIM represents commands as command objects. The internal representation of a com-
mand object is a cons of the command name and a list of the command’s arguments, and is
therefore analogous to a Lisp expression. Functions are provided for extracting the com-
mand name and the arguments list from a command object:

command-name [Function]

Arguments: command
Summary: Given a command object command, returns the command name.

command-arguments [Function]

Arguments: command
Summary: Given a command object command, returns the command’s arguments.

It is possible to represent a command for which some of the arguments have not yet been
specified. The value of the symbol *unsupplied-argument* is used in place of any argu-
ment that has not yet been specified.

partial-command-p [Function]

Arguments:command
Summary: Returns t if the command is a partial command, that is, has any occurrences of

unsupplied-argument-marker in it. Otherwise, this function returns nil.

One can think of define-command as defining templates for command objects. It defines
a symbol as a command name and associates with it the presentation types corresponding
to each of the command’s arguments.

define-command [Macro]

Arguments:name-and-options arguments &body body

 The most basic command-defining form. Usually the programmer will not use
define-command directly, but will instead use a define-frame-command form
automatically generated by define-application-frame. define-frame-com-
<Bold>272CLIM User Guide

mand adds the command to the application frame’s command table. By default,
define-command does not add the command to any command table.

 define-command defines two functions. The first function has the same name as
the command name and implements the body of the command. It takes as
required and keyword arguments the arguments to the command as specified by
the define-command form .The name of the other function defined by Lisp is
unspecified. It implements the code used by the command processor for parsing
and returning the command’s arguments.

 name-and-options is either a command name or a cons of the command name and
a list of keyword-value pairs.

• :command-table command-table-name, where command-table-name either
names a command table to which the command will be added, or is nil (the de-
fault), indicating that the command should not be added to any command table.
If the command table does not exist, the command-table-not-found error will
be signaled. This keyword is only accepted by define-command, not by de-
fine-frame-command.

• :name string, where string is a string that will be used as the command-line
name for the command for keyboard interactions in the command table speci-
fied by the :command-table option. The default is nil, meaning that the com-
mand will not be available via command-line interactions. If string is t, then
the command-line name will be generated automatically, as described in
add-command-to-command-table.

• :menu menu-spec, where menu-spec describes an item in the menu of the com-
mand table specified by the :command-table option. The default is nil, mean-
ing that the command will not be available via menu interactions. If menu-spec
is a string, then that string will be used as the name of the command in the
menu. If menu-spec is t, and if a command-line name was supplied, it will be
used as the name of the command in the menu; otherwise the menu name will
be generated automatically, as described in add-command-to-command-ta-
ble. Otherwise, menu-spec must be a cons of the form (string . menu-options),
where string is the menu name and menu-options consists of keyword-value
pairs. The valid keywords are :after, :documentation, and :text-style, which
are as for add-menu-item-to-command-table.

• :keystroke gesture, where gesture is a keyboard gesture name that specifies a
keystroke accelerator to use for this command in the command table specified
by the :command-table option. The default is nil, meaning that there is no
keystroke accelerator.
Commands

 The :name, :menu, and :keystroke options are only allowed if the :com-
mand-table option is supplied explicitly or implicitly, as in define-frame-com-
mand.

 arguments is a list consisting of argument descriptions. A single occurrence of
the symbol &key may appear in arguments to separate required command argu-
ments from keyword arguments. Each argument description consists of a param-
eter variable, followed by a presentation type specifier, followed by
keyword-value pairs. The keywords can be:

• :default value, where value is the default that should be used for the argument,
as for accept.

• :default-type is the same as for accept.

• :display-default is the same as for accept.

• :mentioned-default value, where value is the default that should be used for
the argument when a keyword is explicitly supplied via the command-line pro-
cessor, but no value is supplied for it. :mentioned-default is only allowed on
keyword arguments.

• :prompt string, where string is a prompt to print out during command-line
parsing, as for accept.

• :documentation string, where string is a documentation string that describes
what the argument is.

• :when form. form is evaluated in a scope where the parameter variables for the
required parameters are bound, and if the result is nil, the keyword argument
is not available. :when is only allowed on keyword arguments, and form can-
not use the values of other keyword arguments.

• :gesture gesture, where gesture is either a pointer gesture name or a list of a
pointer gesture name followed by keyword-value pairs. When a gesture is sup-
plied, a presentation translator will be defined that translates from this argu-
ment’s presentation type to an instance of this command with the selected ob-
ject as the argument; the other arguments will be filled in with their default val-
ues. The keyword-value pairs are used as options for the translator. Valid
keywords are :tester, :menu, :priority, :echo, :documentation, and :point-
er-documentation. The default for gesture is nil, meaning no translator will
be written. :gesture is only allowed when the :command-table option was
supplied to the command-defining form.
<Bold>274CLIM User Guide

 body implements the body of the command. It has lexical access to all of the com-
mands arguments. If the body of the command needs access to the application
frame itself, it should use *application-frame*. The returned values of body are
ignored. body may have zero or more declarations as its first forms.

 define-command must arrange for the function that implements the body of the
command to get the proper values for unsupplied keyword arguments.

 name-and-options and body are not evaluated. In the argument descriptions, the
parameter variable name is not evaluated. The others are evaluated at run-time
when argument parsing reaches them, except that the value for :when is evalu-
ated when parsing reaches the keyword arguments. :gesture is not evaluated.

11.4 CLIM Command Tables

CLIM command tables are represented by instances of the CLOS class command-table. A
command table serves to mediate between a command input context, a set of commands,
and the interactions of the application’s user. Command tables contain the following infor-
mation:

■ The name of the command table, which is a symbol

■ An ordered list of command tables to inherit from

■ The set of commands that are present in this command table

■ A table that associates command-line names to command names (used to support com-
mand-line processor interactions)

■ A set of presentation translators, defined via define-presentation-translator and de-
fine-presentation-to-command-translator

■ A table that associates keyboard gesture names to menu items (used to support key-
stroke accelerator interactions). The keystroke accelerator table does not contain any
items inherited from superior command tables.

■ A menu that associates menu names with command menu items (used to support inter-
action via command menus). The command menu items can invoke commands or sub-
menus. The menu does not contain any command menu items inherited from superior
command tables.

We say that a command is present in a command table when it has been added to that com-
mand table by being associated with some form of interaction. We say that a command is
Commands

accessible in a command table when it is present in that command table or is present in any
of the command tables from which that command table inherits.

command-table [Protocol Class]

Summary: The protocol class that corresponds to command tables. If you want to create a
new class that behaves like a command table, it should be a subclass of com-
mand-table. Subclasses of command-table must obey the command table pro-
tocol. Members of this class are mutable.

command-table-p [Function]

Arguments:object
Summary: Returns t if object is a command table; otherwise, it returns nil.

standard-command-table [Class]

Summary: The instantiable class that implements command tables, a subclass of com-
mand-table. make-command-table returns objects that are members of this
class.

command-table-name [Generic Function]

Arguments:command-table
Summary: Returns the name of the command table command-table.

command-table-inherit-from [Generic Function]

Arguments:command-table
Summary: Returns a list of the command tables from which the command table com-

mand-table inherits. This function returns objects that reveal CLIM’s internal
state; do not modify those objects.

define-command-table [Macro]

Arguments:name &key inherit-from menu
Summary: Defines a command table whose name is the symbol name. The new command

table inherits from all of the command tables specified by inherit-from, which is
a list of command table designators (that is, either a command table or a symbol
that names a command table). The inheritance is done by union with shadowing.
If no inheritance is specified, the command table will be made to inherit from
CLIM’s global command table. (This command table contains such things as the
“menu” translator that is associated with the right-hand button on pointers.)
<Bold>276CLIM User Guide

 menu can be used to specify a menu for the command table. The value of menu
is a list of clauses. Each clause is a list with the syntax (string type value &key
keystroke documentation text-style), where string, type, value, keystroke, docu-
mentation, and text-style are as for add-menu-item-to-command-table.

 If the command table named by name already exists, define-command-table
will modify the existing command table to have the new value for inherit-from
and menu, and leaves the other attributes for the existing command table alone.

 None of define-command-table’s arguments are evaluated.

make-command-table [Function]

Arguments:name &key inherit-from menu (errorp t)
Summary: Creates a command table named name. inherit-from and menu are the same as for

define-command-table. make-command-table does not implicitly include
CLIM’s global command table in the inheritance list for the new command table.
If the command table already exists and errorp is t, the com-
mand-table-already-exists error will be signaled. If the command table already
exists and errorp is nil, then the old command table will be discarded. The
returned value is the command table.

find-command-table [Function]

Arguments:name &key (errorp t)
Summary: Returns the command table named by name. If name is itself a command table,

it is returned. If the command table is not found and errorp is t, the com-
mand-table-not-found error will be signaled.

add-command-to-command-table [Function]

Arguments:command-name command-table &key name menu keystroke (errorp t)
Summary: Adds the command named by command-name to the command table specified

by the command table designator command-table.

 name is the command-line name for the command, and can be nil, t, or a string.
When it is nil, the command will not be available via command-line interactions.
When it is a string, that string is the command-line name for the command. When
it is t, the command-line name is generated automatically. (The automatically
generated name consists of the command’s name with the hyphens replaced by
spaces, and the words capitalized; any com- prefix is removed. For example, if
the command name is com-show-file, the command-line name will be Show
Commands

File.) For the purposes of command-line-name lookup, the character case of
name is ignored.

 menu is a menu item for the command, and can be nil, t, a string, or a cons. When
it is nil, the command will not be available via menus. When it is a string, the
string will be used as the menu name. When menu is t and name is a string, then
name will be used as the menu name. When menu is t and name is not a string,
an automatically generated menu name will be used. When menu is a cons of the
form (string . menu-options), string is the menu name and menu-options consists
of keyword-value pairs. The valid keywords are :after, :documentation, and
:text-style, which are interpreted as for add-menu-item-to-command-table.

 The value for keystroke is either a keyboard gesture name or nil. When it is a ges-
ture name, it is the keystroke accelerator for the command; if it is nil, the com-
mand will not be available via keystroke accelerators.

 If the command is already present in the command table and errorp is t, the com-
mand-already-present error will be signaled. When errorp is nil, the old com-
mand-line name, menu, and keystroke accelerator will first be removed from the
command table.

remove-command-from-command-table [Function]

Arguments:command-name command-table &key (errorp t)
Summary: Removes the command named by command-name from the command table

specified by the command table designator command-table.

 If the command is not present in the command table and errorp is t, the com-
mand-not-present error will be signaled.

11.5 CLIM Predefined Command Tables

CLIM provides these command tables:

global-command-table [Command Table]

Summary: The “global” command table from which all command tables inherit.

user-command-table [Command Table]

Summary: A command table reserved for user-defined commands.

accept-values-pane [Command Table]
<Bold>278CLIM User Guide

Summary: When you use an accept-values pane in a define-application-frame, you must
inherit from this command table.

It is recommended that an application’s command table inherit from user-command-table.
user-command-table inherits from global-command-table. If your application uses an
:accept-values pane, then its command table must inherit from the accept-values-pane
command table in order for it to work properly.

11.6 Conditions Relating to CLIM Command
Tables

 Command table operations can signal these conditions:

command-table-already-exists [Error Condition]

Summary: This condition is signaled by make-command-table when you try to create a
command table that already exists.

command-table-not-found [Error Condition]

Summary: This condition is signaled by functions such as find-command-table when the
named command table cannot be found.

command-already-present [Error Condition]

Summary: The error that is signaled when a function tries to add a command that is already
present in a command table to that command table.

command-not-present [Error Condition]

Summary: A condition that is signaled when the command you are looking for is not present
in the command table.

command-not-accessible [Error Condition]

Summary: A condition that is signaled when the command you are looking for is not acces-
sible in the command table.

command-table-error [Error Condition]
Commands

Summary: The class that is the superclass of the previous four conditions. This class is a sub-
class of error.

11.7 Styles of Interaction Supported by CLIM

CLIM supports four main styles of interaction:

■ Mouse interaction via command menus

■ Mouse interaction via translators

■ Keyboard interaction using a command-line processor

■ Keyboard interaction using keystroke accelerators

See Section 11.2, “Defining Commands the Easy Way,” for a simple description of how to
use define-command to associate a command with any of these interaction styles. See Sec-
tion 11.10, “Advanced Topics,” for an in-depth discussion of CLIM interaction styles.

11.8 Command-Related Presentation Types

CLIM provides several presentation types pertaining to commands:

command [Presentation Type]

Arguments:&key command-table
Summary: The presentation type used to represent a command and its arguments; the com-

mand must be accessible in command-table and enabled in *applica-
tion-frame*. command-table is a command table designator. If command-table
is not supplied, it defaults to the command table for the current application frame.

 The object returned by the accept presentation method for command must be a
command object, that is, a cons of the command name and the list of the com-
mand’s arguments.

 The accept presentation method for the command type must call the command
parser stored in *command-parser* to read the command. The parser will recur-
sively call accept to read a command-name and all of the command’s argu-
<Bold>280CLIM User Guide

ments. The parsers themselves must be implemented by accepting objects whose
presentation type is command.

 If the command parser returns a partial command, the accept presentation
method for the command type must call the partial command parser stored in
partial-command-parser.

 The present presentation method for the command type must call the command
unparser stored in *command-unparser*.

 If a presentation history is maintained for the command presentation type, it
should be maintained separately for each instance of an application frame.

command-name [Presentation Type]

Arguments:&key command-table
Summary: The presentation type used to represent the name of a command that is both

accessible in the command table command-table and enabled in *applica-
tion-frame*. command-table is a command table designator. If command-table
is not supplied, it defaults to the command table for the current application frame,
(frame-command-table *application-frame*).

 The textual representation of a command-name object is the command-line
name of the command, while the internal representation is the command name.

command-or-form [Presentation Type]

Arguments:&key command-table
Summary: The presentation type used to represent an object that is either a Lisp form or a

command and its arguments. The command must be accessible in com-
mand-table and enabled in *application-frame*. command-table is a command
table designator. If command-table is not supplied, it defaults to the command
table for the current application frame, (frame-command-table *applica-
tion-frame*).

 The accept presentation method for this type reads a Lisp form, except that if the
first character in the user’s input is one of the characters in *command-dispatch-
ers*, it will read a command. The two returned values from the accept presenta-
tion method will be the command or form object and a presentation type specifier
that is either command or form.

 A presentation history is maintained separately for the command-or-form pre-
sentation type for each instance of an application frame.
Commands

command-dispatchers [Variable]

Summary: This is a list of the characters that indicates that CLIM reads a command when it
is accepting a command-or-form. The standard set of command argument
delimiters includes the colon character, #\:.

11.9 The CLIM Command Processor

Once a set of commands has been defined, CLIM provides a variety of means to read a com-
mand. These are all mediated by the command processor.

The command loop of a CLIM application is performed by the application’s top-level func-
tion (see Chapter 9, “Defining Application Frames”). By default, this is de-
fault-frame-top-level. After performing some initializations, default-frame-top-level en-
ters an infinite loop, reading and executing commands. It invokes the generic function
read-frame-command to read a command that is then passed to the generic function exe-
cute-frame-command for execution. The specialization of these generic functions is the
simplest way to modify the command loop for your application. Other techniques would
involve replacing default-frame-top-level with your own top-level function.

read-frame-command invokes the command parser by establishing an input context of
command. The input editor keeps track of the user’s input, both from the keyboard and the
pointer. Each of the command’s arguments is parsed by establishing an input context of the
arguments presentation type as described in the command’s definition. Presentation trans-
lators provide the means by which the pointer can be used to enter command names and
arguments.

read-command [Function]

Arguments:command-table &key (stream *query-io*) command-parser
command-unparser partial-command-parser use-keystrokes

Summary: read-command is the standard interface used to read a command line. stream is
an extended input stream, and command-table is a command table designator.

 command-parser is a function of two arguments, a command table and a stream.
It reads a command from the user and returns a command object. The default
value for command-parser is the value of *command-parser*.

 command-unparser is a function of three arguments, a command table, a stream,
and a command to “unparse.” It prints a textual description of the command and
<Bold>282CLIM User Guide

its supplied arguments onto the stream. The default value for command-unparser
is the value of *command-unparser*.

 partial-command-parser is a function of four arguments, a command table, a
stream, a partial command, and a start position. The partial command is a com-
mand object with the value of *unsupplied-argument-marker* in place of any
argument that needs to be filled in. The function reads the remaining unsupplied
arguments in any way it sees fit (for example, via an accepting-values dialog),
and returns a command object. The start position is the original input-editor scan
position of the stream, when the stream is an interactive stream. The default value
for partial-command-parser is the value of *partial-command-parser*.

 command-parser, command-unparser, and partial-command-parser have
dynamic extent.

 When use-keystrokes is t, the command reader will also process keystroke accel-
erators.

 Input editing, while conceptually an independent facility, fits into the command
processor via its use of accept. That is, read-command calls accept to read com-
mand objects, and accept itself makes use of the input editing facilities.

read-frame-command [Generic Function]

Arguments: frame &key stream
Summary: read-frame-command reads a command from the user on the stream stream,

and returns the command object. frame is an application frame.

 The default method for read-frame-command calls read-command on frame’s
current command table.

execute-frame-command [Generic Function]

Arguments: frame command
Summary: execute-frame-command executes the command command on behalf of the

application frame frame.

with-command-table-keystrokes [Macro]

Arguments:(keystroke-var command-table) &body body
Summary: Binds keystroke-var to a sequence that contains all of the keystroke accelerators

in command-table’s menu, and then executes body in that context. com-
mand-table is a command table designator. body may have zero or more declara-
tions as its first forms.
Commands

read-command-using-keystrokes [Function]

Arguments:command-table keystrokes &key (stream *query-io*) command-parser
command-unparser partial-command-parser

Summary: Reads a command from the user via command lines, the pointer, or a single key-
stroke, and returns either a command object or a keyboard gesture object. (The
latter only occurs when the user types a keystroke that is in keystrokes but does
not have a command associated with it in command-table.)

 keystrokes is a sequence of keyboard gesture names that are the keystroke accel-
erators.

 command-table, stream, command-parser, command-unparser, and partial-com-
mand-parser are as for read-command.

An application can control which commands are enabled and which are disabled on an in-
dividual basis by using enable-command and disable-command. The user is not allowed
to enter a disabled command via any interaction style.

enable-command [Function]

Arguments: command-name frame
Summary: Enables the use of the command named by command-name while in the applica-

tion frame.

disable-command [Function]

Arguments: command-name frame
Summary: Disables the use of the command named by command-name while in the appli-

cation frame.

The special variable *command-dispatchers* controls the behavior of the com-
mand-or-form presentation type.

command-dispatchers [Variable]

Summary: This is a list of the characters that indicates that CLIM reads a command when it
is accepting a command-or-form. The standard set of command argument
delimiters includes the colon character, #\:.
<Bold>284CLIM User Guide

11.10 Advanced Topics

The material in this section is advanced; most CLIM programmers can skip to the next
chapter.

11.10.1 CLIM Command Tables

For more information on CLIM command tables, see Section 11.4.

do-command-table-inheritance [Macro]

Arguments:(command-table-var command-table) &body body
Summary: Successively executes body with command-table-var bound first to the com-

mand table specified by the command table designator command-table, and then
(recursively) to all of the command tables from which command-table inherits.

 The command-table-var argument is not evaluated. body may have zero or more
declarations as its first forms.

map-over-command-table-commands [Function]

Arguments:function command-table &key (inherited t)
Summary: Applies function to all of the commands accessible in the command table speci-

fied by the command table designator command-table. function must be a func-
tion that takes a single argument, the command name; it has dynamic extent.

 If inherited is nil, this applies function only to those commands present in com-
mand-table, that is, it does not map over any inherited command tables. If inher-
ited is t, then the inherited command tables are traversed in the same order as for
do-command-table-inheritance.

map-over-command-table-names [Function]

Arguments:function command-table &key (inherited t)
Summary: Applies function to all of the command-line name accessible in the command

table specified by the command table designator command-table. function must
be a function of two arguments, the command-line name and the command name;
it has dynamic extent.

 If inherited is nil, this applies function only to those command-line names present
in command-table, that is, it does not map over any inherited command tables. If
Commands

inherited is t, then the inherited command tables are traversed in the same order
as for do-command-table-inheritance.

command-present-in-command-table-p [Function]

Arguments:command-name command-table
Summary: Returns t if the command named by command-name is present in the command

table specified by the command table designator command-table; otherwise, it
returns nil.

command-accessible-in-command-table-p [Function]

Arguments:command-name command-table
Summary: If the command named by command-name is not accessible in the command

table specified by the command table designator command-table, then this func-
tion returns nil. Otherwise, it returns the command table in which the command
was found.

find-command-from-command-line-name [Function]

Arguments:name command-table &key (errorp t)
Summary: Given a command-line name name and a command table, returns two values, the

command name and the command table in which the command was found. If the
command is not accessible in command-table and errorp is t, the com-
mand-not-accessible error will be signaled. command-table is a command table
designator.

 find-command-from-command-line-name ignores character case.

command-line-name-for-command [Function]

Arguments:command-name command-table &key (errorp t)
Summary: Returns the command-line name for command-name as it is installed in com-

mand-table. command-table is a command table designator.

 If the command is not accessible in command-table or has no command-line
name, then there are three possible results. If errorp is nil, then the returned value
will be nil. If errorp is :create, then a command-line name will be generated, as
described in add-command-to-command-table. Otherwise, if errorp is t, then
the command-not-accessible error will be signaled. The returned command-line
name should not be modified.
<Bold>286CLIM User Guide

command-table-complete-input [Function]

Arguments:command-table string action &key frame
Summary: A function that can be used as in conjunction with complete-input in order to

complete over all of the command lines names accessible in the command table
command-table. string is the input string to complete over, and action is as for
complete-from-possibilities.

 frame is either an application frame, or nil. If frame is supplied, no disabled com-
mands should be offered as valid completions.

11.10.2 CLIM Command Menu Interaction Style

Each command table may describe a menu consisting of an ordered sequence of command
menu items. The menu specifies a mapping from a menu name (the name displayed in the
menu) to either a command object or a submenu. The menu of an application’s top-level
command table may be presented in a window-system specific way, for example, as a menu
bar or in a :menu application frame pane.

Command menu items are stored as a list of the form (type value . options), where type and
value are as for add-menu-item-to-command-table, and options is a list of keyword-value
pairs. The allowable keywords are :documentation, which is used to supply optional point-
er documentation for the command menu item, and :text-style, which is used to indicate
what text style should be used for this command menu item when it is displayed in a com-
mand menu.

The following functions can be used to display a command menu in one of the panes of an
application frame or to choose a command from a menu. add-menu-item-to-com-
mand-table, remove-menu-item-from-command-table, and find-menu-item ignore the
character case of the command menu item’s name when searching through the command
table’s menu.

display-command-table-menu [Generic Function]

Arguments:command-table stream &key max-width max-height n-rows n-columns
x-spacing y-spacing initial-spacing (cell-align-x :left) (cell-align-y :top)
(move-cursor t)

Summary: Displays command-table’s menu on stream. It may use formatting-item-list or
display the command table’s menu in a platform-dependent manner, such as
using the menu bar on a Macintosh. command-table is a command table designa-
tor.
Commands

 max-width, max-height, n-rows, n-columns, x-spacing, y-spacing, initial-spac-
ing, cell-align-x, cell-align-y, and move-cursor are as for formatting-item-list.

display-command-menu [Generic Function]

Arguments: frame stream &key :command-table :initial-spacing :max-width :max-height
:n-rows :n-columns (:cell-align-x ’:left) (:cell-align-y ’:top)

Summary: Displays the menu described by the command table associated with the applica-
tion frame frame on stream. This is generally used as the display function for
extended stream panes of type :command-menu.

menu-choose-command-from-command-table [Function]

Arguments:command-table &key associated-window default-style label cache unique-id
id-test cache-value cache-test

Summary: Invokes a window-system-specific routine that displays a menu of commands
from command-table’s menu, and allows the user to choose one of the com-
mands. command-table is a command table designator. The returned value is a
command object. This may invoke itself recursively when there are submenus.

 associated-window, default-style, label, cache, unique-id, id-test, cache-value,
and cache-test are as for menu-choose.

A number of lower level functions for manipulating command menus are also provided:

add-menu-item-to-command-table [Function]

Arguments:command-table string type value &key documentation (after ’:end) keystroke
text-style (errorp t)

Summary: Adds a command menu item to command-table’s menu. string is the name of the
command menu item; its character case is ignored. type is either :command,
:function, :menu, or :divider. command-table is a command table designator.

 When type is :command, value must be a command (a cons of a command name
followed by a list of the command’s arguments), or a command name. (When
value is a command name, it behaves as though a command with no arguments
was supplied.) In the case where all of the command’s required arguments are
supplied, clicking on an item in the menu invokes the command immediately.
Otherwise, the user will be prompted for the remaining required arguments.

 When type is :function, value must be a function having indefinite extent that,
when called, returns a command. It is called with two arguments, the gesture the
user used to select the item (either a keyboard or button press event) and a
“numeric argument.”
<Bold>288CLIM User Guide

 When type is :menu, this item indicates that a submenu will be invoked, and so
value must be another command table or the name of another command table.

 When type is :divider, some sort of a dividing line is displayed in the menu at
that point. If string is supplied, it will be drawn as the divider instead of a line. If
the look and feel provided by the underlying window system has no correspond-
ing concept, :divider items may be ignored. value is ignored.

 documentation is a documentation string, which can be used as mouse documen-
tation for the command menu item.

 text-style is either a text style spec or nil. It is used to indicate that the command
menu item should be drawn with the supplied text style in command menus.

 after must be either :start (meaning to add the new item to the beginning of the
menu), :end or nil (meaning to add the new item to the end of the menu), or a
string naming an existing entry (meaning to add the new item after that entry). If
after is :sort, then the item is inserted in such as way as to maintain the menu in
alphabetical order.

 If keystroke is supplied, the item will be added to the command table’s keystroke
accelerator table. The value of keystroke must be a keyboard gesture name. This
is exactly equivalent to calling add-keystroke-to-command-table with the
arguments command-table, keystroke, type and value. When keystroke is sup-
plied and type is :command or :function, typing a key on the keyboard that
matches to the keystroke accelerator gesture will invoke the command specified
by value. When type is :menu, the command will continue to be read from the
submenu indicated by value in a window-system-specific manner.

 If the item named by string is already present in the command table’s menu and
errorp is t, then the command-already-present error will be signaled. When the
item is already present in the command table’s menu and errorp is nil, the old
item will first be removed from the menu. Note that the character case of string
is ignored when searching the command table’s menu.

remove-menu-item-from-command-table [Function]

Arguments:command-table string &key (errorp t)
Summary: Removes the item named by string from command-table’s menu. command-table

is a command table designator.

 If the item is not present in the command table’s menu and errorp is t, then the
command-not-present error will be signaled. Note that the character case of
string is ignored when searching the command table’s menu.
Commands

map-over-command-table-menu-items [Function]

Arguments:function command-table
Summary: Applies function to all of the items in command-table’s menu. function must be

a function of three arguments, the menu name, the keystroke accelerator gesture
(which will be nil if there is none), and the command menu item; it has dynamic
extent. The command menu items are mapped over in the order specified by
add-menu-item-to-command-table. command-table is a command table desig-
nator.

find-menu-item [Function]

Arguments:menu-name command-table &key (errorp t)
Summary: Given a menu name and a command table, returns two values, the command

menu item and the command table in which it was found. (Since menus are not
inherited, the second returned value will always be command-table.) com-
mand-table is a command table designator. This function returns objects that
reveal CLIM’s internal state; do not modify those objects.

 If there is no command menu item corresponding to menu-name present in com-
mand-table and errorp is t, then the command-not-accessible error will be sig-
naled. Note that the character case of string is ignored when searching the
command table’s menu.

command-menu-item-type [Function]

Arguments:menu-item
Summary: Returns the type of the command menu item menu-item, for example, :menu or

:command. If menu-item is not a command menu item, the result is unspecified.

command-menu-item-value [Function]

Arguments:menu-item
Summary: Returns the value of the command menu item menu-item. For example, if the

type of menu-item is :command, this will return a command or a command
name. If menu-item is not a command menu item, the result is unspecified.

command-menu-item-options [Function]

Arguments:menu-item
Summary: Returns a list of the options for the command menu item menu-item. If menu-item

is not a command menu item, the result is unspecified.
<Bold>290CLIM User Guide

11.10.3 Mouse Interaction Via Presentation Translators

A command table maintains a database of presentation translators. A presentation transla-
tor translates from its from-presentation-type to its to-presentation-type when its associated
gesture (e.g., clicking a mouse button) is input. A presentation translator is triggered when
its to-presentation-type matches the input context and its from-presentation-type matches
the presentation type of the displayed presentation (the appearance of one of your applica-
tion’s objects on the display) on which the gesture is performed.

define-presentation-to-command-translator can be used to associate a presentation and
a gesture with a command to be performed on the object which the presentation represents.

Translators can also be used to translate from an object of one type to an object of another
type based on context. For example, consider a computer-aided design system for electrical
circuits. You might have a translator that translates from a resistor object to the numeric val-
ue of its resistance. When asked to enter a resistance (as an argument to a command or for
some other query), the user could click on the presentation of a resistor.

Here are some utilities for maintaining presentation translators in command tables. See
Section 6.1, “Conceptual Overview of CLIM Presentation Types,” for a discussion of the
facilities supporting the mouse translator interaction style.

add-presentation-translator-to-command-table [Function]

Arguments:command-table translator-name &key (errorp t)
Summary: Adds the translator named by translator-name to command-table. The translator

must have been previously defined with define-presentation-translator or
define-presentation-to-command-translator. command-table is a command
table designator.

 If translator-name is already present in command-table and errorp is t, then the
command-already-present error will be signaled. When the translator is
already present and errorp is nil, the old translator will first be removed.

remove-presentation-translator-from-command-table [Function]

Arguments:command-table translator-name &key (errorp t)
Summary: Removes the translator named by translator-name from command-table. com-

mand-table is a command table designator.

 If the translator is not present in the command table and errorp is t, then the com-
mand-not-present error will be signaled.
Commands

map-over-command-table-translators [Function]

Arguments:function command-table &key (inherited t)
Summary: Applies function to all of the translators accessible in command-table. function

must be a function of one argument, the translator; it has dynamic extent. com-
mand-table is a command table designator.

 If inherited is nil, this applies function only to those translators present in com-
mand-table, that is, it does not map over any inherited command tables. If inher-
ited is t, then the inherited command tables are traversed in the same order as for
do-command-table-inheritance.

find-presentation-translator [Function]

Arguments:translator-name command-table &key (errorp t)
Summary: Given a translator name and a command table, returns two values, the presenta-

tion translator and the command table in which it was found. If the translator is
not present in command-table and errorp is t, then the command-not-accessible
error will be signaled. command-table is a command table designator.

11.10.4 CLIM Command Line Interaction Style

One interaction style supported by CLIM is the command line style of interaction provided
on most conventional operating systems. A command prompt is displayed in the applica-
tion’s :interactor pane. The user enters a command by typing its command line name fol-
lowed by its arguments. What the user types (or enters via the pointer) is echoed to the in-
teractor window. When the user has finished typing the command, it is executed.

In CLIM, this interaction style is augmented by the input editing facility, which allows the
user to correct typing mistakes, and by the prompting and help facilities, which provide a
description of the command and the expected arguments (see Chapter 16, “Input Editing
and Completion Facilities”). Command entry is also facilitated by the presentation sub-
strate, which allows the input of objects matching the input context, both for command
names and command arguments.

See Section 11.4, “CLIM Command Tables,” and Subsection 11.10.1, “CLIM Command
Tables,” for complete descriptions of these functions.

find-command-from-command-line-name [Function]

Arguments: name command-table &key (errorp t)
<Bold>292CLIM User Guide

Summary: Given a command-line name name and a command-table, this function returns
two values, the command name and the command table in which the command
was found.

command-line-name-for-command [Function]

Arguments: command-name command-table &key (errorp t)
Summary: Returns the command-line name for command-name as it is installed in com-

mand-table.

map-over-command-table-names [Function]

Arguments: function command-table &key (inherited t)
Summary: Applies function to all the command-line names accessible in command-table.

11.10.5 CLIM Keystroke Interaction Style

Each command table may have a mapping from keystroke accelerator gesture names to
command menu items. When a user presses a key that corresponds to the gesture for key-
stroke accelerator, the corresponding command menu item will be invoked. Command
menu items are shared among the command table’s menu and the accelerator table. This lets
the menu display the keystroke associated with a particular item, if there is one.

Note that, despite the fact the keystroke accelerators are specified using keyboard gesture
names rather than characters, the conventions for typed characters vary widely from one
platform to another. Therefore the programmer must be careful in choosing keystroke ac-
celerators. Some sort of per-platform conditionalization is to be expected.

Keystroke accelerators will typically be associated with commands through the use of the
:keystroke option to define-command (or the application’s command defining macro).

add-keystroke-to-command-table [Function]

Arguments:command-table gesture type value &key documentation (errorp t)
Summary: Adds a command menu item to command-table’s keystroke accelerator table.

gesture is a keyboard gesture name to be used as the accelerator. type and value
are as for add-menu-item-to-command-table, except that type must be either
:command, :function or :menu. command-table is a command table designator.

 documentation is a documentation string, which can be used as documentation
for the keystroke accelerator.
Commands

 If the command menu item associated with gesture is already present in the com-
mand table’s accelerator table and errorp is t, then the com-
mand-already-present error will be signaled. When the item is already present
in the command table’s accelerator table and errorp is nil, the old item will first
be removed.

remove-keystroke-from-command-table [Function]

Arguments:command-table gesture &key (errorp t)
Summary: Removes the command menu item named by keyboard gesture name gesture

from command-table’s accelerator table. command-table is a command table
designator.

 The command-not-present error will be signaled if the command menu item
associated with gesture is not in the command table’s menu and errorp is t.

map-over-command-table-keystrokes [Function]

Arguments:function command-table
Summary: Applies function to all the keystroke accelerators in command-table’s accelerator

table. function must be a function of three arguments, the menu name (which will
be nil if there is none), the keystroke accelerator, and the command menu item;
it has dynamic extent. command-table is a command table designator.

 map-over-command-table-keystrokes is not recursive. If you want it to
descend into submenus, check that the type of the command menu item is eql to
:menu before using map-over-command-table-keystrokes recursively.

find-keystroke-item [Function]

Arguments:gesture command-table &key (errorp t)
Summary: Given a keyboard gesture gesture and a command table, returns two values, the

command menu item associated with the gesture and the command table in
which it was found. (Since keystroke accelerators are not inherited, the second
returned value will always be command-table.)

 This function returns objects that reveal CLIM’s internal state; do not modify
those objects.

 Note that gesture may be either a keyboard gesture name of a gesture object.
When it is a gesture name, eql will be used to compare the supplied gesture to
the gesture names stored in the command table’s menu. When it is a gesture
object, event-matches-gesture-name-p will be used to do the comparison.
<Bold>294CLIM User Guide

 If the keystroke accelerator is not present in command-table and errorp is t, then
the command-not-present error will be signaled. command-table is a command
table designator.

lookup-keystroke-item [Function]

Arguments:gesture command-table
Summary: Given a keyboard gesture gesture and a command table, returns two values, the

command menu item associated with the gesture and the command table in
which it was found. gesture may be either a keyboard gesture name or a gesture
object, and is handled in the same way as in find-keystroke-item. This function
returns objects that reveal CLIM’s internal state; do not modify those objects.

 Unlike find-keystroke-item, this follows the submenu chains that can be created
with add-menu-item-to-command-table. If the keystroke accelerator cannot be
found in the command table or any of the command tables from which it inherits,
lookup-keystroke-item will return nil. command-table is a command table des-
ignator.

lookup-keystroke-command-item [Function]

Arguments:gesture command-table &key numeric-arg
Summary: Given a keyboard gesture gesture and a command table, returns the command

associated with the keystroke, or gesture if no command is found. Note that ges-
ture may be either a keyboard gesture name of a gesture object, and is handled in
the same way as in find-keystroke-item. This function returns objects that
reveal CLIM’s internal state; do not modify those objects.

 This is like find-keystroke-item, except that only keystrokes that map to an
enabled application command will be matched. command-table is a command
table designator.

 numeric-arg (which defaults to 1) is substituted into the resulting command for
any occurrence of *numeric-argument-marker* in the command. This is
intended to allow programmers to define keystroke accelerators that take simple
numeric arguments, which will be passed on by the input editor.

substitute-numeric-argument-marker [Function]

Arguments:command numeric-arg
Summary: Given a command object command, this substitutes the value of numeric-arg for

all occurrences of the value of *numeric-argument-marker* in the command,
and returns a command object with those substitutions.
Commands

For a description of the CLIM command processor, see Section 11.9.

11.10.6 The CLIM Command Processor

command-line-command-parser [Function]

Arguments:command-table stream
Summary: The default command-line parser. It reads a command name and the command’s

arguments as a command line from stream (with completion as much as is pos-
sible), and returns a command object. command-table is a command table desig-
nator that specifies the command table to use; the commands are read via the
textual command-line name.

command-line-command-unparser [Function]

Arguments:command-table stream command
Summary: The default command-line unparser. It prints the command command as a com-

mand name and its arguments as a command line on stream. command-table is a
command table designator that specifies the command table to use; the com-
mands are displayed using the textual command-line name.

command-line-read-remaining-arguments-for-partial-command [Function]

Arguments:command-table stream partial-command start-position
Summary: The default partial command-line parser. If the remaining arguments are at the

end of the command line, it reads them as a command line; otherwise, it con-
structs a dialog using accepting-values and reads the remaining arguments from
the dialog. command-table is a command table designator.

menu-command-parser [Function]

Arguments:command-table stream
Summary: The default menu-driven command parser. It uses only pointer clicks to construct

a command. It relies on presentations of all arguments being visible. com-
mand-table and stream are as for command-line-parser.

 There is no menu-driven command unparser, since it makes no sense to unparse
a completely menu-driven command.

menu-read-remaining-arguments-for-partial-command [Function]

Arguments:command-table stream partial-command start-position
<Bold>296CLIM User Guide

Summary: The default menu-driven partial command parser. It uses only pointer clicks to
fill in the command. Again, it relies on presentations of all arguments being vis-
ible. command-table is a command table designator.

command-parser [Variable]

Summary: Contains the currently active command parsing function. The default value is the
function command-line-command-parser, which is the default command-line
parser.

command-unparser [Variable]

Summary: Contains the currently active command unparsing function. The default value is
the function command-line-command-unparser, which is the default com-
mand-line unparser.

partial-command-parser [Variable]

Summary: Contains the currently active partial command parsing function. The default
value is the function command-line-read-remaining-arguments-for-par-
tial-command.

unsupplied-argument-marker [Variable]

Summary: The value of *unsupplied-argument-marker* is an object that can be uniquely
identified as standing for an unsupplied argument in a command object.

numeric-argument-marker [Variable]

Summary: The value of *numeric-argument-marker* is an object that can be uniquely
identified as standing for a numeric argument in a command object.

command-name-delimiters [Variable]

Summary: This is a list of the characters that separate the command name from the com-
mand arguments in a command line. The standard set of command name delim-
iters includes #\Space.

command-argument-delimiters [Variable]

Summary: This is a list of the characters that separate the command arguments from each
other in a command line. The standard set of command argument delimiters
includes #\Space.
Commands

<Bold>298CLIM User Guide

Chapter 12 Menus and Dialogs

Menus and Dialogs

12.1 Conceptual Overview of Menus and Dialogs

CLIM provides three powerful menu routines for allowing user to interact with an applica-
tion through various kinds of menus and dialogs:

■ menu-choose is a straightforward menu generator that provides a quick way to con-
struct menus. You can call it with a list of menu items. (For a complete definition of
menu items, see the function menu-choose.)

■ menu-choose-from-drawer is a lower-level routine that allows the user much more
control in specifying the appearance and layout of a menu. You can call it with a win-
dow and a drawing function. Use this function for more advanced, customized menus.

■ accepting-values enables you to build a dialog. Unlike menus, you can specify several
items that can be individually selected or modified within the dialog before dismissing
it.To abort the dialog, press control-z. To exit the dialog, unless you are editing the
field, press control-]. These key bindings can be changed by using add-key-
stroke-to-command-table and remove-keystroke-from-command-table.

12.2 CLIM Menu Operators

menu-choose [Generic Function]

Arguments: items &key associated-window printer presentation-type default-item text-style
label cache unique-id id-test cache-value cache-test max-width
max-height n-rows n-columns x-spacing y-spacing row-wise cell-align-x
cell-align-y pointer-documentation scroll-bars

Summary: Displays a menu whose choices are given by the elements of the sequence items.
It returns three values: the value of the chosen item, the item itself, and the
pointer button event corresponding to the gesture that the user used to select it.
If the user aborts out of the menu, a single value is returned, nil.

 menu-choose calls frame-manager-menu-choose on the frame manager being
used by associated-window (or the frame manager of the current application
frame). All the arguments to menu-choose will be passed on to frame-man-
ager-menu-choose.

 items is a sequence of menu items. Each menu item has a visual representation
derived from a display object, an internal representation that is a value object,
and a set of menu item options. The form of a menu item is one of the following:
<Bold>300CLIM User Guide

• An atom—the item is both the display object and the value object.

• A cons—the car is the display object and the cdr is the value object. The value
object must be an atom. If you need to return a list as the value, use the :value
option in the list menu item format.

• A list—the car is the display object and the cdr is a list of alternating option
keywords and values. The value object is specified with the keyword :value
and defaults to the display object if :value is not present.

 The menu item options are:

• :value—This specifies the value object.

• :text-style—This specifies the text style used to princ the display object when
neither presentation-type nor printer is supplied.

• :items—This specifies a sequence of menu items for a submenu used if this
item is selected.

• :documentation—This associates some documentation with the menu item.
When pointer-documentation is not nil, this will be used as pointer documen-
tation for the item.

• :active—When t (the default), this item is active. When nil, the item is inac-
tive, and cannot be selected. CLIM will generally provide some visual indica-
tion that an item is inactive, such as by “graying over” the item.

• :type—This specifies the type of the item. :item (the default) indicates that the
item is a normal menu item. :label indicates that the item is simply an inactive
label; labels will not be “grayed over.” :divider indicates that the item serves
as a separator between groups of other items; separator items will usually be
drawn as a horizontal line.

 The visual representation of an item depends on the printer and presentation-type
keyword arguments. If presentation-type is supplied, the visual representation is
produced by present of the menu item with that presentation type. Otherwise, if
printer is supplied, the visual representation is produced by the printer function,
which receives two arguments, the item and a stream to do output on. The printer
function should output some text or graphics at the stream’s cursor position, but
need not call present. If neither presentation-type nor printer is supplied, the
visual representation is produced by princ of the display object. Note that if pre-
sentation-type or printer is supplied, the visual representation is produced from
the entire menu item, not just from the display object.
Menus and Dialogs

 associated-window is the CLIM window with which the menu is associated. This
defaults to the top-level window of the current application frame.

 default-item is the menu item that is indicated as the default either by some form
of highlighting or by warping the mouse to appear over it.

 default-style is a text style that defines how the menu items are presented.

 label is a string to which the menu title will be set.

 printer is a function of two arguments used to print the menu items in the menu.
The two arguments are the menu item and the stream to output it on. It has
dynamic extent.

 presentation-type specifies the presentation type of the menu items.

 cache is a boolean that indicates whether CLIM should cache this menu for later
use. (Caching menus might speed up later uses of the same menu.) If cache is t,
then unique-id and id-test serve to identify this menu uniquely. When cache is t,
unique-id defaults to items, but programmers will generally wish to specify a
more efficient tag. id-test is a function of two arguments used to compare
unique-ids, which defaults to equal. cache-value is the value that is used to indi-
cate that a cached menu is still valid. It defaults to items, but programmers may
wish to supply a more efficient cache value than that. cache-test is a function of
two arguments that is used to compare cache values, which defaults to equal.
Both cache-value and unique-id have dynamic extent.

 max-width and max-height specify the maximum width and height of the menu,
in device units. They can be overridden by n-rows and n-columns.

 n-rows and n-columns specify the number of rows and columns in the menu.

 x-spacing specifies the amount of space to be inserted between columns of the
table; the default is the width of a space character. It is specified the same way as
the :x-spacing option to formatting-table.

 y-spacing specifies the amount of blank space inserted between rows of the table;
the default is the vertical spacing for the stream. The possible values for this
option are the same as for the :y-spacing option to formatting-table.

 If row-wise is t (the default) and the item list requires multiple columns, each suc-
cessive element in the item list is laid out from left to right. If row-wise is nil and
the item list requires multiple columns, each successive element in the item list
is laid out below its predecessor, as in a telephone book.
<Bold>302CLIM User Guide

 cell-align-x specifies the horizontal placement of the cell’s contents. Like the
:align-x option to formatting-cell, it is one of :left (the default), :right, or :cen-
ter. See Subsection 17.1.2, "CLIM Operators for Formatting Tables."

 cell-align-y specifies the vertical placement of the contents of the cell. It can be
one of :top, :bottom, or :center. The default is :top. The semantics are the same
as for the :align-y option to formatting-cell.

 pointer-documentation is either nil (the default), meaning that no pointer docu-
mentation should be computed, or a stream on which pointer documentation
should be displayed.

frame-manager-menu-choose [Generic Function]

Arguments: frame-manager items &key associated-window printer presentation-type
default-item text-style label cache unique-id id-test cache-value cache-test
max-width max-height n-rows n-columns x-spacing y-spacing row-wise
cell-align-x cell-align-y pointer-documentation scroll-bars toolkit-p

Summary: Displays a menu whose choices are given by the elements of the sequence items.
It returns three values: the value of the chosen item, the item itself, and the
pointer button event corresponding to the gesture that the user used to select it.
If the user aborts out of the menu, a single value is returned, nil.

 For the values of the arguments, see menu-choose.

frame-manager-menu-view [Generic Function]

Arguments: frame-manager
Summary: Returns the view used by default for menu-choose when mediated by

frame-manager.

(setf frame-manager-menu-view) [Generic Function]

Arguments: frame-manager view
Summary: Sets the view used by default for menu-choose when mediated by frame-man-

ager. Useful values for the view are +gadget-menu-view+ and +tex-
tual-menu-view+.

menu-choose-from-drawer [Generic Function]

Arguments: menu type drawer &key x-position y-position cache unique-id id-test
cache-value cache-test default-presentation pointer-documentation
leave-menu-visible

Summary: This is a lower-level routine for displaying menus. It allows the programmer
much more flexibility in the menu layout. Unlike menu-choose, which automat-
Menus and Dialogs

ically creates and lays out the menu, menu-choose-from-drawer takes a pro-
grammer-provided window and drawing function. The drawing function is
responsible for drawing the contents of the menu; generally it will be a lexical
closure over the menu items.

 menu-choose-from-drawer draws the menu items into that window using the
drawing function. The drawing function gets called with two arguments, stream
and type. It can use type for its own purposes, for example, as the type argument
in a call to present.

 menu-choose-from-drawer returns two values: the object the user clicked on,
and the pointer button event. If the user aborts out of the menu, nil is returned.

 menu is a CLIM window to use for the menu. This argument may be specialized
to provide a different look-and-feel for different host window systems.

 type is a presentation type specifier for each of the mouse-sensitive items in the
menu. This is the input context that will be established once the menu is dis-
played. For programmers who don’t need to define their own types, a useful pre-
sentation type is menu-item.

 drawer is a function that takes two arguments, stream and type, and draws the
contents of the menu. It has dynamic extent.

 x-position and y-position are the requested x and y positions of the menu. They
may be nil, meaning that the position is unspecified.

 If leave-menu-visible is t, the window will not disappear once the selection has
been made. The default is nil, meaning that the window will disappear once the
selection has been made.

 default-presentation is used to identify the presentation that the mouse is pointing
to when the menu comes up.

 cache, unique-id, id-test, cache-value, and cache-test are as for menu-choose.

draw-standard-menu [Function]

Arguments: stream presentation-type items default-item &key item-printer max-width
max-height n-rows n-columns x-spacing y-spacing cell-align-x
cell-align-y

Summary: draw-standard-menu is the function used by CLIM to draw the contents of a
menu, unless the current frame manager determines that host window toolkit
should be used to draw the menu instead. stream is the stream onto which to draw
the menu, presentation-type is the presentation type to use for the menu items
<Bold>304CLIM User Guide

(usually menu-item), and item-printer is a function used to draw each item.
item-printer defaults to print-menu-item.

 items, default-item, max-width, max-height, n-rows, n-columns, x-spacing,
y-spacing, cell-align-x, and cell-align-y are as for menu-choose

print-menu-item [Function]

Arguments: menu-item &optional stream
Summary: Given a menu item menu-item, displays it on the stream stream. This is the func-

tion that menu-choose uses to display menu items if no printer is supplied.

menu-item-value [Function]

Arguments: menu-item
Summary: Returns the value of menu-item, where the format of a menu item is described

under menu-choose.

menu-item-display [Function]

Arguments: menu-item
Summary: Returns the display object of the menu item menu-item, where the format of a

menu item is described under menu-choose.

menu-item-options [Function]

Arguments: menu-item
Summary: Returns the options of the menu item menu-item, where the format of a menu

item is described under menu-choose.

with-menu [Macro]

Arguments: (menu &optional associated-window &key (deexpose t)) &body body
Summary: Binds menu to a “temporary” window, exposes the window on the same screen

as the associated-window and runs the body. After the body has been run, the
window disappears only if the boolean deexpose is t (the default).

 The values returned by with-menu are the values returned by body. body may
have zero or more declarations as its first forms.

 menu must be a variable name. associated-window is as for menu-choose.

 None of the arguments is evaluated.
Menus and Dialogs

12.3 CLIM Dialog Operators

accepting-values [Macro]

Arguments: (&optional stream &key own-window exit-boxes
initially-select-query-identifier resynchronize-every-pass label scroll-bars
x-position y-position frame-class) &body body

Summary: Builds a dialog for user interaction based on calls to accept within body. The
user can select the values and change them, or use defaults if they are supplied.
The dialog will also contain some sort of “end” and “abort” choices. If “end” is
selected, then accepting-values returns whatever values the body returns. If
“abort” is selected, accepting-values will invoke the abort restart.

 stream is an interactive stream that accepting-values will use to build up the dia-
log. The stream argument is not evaluated, and must be a symbol that is bound
to a stream. If stream is t (the default), *query-io* is used.

 body is the body of the dialog, which contains calls to accept that will be inter-
cepted by accepting-values and used to build up the dialog. body may have zero
or more declarations as its first forms.

 An accepting-values dialog is a looping structure. First, body is evaluated in
order to collect the output. During the evaluation, all calls to accept call the
accept-present-default presentation methods instead of calling the accept pre-
sentation methods. The output is displayed with incremental redisplay. accept-
ing-values awaits a user gesture, such as clicking on one of the fields of the
dialog. When that happens, accepting-values reads a new value for that field
using accept and replaces the old value with the new value. The loop is started
again, until the user either exits or aborts from the dialog.

 Because of this looping structure, accepting-values uses the query identifier to
uniquely identify each call to accept in the body of the dialog. The query identi-
fier is computed on each loop through the dialog, and should therefore be free of
side-effects. Query identifiers are compared using equal. Inside of accept-
ing-values, the :query-identifier argument should be supplied to each call to
accept. If it is not explicitly supplied, the prompt for that call to accept is used
as the query identifier. Thus, if :query-identifier is not supplied, programmers
must ensure that all of the prompts are different. If there is more than one call to
accept with the same query identifier, the behavior of accepting-values is
unspecified.
<Bold>306CLIM User Guide

 While inside accepting-values, calls to accept return a third value, the boolean
changed-p that indicates whether the object is the result of new input by the user,
or is just the previously supplied default. The third value will be t in the former
case, nil in the latter.

 When own-window is non-nil, the dialog will appear in its own “popped-up” win-
dow. In this case the initial value of stream is a window with which the dialog is
associated. (This is similar to the associated-window argument to
menu-choose.) Within the body, the value of stream will be the “popped-up”
window. own-window is either t or a list of alternating keyword options and val-
ues. The accepted options are :right-margin and :bottom-margin; their values
control the amount of extra space to the right of and below the dialog (useful if
the user’s responses to the dialog take up more space than the initially displayed
defaults). The allowed values for :right-margin are the same as for the :x-spac-
ing option to formatting-table; the allowed values for :bottom-margin are the
same as for the :y-spacing option.

 exit-boxes specifies what the exit boxes should look like. The default behavior is
though the following were supplied:

 ’((:exit "Control-] uses these values")
 (:abort "Control-z aborts"))

 initially-select-query-identifier specifies that a particular field in the dialog
should be pre-selected when the user interaction begins. The field to be selected
is tagged by the :query-identifier option to accept; use this tag as the value for
the :initially-select-query-identifier keyword, as in this example:

 (defun avv ()
 (let (a b c)
 (accepting-values
 (*query-io* :initially-select-query-identifier ’the-tag)
 (setq a (accept ’pathname :prompt "A pathname"))
 (terpri *query-io*)
 (setq b (accept ’integer :prompt "A number"
 :query-indentifier ’the-tag))
 (terpri *query-io*)
 (setq c (accept ’string :prompt "A string")))
 (values a b c)))

 When the initial display is output, the input editor cursor appears after the prompt
of the tagged field, just as if the user had selected that field by clicking on it. The
default value, if any, for the selected field is not displayed.

 resynchronize-every-pass is a boolean option specifying whether earlier queries
depend on later values; the default is nil. When it is t, the contents of the dialog
Menus and Dialogs

are redisplayed an additional time after each user interaction. This has the effect
of ensuring that, when the value of some field of a dialog depends on the value
of another field, all of the displayed fields will be up to date.

 You can use this option to alter the dialog dynamically. The following example
initially displays an integer field that disappears if a value other than 1 is entered;
a two-field display appears in its place.

 (defun alter-multiple-accept ()
 (let ((flag 2))
 (accepting-values
 (*query-io* :resynchronize-every-pass t)
 (setq flag (accept 'integer :default flag :prompt "Number"))
 (when (= flag 1)
 (terpri *query-io*)
 (accept ’string :prompt "String"
 (terpri *query-io*)
 (accept ’pathname :prompt "Pathname"))))))

 label is as for menu-choose. scroll-bars controls what and whether scroll-bars
appear on the dialog. The value is one of: :vertical, :horizontal, :both, and nil
(the default). x-position and y-position are as for menu-choose-from-drawer.

accept-values [Application Frame]

Summary: accepting-values is a CLIM application frame that uses accept-values as the
name of the frame class.

accept-values-pane-displayer [Function]

Arguments: frame pane &key displayer resynchronize-every-pass
Summary: When you use an :accept-values pane, the display function must use

accept-values-pane-displayer. displayer is a function that is the body of an
accepting-values dialog. It takes two arguments, the frame and a stream. The
display function does not need to call accepting-values itself, since that is done
by accept-values-pane-displayer. resynchronize-every-pass is as for accept-
ing-values.

display-exit-boxes [Generic Function]

Arguments: frame stream view
Summary: Displays the exits boxes for the accepting-values frame frame on the stream

stream, in the view view. The exit boxes specification is not passed in directly,
but is a slot in the frame. The default method (on accept-values) simply writes
<Bold>308CLIM User Guide

a line of text associating the Exit and Abort strings with presentations that either
exit or abort from the dialog.

 The frame, stream, and view arguments may be specialized to provide a different
look-and-feel for different host window systems.

accept-values-resynchronize [Generic Function]

Arguments: stream
Summary: Causes accepting-values to resynchronizes the dialog once on the accepting val-

ues stream stream before it restarts the dialog loop.

accept-values-command-button [Macro]

Arguments: (&optional stream &key documentation query-identifier cache-value
cache-test resynchronize) prompt &body body

Summary: The prompt prompt creates the button area by writing to the appropriate accept-
ing-values stream stream. prompt should not produce a string itself. When a
pointer button is clicked in this area at runtime, body will be evaluated.

 accept-values-command-button expands into a call to invoke-accept-val-
ues-command-button, supplying a function that executes body as the continua-
tion argument to invoke-accept-values-command-button.

 The stream argument is not evaluated, and must be a symbol that is bound to a
stream. If stream is t (the default), *query-io* is used. body may have zero or
more declarations as its first forms.

invoke-accept-values-command-button [Generic Function]

Arguments: stream continuation view prompt &key documentation query-identifier
cache-value cache-test resynchronize

Summary: Displays the prompt prompt on the stream stream and creates the button areas.
When a pointer button is clicked in this area at runtime, the continuation will be
called. continuation is a function that takes no arguments. view is a view.

 prompt may be either a string (which will be displayed via write-string), or a
form that will be evaluated to draw the button.

 documentation is an object that will be used to produce pointer documentation
for the button. It defaults to prompt. If it is a string, the string itself will be used
as the pointer documentation. Otherwise it must be a function of one argument,
the stream to which the documentation should be written.
Menus and Dialogs

 When resynchronize is t, the dialog will be redisplayed an additional time when-
ever the command button is clicked on. See the resynchronize-every-pass argu-
ment to accepting-values.

 cache-value and cache-test are as for updating-output. That is, cache-value
should evaluate to the same value if and only if the output produced by prompt
does not ever change. cache-test is a function of two arguments that is used to
compare cache values. cache-value defaults to t and cache-test defaults to eql.

 This function may only be used inside the dynamic context of an accepting-val-
ues.

frame-manager-dialog-view [Generic Function]

Arguments: frame-manager
Summary: Returns the view used by default for accepting-values when mediated by

frame-manager.

(setf frame-manager-dialog-view) [Generic Function]

Arguments: frame-manager view
Summary: Sets the view used by default for accepting-values when mediated by

frame-manager. Useful values for view are +gadget-dialog-view+ and +tex-
tual-dialog-view+.

12.4 Examples of Menus and Dialogs in CLIM

12.4.1 Using accepting-values

This example sets up a dialog in the CLIM window stream that displays the current month,
date, hour, and minute (as obtained by a call to get-universal-time) and allows the user to
modify those values. The user can select values to change by using the mouse to select val-
ues, typing in new values, and pressing RETURN. When done, the user selects <END> to
accept the new values, or <ABORT> to terminate without changes.
<Bold>310CLIM User Guide

(defun reset-clock (stream)
 (multiple-value-bind (second minute hour day month)
 (decode-universal-time
 (get-universal-time))
 (declare (ignore second))
 (format stream "Enter the time~%")
 (restart-case
 (progn
 (clim:accepting-values (stream)
 (setq month
 (clim:accept ’integer :stream stream
 :default month :prompt "Month"))
 (terpri stream)
 (setq day
 (clim:accept ’integer :stream stream
 :default day :prompt "Day"))
 (terpri stream)
 (setq hour
 (clim:accept ’integer :stream stream
 :default hour :prompt "Hour"))
 (terpri stream)
 (setq minute
 (clim:accept ’integer :stream stream
 :default minute :prompt "Minute")))
 ;; This could be code to reset the time, but instead
 ;; we’re just printing it out
 (format t "~%New values: Month: ~D, Day: ~D, Time: ~D:~2,’0D."
 month day hour minute))
 (abort () (format t "~&Time not set")))))

Note that in CLIM, calls to accept do not automatically insert newlines. If you want to put
each query on its own line of the dialog, use terpri between the calls to accept.

12.4.2 Using accept-values-command-button

Here is the reset-clock example with the addition of a command button that will set the
number of seconds to zero.

(defun reset-clock (stream)
 (multiple-value-bind (second minute hour day month)
 (decode-universal-time (get-universal-time))
 (declare (ignore second))
 (format stream "Enter the time~%")
 (restart-case
Menus and Dialogs

 (progn
 (clim:accepting-values
 (stream)
 (setq month
 (clim:accept ’integer :stream stream
 :default month :prompt "Month"))
 (terpri stream)
 (setq day
 (clim:accept ’integer :stream stream
 :default day :prompt "Day"))
 (terpri stream)
 (setq hour
 (clim:accept ’integer :stream stream
 :default hour :prompt "Hour"))
 (terpri stream)
 (setq minute
 (clim:accept ’integer :stream stream
 :default minute :prompt "Minute")))
 (terpri stream)
 ;; Print the current time to the terminal.
 (accept-values-command-button
 (stream) "Print-Clock"
 (format t
 "~%Current values: Month: ~D, Day: ~D, Time: ~D:~2,'0D."
 month day hour minute))))
 (abort () (format t "~&Time not set")))))

12.4.3 Using :resynchronize-every-pass in
accepting-values

It often happens that the programmer wants to present a dialog where the individual fields
of the dialog depend on one another. For example, consider a spreadsheet with seven col-
umns representing the days of a week. Each column is headed with that day’s date. If the
user inputs the date of any single day, the other dates can be computed from that single piece
of input.

If you build CLIM dialogs using accepting-values, you can achieve this effect by using the
:resynchronize-every-pass argument to accepting-values in conjunction with the :de-
fault argument to accept. There are three points to remember:

■ The entire body of the accepting-values runs each time the user modifies any field. The
body can be made to run an extra time by specifying :resynchronize-every-pass t.
Code in the body may be used to enforce constraints among values.
<Bold>312CLIM User Guide

■ If the :default argument to accept is used, then every time that call to accept is run, it
will pick up the new value of the default.

■ Inside accepting-values, accept returns a third value, a boolean that indicates whether
the returned value is the result of new input by the user or is just the previously supplied
default.

In this example we show a dialog that accepts two real numbers, delimiting an interval on
the real line. The two values are labelled Min and Max, but we wish to allow the user to
supply a Min that is greater than the Max, and automatically exchange the values rather
than signalling an error.

(defun accepting-interval (&key (min -1.0) (max 1.0)
 (stream *query-io*))
 (clim:accepting-values (stream :resynchronize-every-pass t)
 (fresh-line stream)
 (setq min
 (clim:accept
 ’clim:real :default min
 :prompt "Min" :stream stream))
 (fresh-line stream)
 (setq max
 (clim:accept
 ’clim:real :default max
 :prompt "Max" :stream stream))
 (when (< max min)
 (rotatef min max)))
 (values min max))

(You may want to try this example after dropping the :resynchronize-every-pass and see
the behavior. Without :resynchronize-every-pass, the constraint is still enforced, but the
display lags behind the values and doesn’t reflect the updated values immediately.)

12.4.4 Using the third value from accept in
accepting-values

As a second example, consider a dialog that accepts four real numbers that delimit a rect-
angular region in the plane, but we wish to enforce a constraint that the region be a square.
We allow the user to input any of Xmin, Xmax, Ymin, or Ymax, but enforce the constraint
that:
Menus and Dialogs

 Xmax - Xmin = Ymax - Ymin

We want to avoid changing the value that a user inputs, so we decide (in cases where the
constraint has to be enforced) to change the X value if the user inputs a Y value, and to
change the Y value if the user inputs an X value. When changing values, we preserve the
center of the interval. We use the third returned value from accept to control the constraint
enforcement.

(defun accepting-square
 (&key (xmin -1.0) (xmax 1.0)
 (ymin -1.0) (ymax 1.0)
 (stream *query-io*))
<Bold>314CLIM User Guide

 (let (xmin-changed xmax-changed ymin-changed ymax-changed ptype)
 (clim:accepting-values
 (stream :resynchronize-every-pass t)
 (fresh-line stream)
 (multiple-value-setq
 (xmin ptype xmin-changed)
 (clim:accept ’clim:real :default xmin
 :prompt "Xmin" :stream stream))
 (fresh-line stream)
 (multiple-value-setq
 (xmax ptype xmax-changed)
 (clim:accept ’clim:real :default xmax
 :prompt "Xmax" :stream stream))
 (fresh-line stream)
 (multiple-value-setq
 (ymin ptype ymin-changed)
 (clim:accept ’clim:real :default ymin
 :prompt "Ymin" :stream stream))
 (fresh-line stream)
 (multiple-value-setq
 (ymax ptype ymax-changed)
 (clim:accept ’clim:real :default ymax
 :prompt "Ymax" :stream stream))
 (cond ((or xmin-changed xmax-changed)
 (let ((y-center (/ (+ ymax ymin) 2.0))
 (x-half-width (/ (- xmax xmin) 2.0)))
 (setq ymin (- y-center x-half-width)
 ymax (+ y-center x-half-width)))
 (setq xmin-changed nil
 xmax-changed nil))
 ((or ymin-changed ymax-changed)
 (let ((x-center (/ (+ xmax xmin) 2.0))
 (y-half-width (/ (- ymax ymin) 2.0)))
 (setq xmin (- x-center y-half-width)
 xmax (+ x-center y-half-width)))
 (setq ymin-changed nil
 ymax-changed nil)))))
 (values xmin xmax ymin ymax))

12.4.5 Using menu-choose

The simplest use of menu-choose is when each item is not a list. In that case, the entire
item will be printed and is also the value to be returned.
Menus and Dialogs

(clim:menu-choose ’("One" "Two" "Seventeen"))

If you want to return a value that is different from what was printed, the simplest method is
as follows. Each item is a list; the first element is what will be printed, the remainder of the
list is treated as a plist—the :value property will be returned. (Note nil is returned if you
click on Seventeen since it has no :value.)

(clim:menu-choose
 ’(("One" :value 1 :documentation "the loneliest number")
 ("Two" :value 2 :documentation "for tea")
 ("Seventeen"
 :documentation "teen magazine")))

The list of items you pass to menu-choose can serve other purposes in your application, so
you might not want to put the printed appearance in the first element. You can supply a
:printer function that will be called on the item to produce its printed appearance.

(clim:menu-choose ’(1 2 17)
 :printer #’(lambda (item stream)
 (format stream "~R" item)))

The items in the menu needn’t be printed textually:

(clim:menu-choose
 ’(circle square triangle)
 :printer
 #’(lambda (item stream)
 (case item
 (circle (clim:draw-circle* stream 0 0 10))
 (square (clim:draw-polygon* stream ’(-8 -8 -8 8 8 8 8 -8)))
 (triangle (clim:draw-polygon* stream ’(10 8 0 -10 -10 8))))))

The :item-list option of the list form of menu item can be used to describe a set of hierar-
chical menus.
<Bold>316CLIM User Guide

(clim:menu-choose
 ’(("Class: Osteichthyes" :documentation "Bony fishes"
 :style (nil :italic nil))
 ("Class: Chondrichthyes"
 :documentation "Cartilaginous fishes"
 :style (nil :italic nil)
 :item-list (("Order: Squaliformes" :documentation "Sharks")
 ("Order: Rajiformes" :documentation "Rays")))
 ("Class: Mammalia" :documentation "Mammals" :style (nil :italic nil)
 :item-list
 (("Order Rodentia" :item-list ("Family Sciuridae"
 "Family Muridae"
 "Family Cricetidae"
 ("..." :value nil)))
 ("Order Carnivora" :item-list ("Family: Felidae"
 "Family: Canidae"
 "Family: Ursidae"
 ("..." :value nil)))
 ("..." :value nil)))
 ("..." :value nil)))

12.4.6 Using menu-choose-from-drawer

This example displays in the window *page-stream* the choices One through Ten in bold-
face type. When the user selects one, the string is returned along with the gesture that se-
lected it.

(clim:menu-choose-from-drawer
 page-stream 'string
 #’(lambda (stream type)
 (clim:with-text-face (:bold stream)
 (dotimes (count 10)
 (clim:present (string-capitalize
 (format nil "~R" (1+ count)))
 type :stream stream)
 (terpri stream)))))

This example shows how you can use menu-choose-from-drawer with with-menu to cre-
ate a temporary menu:
Menus and Dialogs

(defun choose-compass-direction (parent-window)
 (labels
 ((draw-compass-point
 (stream ptype symbol x y)
 (clim:with-output-as-presentation
 (:stream stream :object symbol :type ptype)
 (clim:draw-string* stream
 (symbol-name symbol) x y
 :align-x :center
 :align-y :center
 :text-style
 ’(:sans-serif :roman :large))))
 (draw-compass
 (stream ptype)
 (clim:draw-line* stream 0 25 0 -25 :line-thickness 2)
 (clim:draw-line* stream 25 0 -25 0 :line-thickness 2)
 (loop for point in ’((n 0 -30) (s 0 30) (e 30 0)(w -30 0))
 do (apply #’draw-compass-point
 stream ptype point))))
 (clim:with-menu (menu parent-window)
 (clim:menu-choose-from-drawer menu ’clim:menu-item
 #’draw-compass))))
<Bold>318CLIM User Guide

Chapter 13 Extended Stream Output
Facilities
Extended Stream Output Facilities

13.1 Basic Output Streams

CLIM performs all of its input and output operations on objects called streams. Stream
functionality is partitioned into two layers: the basic stream protocol and the extended
stream protocol. The stream-oriented output layer is implemented on top of the sheet output
architecture. The basic CLIM output stream protocol is based on the character output
stream protocol proposal submitted to the ANSI Common Lisp committee by David Gray.
This proposal was not approved by the committee, but CLIM provides an implementation
of the basic output stream facilities. This protocol is documented in Appendix D, “Com-
mon Lisp Streams.”

standard-output-stream [Class]

Summary: This class provides an implementation of the CLIM basic output stream proto-
col, based on the CLIM output kernel. Members of this class are mutable.

stream-write-char [Generic Function]

Arguments: stream character
Summary: Writes the character character to the output stream stream, and returns character

as its value.

stream-line-column [Generic Function]

Arguments: stream
Summary: This function returns the column number where the next character will be written

on the output stream stream. The first column on a line is numbered 0.

stream-start-line-p [Generic Function]

Arguments: stream
Summary: Returns t if the output stream stream is positioned at the beginning of a line (that

is, column 0); otherwise, it returns nil.

stream-write-string [Generic Function]

Arguments: stream string &optional (start 0) end
Summary: Writes the string string to the output stream stream. If start and end are supplied,

they are integers that specify what part of string to output. string is returned as
the value.
<Bold>320CLIM User Guide

stream-terpri [Generic Function]

Arguments: stream
Summary: Writes an end-of-line character on the output stream stream, and returns nil.

stream-fresh-line [Generic Function]

Arguments: stream
Summary: Writes an end-of-line character on the output stream stream only if the stream is

not at the beginning of the line.

stream-finish-output [Generic Function]

Arguments: stream
Summary: Ensures that all the output sent to the output stream stream has reached its des-

tination, and only then does it return nil.

stream-force-output [Generic Function]

Arguments: stream
Summary: Like stream-finish-output, except that it may immediately return nil without

waiting for the output to complete.

stream-clear-output [Generic Function]

Arguments: stream
Summary: Aborts any outstanding output operation in progress on the output stream stream,

and returns nil.

stream-advance-to-column [Generic Function]

Arguments: stream column
Summary: Writes enough blank space on the output stream stream so that the next character

will be written at the position specified by column, which is an integer.

13.2 Extended Output Streams

In addition to the basic output stream protocol, CLIM defines an extended output stream
protocol. This protocol extends the stream model to maintain the state of a text cursor, mar-
gins, text styles, inter-line spacing, and so forth.
Extended Stream Output Facilities

The extended output stream protocol is discussed in the following two sections, “The Text
Cursor” and “Text.”

extended-output-stream [Protocol Class]

Summary: The protocol class for CLIM extended output streams. This is a subclass of out-
put-stream. If you want to create a new class that behaves like an extended out-
put stream, it should be a subclass of extended-output-stream. Subclasses of
extended-output-stream must obey the extended output stream protocol.

extended-output-stream-p [Function]

Arguments: object
Summary: Returns t if object is a CLIM extended output stream; otherwise, it returns nil.

:foreground [Initarg]

:background [Initarg]

:default-text-style [Initarg]

:vertical-spacing [Initarg]

:text-margin [Initarg]

:end-of-line-action [Initarg]

:end-of-page-action [Initarg]

:default-view [Initarg]

Summary: All subclasses of extended-output-stream must handle these initargs, which are
used to specify, respectively, the medium foreground and background inks,
default text style, vertical spacing, default text margin, end of line and end of
page actions, and the default view for the stream.

standard-extended-output-stream [Class]

Summary: This class provides an implementation of the CLIM extended output stream pro-
tocol, based on the CLIM output kernel.

 Members of this class are mutable.
<Bold>322CLIM User Guide

13.3 The Text Cursor

In the days when display devices displayed only two-dimensional arrays of fixed-width
characters, the text cursor was a simple thing. A discrete position was selected in integer
character units, and a character could go there and nowhere else. Even for variable-width
fonts, it was enough to address a character by the pixel position of one of its corners. How-
ever, variable-height fonts with variable baselines on pixel-addressable displays upset this
simple model. The “logical” vertical reference point is the baseline, as it is in typesetting.
In typesetting, however, an entire line of text is created with baselines aligned and padded
to the maximum ascent and descent, and then the entire line is put below the previous line.

It is clearly desirable to have the characters on a line aligned with their baselines, but when
the line on the display is formed piece by piece, it is impossible to pick in advance the prop-
er baseline. The solution CLIM adopts is to choose a provisional baseline.

We assume that text has at least six properties. With a reference point of (0, 0) at the upper
left of the text, it has a bounding box consisting of ascent, descent, left kerning, right ex-
tension, and a displacement to the next reference point in both x and y. CLIM determines
the position of the reference point and draws the text relative to that, and then the cursor
position is adjusted by the displacement. In this way, text has width and height, but the x
and y displacements need not equal the width and height.

CLIM adopts the following approach to the actual rendering of a glyph. Textual output us-
ing the stream functions (not the graphics functions) maintains text on a “line.” Note that a
line is not an output record, but is rather a collection of “text so far,” a top (positioned at the
bottom of the previous line plus the stream’s vertical spacing), a baseline, a bottom, and a
“cursor position.” The cursor position is defined to be at the top of the line, not at the base-
line. The reason for this is that the baseline can move, but the top is relative to the previous
line, which has been completed and therefore doesn’t move. If text is drawn on the current
line whose ascent is greater than the current ascent of the line, then the line is moved down
to make room. This can be done easily using the output records for the existing text on the
line. When there is enough room, the reference point for the text is the x position of the cur-
sor at the baseline, and the cursor position is adjusted by the displacement.

Figure 21 shows this in action before and after each of three characters are drawn. In all
three cases, the small circle is the “cursor position.” At first, there is nothing on the line.
Extended Stream Output Facilities

Figure 21. Determining the Position of the Text Cursor

(0, y)
(w1, y)

(w1+w2, y)

(w1+w2+w3, y)

(0, y)
(w1, y) (0, y)

(w1, y)
(w1+w2, y)

(0, y)

bl-small bl-BIG

bl-BIG

small
small BIG

small BIG small
<Bold>324CLIM User Guide

The first character establishes the initial baseline and is then drawn. The upper left corner
of the character is where the cursor was (as in the traditional model), but this will not remain
the case. Drawing the second character, which is larger than the first, requires moving the
first character down in order to get the baselines to align; during this time, the top of the
line remains the same. Again, the upper left of the second character is where the cursor was,
but that is no longer the case for the first character (which has moved down). The third char-
acter is smaller than the second, so no moving of characters needs to be done. However, the
character is drawn to align the baselines, which in this case means the upper left is not
where the cursor was. Nor is the cursor at the upper right of the character as it was for the
previous two characters. It is, however, at the upper right of the collective line.

13.3.1 The Text Cursor Protocol

Many streams that maintain a text cursor also display some visible indication of it. The ob-
ject that represents this display is (somewhat confusingly) also called a cursor.

cursor [Protocol Class]

Summary: The protocol class that corresponds to cursors. If you want to create a new class
that behaves like cursor, it should be a subclass of cursor. Subclasses of cursor
must obey the cursor protocol. Members of this class are mutable.

cursorp [Function]

Arguments: object
Summary: Returns t if object is a cursor; otherwise, it returns nil.

:sheet [Initarg]

Summary: The :sheet initarg is used to specify the sheet with which the cursor is associated.

standard-text-cursor [Class]

Summary: The instantiable class that implements a text cursor. Typically, ports will further
specialize this class.

cursor-sheet [Generic Function]

Arguments: cursor
Summary: Returns the sheet with which the cursor cursor is associated.
Extended Stream Output Facilities

cursor-position [Generic Function]

Arguments: cursor
Summary: Returns the x and y position of the cursor cursor as two values.

(setf* cursor-position) [Generic Function]

Arguments: x y cursor
Summary: Sets the x and y position of the cursor cursor to the specified position. For the

details of setf*, see Appendix C.4, “Multiple-Value Setf.”

cursor-visibility [Generic Function]

Arguments: cursor

(setf cursor-visibility) [Generic Function]

Arguments: visibility cursor
Summary: Returns (or sets) the visibility of the cursor cursor. The visibility is one of :on

(the cursor will be visible at its current position), :off (the cursor is active, but
not visible at its current position), or nil (the cursor is to be deactivated).

display-cursor [Generic Function]

Arguments: cursor state
Summary: This draws or erases the cursor cursor. If state is :draw, the cursor will be drawn.

If the state is :erase, the cursor will be erased.

13.3.2 The Stream Text Cursor Protocol

The following generic functions comprise the stream text cursor protocol. Any extended
output stream class must implement methods for these generic functions.

stream-text-cursor [Generic Function]

Arguments: stream

(setf stream-text-cursor) [Generic Function]

Arguments: cursor stream
Summary: Returns (or sets) the text cursor object for the stream stream.
<Bold>326CLIM User Guide

stream-cursor-position [Generic Function]

Arguments: stream
Summary: Returns the current text cursor position for the extended output stream stream as

two integer values, the x and y positions.

(setf* stream-cursor-position) [Generic Function]

Arguments: x y stream
Summary: Sets the text cursor position of the extended output stream stream to x and y. x

and y are in device units, and must be integers. For the details of setf*, see
Appendix C.4, “Multiple-Value Setf.”

stream-increment-cursor-position [Generic Function]

Arguments: stream dx dy
Summary: Moves the text cursor position of the extended output stream stream relatively,

adding dx to the x coordinate and dy to the y coordinate. Either of dx or dy may
be nil, meaning the the x or y cursor position will be unaffected. Otherwise, dx
and dy must be integers.

13.4 Text

This section addresses text as it relates to output streams.

13.4.1 The Text Protocol

The following generic functions comprise the text protocol. Any extended output stream
class must implement methods for these generic functions.

stream-character-width [Generic Function]

Arguments: stream character &key text-style
Summary: Returns a rational number corresponding to the amount of horizontal motion of

the cursor position that would occur if the character character were output to the
extended output stream stream in the text style text-style (which defaults to the
current text style for the stream). This ignores the stream’s text margin.
Extended Stream Output Facilities

stream-string-width [Generic Function]

Arguments: stream string &key start end text-style
Summary: Computes how the cursor position would move horizontally if the string string

were output to the extended output stream stream in the text style text-style
(which defaults to the current text style for the stream) starting at the left margin.
This ignores the stream’s text margin.

 The first returned value is the x coordinate that the cursor position would move
to. The second returned value is the maximum x coordinate the cursor would visit
during the output. (This is the same as the first value unless the string contains a
#\Newline character.)

 start and end are integers that default to 0 and the string length, respectively.

stream-text-margin [Generic Function]

Arguments: stream

(setf stream-text-margin) [Generic Function]

Arguments: margin stream
Summary: Returns the x coordinate at which text wraps around on the extended output

stream stream (see stream-end-of-line-action). The default setting is the width
of the viewport, which is the right-hand edge of the viewport when it is horizon-
tally scrolled to the “initial position.”

 You can use setf with stream-text-margin to establish a new text margin. If mar-
gin is nil, then the width of the viewport will be used. If the width of the viewport
is later changed, the text margin will change, too.

stream-line-height [Generic Function]

Arguments: stream &key text-style
Summary: Returns what the line height of a line on the extended output stream stream con-

taining text in the text style text-style would be, as a rational number. text-style
defaults to the current text style for the stream.

stream-vertical-spacing [Generic Function]

Arguments: stream
Summary: Returns the current inter-line spacing (as a rational number) for the extended out-

put stream stream.
<Bold>328CLIM User Guide

stream-baseline [Generic Function]

Arguments: stream
Summary: Returns the current text baseline (as a rational number) for the extended output

stream stream.

13.4.2 Mixing Text and Graphics

The following macro provides a convenient way to mix text and graphics on the same out-
put stream.

with-room-for-graphics [Macro]

Arguments: (&optional stream &key (move-cursor t) height record-type) &body body
Summary: Binds the dynamic environment to establish a local Cartesian coordinate system

for doing graphics output onto the extended output stream designated by stream.
The origin (0, 0) of the local coordinate system is placed at the current cursor
position, and is in the lower left corner of the area created. If the boolean
move-cursor is t (the default), then after the graphic output is completed, the cur-
sor is positioned past (immediately below) this origin. The bottom of the vertical
block allocated is at this location (that is, just below point (0, 0), not necessarily
at the bottom of the output done).

 The stream argument is not evaluated, and must be a symbol that is bound to a
stream. If stream is t (the default), *standard-output* is used. body may have
zero or more declarations as its first forms.

 If height is supplied, it must be a rational number that specifies the amount of
vertical space to allocate for the output, in device units. If it is not supplied, the
height is computed from the output.

 record-type specifies the class of output record to create to hold the graphical out-
put. The default is standard-sequence-output-record.

13.4.3 Wrapping Text Lines

stream-end-of-line-action [Generic Function]

Arguments: stream
Extended Stream Output Facilities

(setf stream-end-of-line-action) [Generic Function]

Arguments: action stream
Summary: The end-of-line action controls what happens if the text cursor position moves

horizontally out of the viewport or if text output reaches the text margin. (By
default the text margin is the width of the viewport, so these often coincide.)

 stream-end-of-line-action returns the end-of-line action for the extended output
stream stream. It can be changed by using setf on stream-end-of-line-action.

 The end-of-line action is one of:

• :wrap—when doing text output, wrap the text around (that is, break the text
line and start another line). When setting the cursor position, scroll the window
horizontally to keep the cursor position inside the viewport. This is the default.

• :scroll—scroll the window horizontally to keep the cursor position inside the
viewport, then keep doing the output.

• :allow—ignore the text margin and do the output on the drawing plane beyond
the visible part of the viewport.

with-end-of-line-action [Macro]

Arguments: (stream action) &body body
Summary: Temporarily changes stream’s end-of-line action for the duration of execution of

body. action must be one of the actions described in stream-end-of-line-action.

 The stream argument is not evaluated, and must be a symbol that is bound to a
stream. If stream is t, *standard-output* is used. body may have zero or more
declarations as its first forms.

stream-end-of-page-action [Generic Function]

Arguments: stream

(setf stream-end-of-page-action) [Generic Function]

Arguments: action stream
Summary: The end-of-page action controls what happens if the text cursor position moves

vertically out of the viewport.

 stream-end-of-page-action returns the end-of-page action for the extended out-
put stream stream. Change it by using setf on stream-end-of-page-action.

 The end-of-page action is one of:
<Bold>330CLIM User Guide

• :wrap—when doing text output, wrap the text around (that is, go back to the
top of the viewport).

• :scroll—scroll the window vertically to keep the cursor position inside the
viewport, then keep doing output. This is the default.

• :allow—ignore the viewport and do the output on the drawing plane beyond
the visible part of the viewport.

with-end-of-page-action [Macro]

Arguments: (stream action) &body body
Summary: Temporarily changes stream’s end-of-page action for the duration of execution

of body. action must be one of the actions described in
stream-end-of-page-action.

 The stream argument is not evaluated, and must be a symbol that is bound to a
stream. If stream is t, *standard-output* is used. body may have zero or more
declarations as its first forms.

13.5 Attracting the User’s Attention

beep [Generic Function]

Arguments: &optional sheet
Summary: Attracts the user’s attention, usually with an audible sound.

13.6 Buffering Output

Some mediums that support the output protocol may buffer output. When buffering is en-
abled on a medium, the time at which output is actually done on the medium is unpredict-
able. force-output or finish-output can be used to ensure that all pending output gets com-
pleted. If the medium is a bidirectional stream, a force-output is performed whenever any
sort of input is requested on the stream.

with-buffered-output provides a way to control when buffering is enabled on a medium.
By default, CLIM’s interactive streams are buffered if the underlying window system sup-
ports buffering.
Extended Stream Output Facilities

medium-buffering-output-p [Generic Function]

Arguments: medium
Summary: Returns t if the medium medium is currently buffering output; otherwise, it

returns nil.

(setf medium-buffering-output-p) [Generic Function]

Arguments: buffer-p medium
Summary: Sets medium-buffering-output-p of the medium medium to buffer-p.

with-output-buffered [Macro]

Arguments: (medium &optional (buffer-p t)) &body body
Summary: If buffer-p is t (the default), this causes the medium designated by medium to

start buffering output, and evaluates body in that context. If buffer-p is nil,
force-output will be called before body is evaluated. When body is exited (or
aborted from), force-output will be called if output buffering will be disabled
after with-output-buffered is exited.

 The medium argument is not evaluated, and must be a symbol that is bound to a
medium. If medium is t, *standard-output* is used. body may have zero or
more declarations as its first forms.

13.7 CLIM Window Stream Pane Functions

The following functions can be called on any pane that is a subclass of clim-stream-pane.
(Such a pane is often simply referred to as a window.) These are provided as a convenience
for programmers and for compatibility with CLIM 1.1.

window-clear [Generic Function]

Arguments: window
Summary: Clears the entire drawing plane by filling it with the background design of the

CLIM stream pane window. If window has an output history, it is cleared as well.
The text cursor position of window, if there is one, is reset to the upper left corner.

window-refresh [Generic Function]

Arguments: window
<Bold>332CLIM User Guide

Summary: Clears the visible part of the drawing plane of the CLIM stream pane window,
and then if the window stream is an output recording stream, the output records
in the visible part of the window are replayed.

window-viewport [Generic Function]

Arguments: window
Summary: Returns the viewport region of the CLIM stream pane window. The returned

region will usually be a standard-bounding-rectangle.

window-erase-viewport [Generic Function]

Arguments: window
Summary: Clears the visible part of the drawing plane of the CLIM stream pane window by

filling it with the background design.

window-viewport-position [Generic Function]

Arguments: window
Summary: Returns two values, the x and y position of the upper left corner of the CLIM

stream pane window’s viewport.

(setf window-viewport-position) [Generic Function]

Arguments: x y window
Summary: Sets the position of the upper left corner of the CLIM stream pane window’s

viewport to x and y.
Extended Stream Output Facilities

<Bold>334CLIM User Guide

Chapter 14 Output Recording and
Redisplay

Output Recording and Redisplay

14.1 Conceptual Overview of Output Recording

Output recording is an important part of CLIM. It provides the basis for scrolling windows,
for formatted output of tables and graphs, for the ability of presentations to retain their se-
mantics, and for incremental redisplay.

The output recording mechanism is enabled by default. Unless you turn it off, all output that
occurs on a window is captured and saved by the output recording mechanism. The output
is captured in output records. An output record is an object that contains either other output
records or an output record element.

Since output records can contain other output records, we can view the organization of out-
put records as a tree structure. The top-level output record, which contains all the output
done on that window, is called the history of the window.

Figure 22. The Tree Structure of an Output Record

Each rectangle in Figure 22 is an output record. The top-level record is an output record
called a history. Each output record is a leaf of the tree and is called a displayed output
record element. The intermediate output records are both output records and output record
elements of their immediate superior.

CLIM automatically segments the output into output records. The result of each atomic
drawing operation is put into a new output record. Each presentation is put into a new out-
put record. Strings are treated differently; CLIM concatenates strings into one output record
until a newline is encountered, which begins a new output record.

 History
<Bold>336CLIM User Guide

One use of an output record is to replay it; that is, to produce the output again. Scrolling is
implemented by replaying the appropriate output records. When using the techniques of in-
cremental redisplay, your code determines which portions of the display have changed,
whereupon the appropriate output records are updated to the new state and the output
records are replayed.

CLIM’s table and graph formatters use output records. For example, your code uses for-
matting-table to format output into rows and cells; this output is sent to a particular stream.
Invisibly to you, CLIM temporarily binds this stream to an intermediate stream and runs a
constraint engine over the code to determine the layout of the table. The result is a set of
output records which contain the table, its rows, and its cells. Finally, CLIM replays these
output records to your original stream.

Presentations are a special case of output records that remember the object and the type of
object associated with the output.

The concept of the tree structure organization of output records is further illustrated by the
organization of the output records of a formatted table. The table itself is stored in an output
record; each row has its own output record and each cell has its own output record.

Figure 23. The Output Records of a Formatted Table

14.2 CLIM Operators for Output Recording

The purpose of output recording is to capture the output done by an application onto a
stream. The objects used to capture output are called output records and output record ele-
ments. The following classes and predicates correspond to the objects used in output re-
cording.

 Table

Row Row

Cell Cell Cell Cell Cell Cell

Output Recording and Redisplay

output-record [Protocol Class]

Summary: The protocol class used to indicate that an object is an output record. A subclass
of bounding-rectangle, output records obey the bounding rectangle protocol. If
you want to create a new class that behaves like an output record, it should be a
subclass of output-record. Subclasses of output-record must obey the out-
put-record protocol.

 All output records are mutable.

output-record-p [Function]

Arguments: object
Summary: Returns t if object is an output record; otherwise, it returns nil.

displayed-output-record [Protocol Class]

Summary: The protocol class that is used to indicate that an object is a displayed output
record, that is, an object that represents a visible piece of output on some output
stream. This is a subclass of bounding-rectangle. If you want to create a new
class that behaves like a displayed output record, it should be a subclass of dis-
played-output-record. Subclasses of displayed-output-record must obey the
displayed output record protocol.

 All displayed output records are mutable.

displayed-output-record-p [Function]

Arguments: object
Summary: Returns t if object is a displayed output record; otherwise, it returns nil.

:x-position [Initarg]

:y-position [Initarg]

:parent [Initarg]

Summary: All subclasses of either output-record or displayed-output-record must han-
dle these three initargs, which are used to specify, respectively, the x and y posi-
tion of the output record, and the parent of the output record.

:size [Initarg]

Summary: All subclasses of output-record must handle the :size initarg, which specifies
how much room should be left for child output records (if, for example, the chil-
<Bold>338CLIM User Guide

dren are stored in a vector). :size may be ignored, provided that the resulting out-
put record is able to store the specified number of child output records.

14.2.1 The Basic Output Record Protocol

All subclasses of output-record and displayed-output-record must inherit or implement
methods for the following generic functions. For details of setf*, see Appendix C.4, “Mul-
tiple-Value Setf.”

output-record-position [Generic Function]

Arguments: record
Summary: Returns the x and y position of the output record record as two rational numbers.

The position of an output record is the position of the upper-left corner of its
bounding rectangle. The position is relative to the stream, where (0, 0) is (ini-
tially) the upper-left corner of the stream.

(setf* output-record-position) [Generic Function]

Arguments: x y record
Summary: Changes the x and y position of the output record record to be x and y (which are

rational numbers), and updates the bounding rectangle to reflect the new position
(and saved cursor positions, if the output record stores it). If record has any chil-
dren, all of the children (and their descendants as well) will be moved by the
same amount as record was moved. The bounding rectangles of all of record’s
ancestors will also be updated to be large enough to contain record. This does not
replay the output record, but the next time the output record is replayed it will
appear at the new position.

output-record-start-cursor-position [Generic Function]

Arguments: record
Summary: Returns the x and y starting cursor position of the output record record as two

integer values. The positions are relative to the stream, where (0, 0) is (initially)
the upper-left corner of the stream.

 Text output records and updating output records maintain the cursor position.
Graphical output records and other output records that do not require or affect
the cursor position will return nil as both of the values.
Output Recording and Redisplay

(setf* output-record-start-cursor-position) [Generic Function]

Arguments: x y record
Summary: Changes the x and y starting cursor position of the output record record to be x

and y (which are integers). This does not affect the bounding rectangle of record,
nor does it replay the output record. For those output records that do not require
or affect the cursor position, the method for this function does nothing.

output-record-end-cursor-position [Generic Function]

Arguments: record
Summary: Returns the x and y ending cursor position of the output record record as two

integer values. The positions are relative to the stream, where (0, 0) is initially
the upper-left corner. Graphical output records do not track the cursor position,
so only text output record and some others will return meaningful values for this.

 Text output records and updating output records maintain the cursor position.
Graphical output records and other output records that do not require or affect
the cursor position will return nil as both of the values.

(setf* output-record-end-cursor-position) [Generic Function]

Arguments: x y record
Summary: Changes the x and y ending cursor position of the output record record to be x

and y (which are integers). This does not affect the bounding rectangle of record,
nor does it replay the output record. For those output records that do not require
or affect the cursor position, the method for this function does nothing.

output-record-parent [Generic Function]

Arguments: record
Summary: Returns the output record that is the parent of the output record record, or nil if

the record has no parent.

replay [Function]

Arguments: record stream &optional region
Summary: This function binds stream-recording-p of stream to nil, and then calls

replay-output-record on the arguments record, stream, and region. If
stream-drawing-p of stream is nil, replay does nothing. replay is typically
called during scrolling, by repaint handlers, and so on.

 region defaults to nil.
<Bold>340CLIM User Guide

replay-output-record [Generic Function]

Arguments: record stream &optional region x-offset y-offset
Summary: Displays the output captured by the output record record on the output recording

stream stream, exactly as it was originally captured (subject to subsequent mod-
ifications). The current user transformation, line style, text style, ink, and clip-
ping region of stream are all ignored during the replay operation. Instead, these
are gotten from the output record.

 If record is not a displayed output record, then replaying it involves replaying all
of its children. If record is a displayed output record, then replaying it involves
redoing the graphics operation captured in the record.

 region is a region that limits what records are displayed. Only those records that
overlap region are replayed. The default for region is +everywhere+.

 stream must be the same stream on which the output records were originally
recorded.

erase-output-record [Generic Function]

Arguments: record stream
Summary: Erases the output record record from the output recording stream stream,

removes record from stream’s output history, and ensures that all other output
records that were covered by record are visible. In effect, this draws background
ink over the record, and then redraws all the records that overlap record.

output-record-refined-sensitivity-test [Generic Function]

Arguments: record x y
Summary: This is used to definitively answer hit detection queries, that is, determining that

the point (x, y) is contained within the output record record. Once the position (x,
y) has been determined to lie within output-record-hit-detection-rectangle*,
output-record-refined-sensitivity-test is invoked. Output record subclasses
can provide a method that defines a hit more precisely; for example, output
records for elliptical rings will implement a method that detects whether the
pointing device is on the elliptical ring.

highlight-output-record [Generic Function]

Arguments: record stream state
Summary: This method is called in order to draw a highlighting box around the output

record record on the output recording stream stream. state will be either :high-
light (meaning to draw the highlighting) or :unhighlight (meaning to erase the
Output Recording and Redisplay

highlighting). The default method (on CLIM’s standard output record class) sim-
ply draws a rectangle that corresponds to the bounding rectangle of record.

14.2.2 The Output Record “Database” Protocol

All classes that are subclasses of output-record must implement methods for the following
generic functions.

output-record-children [Generic Function]

Arguments: record
Summary: Returns a fresh list of all the children of the output record record.

add-output-record [Generic Function]

Arguments: child record
Summary: Adds the new output record child to the output record record. The bounding rect-

angle for record and all its ancestors is updated accordingly.

 The methods for the add-output-record will typically specialize only the record
argument.

delete-output-record [Generic Function]

Arguments: child record &optional (errorp t)
Summary: Removes the output record child from the output record record. The bounding

rectangle for record (and all its ancestors) is updated to account for the child hav-
ing been removed.

 If errorp is t (the default) and child is not contained within record, then an error
is signaled.

 The methods for the delete-output-record will typically specialize only the
record argument.

clear-output-record [Generic Function]

Arguments: record
Summary: Removes all of the children from the output record record, and resets the bound-

ing rectangle of record to its initial state.
<Bold>342CLIM User Guide

output-record-count [Generic Function]

Arguments: record
Summary: Returns the number of children contained within the output record record.

map-over-output-records-containing-position [Generic Function]

Arguments: function record x y &optional x-offset y-offset
Summary: Maps over all of the children of the output record record that contain the point

at (x, y), calling function on each one. function is a function of one argument, the
record containing the point; it has dynamic extent.

 If there are multiple records that contain the point and that overlap each other,
map-over-output-records-containing-position hits the most recently inserted
record first and the least recently inserted record last.

map-over-output-records-overlapping-region [Generic Function]

Arguments: function record region &optional x-offset y-offset
Summary: Maps over all of the children of the output record record that overlap the region

region, calling function on each one. function is a function of one argument, the
record overlapping the region; it has dynamic extent.

 If there are multiple records that overlap the region and that overlap each other,
map-over-output-records-overlapping-region hits the least recently inserted
record first and the most recently inserted record last.

14.2.3 Types of Output Records

This section discusses several types of output records, including two standard classes of
output records and the displayed output record protocol.

14.2.3.1 Standard Output Record Classes

standard-sequence-output-record [Class]

Summary: The standard class provided by CLIM to store a relatively short sequence of out-
put records; a subclass of output-record. The retrieval complexity of this class
is 0(n). Most of the formatted output facilities (such as formatting-table) create
output records that are a subclass of standard-sequence-output-record.
Output Recording and Redisplay

standard-tree-output-record [Class]

Summary: The standard class provided by CLIM to store longer sequences of output
records. Typically, the child records of a tree output record will be sorted in some
way, such as an ordering on the x and y coordinates of the children. The retrieval
complexity of this class is 0(log n).

14.2.3.2 Graphics Displayed Output Records

Graphics displayed output records are used to record the output produced by the graphics
functions, such as draw-line*. Each graphics displayed output record describes the output
produced by a call to one of the graphics functions.

CLIM graphics displayed output records capture the following information, so that the
original output can be redrawn exactly at replay time:

■ The description of the graphical object itself, for example, the end points of a line or
the center point and radius of a circle

■ The programmer-supplied ink at the time the drawing function was called (indirect inks
are not resolved, so you can later change the default foreground and background ink of
the medium and have that change affect the already-created output records during re-
play)

■ For paths, the programmer-supplied line-style at the time the drawing function was
called

■ The programmer-supplied clipping region at the time the drawing function was called

■ The user transformation

graphics-displayed-output-record [Protocol Class]

Summary: The protocol class that corresponds to output records for the graphics functions,
such as draw-line*. This is a subclass of displayed-output-record. If you want
to create a new class that behaves like a graphics displayed output record, it
should be a subclass of graphics-displayed-output-record. Subclasses of
graphics-displayed-output-record must obey the graphics displayed output
record protocol.

graphics-displayed-output-record-p [Function]

Arguments: object
<Bold>344CLIM User Guide

Summary: Returns t if object is a graphics displayed output record; otherwise, it returns nil.

14.2.3.3 Text Displayed Output Records

Text displayed output records are used to record the textual output produced by such func-
tions as stream-write-char and stream-write-string. Each text displayed output record
corresponds to no more than one line of textual output (that is, line breaks caused by terpri
and fresh-line create a new text output record, as do certain other stream operations).

Text displayed output records store the following information:

■ The displayed text strings

■ The starting and ending cursor positions

■ The text style in which the text string was written

■ The programmer-supplied ink at the time the drawing function was called (indirect inks
are not resolved, so that you can later change the default foreground and background
ink of the medium and have that change affect the already-created output records during
replay)

■ The programmer-supplied clipping region at the time the drawing function was called

text-displayed-output-record [Protocol Class]

Summary: The protocol class that corresponds to text displayed output records. This is a
subclass of displayed-output-record. If you want to create a new class that
behaves like a text displayed output record, it should be a subclass of text-dis-
played-output-record. Subclasses of text-displayed-output-record must obey
the text displayed output record protocol.

text-displayed-output-record-p [Function]

Arguments: object
Summary: Returns t if object is a text displayed output record; otherwise, it returns nil.

The following three generic functions comprise the text displayed output record protocol.

add-character-output-to-text-record [Generic Function]

Arguments: text-record character text-style width height baseline
Output Recording and Redisplay

Summary: Adds the character character to the text displayed output record text-record in
the text style text-style. width and height are the width and height of the character
in device units, and are used to compute the bounding rectangle for the text
record. baseline is the new baseline for characters in the output record.

add-string-output-to-text-record [Generic Function]

Arguments: text-record string start end text-style width height baseline
Summary: Adds the string string to the text displayed output record text-record in the text

style text-style. start and end are integers that specify the substring within string
to add to the text output record. width and height are the width and height of the
character in device units, and are used to compute the bounding rectangle for the
text record. baseline is the new baseline for characters in the output record.

text-displayed-output-record-string [Generic Function]

Arguments: text-record
Summary: Returns the string contained by the text displayed output record text-record. This

function returns objects that reveal CLIM’s internal state; do not modify those
objects.

14.2.3.4 Top-Level Output Records

Top-level output records are similar to ordinary output records, except that they maintain
additional state, such as the information required to display scroll bars.

stream-output-history-mixin [Class]

Summary: This class is mixed into some other output record class to produce a new class
that is suitable for use as a a top-level output history.

 When the bounding rectangle of a member of this class is updated, any window
decorations (such as scroll bars) associated with the stream with which the output
record history is associated are updated, too.

standard-tree-output-history [Class]

Summary: The standard class provided by CLIM to use as the top-level output history. This
will typically be a subclass of both standard-tree-output-record and
stream-output-history-mixin.
<Bold>346CLIM User Guide

14.2.4 Output Recording Streams

CLIM defines an extension to the stream protocol that supports output recording. The
stream has an associated output history record and provides controls to enable and disable
output recording.

output-recording-stream [Protocol Class]

Summary: The protocol class that indicates that a stream is an output recording stream. If
you want to create a new class that behaves like an output recording stream, it
should be a subclass of output-recording-stream. Subclasses of out-
put-recording-stream must obey the output recording stream protocol.

output-recording-stream-p [Function]

Arguments: object
Summary: Returns t if object is an output recording stream; otherwise, it returns nil.

standard-output-recording-stream [Class]

Summary: The class used by CLIM to implement output record streams. This is a subclass
of output-recording-stream. Members of this class are mutable.

14.2.4.1 The Output Recording Stream Protocol

The following generic functions comprise the output recording stream protocol. All sub-
classes of output-recording-stream implement methods for these generic functions.

stream-recording-p [Generic Function]

Arguments: stream
Summary: Returns t when the output recording stream stream is recording all output per-

formed to it; otherwise, it returns nil.

(setf stream-recording-p) [Generic Function]

Arguments: recording-p stream
Summary: Changes the state of stream-recording-p to be recording-p, which must be

either t or nil.
Output Recording and Redisplay

stream-drawing-p [Generic Function]

Arguments: stream
Summary: Returns t when the output recording stream stream will actually draw on the

viewport when output is being performed to it; otherwise, it returns nil.

(setf stream-drawing-p) [Generic Function]

Arguments: drawing-p stream
Summary: Changes the state of stream-recording-p to be drawing-p, which must be either

t or nil.

stream-output-history [Generic Function]

Arguments: stream
Summary: Returns the history (or top-level output record) for the output recording stream

stream.

stream-current-output-record [Generic Function]

Arguments: stream
Summary: The current “open” output record for the output recording stream stream, to

which stream-add-output-record will add a new child record. Initially, this is
the same as stream-output-history. As nested output records are created, this
acts as a “stack.”

(setf stream-current-output-record) [Generic Function]

Arguments: record stream
Summary: Sets the current “open” output record for the output recording stream stream to

the output record record.

stream-add-output-record [Generic Function]

Arguments: stream record
Summary: Adds the output record record to the current output record on the output record-

ing stream stream. (The current output record is the output record returned by
stream-current-output-record.)

stream-replay [Generic Function]

Arguments: stream &optional region
Summary: Directs the output recording stream stream to invoke replay on its output history.

Only those records that overlap the region region (which defaults to the viewport
of the stream) are replayed.
<Bold>348CLIM User Guide

14.2.4.2 Graphics Output Recording

We use draw-line* as an example here, but calling any of the drawing functions specified
in Section 2.3, “CLIM Drawing Functions,” and Section 2.4, “Graphics Protocols,” results
in the following series of function calls on an output recording stream:

■ A program calls draw-line* on arguments sheet, x1, y1, x2, y2, and perhaps some draw-
ing options.

■ draw-line* merges the supplied drawing options into the sheet’s medium, and then
calls medium-draw-line* on the sheet.

■ The :around method for medium-draw-line* on the output recording stream is called.
This creates an output record with all of the information necessary to replay the output
record, if stream-recording-p is t. If stream-drawing-p is t, this then does a
call-next-method.

■ The primary method for medium-draw-line* performs the necessary user transforma-
tions by applying the medium transformation to x1, y1, x2, y2, and the clipping region.
Then it draws on the underlying window.

replay-output-record for a graphics displayed output record simply calls the medium
drawing function (such as medium-draw-line*) directly on the sheet (not on the medium)
with stream-recording-p set to nil and stream-drawing-p set to t.

14.2.4.3 Text Output Recording

This is the place where write-string and similar functions are captured in order to create an
output record. The generic functions include protocol like stream-write-string that are
specialized by output recording streams to do the output recording.

stream-text-output-record [Generic Function]

Arguments: stream text-style
Summary: Returns a text output record for the output recording stream stream suitable for

holding characters in the text style text-style. If there is a currently “open” text
output record that can hold characters in the specified text style, it is returned.
Otherwise a new text output record is created that can hold characters in that text
style, and its starting cursor position is set to the cursor position of stream.
Output Recording and Redisplay

stream-close-text-output-record [Generic Function]

Arguments: stream
Summary: Closes the output recording stream stream’s currently “open” text output record

by recording the stream’s current cursor position as the ending cursor position of
the record and adding the text output record to stream’s current output record by
calling stream-add-output-record.

 If there is no “open” text output record, stream-close-text-output-record does
nothing.

 Calling stream-finish-output, stream-force-output, calling redisplay, setting
the text cursor position (via stream-set-cursor-position, terpri, or fresh-line),
creating a new output record (for example, via with-new-output-record), or
changing the state of stream-recording-p closes the current text output record.

stream-add-character-output [Generic Function]

Arguments: stream character text-style width height baseline
Summary: Adds the character character to the output recording stream stream’s text output

record in the text style text-style. width and height are the width and height of the
character in device units. baseline is the new baseline for the stream.
stream-add-character-output calls add-character-output-to-text-record.

 stream-write-char on an output recording stream will call stream-add-charac-
ter-output when stream-recording-p is t.

stream-add-string-output [Generic Function]

Arguments: stream string start end text-style width height baseline
Summary: Adds the string string to the output recording stream stream’s text output record

in the text style text-style. start and end are integers that specify the substring
within string to add to the text output record. width and height are the width and
height of the string in device units. baseline is the new baseline for the stream.
stream-add-string-output calls add-string-output-to-text-record.

 stream-write-string on an output recording stream will call
stream-add-string-output when stream-recording-p is t.

14.2.4.4 Output Recording Utilities

CLIM provides several helper macros to control the output recording facility.
<Bold>350CLIM User Guide

with-output-recording-options [Macro]

Arguments: (stream &key record draw) &body body
Summary: Enables or disables output recording and/or drawing on the output recording

stream designated by stream, within the extent of body.

 The stream argument is not evaluated, and must be a symbol that is bound to an
output recording stream. If stream is t, *standard-output* is used. body may
have zero or more declarations as its first forms.

 with-output-recording-options expands into a call to invoke-with-out-
put-recording-options, supplying a function that executes body as the continu-
ation argument to invoke-with-output-recording-options.

invoke-with-output-recording-options [Generic Function]

Arguments: stream continuation record draw
Summary: Enables or disables output recording and/or drawing on the output recording

stream stream, and calls the function continuation with the new output recording
options in effect. continuation is a function of one argument, the stream; it has
dynamic extent.

 If draw is nil, output to the stream is not drawn on the viewport, but recording
proceeds according to record; if draw is t, the output is drawn. If record is nil,
output recording is disabled, but output otherwise proceeds according to draw;
if draw is t, output recording is enabled.

 All output recording streams must implement a method for invoke-with-out-
put-recording-options.

with-new-output-record [Macro]

Arguments: (stream &optional record-type record &rest init-args) &body body
Summary: Creates a new output record of type record-type (which defaults to stan-

dard-sequence-output-record), captures the output of body into the new output
record, and inserts the new record into the current “open” output record associ-
ated with the output recording stream stream. While body is being evaluated, the
current output record for stream will be bound to the new output record.

 If record is supplied, it is the name of a variable that will be lexically bound to
the new output record inside of body. init-args are CLOS initialization arguments
that are passed to make-instance when the new output record is created.

 with-new-output-record returns the output record it creates.
Output Recording and Redisplay

 The stream argument is not evaluated, and must be a symbol that is bound to an
output recording stream. If stream is t, *standard-output* is used. body may
have zero or more declarations as its first forms.

 with-new-output-record expands into a call to invoke-with-new-out-
put-record, supplying a function that executes body as the continuation argu-
ment to invoke-with-new-output-record.

with-output-to-output-record [Macro]

Arguments: (stream &optional record-type record &rest init-args) &body body
Summary: Like with-new-output-record, except that the new output record is not inserted

into the output record hierarchy, and the text cursor position of stream is initially
bound to (0, 0).

 record-type is the type of output record to create, which defaults to stan-
dard-sequence-output-record. init-args are CLOS initialization arguments that
are passed to make-instance when the new output record is created. record, if
supplied, is a variable that will be bound to the new output record while body is
evaluated.

 with-output-to-output-record returns the output record it creates.

 The stream argument is not evaluated, and must be a symbol that is bound to an
output recording stream. If stream is t, *standard-output* is used. Unlike facil-
ities such as with-output-to-string, stream must be an actual stream, but no out-
put will be done to it. body may have zero or more declarations as its first forms.

 with-output-to-output-record expands into a call to invoke-with-out-
put-to-output-record, supplying a function that executes body as the continua-
tion argument to invoke-with-output-to-output-record.

invoke-with-new-output-record [Generic Function]

Arguments: stream continuation record-type &rest init-args &key
Summary: Creates a new output record of type record-type. The function continuation is

then called, and any output it does to the output recording stream stream is cap-
tured in the new output record. The new record is then inserted into the current
“open” output record associated with stream (or the top-level output record if
there is no currently “open” one). While continuation is being executed, the cur-
rent output record for stream will be bound to the new output record.
<Bold>352CLIM User Guide

 continuation is a function of two arguments, the stream and the output record; it
has dynamic extent. init-args are CLOS initialization arguments that are passed
to make-instance when the new output record is created.

 invoke-with-new-output-record returns the output record it creates.

 All output recording streams must implement a method for
invoke-with-new-output-record.

invoke-with-output-to-output-record [Generic Function]

Arguments: stream continuation record-type &rest init-args &key
Summary: Like invoke-with-new-output-record except that the new output record is not

inserted into the output record hierarchy, and the text cursor position of stream is
initially bound to (0, 0). That is, when invoke-with-output-to-output-record is
used, no drawing on the stream occurs and nothing is put into the stream’s normal
output history. The function continuation is called, and any output it does to
stream is captured in the output record.

 continuation is a function of two arguments, the stream and the output record; it
has dynamic extent. record-type is the type of output record to create. init-args
are CLOS initialization arguments that are passed to make-instance when the
new output record is created.

 invoke-with-output-to-output-record returns the output record it creates.

 All output recording streams must implement a method for invoke-with-out-
put-to-output-record.

make-design-from-output-record [Generic Function]

Arguments: record
Summary: Makes a design that replays the output record record when drawn via

draw-design. If record is changed after the design is made, the consequences are
unspecified. Applying a transformation to the design and calling draw-design
on the new design is equivalent to establishing the same transformation before
creating the output record.

 The current version of CLIM supports this only for those output records that cor-
respond to the geometric object classes (for example, the output records created
by draw-line* and draw-ellipse*).
Output Recording and Redisplay

14.3 Conceptual Overview of Incremental
Redisplay

Some kinds of applications can benefit greatly from the ability to redisplay information on
a window only when that information has changed. This feature, called incremental redis-
play, can significantly improve the speed at which your application updates information on
the screen. Incremental redisplay is very useful for programs that display a window of
changing information where some portions of the window are static and some are continu-
ally changing.

Incremental redisplay is a facility to allow you to change the output in an output history
(and hence on the screen or other output device). It allows you to redisplay pieces of the
existing output differently, under your control. “Incremental” here means that CLIM redis-
plays only the part of the output history visible in the viewport that has changed and thus
needs to be redisplayed.

There are two different ways to do incremental redisplay:

■ Call redisplay on an output record.

This essentially tells the system to start that output record over from scratch. It com-
pares the results with the existing output and tries to do minimal redisplay. The updat-
ing-output form allows you to assist the system by informing it that entire branches of
the output history are known not to have changed. updating-output also allows you to
communicate the fact that a piece of the output record hierarchy has moved.

■ Update the output history manually, and then notify the output record that its child has
changed.

This causes CLIM to propagate the changes up the output record tree and allows parent
output records to readjust themselves to account for the changes.

Each way is appropriate under different circumstances. redisplay is often easier to code
and is more useful in cases where there might be large changes between two passes, or
where you have little idea as to what the changes might be. Notifying the output record of
changes can be more efficient for small changes at the bottom of the output-record hierar-
chy, or in cases where you are well informed as to the specific changes necessary and can
describe these changes to the system.
<Bold>354CLIM User Guide

14.4 CLIM Operators for Incremental Redisplay

The following functions are used to create an output record that should be incrementally
redisplayed, and then to redisplay that record.

updating-output [Macro]

Arguments: (stream &rest args &key unique-id (id-test #’eql) cache-value (cache-test
#’eql) copy-cache-value fixed-position all-new parent-cache record-type)
&body body

Summary: Introduces a caching point for incremental redisplay.

 The stream argument is not evaluated, and must be a symbol that is bound to an
output recording stream. If stream is t, *standard-output* is used. body may
have zero or more declarations as its first forms.

 record-type specifies the class of output record to create. The default is stan-
dard-updating-output-record. This argument should only be supplied by a
programmer if there is a new class of output record that supports the updating
output record protocol.

 updating-output expands into a call to invoke-updating-output, supplying a
function that executes body as the continuation argument to invoke-updat-
ing-output.

invoke-updating-output [Generic Function]

Arguments: stream continuation record-type unique-id id-test cache-value cache-test
copy-cache-value &key all-new parent-cache

Summary: Introduces a caching point for incremental redisplay. Calls the function contin-
uation, which generates the output records to be redisplayed. continuation is a
function of one argument, the stream; it has dynamic extent.

 If this is used outside the dynamic scope of an incremental redisplay, it has no
particular effect. However, when incremental redisplay is occurring, the supplied
cache-value is compared with the value stored in the cache identified by
unique-id. If the values differ or the code in body has not been run before, the
code in body runs, and cache-value is saved for next time. If the cache values are
the same, the code in body is not run, because the current output is still valid.

 unique-id uniquely identifies the output done by body. If unique-id is not sup-
plied, CLIM will generate one that is guaranteed to be unique. unique-id may be
any object as long as it is unique with respect to the id-test predicate among all
Output Recording and Redisplay

such unique ids in the current incremental redisplay. id-test is a function of two
arguments that is used for comparing unique ids; it has indefinite extent.

 cache-value is a value that remains constant if and only if the output produced by
body does not need to be recomputed. If the cache value is not supplied, CLIM
will not use a cache for this piece of output. cache-test is a function of two argu-
ments that is used for comparing cache values; it has indefinite extent. If
copy-cache-value is t, then the supplied cache value will be copied using
copy-seq before it is stored in the output record. The default for
copy-cache-value is nil.

 If fixed-position is t, then the location of this output is fixed relative to its parent
output record. When CLIM redisplays an output record that has a fixed position,
then if the contents have not changed, the position of the output record will not
change. If the contents have changed, CLIM assumes that the code will take care
to preserve its position. The default for fixed-position is nil.

 If all-new is t, that indicates that all of the output done by body is new, and will
never match output previously recorded. In this case, CLIM will discard the old
output and do the redisplay from scratch. The default for all-new is nil.

 The output record tree created by updating-output defines a caching structure
where mappings from a unique-id to an output record are maintained. If the pro-
grammer specifies an output record P via the parent-cache argument, then CLIM
will try to find a corresponding output record with the matching unique-id in the
cache belonging to P. If neither parent-cache is not provided, then CLIM looks
for the unique-id in the output record created by immediate dynamically enclos-
ing call to updating-output. If that fails, CLIM use the unique-id to find an out-
put record that is a child of the output history of stream. Once CLIM has found
an output record that matches the unique-id, it uses the cache value and cache test
to determine whether the output record has changed. If the output record has not
changed, it may have moved, in which case CLIM will simply move the display
of the output record on the display device.

redisplay [Function]

Arguments: record stream &key (check-overlapping t)
Summary: This function calls redisplay-output-record on the arguments record and

stream. When check-overlapping is t, redisplay checks overlapped output
records more carefully in order to display them correctly. The default is nil.
<Bold>356CLIM User Guide

redisplay-output-record [Generic Function]

Arguments: record stream &optional (check-overlapping t) x y parent-x parent-y
Summary: (redisplay-output-record record stream) causes the output of

record to be recomputed. CLIM redisplays the changes “incrementally”; that is,
it only displays those parts that have been changed. record must already be part
of the output history of the output recording stream stream, although it can be
anywhere inside the hierarchy.

 When check-overlapping is t, redisplay checks overlapped output records
more carefully in order to display them correctly. The default is nil. This means
that CLIM can assume that no sibling output records overlap each other at any
level. Supplying a false value for this argument can improve performance of
redisplay.

 The other optional arguments can be used to specify where on the stream the out-
put record should be redisplayed. x and y represent where the cursor should be,
relative to (output-record-parent record), before record is redis-
played. parent-x and parent-y can be supplied to say: do the output as if the par-
ent started at positions parent-x and parent-y (which are in absolute coordinates).
The default values for x and y are (output-record-start-position
record). The default values for parent-x and parent-y are:

(convert-from-relative-to-absolute-coordinates stream
 (output-record-parent record))

 record will usually be an output record created by updating-output. If it is not,
then redisplay-output-record will be equivalent to replay-output-record.

14.5 Using updating-output

One technique of incremental redisplay is to use updating-output to inform CLIM what
output has changed, and to use redisplay to recompute and redisplay that output.

The outermost call to updating-output identifies a program fragment that produces incre-
mentally redisplayable output. A nested call to updating-output (that is, a call to updat-
ing-output that occurs during the execution of the body of the outermost updating-output
and that specifies the same stream) identifies an individually redisplayable piece of output,
the program fragment that produces that output, and the circumstances under which that
output needs to be redrawn.
Output Recording and Redisplay

The outermost call to updating-output executes its body, producing the initial version of
the output, and returns an updating-output-record that captures the body in a closure.
Each nested call to updating-output caches its :unique-id and :cache-value arguments
and the portion of the output produced by its body.

redisplay takes an updating-output-record and executes the captured body of updat-
ing-output over again. When a nested call to updating-output is executed during redis-
play, updating-output decides whether the cached output can be reused or the output needs
to be redrawn. This is controlled by the :cache-value argument to updating-output. If its
value matches its previous value, the body would produce output identical to the previous
output, which would thus be unnecessary. In this case, the cached output is reused and up-
dating-output does not execute its body. If the :cache-value does not match, the output
needs to be redrawn, so updating-output executes its body and the new output drawn on
the stream replaces the previous output. The :cache-value argument is only meaningful for
nested calls to updating-output.

If the :incremental-redisplay pane option is used, CLIM supplies the outermost call to up-
dating-output, saves the updating-output-record, and calls redisplay. The function spec-
ified by the :display-function pane option performs only the nested calls to updating-out-
put.

If you use incremental redisplay without using the :incremental-redisplay pane option,
you must perform the outermost call to updating-output, save the updating-out-
put-record, and call redisplay yourself.

In order to compare the cache to the output record, two pieces of information are necessary:

1. An association between the output being done by the program and a particular cache.
This is supplied in the :unique-id option to updating-output.

2. A means of determining whether this particular cache is valid. This is the :cache-value
option to updating-output.

Normally you would supply both options. The :unique-id would be some data structure as-
sociated with the corresponding part of output. The cache value would be something in that
data structure that changes whenever the output changes.

It is valid to give the :unique-id and not the :cache-value. This is done to identify a supe-
rior in the hierarchy. By this means, the inferiors essentially get a more complex :unique-id
when they are matched for output. (It is rather like using a telephone area code.) The cache
without a cache value is never valid. Its inferiors always have to be checked.
<Bold>358CLIM User Guide

It is also valid to give the :cache-value and not the :unique-id. In this case, unique ids are
just assigned sequentially. So, if output associated with the same thing is done in the same
order each time, it isn’t necessary to invent new unique ids for each piece. This is especially
true in the case of inferiors of a cache with a unique id and no cache value of its own. In
this case, the superior marks the particular data structure, whose components can change
individually, and the inferiors are always in the same order and properly identified by their
superior and the order in which they are output.

A :unique-id need not be unique across the entire redisplay, only among the inferiors of a
given output cache, that is, among all possible (current and additional) uses you make of
updating-output that are dynamically (not lexically) within another.

To make your incremental redisplay maximally efficient, you should attempt to give as
many caches with :cache-value as possible. For instance, if you have a deeply nested tree,
it is better to be able to know when whole branches have not changed than to have to recurse
to every single leaf and check it. So, if you are maintaining a modification tick in the leaves,
it is better to maintain one in their superiors as well and to propagate the modification up
when things change. While the simpler approach works, it requires CLIM to do more work
than is necessary.

14.6 Example of Incremental Redisplay in CLIM

The following function illustrates the standard use of incremental redisplay:

(defun test (stream)
 (let* ((list (list 1 2 3 4 5))
 (record
 (clim:updating-output
 (stream)
 (do* ((elements list (cdr elements))
 (count 0 (1+ count))
 (element (first elements) (first elements)))
 ((null elements))
 (clim:updating-output (stream :unique-id count
 :cache-value element)
 (format stream "Element ~D~%" element))))))
 (force-output stream)
 (sleep 10)
 (setf (nth 2 list) 17)
 (clim:redisplay record stream)))
Output Recording and Redisplay

When test is run on a window, the initial display looks like:

 Element 1
 Element 2
 Element 3
 Element 4
 Element 5

After the sleep has terminated, the display looks like:

 Element 1
 Element 2
 Element 17
 Element 4
 Element 5

Incremental redisplay takes care of ensuring that only the third line gets erased and redis-
played. In the case where items have moved around, Incremental Redisplay ensures that the
minimum amount of work is done in updating the display, thereby minimizing “flashiness”
while providing a powerful user interface. For example, try substituting the following for
the form after the sleep:

(setf list (sort list #’(lambda (&rest args) (zerop (random 2)))))
<Bold>360CLIM User Guide

Chapter 15 Extended Stream Input
Facilities
Extended Stream Input Facilities

15.1 Basic Input Streams

CLIM provides a stream-oriented input layer that is implemented on top of the sheet input
architecture. The basic CLIM input stream protocol is based on the character input stream
protocol proposal submitted to the ANSI Common Lisp committee by David Gray. This
proposal was not approved by the committee, but CLIM provides an implementation of the
basic input stream facilities.

standard-input-stream [Class]

Summary: This class provides an implementation of the CLIM’s basic input stream protocol
based on CLIM’s input kernel. It defines a handle-event method for keystroke
events and queues the resulting characters in a per-stream input buffer. Members
of this class are mutable.

stream-read-char [Generic Function]

Arguments: stream
Summary: Returns the next character available in the input stream stream, or :eof if the

stream is at end-of-file. If no character is available, this function will wait until
one becomes available.

stream-unread-char [Generic Function]

Arguments: stream character
Summary: Places the character character back into the input stream stream’s input buffer.

The next call to read-char on stream will return the unread character. The char-
acter supplied must be the most recent character read from the stream.

stream-read-char-no-hang [Generic Function]

Arguments: stream
Summary: Like stream-read-char, except that if no character is available, the function

returns nil.

stream-peek-char [Generic Function]

Arguments: stream
Summary: Returns the next character available in the input stream stream. The character is

not removed from the input buffer, so the same character will be returned by a
subsequent call to stream-read-char.
<Bold>362CLIM User Guide

stream-listen [Generic Function]

Arguments: stream
Summary: Returns t if there is input available on the input stream stream, nil if not.

stream-read-line [Generic Function]

Arguments: stream
Summary: Reads and returns a string containing a line of text from the input stream stream,

delimited by the #\Newline character.

stream-clear-input [Generic Function]

Arguments: stream
Summary: Clears any buffered input associated with the input stream stream and returns nil.

15.2 Extended Input Streams

In addition to the basic input stream protocol, CLIM defines an extended input stream pro-
tocol. This protocol extends the stream model to allow manipulation of non-character user
gestures, such as pointer button presses. The extended input protocol provides the program-
mer with more control over input processing, including the options of specifying input wait
timeouts and auxiliary input test functions.

extended-input-stream [Protocol Class]

Summary: The protocol class for CLIM extended input streams. This is a subclass of
input-stream. If you want to create a new class that behaves like an extended
input stream, it should be a subclass of extended-input-stream. Subclasses of
extended-input-stream must obey the extended input stream protocol.

extended-input-stream-p [Function]

Arguments: object
Summary: Returns t if object is a CLIM extended input stream; otherwise, it returns nil.
Extended Stream Input Facilities

:input-buffer [Initarg]

:pointer [Initarg]

:text-cursor [Initarg]

Summary: All subclasses of extended-input-stream must handle these initargs, which are
used to specify, respectively, the input buffer, pointer, and text cursor for the
extended input stream.

standard-extended-input-stream [Class]

Summary: This class provides an implementation of the CLIM extended input stream pro-
tocol based on CLIM’s input kernel. The extended input stream maintains the
state of the display’s pointing devices (such as a mouse) in pointer objects asso-
ciated with the stream. It defines a handle-event methods for keystroke and
pointer motion and button press events and updates the pointer object state and
queues the resulting events in a per-stream input buffer.

 Members of this class are mutable.

15.2.1 The Extended Input Stream Protocol

The following generic functions comprise the extended input stream protocol. All extended
input streams must implement methods for these generic functions.

stream-input-buffer [Generic Function]

Arguments: stream

(setf stream-input-buffer) [Generic Function]

Arguments: buffer stream
Summary: These functions provide access to the stream’s input buffer. Normally programs

do not need to manipulate the input buffer directly. It is sometimes useful to
cause several streams to share the same input buffer so that input that comes in
on one of them is available to an input call on any of the streams. The input buffer
must be a vector with a fill pointer capable of holding general input gesture
objects (such as characters and event objects).

stream-pointers [Generic Function]

Arguments: stream
<Bold>364CLIM User Guide

Summary: Returns the list of pointer objects corresponding to the pointing devices of the
port associated with stream. This function returns objects that reveal CLIM’s
internal state; do not modify those objects.

stream-primary-pointer [Generic Function]

Arguments: stream

(setf stream-primary-pointer) [Generic Function]

Arguments: pointer stream
Summary: Returns (or sets) the pointer object corresponding to the primary pointing device

of the console.

 Note: CLIM currently supports only a single pointer for any port. Therefore, the
length of the list returned by stream-pointers will always be one, and
stream-primary-pointer will always return an object that is the only element of
that list.

stream-pointer-position [Generic Function]

Arguments: stream &key pointer
Summary: Returns the current position of the pointing device pointer for the extended input

stream stream as two values, the x and y positions in the stream’s drawing surface
coordinate system. If pointer is not supplied, it defaults to the stream-pri-
mary-pointer of the stream.

(setf* stream-pointer-position) [Generic Function]

Arguments: x y stream &key pointer
Summary: Sets the position of the pointing device for the extended input stream stream to

x and y, which are integers. pointer is as for stream-pointer-position. For the
details of setf*, see Appendix C.4, “Multiple-Value Setf.”

stream-set-input-focus [Generic Function]

Arguments: stream
Summary: Sets the “input focus” to the extended input stream stream and returns the old

input focus as its value.

stream-restore-input-focus [Generic Function]

Arguments: stream old-focus
Summary: Restores the “input focus” of the extended input stream stream to old-focus.
Extended Stream Input Facilities

with-input-focus [Macro]

Arguments: (stream) &body body
Summary: Temporarily gives the keyboard input focus to the extended input stream stream.

By default, an application frame gives the input focus to the window associated
with frame-query-io.

 The stream argument is not evaluated, and must be a symbol that is bound to a
stream. If stream is t, *standard-input* is used. body may have zero or more
declarations as its first forms.

input-wait-test [Variable]

input-wait-handler [Variable]

pointer-button-press-handler [Variable]

Summary: These three variables are used to hold the default values for the current input
wait test, wait handler, and pointer button press handler. These variables are glo-
bally bound to nil.

read-gesture [Function]

Arguments: &key (stream *standard-input*) timeout peek-p (input-wait-test
input-wait-test) (input-wait-handler *input-wait-handler*)
(pointer-button-press-handler *pointer-button-press-handler*)

Summary: Calls stream-read-gesture on the extended input stream stream and all of the
other keyword arguments. Returns the next gesture available in the extended
input stream stream; the gesture will be a character, an event (such as a pointer
button event), or (values nil :timeout) if no input is available. The
input is not echoed.

 These arguments are the same as for stream-read-gesture.

stream-read-gesture [Generic Function]

Arguments: stream &key timeout peek-p (input-wait-test *input-wait-test*)
(input-wait-handler *input-wait-handler*)
(pointer-button-press-handler *pointer-button-press-handler*)

Summary: Returns the next gesture available in the extended input stream stream; the ges-
ture will be either a character or an event (such as a pointer button event). The
input is not echoed.
<Bold>366CLIM User Guide

 If the user types an abort gesture (that is, a gesture that matches any of the gesture
names in *abort-gestures*), then the abort-gesture condition will be signaled.

 If the user types an accelerator gesture (that is, a gesture that matches any of the
gesture names in *accelerator-gestures*), then the accelerator-gesture condi-
tion will be signaled.

 stream-read-gesture works by invoking stream-input-wait on stream,
input-wait-test, and timeout, and then processing the input, if there is any.

 timeout is either nil or an integer that specifies the number of seconds that
stream-read-gesture will wait for input to become available. If no input is avail-
able, stream-read-gesture will return two values, nil and :timeout.

 If peek-p is t, the returned gesture will be left in the stream’s input buffer.

 input-wait-test is a function of one argument, the stream. The function should
return t when there is input to process, otherwise it should return nil. This argu-
ment will be passed on to stream-input-wait. stream-read-gesture will bind
input-wait-test to input-wait-test.

 input-wait-handler is a function of one argument, the stream. It is called when
stream-input-wait returns nil (that is, no input is available). This option can be
used in conjunction with input-wait-test to handle conditions other than key-
board gestures, or to provide some sort of interactive behavior (such as highlight-
ing applicable presentations). stream-read-gesture will bind
input-wait-handler to input-wait-handler.

 pointer-button-press-handler is a function of two arguments, the stream and a
pointer button press event. It is called when the user clicks a pointer button.
stream-read-gesture will bind *pointer-button-press-handler* to
pointer-button-press-handler.

 input-wait-test, input-wait-handler, and pointer-button-press-handler have
dynamic extent.

stream-input-wait [Generic Function]

Arguments: stream &key timeout input-wait-test
Summary: Waits for input to become available on the extended input stream stream. timeout

and input-wait-test are as for stream-read-gesture.

unread-gesture [Function]

Arguments: gesture &key (stream *standard-input*)
Extended Stream Input Facilities

Summary: Calls stream-unread-gesture on gesture and stream. These arguments are the
same as for stream-unread-gesture.

stream-unread-gesture [Generic Function]

Arguments: stream gesture
Summary: Places gesture back into the extended input stream stream’s input buffer. The

next call to stream-read-gesture request will return the unread gesture. gesture
must be the most recent gesture read from the stream via read-gesture.

15.2.2 Extended Input Stream Conditions

abort-gestures [Variable]

Summary: A list of all of the gesture names that correspond to abort gestures. The global
set of standard abort gestures is unspecified; it includes the :abort gesture name.
The actual keystroke sequence is Control-z.

abort-gesture [Condition]

Summary: This condition is signaled by read-gesture whenever an abort gesture (one of
the gestures in *abort-gestures*) is read from the user.

abort-gesture-event [Generic Function]

Arguments: condition
Summary: Returns the event that cause the abort gesture condition to be signaled. condition

is an object of type abort-gesture.

accelerator-gestures [Variable]

Summary: A list of all of the gesture names that correspond to keystroke accelerators. The
global value for this is nil.

accelerator-gesture [Condition]

Summary: This condition is signaled by read-gesture whenever an keystroke accelerator
gesture (one of the gestures in *accelerator-gestures*) is read from the user.

accelerator-gesture-event [Generic Function]

Arguments: condition
<Bold>368CLIM User Guide

Summary: Returns the event that causes the accelerator gesture condition to be signaled.
condition is an object of type accelerator-gesture.

accelerator-gesture-numeric-argument [Generic Function]

Arguments: condition
Summary: Returns the accumulated numeric argument (maintained by the input editor) at

the time the accelerator gesture condition was signaled. condition is an object of
type accelerator-gesture.

15.3 Gestures and Gesture Names

A gesture is some sort of input action by the user, such as typing a character or clicking a
pointer button. A keyboard gesture refers to those gestures that are input by typing some-
thing on the keyboard. A pointer gesture refers to those gestures that are input by doing
something with the pointer, such as clicking a button.

A gesture name is a symbol that gives a name to a set of similar gestures. Gesture names
are used in order to provide a level of abstraction above raw device events; greater porta-
bility can be achieved by avoiding referring directly to platform-dependent constructs, such
as character objects that refer to a particular key on the keyboard. For example, the :com-
plete gesture is used to name the gesture that causes the complete-input complete the cur-
rent input string; on Genera, this may correspond to the COMPLETE key on the keyboard
(which generates a #\Complete character), but on a Unix workstation, it may correspond
to TAB or some other key. Another example is :select, which is commonly used to indicate
a left button click on the pointer.

Note that gesture names participate in a one-to-many mapping, that is, a single gesture
name can name a group of physical gestures. For example, an :edit might include both a
pointer button click and a key press.

CLIM uses event objects to represent user gestures. Some of the more common events are
those of the class pointer-button-event. Event objects store the sheet associated with the
event, a timestamp, and the modifier key state (a quantity that indicates which modifier
keys were held down on the keyboard at the time the event occurred). Pointer button event
objects also store the pointer object, the button that was clicked on the pointer, the window
the pointer was over, and the x and y position within that window. Keyboard gestures store
the key name.
Extended Stream Input Facilities

In some contexts, the object used to represent a user gesture is referred to as an gesture ob-
ject. An gesture object might be exactly the same as an event object, or might contain less
information. For example, for a keyboard gesture that corresponds to a standard printing
character, it may be enough to represent the gesture object as a character.

define-gesture-name [Macro]

Arguments: name type gesture-spec &key (unique t)
Summary: Defines a new gesture named by the symbol name. It expands into a call to

add-gesture-name.

 type is the type of gesture being created, and is either :keyboard or :pointer-but-
ton. gesture-spec specifies the physical gesture that corresponds to the named
gesture; its syntax depends on the value of type.

• When type is :keyboard, gesture-spec is a list of the form (key-name . modifi-
er-key-names). key-name is the name of a non-modifier key on the keyboard.
modifier-key-names is a (possibly empty) list of modifier key names (:shift,
:control, :meta, :super, and :hyper).

For the standard Common Lisp characters (the 95 ASCII printing characters
including #\Space), key-name is the character object itself. For the other
“semi-standard” characters, key-name is a keyword symbol naming the char-
acter (:newline, :linefeed, :return, :tab, :backspace, :page, and :rubout).

The names of the modifier keys have been chosen to be uniform across all plat-
forms, even though not all platforms will have keys on the keyboard with these
names. The per-port part of CLIM simply chooses a sensible mapping from the
modifier key names to the names of the keys on the keyboard. For example,
CLIM on the Macintosh maps :meta to the COMMAND SHIFT key, and :super
to the OPTION SHIFT key.

• When type is :pointer-button, gesture-spec is a list of the form (button-name
. modifier-key-names). button is the name of a pointer button (:left, :middle,
or :right), and modifier-key-names is as for when type is :keyboard.

 If unique is t (the default), all old gestures named by name are removed.

 None of the arguments to define-gesture-name are evaluated.

add-gesture-name [Function]

Arguments: name type gesture-spec &key unique
Summary: Adds a gesture named by the symbol name to the set of gesture names. type and

gesture-spec are as for define-gesture-name.
<Bold>370CLIM User Guide

 If unique is t, all old gestures named by name are removed. unique defaults to nil.

 As an example, the :edit gesture name could be defined as follows using
define-gesture-name:

 (define-gesture-name :edit :pointer-button (:left :meta))

 (define-gesture-name :edit :keyboard (#\E :control))

delete-gesture-name [Function]

Arguments: name
Summary: Removes the gesture named by the symbol name.

CLIM provides a standard set of gesture names that correspond to a common set of ges-
tures. Here are the required, standard keyboard gesture names:

■ :abort—corresponds to gestures that cause the currently running application to be
aborted back to top-level. In LispWorks CLIM, this may match the event corresponding
to typing CONTROL-Z.

■ :clear-input—corresponds to gestures that cause the current input buffer to be cleared.
In LispWorks CLIM, this may match the event corresponding to typing CON-
TROL-BACKSPACE.

■ :complete—corresponds to the gestures that tell the completion facility to complete the
current input. On most systems, this will typically match the #\Tab or #\Escape
character.

■ :help—corresponds to the gestures that tell accept and the completion facility to dis-
play a help message. On most systems, this will typically match the event correspond-
ing to typing CONTROL-/.

■ :possibilities—corresponds to the gestures that tell the completion facility to display
the current set of possible completions. On most systems, this will typically match the
event corresponding to typing CONTROL-?.

Here are the required, standard pointer gesture names:

■ :select—corresponds to the gesture that is used to “select” the object being pointed to
with the pointer. Typically, this will correspond to the left button on the pointer.

■ :describe—corresponds to the gesture that is used to “describe” or display some sort
of documentation on the object being pointed to with the pointer. Typically, this will
correspond to the middle button on the pointer.
Extended Stream Input Facilities

■ :menu—corresponds to the gesture that is used to display a menu of all possible oper-
ations on the object being pointed to with the pointer. Typically, this will correspond to
the right button on the pointer.

■ :edit—corresponds to the gesture that is used to “edit” the object being pointed to with
the pointer. Typically, this will correspond to the left button on the pointer with some
modifier key held down (such as the META key).

■ :delete—corresponds to the gesture that is used to “delete” the object being pointed to
with the pointer. Typically, this will correspond to the middle button on the pointer with
some modifier key held down (such as the SHIFT key).

15.4 The Pointer Protocol

pointer [Protocol Class]

Summary: The protocol class that corresponds to a pointing device. If you want to create a
new class that behaves like pointer, it should be a subclass of pointer. Subclasses
of pointer must obey the pointer protocol. Members of this class are mutable.

pointerp [Function]

Arguments: object
Summary: Returns t if object is a pointer; otherwise, it returns nil.

:port [Initarg]

Summary: Specifies the port with which the pointer is associated.

standard-pointer [Class]

Summary: The instantiable class that implements a pointer.

pointer-port [Generic Function]

Arguments: pointer
Summary: Returns the port with which the pointer pointer is associated.

pointer-sheet [Generic Function]

Arguments: pointer
<Bold>372CLIM User Guide

(setf pointer-sheet) [Generic Function]

Arguments: sheet pointer
Summary: Returns (or sets) the sheet over which the pointer pointer is located.

pointer-button-state [Generic Function]

Arguments: pointer
Summary: Returns the state of the buttons of the pointer pointer. This is represented as the

logior of the values obtained from pointer-event-button.

pointer-position [Generic Function]

Arguments: pointer
Summary: Returns the x and y position of the pointer pointer as two values.

(setf* pointer-position) [Generic Function]

Arguments: x y pointer
Summary: Sets the x and y position of the pointer pointer to the specified position. For the

details of setf*, see Appendix C.4, “Multiple-Value Setf.”

pointer-cursor [Generic Function]

Arguments: pointer

(setf pointer-cursor) [Generic Function]

Arguments: cursor pointer
Summary: A pointer object usually has a visible cursor associated with it. These functions

return (or set) the cursor associated with the pointer pointer.

15.5 Pointer Tracking

tracking-pointer [Macro]

Arguments: (&optional stream &key pointer multiple-window transformp context-type
highlight) &body body

Summary: The tracking-pointer macro provides a general means for running code while
following the position of a pointing device and monitoring for other input events.
The programmer supplies code (the clauses in body) to be run upon the occur-
rence of any of the following types of events:
Extended Stream Input Facilities

• Motion of the pointer

• Motion of the pointer over a presentation

• Clicking or releasing a pointer button

• Clicking or releasing a pointer button while the pointer is over a presentation

• Keyboard event (typing a character)

 The stream argument is not evaluated, and must be a symbol that is bound to an
input sheet or stream. If stream is t, *standard-output* is used. body may have
zero or more declarations as its first forms.

 The pointer argument specifies a pointer to track. It defaults to the primary
pointer for the sheet, (port-pointer stream).

 When multiple-window is t, the pointer will be tracked across multiple windows;
when nil, it will be tracked only in the window corresponding to stream.

 When the boolean transformp is t, then the coordinates supplied to the
:pointer-motion clause will be in the “user” coordinate system rather than in
stream coordinates; that is, the medium’s transformation will be applied to the
coordinates.

 context-type is used to specify the presentation type of presentations that will be
“visible” to the tracking code for purposes of highlighting and for the :presen-
tation, :presentation-button-press, and :presentation-button-release clauses.
Supplying context-type is only useful when sheet is an output recording stream.
context-type defaults to t, meaning that all presentations are visible.

 When highlight is t, tracking-pointer will highlight applicable presentations as
the pointer is positioned over them. highlight defaults to t when any of the :pre-
sentation, :presentation-button-press, or :presentation-button-release
clauses is supplied; otherwise, it defaults to nil.

 The body of tracking-pointer consists of a list of clauses. Each clause is of the
form (clause-keyword arglist . clause-body) and defines a local function to be
run upon occurrence of each type of event. The possible values for clause-key-
word and the associated arglist are:

• :pointer-motion (&key window x y) Defines a clause to run whenever the
pointer moves. In the clause, window is bound to the window in which the mo-
tion occurred, and x and y to the coordinates of the pointer. (See the keyword
argument :transformp for a description of the coordinate system in which x
and y are expressed.)
<Bold>374CLIM User Guide

• :presentation (&key presentation window x y) Defines a clause to run when-
ever the pointer moves over a presentation of the desired type. (See the key-
word argument :context-type for a description of how to specify the desired
type.) In the clause, presentation is bound to the presentation, window to the
window in which the motion occurred, and x and y to the coordinates of the
pointer. (See the keyword argument :transformp for a description of the coor-
dinate system in which x and y are expressed.)

 When both :presentation and :pointer-motion clauses are provided, the two are
mutually exclusive. The :presentation clause will run only if the pointer is over
an applicable presentation; otherwise the :pointer-motion clause will run.

• :pointer-button-press (&key event x y) Defines a clause to run whenever a
pointer button is pressed. In the clause, event is bound to the pointer button
press event. (The window and the coordinates of the pointer are part of event.)

x and y are the transformed x and y positions of the pointer. These will be dif-
ferent from pointer-event-x and pointer-event-y if the user transformation is
not the identity transformation.

• :presentation-button-press (&key presentation event x y) Defines a clause to
run whenever the pointer button is pressed while the pointer is over a presen-
tation of the desired type. (See the keyword argument :context-type for a de-
scription of how to specify the desired type.) In the clause, presentation is
bound to the presentation, and event to the pointer button press event. (The
window and the stream coordinates of the pointer are part of event.) x and y are
as for the :pointer-button-press clause.

 When both :presentation-button-press and :pointer-button-press clauses are
provided, the two clauses are mutually exclusive. The :presentation-but-
ton-press clause will run only if the pointer is over an applicable presentation;
otherwise, the :pointer-button-press clause will run.

• :pointer-button-release (&key event x y) Defines a clause to run whenever a
pointer button is released. In the clause, event is bound to the pointer button re-
lease event. (The window and the coordinates of the pointer are part of event.)

x and y are the transformed x and y positions of the pointer. These will be dif-
ferent from pointer-event-x and pointer-event-y if the user transformation is
not the identity transformation.

• :presentation-button-release (&key presentation event x y) Defines a clause
to run whenever a pointer button is released while the pointer is over a presen-
tation of the desired type. (See the keyword argument :context-type for a de-
Extended Stream Input Facilities

scription of how to specify the desired type.) In the clause, presentation is
bound to the presentation, and event to the pointer button release event. (The
window and the stream coordinates of the pointer are part of event.) x and y are
as for the :pointer-button-release clause.

 When both :presentation-button-release and :pointer-button-release clauses
are provided, the two clauses are mutually exclusive. The :presentation-but-
ton-release clause will run only if the pointer is over an applicable presentation;
otherwise, the :pointer-button-release clause will run.

• :keyboard (&key gesture) Defines a clause to run whenever a character is
typed on the keyboard. In the clause, gesture is bound to the keyboard gesture
corresponding to the character typed.

Here is an example of tracking-pointer:

(in-package ’clim-user)

(define-application-frame test ()
 ()
 (:panes
 (main :application)))

(define-test-command (rubberband :menu t) ()
 (let ((x1 0);; x1, y1 represents the fix point
 (y1 0)
 (x2 0);; x2,y2 represents the point that is changing
 (y2 0)
 (mouse-button-press nil);; set to T when mouse button has
 ;; press to select pivot
 (stream (get-frame-pane *application-frame* ’main)))
<Bold>376CLIM User Guide

 (tracking-pointer
 (stream)
 (:pointer-button-press
 (event x y)
 (setf x1 x
 y1 y
 x2 x
 y2 y)
 (draw-rectangle* stream x1 y1 x2 y2
 :ink +flipping-ink+ :filled nil)
 (setf mouse-button-press t))
 (:pointer-motion
 (window x y)
 (when mouse-button-press
 ;;erase
 (draw-rectangle* stream x1 y1 x2 y2
 :ink +flipping-ink+ :filled nil)
 ;; draw
 (draw-rectangle* stream x1 y1 x y
 :ink +flipping-ink+ :filled nil)
 (setf x2 x y2 y)))
 (:pointer-button-release (event x y)
 (when mouse-button-press
 (return (list x1 y1 x2 y2)))))))

(define-test-command (com-exit :menu "EXEUNT" :keystroke #-) ()
 (frame-exit *application-frame*))

drag-output-record [Generic Function]

Arguments: stream output-record &key repaint multiple-window erase feedback
finish-on-release

Summary: Enters an interaction mode in which the user moves the pointer and out-
put-record “follows” the pointer by being dragged on the output recording
stream stream. By default, the dragging is accomplished by erasing the output
record from its previous position and redrawing at the new position. out-
put-record remains in the output history of stream at its final position.

 The returned values are the final x and y positions of the pointer, and the delta-x
and delta-y position of the mouse with respect to the origin of the object at the
time it was originally selected by the pointer.

 The boolean repaint controls the appearance of the windows as the pointer is
dragged. If repaint is t (the default), displayed contents of windows are not dis-
turbed as the output record is dragged over them (that is, those regions of the
Extended Stream Input Facilities

screen are repainted). If it is nil, then no repainting is done as the output record
is dragged.

 erase identifies a function that will be called to erase the output record as it is
dragged. It must be a function of two arguments, the output record to erase and
the stream; it has dynamic extent. The default is erase-output-record.

 feedback allows the programmer to identify a “feedback” function of seven argu-
ments: the output record, the stream, the initial x and y position of the pointer, the
current x and y position of the pointer, and a drawing argument (either :erase or
:draw). It has dynamic extent. The default is nil, meaning that the feedback
behavior will be for the output record to track the pointer. (The feedback argu-
ment is used when the programmer desires more complex feedback behavior,
such as drawing a “rubber band” line as the user moves the mouse.) Note that if
feedback is supplied, erase is ignored.

 If the boolean finish-on-release is nil (the default), drag-output-record is exited
when the user presses a pointer button. When it is t, drag-output-record is
exited when the user releases the pointer button currently being held down.

dragging-output [Macro]

Arguments: (&optional stream &key repaint multiple-window finish-on-release) &body
body

Summary: This macro is used by functions that want to move output records in an interac-
tive fashion in a CLIM window. The body of the macro invocation contains code
to draw a CLIM graphic. The resulting graphic tracks mouse motion in the win-
dow until the mouse button is pressed (or released, depending on the options).

 body is evaluated inside of with-output-to-output-record to produce an output
record for the stream stream, and then invokes drag-output-record on the
record in order to drag the output. The output record is not inserted into stream’s
output history.

 The returned values are the final x and y positions of the pointer, and the delta-x
and delta-y position of the mouse with respect to the origin of the object at the
time it was originally selected by the pointer.

 The stream argument is not evaluated, and must be a symbol that is bound to an
output recording stream stream. If stream is t (the default), *standard-output*
is used. body may have zero or more declarations as its first forms.

 repaint and finish-on-release are as for drag-output-record.
<Bold>378CLIM User Guide

pointer-place-rubber-band-line* [Function]

Arguments: &key start-x start-y stream pointer multiple-window finish-on-release
Summary: This function is used to place a rubber-band line. The input is the end points of

a rubber-band line on the stream stream (which defaults to *standard-input*)
via the pointer pointer.

 If start-x and start-y are provided, the start point of the line is at (start-x,start-y).
Otherwise, the start point of the line is selected by pressing a button on the
pointer.

 The pointer argument specifies a pointer from which to take input. It defaults to
(port-pointer stream).

 When the boolean multiple-window argument is t, input can be taken from a win-
dow other than the default window. However, input cannot be taken from more
than one window at the same time. For instance, you cannot press the pointer but-
ton in one window to begin the line and release it in another window to indicate
the end point of the line; the press and release must happen in the same window.

 When the boolean finish-on-release is t, pointer-place-rubber-band-line* is
exited when the user releases the pointer button currently being held down.
When it is nil, pointer-place-rubber-band-line* is exited when the user presses
a pointer button.

 pointer-place-rubber-band-line* returns five values: the start X and Y of the
line, the end X and Y of the line, and the window on which the line was drawn.
The final value is useful only when multiple-window is t.

pointer-input-rectangle* [Function]

Arguments: &key left top right bottom stream pointer multiple-window finish-on-release
Summary: This function is used to input a rectangle via the pointer pointer. The input is the

corners of a rectangle on the stream stream, which defaults to *standard-input*.

 If left and top are provided, the upper left corner of the rectangle will be placed
at (left,top). If right and bottom are provided, the lower right corner of the rect-
angle will be placed at (right,bottom). Otherwise, the upper left corner of the
rectangle is selected by pressing a button on the pointer.

 pointer, multiple-window, and finish-on-release are as for pointer-place-rub-
ber-band-line*.

 pointer-input-rectangle* returns five values: the left, top, right, and bottom cor-
ners of the rectangle, and the window on which the rectangle was drawn. The
final value is useful only when multiple-window is true.
Extended Stream Input Facilities

pointer-input-rectangle [Function]

Arguments: &rest options &key rectangle stream pointer multiple-window
finish-on-release &allow-other-keys

 pointer-input-rectangle is exactly like pointer-input-rectangle* except that it
takes as input and returns a rectangle object.

<Bold>380CLIM User Guide

Chapter 16 Input Editing and
Completion Facilities
Input Editing and Completion Facilities

16.1 Input Editing

An input editing stream “encapsulates” an interactive stream. That is, most operations are
handled by the encapsulated interactive stream, but some operations are handled directly
by the input editing stream itself. (See Appendix D, “Common Lisp Streams,” for a discus-
sion of encapsulating streams.)

An input editing stream has the following components:

■ The encapsulated interactive stream

■ A buffer with a fill pointer, which we shall refer to as FP. The buffer contains all of the
user’s input, and FP is the length of that input.

■ An insertion pointer, which we shall refer to as IP. The insertion pointer is the point in
the buffer at which the “editing cursor” is.

■ A scan pointer, which we shall refer to as SP. The scan pointer is the point in the buffer
from which CLIM will get the next input gesture object (in the sense of read-gesture).

■ A “rescan queued” flag, indicating that the programmer (or CLIM) requested that a
“rescan” operation should take place before the next gesture is read from the user

■ A “rescan in progress” flag, indicating that CLIM is rescanning the user’s input, rather
than reading freshly supplied gestures from the user

The input editor reads either “real” gestures from the user (such as characters from the key-
board or pointer button events) or input editing commands, which can modify the state of
the input buffer. When they do so, the input buffer must be “rescanned”; that is, the scan
pointer SP must be reset to its original state, and the contents of the input editor buffer must
be reparsed before any other gestures from the user are read. While this rescanning opera-
tion is taking place, the “rescan in progress” flag is set to t. The relationship SP ≤ IP ≤ FP
always holds.

The overall control structure of the input editor is:

(catch ’rescan ;thrown to when a rescan is invoked
 (reset-scan-pointer stream) ;sets STREAM-RESCANNING-P to T
 (loop
 (funcall continuation stream)))

where stream is the input editing stream and continuation is the code supplied by the pro-
grammer, which typically contains calls to such functions as accept and read-token (which
<Bold>382CLIM User Guide

will eventually call stream-read-gesture). When a rescan operation is invoked, it throws
to the rescan tag in the previous example. The loop is terminated when an activation ges-
ture is seen, and at that point the values produced by continuation are returned as values
from the input editor.

The important point is that functions such as accept, read-gesture, and unread-gesture
read (or restore) the next gesture object from the buffer at the position pointed to by the scan
pointer SP. However, insertion and input editing commands take place at the position point-
ed to by IP. The purpose of the rescanning operation is to ensure that all the input gestures
issued by the user (typed characters, pointer button presses, and so forth) have been read by
CLIM. During input editing, the input editor maintains some sort of visible cursor to remind
the user of the position of IP.

The overall structure of stream-read-gesture on an input editing stream is:

(progn
 (rescan-if-necessary stream)
 (loop
 ;; If SP is less than FP
 ;; Then get the next gesture from the input editor buffer at SP
 ;; and increment SP
 ;; Else read the next gesture from the encapsulated stream
 ;; and insert it into the buffer at IP
 ;; Set the "rescan in progress" flag to false
 ;; Call STREAM-PROCESS-GESTURE on the gesture
 ;; If it was a "real" gesture
 ;; Then exit with the gesture as the result
 ;; Else it was an input editing command (which has already been
 ;; processed), so continue looping
))

A new gesture object is inserted into the input editor buffer at the insertion pointer IP. If IP
= FP, this is accomplished by a vector-push-extend-like operation on the input buffer and
FP, and then incrementing IP. If IP < FP, CLIM must first “make room” for the new gesture
in the input buffer, then insert the gesture at IP, and finally increment both IP and FP.

When the user requests an input editor motion command, only the insertion pointer IP is
affected. Motion commands do not need to request a rescan operation.

When the user requests an input editor deletion command, the sequence of gesture objects
at IP is removed, and IP and FP must be modified to reflect the new state of the input buffer.
Deletion commands (and other commands that modify the input buffer) must call immedi-
ate-rescan when they are done modifying the buffer.
Input Editing and Completion Facilities

CLIM is free to put special objects in the input editor buffer, such as “noise strings” and
“accept results.” A “noise string” is used to represent some sort of in-line prompt and is
never seen as input; the prompt-for-accept method may insert a noise string into the input
buffer. An “accept result” is an object in the input buffer that is used to represent some ob-
ject that was inserted into the input buffer (typically via a pointer gesture) that has no read-
able representation (in the Lisp sense); presentation-replace-input may create accept re-
sults. Noise strings are skipped over by input editing commands, and accept results are
treated as a single gesture.

See Section 16.7, “Advanced Topics,” for an in-depth discussion of the input editing stream
protocol.

16.1.1 Operators for Input Editing

interactive-stream-p [Generic Function]

Arguments: object
Summary: Returns t if object is an interactive stream, that is, a bidirectional stream intended

for user interactions. Otherwise it returns nil. This is exactly the same function
as in X3J13 Common Lisp, except that in CLIM it is a generic function.

 The input editor is only fully implemented for interactive streams.

input-editing-stream [Protocol Class]

Summary: The protocol class that corresponds to an input editing stream. If you want to
create a new class that behaves like an input editing stream, it should be a sub-
class of input-editing-stream. Subclasses of input-editing-stream must obey
the input editing stream protocol.

input-editing-stream-p [Function]

Arguments: object
Summary: Returns t if object is an input editing stream (that is, a stream of the sort created

by a call to with-input-editing), otherwise returns nil.

standard-input-editing-stream [Class]

Summary: The class that implements CLIM’s standard input editor. This is the class of
stream created by calling with-input-editing.

 Members of this class are mutable.
<Bold>384CLIM User Guide

with-input-editing [Macro]

Arguments: (&optional stream &key input-sensitizer initial-contents) &body body
Summary: Establishes a context in which the user can edit the input typed in on the inter-

active stream stream. body is then executed in this context, and the values
returned by body are returned as the values of with-input-editing. body may
have zero or more declarations as its first forms.

 The stream argument is not evaluated, and must be a symbol that is bound to an
input stream. If stream is t (the default), *query-io* is used. If stream is a stream
that is not an interactive stream, then with-input-editing is equivalent to progn.

 input-sensitizer, if supplied, is a function of two arguments, a stream and a con-
tinuation function; the function has dynamic extent. The continuation, supplied
by CLIM, is responsible for displaying output corresponding to the user’s input
on the stream. The input-sensitizer function will typically call with-out-
put-as-presentation in order to make the output produced by the continuation
sensitive.

 If initial-contents is supplied, it must be either a string or a list of two elements,
an object and a presentation type. If it is a string, it will be inserted into the input

 buffer using replace-input. If it is a list, the printed representation of the object
will be inserted into the input buffer using presentation-replace-input.

with-input-editor-typeout [Macro]

Arguments: (&optional stream) &body body
Summary: Establishes a context inside of with-input-editing in which output can be done

by body to the input editing stream stream. with-input-editor-typeout should
call fresh-line before and after evaluating the body. body may have zero or more
declarations as its first forms.

 The stream argument is not evaluated, and must be a symbol that is bound to a
stream. If stream is t (the default), *query-io* is used. If stream is a stream that
is not an input editing stream, then with-input-editor-typeout is equivalent to
calling fresh-line, evaluating the body, and then calling fresh-line again.

16.1.2 Input Editor Commands

Keyboard input to accept can be edited until an activation character is typed to terminate
it. If the input cannot be parsed after an activation character is entered, it must be edited and
re-activated. The input editor has several keystroke commands, as listed in Table 4, “Input
Input Editing and Completion Facilities

Editor Keystroke Commands”. Prefix numeric arguments to input editor commands can be
entered using digits and the minus sign (-) with CONTROL and META (as in Emacs).

The function :add-input-editor-command can be used to bind one or more keys to an in-
put editor command. Any character can be an input editor command, but by convention
only non-graphic characters should be used.

The input also supports “numeric arguments” (such as C-0, C-1, M-0, etc.) that modify
the behavior of the input editing commands. For instance, the motion and deletion com-
mands will be repeated as many times as specified by the numeric argument. Furthermore,
the accumulated numeric argument will be passed to the command processor in such a way

Command Character Command Character

Forward character C-f Delete previous
character

 Rubout

Forward word M-f Delete previous
word

 M-Rubout

Backward character C-b Kill to end of line C-k

Backward word M-b Clear input buffer LispWorks: C-backspace
Liquid: C-M-delete

Beginning of line C-a Insert new line C-o

End of line C-e Transpose adjacent
characters

 C-t

Next line C-n Transpose adjacent
words

 M-t

Previous line C-p Yank from kill ring C-y

Beginning of buffer M-< Yank from presenta-
tion history

 C-M-y

End of buffer M-> Yank next item M-y

Delete next charac-
ter

C-d Scroll output his-
tory forward

 C-v

Delete next word M-d Scroll output his-
tory backward

 M-v

Table 4. Input Editor Keystroke Commands
<Bold>386CLIM User Guide

that substitute-numerical-marker can be used to insert the numeric argument into a com-
mand that was read via a keystroke accelerator.
Input Editing and Completion Facilities

16.2 Activation and Delimiter Gestures

Activation gestures terminate an input “sentence,” such as a command or anything else be-
ing read by accept. When an activation gesture is entered by the user, CLIM will cease
reading input and “execute” the input that has been entered.

Delimiter gestures terminate an input “word,” such as a recursive call to accept.

activation-gestures [Variable]

Summary: The set of currently active activation gestures. The global value of this is nil.
The exact format of *activation-gestures* is unspecified. *activation-ges-
tures* and the elements in it may have dynamic extent.

standard-activation-gestures [Variable]

Summary: The default set of activation gestures. The exact set of standard activation is
unspecified; it includes the gesture corresponding to the #\Newline character.

with-activation-gestures [Macro]

Arguments: (gestures &key override) &body body
Summary: Specifies a list of gestures that terminate input during the execution of body.

body may have zero or more declarations as its first forms. gestures must be
either a single gesture name or a form that evaluates to a list of gesture names.

 If the boolean override is t, then gestures will override the current activation ges-
tures. If it is nil (the default), then gestures will be added to the existing set of
activation gestures. with-activation-gestures must bind *activation-gestures*
to the new set of activation gestures.

 See also the :activation-gestures and :additional-activation-gestures options
to accept.

activation-gesture-p [Function]

Arguments: gesture
Summary: Returns t if the gesture object gesture is an activation gesture; otherwise, it

returns nil.
<Bold>388CLIM User Guide

delimiter-gestures [Variable]

Summary: The set of currently active delimiter gestures. The global value of this is nil. The
exact format of *delimiter-gestures* is unspecified. *delimiter-gestures* and
the elements in it may have dynamic extent.

with-delimiter-gestures [Macro]

Arguments: (gestures &key override) &body body
Summary: Specifies a list of gestures that terminate an individual token, but not the entire

input, during the execution of body. body may have zero or more declarations as
its first forms. gestures must be either a single gesture name or a form that eval-
uates to a list of gesture names.

 If the boolean override is t, then gestures will override the current delimiter ges-
tures. If it is nil (the default), then gestures will be added to the existing set of
delimiter gestures. with-delimiter-gestures must bind *delimiter-gestures* to
the new set of delimiter gestures.

 See also the :delimiter-gestures and :additional-delimiter-gestures options to
accept.

delimiter-gesture-p [Function]

Arguments: gesture
Summary: Returns t if the gesture object gesture is a delimiter gesture; otherwise, it returns

nil.
Input Editing and Completion Facilities

16.3 Signalling Errors Inside accept Methods

Sometimes an accept method may wish to signal an error while it is parsing the user’s in-
put, or a nested call to accept may signal such an error itself. The following functions and
conditions may be used:

parse-error [Condition]

Summary: The error that is signaled by parse-error. This is a subclass of error.

parse-error [Function]

Arguments: format-string &rest format-arguments
Summary: Reports an error while parsing an input token. Does not return. format-string and

format-arguments are as for the Common Lisp function format.

simple-parse-error [Condition]

Summary: The error that is signaled by simple-parse-error. This is a subclass of
parse-error.

simple-parse-error [Function]

Arguments: format-string &rest format-arguments
Summary: Signals a simple-parse-error when CLIM does not know how to parse some

sort of user input while inside accept. Does not return. format-string and for-
mat-arguments are as for the Common Lisp function format.

input-not-of-required-type [Condition]

Arguments: object type
Summary: This condition is signalled by input-not-of-required-type. This is a subclass

of parse-error.

input-not-of-required-type [Function]

Arguments: object type
Summary: Reports that input does not satisfy the specified type by signalling an

input-not-of-required-type error. object is a parsed object or an unparsed token
(a string). type is a presentation type specifier. Does not return.
<Bold>390CLIM User Guide

16.4 Reading and Writing Tokens

Sometimes after an accept method has read some input from the user, it may be necessary
to insert a modified version of that input back into the input buffer. The following two func-
tions can be used to modify the input buffer:

replace-input [Generic Function]

Arguments: stream new-input &key start end buffer-start rescan
Summary: Replaces the part of the input editing stream stream’s input buffer that extends

from buffer-start to its scan pointer with the string new-input. buffer-start
defaults to the current input position of stream. start and end can be supplied to
specify a subsequence of new-input; start defaults to 0 and end defaults to the
length of new-input.

 replace-input queues a rescan by calling queue-rescan if the new input does not
match the old output, or if rescan is t.

 The returned value is the position in the input buffer.

presentation-replace-input [Generic Function]

Arguments: stream object type view &key buffer-start rescan query-identifier
for-context-type

Summary: Like replace-input, except that the new input to insert into the input buffer is
obtained by presenting the object object with the presentation type type and view
view. buffer-start and rescan are as for replace-input, query-identifier is as for
accept, and for-context-type is as for present.

 If the object does not have a readable representation (in the Lisp sense), presen-
tation-replace-input may create an “accept result” to represent the object and
insert it into the input buffer. For the purposes of input editing, “accept results”
must be treated as a single input gesture.

The following two functions are used to read or write a token (that is, a string):

read-token [Function]

Arguments: stream &key input-wait-handler pointer-button-press-handler click-only
Summary: Reads characters from the interactive steam stream until it encounters a delim-

iter, activation, or pointer gesture. Returns the accumulated string that was
delimited by the delimiter or activation gesture, leaving the delimiter unread.
Input Editing and Completion Facilities

 If the first character of typed input is a quotation mark (#\"), then read-token
will ignore delimiter gestures until another quotation mark is seen. When the
closing quotation mark is seen, read-token will proceed as discussed previously.

 If the boolean click-only is t, then no keyboard input is allowed. In that case,
read-token will simply ignore any typed characters.

 input-wait-handler and pointer-button-press-handler are as for
stream-read-gesture. Refer to Section 15.2.1, “The Extended Input Stream Pro-
tocol,” for details.

write-token [Function]

Arguments: token stream &key acceptably
Summary: write-token is the opposite of read-token; given the string token, it writes it to

the interactive stream stream. If acceptably is t and there are any characters in
the token that are delimiter gestures (see with-delimiter-gestures), then
write-token will surround the token with quotation marks (#\").

 Typically, present methods will use write-token instead of write-string.
<Bold>392CLIM User Guide

16.5 Completion

CLIM provides a completion facility that completes a string provided by a user against
some set of possible completions (which are themselves strings). Each completion is asso-
ciated with some Lisp object. CLIM provides “chunkwise” completion; that is, if the user
input consists of several tokens separated by “partial delimiters,” CLIM completes each to-
ken separately against the set of possibilities.

completion-gestures [Variable]

Summary: A list of the gesture names that cause complete-input to complete the user’s
input as fully as possible. The exact global contents of this list is unspecified; it
includes the :complete gesture name. *completion-gestures* is bound to
#\Control-Tab.

help-gestures [Variable]

Summary: A list of the gesture names that cause accept and complete-input to display a
(possibly input context-sensitive) help message, and for some presentation types
a list of possibilities as well. The exact global contents of this list is unspecified;
it includes the :help gesture name. *help-gestures* is bound to #\Control-l
in LispWorks CLIM and #\Meta-? in Liquid CLIM.

possibilities-gestures [Variable]

Summary: A list of the gesture names that cause complete-input to display a (possibly
input context-sensitive) help message and a list of possibilities. The exact global
contents of this list is unspecified; it includes the :possibilities gesture name.
possibilities-gestures is bound to #\Control-?.

complete-input [Function]

Arguments: stream function &key partial-completers allow-any-input possibility-printer
(help-displays-possibilities t)

Summary: Reads input from the user from the input editing stream stream, completing over
a set of possibilities. complete-input only works on input editing streams.

 function is a function of two arguments. It is called to generate the completion
possibilities that match the user’s input; it has dynamic extent. Usually, program-
mers will pass a function which calls either complete-from-possibilities or
complete-from-generator as the value of function. Its first argument is a string
Input Editing and Completion Facilities

containing the user’s input “so far.” Its second argument is the completion mode,
one of the following:

• :complete-limited—the function completes the input up to the next partial de-
limiter. This is the mode used when the user types a partial completer.

• :complete-maximal—the function completes the input as much as possible.
This is the mode used when the user issues a gesture that matches any of the
gesture names in *completion-gestures*.

• :complete—the function completes the input as much as possible, except that
if the user’s input exactly matches one of the possibilities, even if it is a left
substring of another possibility, the shorter possibility is returned as the result.
This is the mode used when the user issues a delimiter or activation gesture that
is not a partial completer.

• :possibilities—the function returns an alist of the possible completions as its
fifth value. This is the mode used when the user a gesture that matches any of
the gesture names in *possibilities-gestures* or *help-gestures* (if help-dis-
plays-possibilities is t).

 function returns five values:

• string—the completed input string

• success—t if completion was successful, otherwise nil

• object—the object corresponding to the completion, otherwise nil

• nmatches—the number of possible completions of the input

• possibilities—a newly-created alist of completions (lists of a string and an ob-
ject), returned only when the completion mode is :possibilities.

 complete-input returns three values: object, success, and string. In addition, the
printed representation of the completed input will be inserted into the input
buffer of stream in place of the user-supplied string by calling replace-input.

 partial-completers is a list of characters that delimit portions of a name that can
be completed separately. The default is an empty list.

 If the boolean allow-any-input is t, then complete-input returns as soon as the
user issues an activation gesture, even if the input is not any of the possibilities.
If the input is not one of the possibilities, the three values returned by com-
plete-input will be nil, t, and the string. The default for allow-any-input is nil.
<Bold>394CLIM User Guide

 If possibility-printer is supplied, it must be a function of three arguments, a pos-
sibility, a presentation type, and a stream; it has dynamic extent and displays the
possibility on the stream. The possibility will be a list of two elements, the first
being a string and the second being the object corresponding to the string.

 If help-display-possibilities is t (the default), then when the user issues a help
gesture (a gesture that matches one of the gesture names in *help-gestures*),
CLIM will display all the matching possibilities. If it is nil, then CLIM will not
display the possibilities unless the user issues a possibility gesture (a gesture that
matches one of the gesture names in *possibilities-gestures*).

 Here is an example:

(defvar *my-possibilities* ’((“Raspberry” :rasp)
 (“Strawberry” :straw)
 (“Blueberry” :blue)))

(flet ((possibilities-generator (string-so-far mode)
 (complete-from-possibilities string-so-far
 my-possibilities
 nil
 :action mode)))
 (complete-input stream #’possibilities-generator))

complete-from-generator [Function]

Arguments: string generator delimiters &key (action :complete) predicate
Summary: Given an input string string and a list of delimiter characters delimiters that act

as partial completion characters, complete-from-generator completes against
possibilities that are generated by the function generator. generator is a function
of two arguments, the string string and another function that it calls in order to
process the possibility; it has dynamic extent.

 action will be one of :complete, :complete-maximal, :complete-limited, or
:possibilities. These are described under the function complete-input.

 predicate is a function of one argument, an object. If the predicate returns t, the
possibility corresponding to the object is processed. It has dynamic extent.

 complete-from-generator returns five values, the completed input string, the
success value (t if the completion was successful, otherwise nil), the object
matching the completion (or nil if unsuccessful), the number of matches, and a
list of possible completions if action was :possibilities.

 A caller of this function will typically be passed as the second argument to com-
plete-input.
Input Editing and Completion Facilities

complete-from-possibilities [Function]

Arguments: string completions delimiters &key (action :complete) predicate name-key
value-key

Summary: Given an input string string and a list of delimiter characters delimiters that act
as partial completion characters, complete-from-possibilities completes against
the possibilities in the sequence completions. The completion string is extracted
from the possibilities by applying name-key, which is a function of one argu-
ment. The object is extracted by applying value-key, which is a function of one
argument. name-key defaults to first, and value-key defaults to second.

 action will be one of :complete, :complete-maximal, :complete-limited, or
:possibilities. These are described under the function complete-input.

 predicate must be a function of one argument, an object. If the predicate returns
t, the possibility corresponding to the object is processed, otherwise it is not.

 predicate, name-key, and value-key have dynamic extent.

 complete-from-possibilities returns five values, the completed input string, the
success value (t if the completion was successful, nil otherwise), the object
matching the completion (or nil if unsuccessful), the number of matches, and a
list of possible completions if action was :possibilities.

 A caller of this function will typically be passed as the second argument to com-
plete-input.

completing-from-suggestions [Macro]

Arguments: (stream &key partial-completers allow-any-input possibility-printer) &body
body

Summary: Reads input from input editing stream stream, completing over a set of possibil-
ities generated by calls to suggest in body. Returns object, success, and string.

 The stream argument is not evaluated, and must be a symbol that is bound to a
stream. If stream is t (the default), *query-io* is used.

 See complete-input for partial-completers, allow-any-input, and possibil-
ity-printer.

 For example:
<Bold>396CLIM User Guide

 (completing-from-suggestions (stream)
 (map nil
 #’(lambda (x)
 (suggest
 (car x) (cdr x)))
 ’(("One" . 1)
 ("Two" . 2)
 ("Three" . 3))))

suggest [Function]

Arguments: completion object
Summary: Specifies one possibility for completing-from-suggestions. completion is a

string, the printed representation. object is the internal representation.

 This function has lexical scope and is defined only within the body of complet-
ing-from-suggestions.

accept generates help messages based on the name of the presentation type, but sometimes
this is not enough. Use with-accept-help to create more complex help messages.

with-accept-help [Macro]

Arguments: options &body body
Summary: Binds the dynamic environment to control the documentation produced by help

and possibilities gestures during user input in calls to accept with the dynamic
scope of body. body may have zero or more declarations as its first forms.

 options is a list of option specifications. Each specification is itself a list of the
form (help-option help-string). help-option is either a symbol that is a help-type
or a list of the form (help-type mode-flag). help-type must be one of:

• :top-level-help—specifies that help-string be used instead of the default help
documentation provided by accept.

• :subhelp—specifies that help-string be used in addition to the default help
documentation provided by accept.

 mode-flag must be one of:

• :append—specifies that the current help string be appended to any previous
help strings of the same help type. This is the default mode.

• :override—specifies that the current help string is the help for this help type;
no lower-level calls to with-accept-help can override this. (:override works
from the outside in.)
Input Editing and Completion Facilities

• :establish-unless-overridden—specifies that the current help string be the
help for this help type unless a higher-level call to with-accept-help has al-
ready established a help string for this help type in the :override mode. This is
what accept uses to establish the default help.

 help-string is a string or a function that returns a string. If it is a function, it
receives three arguments, the stream, an action (either :help or :possibilities)
and the help string generated so far.

 None of the arguments are evaluated.
<Bold>398CLIM User Guide

16.6 Using with-accept-help: some examples

(clim:with-accept-help
 ((:subhelp "This is a test."))
 (clim:accept ’pathname))

[ACCEPT does this] ==> You are being asked to enter a pathname.
[done via :SUBHELP] This is a test.

(clim:with-accept-help ((:top-level-help "This is a test."))
 (clim:accept ’pathname))

[done via :TOP-LEVEL-HELP] ==> This is a test.

(clim:with-accept-help (((:subhelp :override) "This is a test."))
 (clim:accept ’pathname))

[ACCEPT does this] ==> You are being asked to enter a pathname.
[done via :SUBHELP] This is a test.

(clim:define-presentation-type test ())

(clim:define-presentation-method clim:accept
 ((type test) stream view &key)
 (values (clim:with-accept-help
 ((:subhelp "A test is made up of three things:"))
 (clim:completing-from-suggestions (...) ...))))

(clim:accept ’test)
==> You are being asked to enter a test.
 A test is made up of three things:
Input Editing and Completion Facilities

16.7 Advanced Topics

The material in this section is advanced; most CLIM programmers can skip to the next
chapter. This section discusses the Input Editing Stream Protocol.

Input editing streams obey both the extended input and extended output stream protocols,
and must support the generic functions that comprise those protocols. For the most part, this
simply entails “trampolining” those operations to the encapsulated interactive stream.
However, such generic functions as stream-read-gesture and stream-unread-gesture
will need methods that observe the use of the input editor’s scan pointer.

Input editing streams implement methods for prompt-for-accept (in order to provide
in-line prompting that interacts correctly with input editing) and stream-accept (in order
to cause accept to obey the scan pointer).

The following generic functions comprise the remainder of the input editing protocol, and
must be implemented for all classes that inherit from input-editing-stream.

stream-input-buffer [Generic Function]

Arguments: (stream input-editing-stream)
Summary: Returns the input buffer (that is, the string being edited) associated with the input

editing stream stream. This must be an unspecialized vector with a fill pointer.
The fill pointer of the vector points past the last gesture object in the buffer. This
buffer is affected during input editing. The effects of modifying the input buffer
other than by the specified API (such as replace-input) are unspecified.

stream-insertion-pointer [Generic Function]

Arguments: stream
Summary: Returns an integer corresponding to the current input position in the input editing

stream stream’s buffer, that is, the point in the buffer at which the next user input
gesture will be inserted. The insertion pointer will always be less than or equal
to (fill-pointer (stream-input-buffer stream)). The inser-
tion pointer can also be thought of as an editing cursor.

(setf stream-insertion-pointer) [Generic Function]

Arguments: pointer stream
<Bold>400CLIM User Guide

Summary: Changes the input position of the input editing stream stream to pointer, an inte-
ger less than or equal to (fill-pointer (stream-input-buffer
stream)).

stream-scan-pointer [Generic Function]

Arguments: stream
Summary: Returns an integer corresponding to the current scan pointer in the input editing

stream stream’s buffer, that is, the point in the buffer at which calls to accept
have stopped parsing input. The scan pointer will always be less than or equal to
(stream-insertion-pointer stream).

(setf stream-scan-pointer) [Generic Function]

Arguments: pointer stream
Summary: Changes the scan pointer of the input editing stream stream to pointer, an integer

less than or equal to (stream-insertion-pointer stream).

stream-rescanning-p [Generic Function]

Arguments: stream
Summary: Returns the state of the input editing stream stream’s “rescan in progress” flag,

which is t if stream is performing a rescan operation, but otherwise nil. All
extended input streams must implement a method for this, but non-input editing
streams will always returns nil.

reset-scan-pointer [Generic Function]

Arguments: stream &optional (scan-pointer 0)
Summary: Sets the input editing stream stream’s scan pointer to scan-pointer, and sets the

state of stream-rescanning-p to t.

immediate-rescan [Generic Function]

Arguments: stream
Summary: Invokes a rescan operation immediately by “throwing” out to the most recent

invocation of with-input-editing.

queue-rescan [Generic Function]

Arguments: stream
Summary: Sets the “rescan queued” flag to t, meaning that the input editing stream stream

should be rescanned after the next non-input editing gesture is read.
Input Editing and Completion Facilities

rescan-if-necessary [Generic Function]

Arguments: stream
Summary: Invokes a rescan operation on the input editing stream stream if queue-rescan

was called on the same stream and no intervening rescan operation has taken
place. Resets the state of the “rescan queued” flag to nil.

erase-input-buffer [Generic Function]

Arguments: stream &optional (start-position 0)
Summary: Erases the part of the display that corresponds to the input editor’s buffer, start-

ing at the position start-position.

redraw-input-buffer [Generic Function]

Arguments: stream &optional (start-position 0)
Summary: Displays the input editor’s buffer starting at the position start-position on the

interactive stream that is encapsulated by the input editing stream stream.

stream-process-gesture [Generic Function]

Arguments: stream gesture type
Summary: If gesture is an input editing command, stream-process-gesture performs the

input editing operation on the input editing stream stream and returns nil. Other-
wise, it returns the two values gesture and type.

stream-read-gesture [Generic Function]

Arguments: (stream standard-input-editing-stream) &allow-other-keys
Summary: Reads and returns a gesture from the user on the input editing stream stream.

 The stream-read-gesture method calls stream-process-gesture, which will
either return a “real” gesture (such as a typed character, a pointer gesture, or a
timeout) or nil (indicating that some sort of input editing operation was per-
formed). stream-read-gesture only returns when a real gesture has been read; if
an input editing operation was performed, stream-read-gesture will loop until
a “real” gesture is typed by the user.

stream-unread-gesture [Generic Function]

Arguments: (stream standard-input-editing-stream) gesture
Summary: Inserts the gesture gesture back into the input editor’s buffer, maintaining the

scan pointer.
<Bold>402CLIM User Guide

Chapter 17 Formatted Output

Formatted Output

17.1 Formatting Tables in CLIM

17.1.1 Conceptual Overview of Formatting Tables

CLIM makes it easy to construct tabular output. The usual way of making tables is by in-
dicating what you want to put in the table and letting CLIM choose the placement of the
row and column cells. CLIM also allows you to specify constraints on the placement of the
table elements with some flexibility.

In the CLIM model of formatting tables, each cell of the table is handled separately:

■ The code for a cell draws to a stream that has a “private” (local to that cell) drawing
plane. The code puts ink on the drawing plane, in the form of text, graphics, or both.

■ After output for a cell has finished, the bounding rectangle of all output on the “private”
drawing plane is found. The region within that bounding rectangle forms the contents
of a cell.

■ Additional rectangular regions, containing only background ink, are attached to the
edges of the cell contents. These regions ensure that the cells satisfy the tabular con-
straints that within a row all cells have the same height, and within a column all cells
have the same width. CLIM may also introduce additional background for other pur-
poses.

■ The cells are assembled into rows and columns.

You are responsible only for specifying the contents of the cell. CLIM’s table formatter will
figure out how to lay out the table so that all the cells fit together properly. It derives the
width of each column from the the widest cell within the column, and the height of each
row from the the tallest cell within the row.

All the cells in a row have the same height. All the cells in a column have the same width.
The contents of the cells can be of irregular shapes and sizes. You can impose both vertical
and horizontal constraints on the objects within the cell, aligning them vertically at the top,
bottom, or center of the cell, and horizontally at the left, right, or center of the cell.

 Some tables are “multiple column” tables, in which two or more rows of the table are
placed side by side (usually with intervening spacing) rather than all rows being aligned
vertically. Multiple column tables are generally used to produce a table that is more esthet-
ically pleasing, or to make more efficient use of space on the output device. When a table
is a multiple column table, one additional step takes place in the formatting of the table: the
<Bold>404CLIM User Guide

rows of the table are rearranged into multiple columns in which some rows are placed side
by side.

The programmer can give CLIM the following advice about assembling the table:

■ How to place the contents of the cell within the cell (such as centered vertically,
flush-left, and so forth). The possibilities for this advice are described later.

■ Optionally, how much additional space to insert between columns and between rows of
the table.

■ Optionally, whether to make all columns the same size.

You can specify other constraints that affect the appearance of the table, such as the width
or length of the table.

Note that table formatting is inherently two-dimensional from the point of view of the ap-
plication. Item list formatting is inherently one-dimensional output that is presented two-di-
mensionally. The canonical example is a menu, where the programmer specifies a list of
items to be presented. If the list is small enough, a single column or row of menu entries
suffices. In this case, formatting is done when viewport requirements make it desirable.

These constraints affect the appearance of item lists:

■ The number of rows (that is, allowing CLIM to choose the number of columns)

■ The number of columns (that is, allowing CLIM to choose the number of rows)

■ The maximum height (or width) of the column (that is, letting CLIM determine the
number of rows and columns that satisfy that constraint)

See Section 17.5, “Advanced Topics,” for the table and item list formatting protocols.

17.1.2 CLIM Operators for Formatting Tables

This subsection covers the general-purpose table formatting operators.

formatting-table [Macro]

Arguments: (&optional stream &key x-spacing y-spacing multiple-columns
multiple-columns-x-spacing equalize-column-widths (move-cursor t)
record-type) &body body
Formatted Output

Summary: Binds the local environment in such a way the output of body will be done in a
tabular format. This must be used in conjunction with formatting-row or for-
matting-column, and formatting-cell. The table is placed so that its upper left
corner is at the current text cursor position of stream. If the boolean move-cursor
is t (the default), then the text cursor will be moved so that it immediately follows
the last cell of the table.

 The returned value is the output record corresponding to the table.

 stream is an output recording stream to which output will be done. The stream
argument is not evaluated, and must be a symbol that is bound to a stream. If
stream is t (the default), *standard-output* is used. body may have zero or
more declarations as its first forms.

 x-spacing specifies the number of units of spacing to be inserted between col-
umns of the table; the default is the width of a space character in the current text
style. y-spacing specifies the number of units of spacing to be inserted between
rows in the table; the default is the default vertical spacing of the stream. Possible
values for these two options option are:

• An integer—a size in the current units to be used for spacing

• A string or character—the spacing is the width or height of the string or char-
acter in the current text style

• A function—the spacing is the amount of horizontal or vertical space the func-
tion would consume when called on the stream

• A list—the list is of the form (number unit), where unit is one of :point, :pixel,
:mm, :character, or :line. When unit is :character, the width of an “M” in the
current text style is used as the width of one character.

 multiple-columns is either nil, t, or an integer. If it is t or an integer, the table rows
will be broken up into a multiple columns. If it is t, CLIM will determine the
optimal number of columns. If it is an integer, it will be interpreted as the desired
number of columns. multiple-columns-x-spacing has the same format as x-spac-
ing. It controls the spacing between the multiple columns. It defaults to the value
of the x-spacing option.

 When the boolean equalize-column-widths is t, all the columns will have the
same width (the width of the widest cell in any column in the entire table).

 record-type specifies the class of output record to create. The default is stan-
dard-table-output-record. This argument should only be supplied by a pro-
<Bold>406CLIM User Guide

grammer if there is a new class of output record that supports the table formatting
protocol.

formatting-row [Macro]

Arguments: (&optional stream &key record-type) &body body
Summary: Binds the local environment in such a way the output of body will be grouped

into a table row. All of the output performed by body becomes the contents of
one row. This must be used inside of formatting-table, and in conjunction with
formatting-cell.

 stream is an output recording stream to which output will be done. The stream
argument is not evaluated, and must be a symbol that is bound to a stream. If
stream is t (the default), *standard-output* is used. body may have zero or
more declarations as its first forms.

 Once a table has had a row added to it via formatting-row, no columns may be
added to it.

 record-type specifies the class of output record to create. The default is stan-
dard-row-output-record. This argument should only be supplied by a program-
mer if there is a new class of output record that supports the row formatting
protocol.

formatting-column [Macro]

Arguments: (&optional stream &key record-type) &body body
Summary: Binds the local environment in such a way the output of body will be grouped

into a table column. All of the output performed by body becomes the contents
of one column. This must be used inside of formatting-table, and in conjunction
with formatting-cell.

 stream is an output recording stream to which output will be done. The stream
argument is not evaluated, and must be a symbol that is bound to a stream. If
stream is t (the default), *standard-output* is used. body may have zero or
more declarations as its first forms.

 Once a table has had a column added to it via formatting-column, no rows may
be added to it.

 record-type specifies the class of output record to create. The default is stan-
dard-column-output-record. This argument should only be supplied if there is
a new class of output record that supports the column formatting protocol.
Formatted Output

formatting-cell [Macro]

Arguments: (&optional stream &key (align-x ’:left) (align-y ’:baseline) min-width
min-height record-type) &body body

Summary: Controls the output of a single cell inside a table row or column, or of a single
item inside formatting-item-list. All of the output performed by body becomes
the contents of the cell.

 stream is an output recording stream to which output will be done. The stream
argument is not evaluated, and must be a symbol that is bound to a stream. If
stream is t (the default), *standard-output* is used. body may have zero or
more declarations as its first forms.

 align-x specifies how the output in a cell will be aligned relative to other cells in
the same table column. The default, :left, causes the cells to be flush-left in the
column. The other possible values are :right (meaning flush-right in the column)
and :center (meaning centered in the column). Each cell within a column may
have a different alignment; thus it is possible, for example, to have centered leg-
ends over flush-right numeric data.

 align-y specifies how the output in a cell will be aligned vertically. The default,
:baseline, causes textual cells to be aligned along their baselines and graphical
cells to be aligned at the bottom. The other possible values are :bottom (align at
the bottom of the output), :top (align at the top of the output), and :center (center
the output in the cell).

 min-width and min-height are used to specify minimum width or height of the
cell. The default, nil, causes the cell to be only as wide or high as is necessary to
contain the cell’s contents. Otherwise, min-width and min-height are specified in
the same way as the :x-spacing and :y-spacing arguments to formatting-table.

 record-type specifies the class of output record to create. The default is stan-
dard-cell-output-record. This argument should only be supplied by a program-
mer if there is a new class of output record that supports the cell formatting
protocol.

formatting-item-list [Macro]

Arguments: (&optional stream &key x-spacing y-spacing n-columns n-rows
stream-width stream-height max-width max-height initial-spacing
(row-wise t) (move-cursor t) record-type) &body body

Summary: Binds the local environment in such a way that the output of body will be done
in an item list (that is, menu) format. This must be used in conjunction with for-
matting-cell, which delimits each item. The item list is placed so that its upper
left corner is at the current text cursor position of stream. If the boolean
<Bold>408CLIM User Guide

move-cursor is t (the default), then the text cursor will be moved so that it imme-
diately follows the last cell of the item list.

 “Item list output” means that each row of the item list consists of a single cell.
The first row is on top, and each succeeding row has its top aligned with the bot-
tom of the previous row (plus the specified y-spacing). Multiple rows and col-
umns are constructed after laying the item list out in a single column. Item list
output takes place in a normalized +y-downward coordinate system.

 The returned value is the output record corresponding to the table.

 stream is an output recording stream to which output will be done. The stream
argument is not evaluated, and must be a symbol that is bound to a stream. If
stream is t (the default), *standard-output* is used. body may have zero or
more declarations as its first forms.

 x-spacing specifies the number of units of spacing to be inserted between col-
umns of the item list; the default is the width of a #\Space character in the cur-
rent text style. y-spacing specifies the number of units of spacing to be inserted
between rows in the item list; the default is default vertical spacing of the stream.
The format of these arguments is as for formatting-table.

 When the boolean equalize-column-widths is t, all the columns will have the
same width (the width of the widest cell in any column in the entire item list).

 n-columns and n-rows specify the number of columns or rows in the item list. The
default for both is nil, which causes CLIM to pick an aesthetically pleasing lay-
out, possibly constrained by the other options. If both n-columns and n-rows are
supplied and the item list contains more elements than will fit according to the
specification, CLIM will format the item list as if n-rows were supplied as nil.

 max-width and max-height constrain the layout of the item list. max-width can be
overridden by n-rows. max-height can be overridden by n-columns.

 formatting-item-list normally spaces items across the entire width of the stream.
When initial-spacing is t, it inserts some whitespace (about half as much space
as is between each item) before the first item on each line. When it is nil (the
default), the initial whitespace is not inserted. If row-wise is t (the default) and
the item list requires multiple columns, each successive element in the item list
is laid out from left to right. If row-wise is nil and the item list requires multiple
columns, each successive element in the item list is laid out below its predeces-
sor, as in a telephone book.
Formatted Output

 record-type specifies the class of output record to create. The default is stan-
dard-item-list-output-record. Supply this argument s only if there is a new
class of output record that supports the item list formatting protocol.

format-items [Function]

Arguments: items &key stream printer presentation-type x-spacing y-spacing n-columns
n-rows max-width max-height cell-align-x cell-align-y initial-spacing
(move-cursor t) record-type

Summary: This is a function interface to the item list formatter. The elements of the
sequence items are formatted as separate cells within the item list.

 stream is an output recording stream to which output will be done. It defaults to
standard-output.

 printer (default is prin1)is a function that takes two arguments, an item and a
stream, and outputs the item on the stream. printer has dynamic extent.

 presentation-type is a presentation-type. When printer is not supplied, the items
will be printed as if printer were:

 #’(lambda (item stream)
 (present item presentation-type :stream stream))

 When printer is supplied, each item will be enclosed in a presentation whose type
is presentation-type.

 x-spacing, y-spacing, n-columns, n-rows, max-width, max-height, initial-spac-
ing, and move-cursor are as for formatting-item-list.

 cell-align-x and cell-align-y are used to supply :align-x and :align-y to an implic-
itly used formatting-cell.

 record-type is as for formatting-item-list.

format-textual-list [Function]

Arguments: sequence printer &key (:stream *standard-output*) (:separator ", ")
:conjunction

Summary: Outputs a sequence of items as a textual list.

 Note that format-items is similar to formatting-item-list. Both operators do the
same thing, except they accept their input differently:

• formatting-item-list accepts its input as a body that calls formatting-cell for
each item.
<Bold>410CLIM User Guide

• format-items accepts its input as a list of items with a specification of how to
print them.

 Note that menus use the one-dimensional table formatting model.

17.1.3 Examples of Formatting Tables

17.1.3.1 Formatting a Table From a List

The example1 function formats a simple table whose contents come from a list.

(defvar *alphabet* ’(a b c d e f g h i j k l m n o p q r s t u v w x y z))

(defun example1 (&optional (items *alphabet*)
 &key (stream *standard-output*) (n-columns 6)
 y-spacing x-spacing)
 (clim:formatting-table
 (stream :y-spacing y-spacing
 :x-spacing x-spacing)
 (do ()
 ((null items))
 (clim:formatting-row (stream)
 (do ((i 0 (1+ i)))
 ((or (null items) (= i n-columns)))
 (clim:formatting-cell (stream)
 (format stream "~A" (pop items))))))))

Evaluating (example1 *alphabet* :stream *my-window*) shows this table:

 A B C D E F
 G H I J K L
 M N O P Q R
 S T U V W X
 Y Z

Figure 24. Example1 With No :y-spacing

Figure 24 shows the result of evaluating the example1 function call without providing the
:y-spacing and :x-spacing keywords. The defaults for these keywords makes ta-
bles whose elements are characters look reasonable.
Formatted Output

You can easily vary the number of columns, and the spacing between rows or between col-
umns. In the following example, we provide keyword arguments that change the appear-
ance of the table.

Evaluating this form

(example1 *alphabet* :stream *my-window*
 :n-columns 10 :x-spacing 10
 :y-spacing 10)

shows this table:

 A B C D E F G H I J
 K L M N O P Q R S T
 U V W X Y Z

Figure 25. Example1 With :y-spacing

(Note that this example can be done with formatting-item-list as shown in example4.)

17.1.3.2 Formatting a Table Representing a Calendar Month

The calendar-month function shows how you can format a table that represents a cal-
endar month. The first row in the table acts as column headings representing the days of the
week. The following rows are numbers representing the days of the month.

This example shows how you can align the contents of a cell. The column headings (Sun,
Mon, Tue, etc.) are centered within the cells. However, the dates themselves (1, 2, 3, ... 31)
are aligned to the right edge of the cells. The resulting calendar looks good because the
dates are aligned in the natural way.

(in-package :clim-user)
(defvar *day-of-the-week-string* '((0 . "Mon")(1 . "Tue")
 (2 . "Wed")(3 . "Thu")
 (4 . "Fri")(5 . "Sat")
 (6 . "Sun")))
(defun day-of-the-week-string (day-of-week)
 (cdr (assoc day-of-week *day-of-the-week-string*)))
(defvar *days-in-month* '((1 . 31)(2 . 28) (3 . 31)(4 . 30)
 (5 . 31)(6 . 30) (7 . 31)(8 . 31)
 (9 . 30)(10 . 31)(11 . 30)(12 . 31))
 "alist whose first element is numeric value returned by
decode-universal-time and second is the number of days in that month")
<Bold>412CLIM User Guide

;; In a leap year, the month-length function increments the number of
;; days in February as required
(defun leap-year-p (year)
 (cond ((and (integerp (/ year 100))
 (integerp (/ year 400)))
 t)
 ((and (not (integerp (/ year 100)))
 (integerp (/ year 4)))
 t)
 (t nil)))
(defun month-length (month year)
 (let ((days (cdr (assoc month *days-in-month*))))
 (when (and (eql month 2)
 (leap-year-p year))
 (incf days))
 days))
(defun calendar-month (month year &key (stream *standard-output*))
 (let ((days-in-month (month-length month year)))
 (multiple-value-bind (sec min hour date month year start-day)
 (decode-universal-time (encode-universal-time
 0 0 0 1 month year))
 (setq start-day (mod (+ start-day 1) 7))
 (clim:formatting-table (stream)
 (clim:formatting-row (stream)
 (dotimes (d 7)
 (clim:formatting-cell (stream :align-x :center)
 (write-string (day-of-the-week-string
 (mod (- d 1) 7)) stream))))
 (do ((date 1)
 (first-week t nil))
 ((> date days-in-month))
 (clim:formatting-row (stream)
 (dotimes (d 7)
 (clim:formatting-cell (stream :align-x :right)
 (when (and (<= date days-in-month)
 (or (not first-week) (>= d start-day)))
 (format stream "~D" date)
 (incf date))))))))))
(define-application-frame calendar ()
 ()
 (:panes
 (main :application
 :width :compute :height :compute
 :display-function 'display-main)))

(define-calendar-command (com-exit-calendar :menu "Exit") ()
 (frame-exit *application-frame*))
Formatted Output

(defmethod display-main ((frame calendar) stream &key)
 (multiple-value-bind (sec min hour date month year start-day)
 (decode-universal-time (get-universal-time))
 (calendar-month month year :stream stream)))

(defun run ()
 (find-application-frame 'calendar))

Evaluating (calendar-month 5 90 :stream *my-stream*) shows this table:

 Sun Mon Tue Wed Thu Fri Sat
 1 2 3 4 5
 6 7 8 9 10 11 12
 13 14 15 16 17 18 19
 20 21 22 23 24 25 26
 27 28 29 30 31

Figure 26. A Table Representing a Calendar Month

17.1.3.3 Formatting a Table With Regular Graphic Elements

The example2 function shows how you can draw graphics within the cells of a table. Each
cell contains a rectangle of the same dimensions.

(defun example2 (&key (stream *standard-output*)
 y-spacing
 x-spacing)
 (clim:formatting-table
 (stream :y-spacing y-spacing
 :x-spacing x-spacing)
 (dotimes (i 3)
 (clim:formatting-row
 (stream)
 (dotimes (j 3)
 (clim:formatting-cell
 (stream)
 (clim:draw-rectangle* stream 10 10 50 50)))))))

Evaluating (example2 :stream *my-stream* :y-spacing 5) shows this ta-
ble:
<Bold>414CLIM User Guide

Figure 27. Example2 Table

17.1.3.4 Formatting a Table With Irregular Graphics in the Cells

The example3 function shows how you can format a table in which each cell contains
graphics of different sizes.

(defun example3 (&optional (items *alphabet*)
 &key (stream *standard-output*) (n-columns 6)
 y-spacing x-spacing)
 (clim:formatting-table
 (stream :y-spacing y-spacing
 :x-spacing x-spacing)
 (do ()
 ((null items))
 (clim:formatting-row (stream)
 (do ((i 0 (1+ i)))
 ((or (null items) (= i n-columns)))
 (clim:formatting-cell (stream)
 (clim:draw-polygon* stream
 (list 0 0 (* 10 (1+ (random 3)))
 5 5 (* 10 (1+ (random 3))))
 :filled nil)
 (pop items)))))))

Evaluating (example3 *alphabet* :stream *my-stream*) shows this table:

Figure 28. Example3 Table
Formatted Output

17.1.3.5 Formatting a Table of a Sequence of Items

The example4 function shows how you can use formatting-item-list to format a table of
a sequence of items when the exact arrangement of the items and the table is not important.
Note that you use formatting-cell inside the body of formatting-item-list to output each
item. You do not use formatting-column or formatting-row, because CLIM figures out
the number of columns and rows automatically (or obeys a constraint given in a keyword
argument).

(defun example4 (&optional (items *alphabet*)
 &key (stream *standard-output*) n-columns n-rows
 y-spacing x-spacing
 max-width max-height)
 (clim:formatting-item-list
 (stream :y-spacing y-spacing
 :x-spacing x-spacing
 :n-columns n-columns :n-rows n-rows
 :max-width max-width :max-height max-height)
 (do ()
 ((null items))
 (clim:formatting-cell (stream)
 (format stream "~A" (pop items))))))

Evaluating (example4 :stream *my-window*) shows this table:
<Bold>416CLIM User Guide

 A B C D
 E F G H
 I J K L
 M N O P
 Q R S T
 U V W X
 Y Z

Figure 29. Example4 Table

You can easily add a constraint specifying the number of columns.

Evaluating (example4 :stream *my-stream* :n-columns 8) gives this:

 A B C D E F G H
 I J K L M N O P
 Q R S T U V W X
 Y Z

Figure 30. Example4 Table Reformatted
Formatted Output

17.2 Formatting Graphs in CLIM

17.2.1 Conceptual Overview of Formatting Graphs

When you need to format a graph, you specify the nodes to be in the graph and the scheme
for organizing them. The CLIM graph formatter does the layout automatically, obeying any
constraints that you supply.

You can format any graph in CLIM. The CLIM graph formatter is most successful with di-
rected acyclic graphs (DAG). “Directed” means that the arcs on the graph have a direction.
“Acyclic” means that there are no loops in the graph.

Here is an example of such a graph:

Figure 31. A Directed Acyclic Graph

To specify the elements and the organization of the graph, you provide CLIM with the fol-
lowing information:

■ The root node

■ A “node printer,” that is, a function used to display each node. The function is passed
the object associated with a node and the stream on which to do output.

■ An “inferior producer,” a function that takes one node and returns its inferior nodes (the
nodes to which it points)

Based on that information, CLIM lays out the graph for you. You can specify a number of
options that control the appearance of the graph. For example, you can specify whether you
want the graph to grow vertically (downward) or horizontally (to the right). Note that

0

1A

1B

2A

2B

2B

2C
<Bold>418CLIM User Guide

CLIM’s algorithm does the best layout it can, but complicated graphs can be difficult to lay
out in a readable way.

See Section 17.5, “Advanced Topics,” for the graph formatting protocol.

17.2.2 CLIM Operators for Graph Formatting

format-graph-from-roots [Function]

Arguments: root-objects object-printer inferior-producer &key stream orientation
cutoff-depth merge-duplicates duplicate-key duplicate-test
generation-separation within-generation-separation center-nodes
arc-drawer arc-drawing-options graph-type (move-cursor t)

Summary: Draws a graph whose roots are specified by the sequence root-objects. The nodes
of the graph are displayed by calling the function object-printer, which takes two
arguments, the node to display and a stream. inferior-producer is a function of
one argument that is called on each node to produce a sequence of inferiors (or
nil if there are none). Both object-printer and inferior-producer have dynamic
extent.

 The output from graph formatting takes place in a normalized +y-downward
coordinate system. The graph is placed so that the upper left corner of its bound-
ing rectangle is at the current text cursor position of stream. If the boolean
move-cursor is t (the default), then the text cursor will be moved so that it imme-
diately follows the lower right corner of the graph.

 The returned value is the output record corresponding to the graph.

 stream is an output recording stream to which output will be done. It defaults to
standard-output.

 orientation specifies the direction from root to leaves in the graph. orientation
may be either :horizontal (the default) or :vertical. In LispWorks, it may also
be :down or :up; :right is a synonym for :horizontal and :down is a synonym
for :vertical.

 cutoff-depth specifies the maximum depth of the graph. It defaults to nil, meaning
that there is no cutoff depth. Otherwise it must be an integer, meaning that no
nodes deeper than cutoff-depth will be formatted or displayed.

 If the boolean merge-duplicates is t, then duplicate objects in the graph will share
the same node in the display of the graph. That is, when merge-duplicates is t,
the resulting graph will be a tree. If merge-duplicates is nil (the default), then
Formatted Output

duplicate objects will be displayed in separate nodes. duplicate-key is a function
of one argument that is used to extract the node object component used for dupli-
cate comparison; the default is identity. duplicate-test is a function of two argu-
ments that is used to compare two objects to see if they are duplicates; the default
is eql. duplicate-key and duplicate-test have dynamic extent.

 generation-separation is the amount of space to leave between successive gen-
erations of the graph; the default is 20. within-generation-separation is the
amount of space to leave between nodes in the same generation of the graph; the
default is 10. generation-separation and within-generation-separation are spec-
ified in the same way as the y-spacing argument to formatting-table.

 When center-nodes is t, each node of the graph is centered with respect to the
widest node in the same generation. The default is nil.

 arc-drawer is a function of seven positional and some unspecified keyword argu-
ments that is responsible for drawing the arcs from one node to another; it has
dynamic extent. The positional arguments are the stream, the “from” node, the
“to” node, the “from” x and y position, and the “to” x and y position. The key-
word arguments gotten from arc-drawing-options are typically line drawing
options, such as for draw-line*. If arc-drawer is unsupplied, the default behav-
ior is to draw a thin line from the “from” node to the “to” node using draw-line*.

 graph-type is a keyword that specifies the type of graph to draw. CLIM supports
graphs of type :tree, :directed-graph (and its synonym :digraph), and
:directed-acyclic-graph (and its synonym :dag). graph-type defaults to :tree
when merge-duplicates is t; otherwise, it defaults to :digraph.

 The following is an example demonstrating the use of format-graph-from-roots
to draw an arrow. Note that draw-arrow* is available internally.

(define-application-frame graph-it ()
 ((root-node :initform (find-class ’clim:design)
 :initarg :root-node
 :accessor root-node)
 (app-stream :initform nil :accessor app-stream))
 (:panes (display :application
 :display-function ’draw-display
 :display-after-commands :no-clear))
 (:layouts
 (:defaults
 (horizontally () display))))
<Bold>420CLIM User Guide

(defmethod draw-display ((frame graph-it) stream)
 (format-graph-from-roots (root-node *application-frame*)
 #’draw-node
 #’clos:class-direct-subclasses
 :stream stream
 :arc-drawer
 #’(lambda (stream from-object
 to-object x1 y1
 x2 y2
 &rest
 drawing-options)
 (declare (dynamic-extent
 drawing-options))
 (declare (ignore from-object
 to-object))
 (apply #’draw-arrow* stream
 x1 y1 x2 y2 drawing-options))
 :merge-duplicates t)
 (setf (app-stream frame) stream))

(define-presentation-type node ())
(defun draw-node (object stream)
 (with-output-as-presentation (stream object ’node)
 (surrounding-output-with-border
 (stream :shape :rectangle)
 (format stream "~A"
 (class-name object)))))

(define-graph-it-command (exit :menu "Exit") ()
 (frame-exit *application-frame*))

(defun graph-it (&optional (root-node (find-class ’basic-sheet))
 (port (find-port)))
 (if (atom root-node) (setf root-node (list root-node)))
 (let ((graph-it (make-application-frame ’graph-it
 :frame-manager
 (find-frame-manager
 :port port)
 :width 800
 :height 600
 :root-node root-node)))
 (run-frame-top-level graph-it)))
Formatted Output

17.2.3 Examples of CLIM Graph Formatting

(defstruct node (name "") (children nil))

(defvar g1 (let* ((2a (make-node :name "2A"))
 (2b (make-node :name "2B"))
 (2c (make-node :name "2C"))
 (1a (make-node :name "1A" :children (list 2a 2b)))
 (1b (make-node :name "1B" :children (list 2b 2c))))
 (make-node :name "0" :children (list 1a 1b))))

(defun test-graph (root-node &rest keys)
 (apply #’clim:format-graph-from-root root-node
 #’(lambda (node s)
 (write-string (node-name node) s))
 #’node-children keys))

Evaluating (test-graph g1 :stream *my-window*) results in the following
graph:

Figure 32. A Horizontal Graph

In Figure 32, the graph has a horizontal orientation and grows toward the right by default.
We can supply the :orientation keyword to control this. Evaluating (test-graph g1
:stream *my-window* :orientation :vertical) results in the following
graph:

0

1A

1B

2A

2B

2B

2C
<Bold>422CLIM User Guide

Figure 33. A Vertical Graph

 The following example uses format-graph-from-roots to create a graph with multiple
parents, that is, a graph in which node D is a child of both nodes B and C. Note that it in-
terprets its first argument as a list of top-level graph nodes, so we have wrapped the root
node inside a list.

(defun test-graph (win)
 (window-clear win)
 (format-graph-from-roots ’((a (b (d)) (c (d))))
 #’(lambda (x s) (princ (car x) s))
 #’cdr
 :stream win
 :orientation :vertical
 :merge-duplicates t
 :duplicate-key #’car)
 (force-output win))

0

1A1B

2A 2B 2B 2C
Formatted Output

17.3 Formatting Text in CLIM

CLIM provides the following three forms for creating textual lists, indenting output, and
breaking up lengthy output into multiple lines.

format-textual-list [Function]

Arguments: sequence printer &key stream separator conjunction
Summary: Outputs the sequence of items in sequence as a “textual list.” For example, the

list (1 2 3 4) might be printed as

1, 2, 3, and 4

 printer is a function of two arguments: an element of the sequence and a stream;
it has dynamic extent. It is called to output each element of the sequence.

 stream specifies the output stream. The default is *standard-output*.

 The separator and conjunction arguments control the appearance of each element
of the sequence and the separators used between each pair of elements. separator
is a string that is output after every element but the last one; the default for sep-
arator is “,” (a comma followed by a space). conjunction is a string that is output
before the last element. The default is nil, meaning that there is no conjunction.
Typical values for conjunction are the strings “and” and “or”.

indenting-output [Macro]

Arguments: (stream indentation &key (move-cursor t)) &body body
Summary: Binds stream to a stream that inserts whitespace at the beginning of each line of

output produced by body, and then writes the indented output to the stream that
is the original value of stream.

 The stream argument is not evaluated, and must be a symbol that is bound to an
output recording stream. If stream is t, *standard-output* is used. body may
have zero or more declarations as its first forms.

 indentation specifies how much whitespace should be inserted at the beginning
of each line. It is specified in the same way as the :x-spacing option to format-
ting-table.

 If the boolean move-cursor is t (the default), CLIM moves the cursor to the end
of the table.
<Bold>424CLIM User Guide

 Programmers using indenting-output should begin the body with a call to
fresh-line (or some equivalent) to position the stream to the indentation initially.
There is a restriction on interactions between indenting-output and filling-out-
put: a call to indenting-output should appear outside of a call to filling-output.

filling-output [Macro]

Arguments: (stream &key fill-width break-characters after-line-break
after-line-break-initially) &body body

Summary: Binds stream to a stream that inserts line breaks into the textual output written
to it (by such functions as write-char and write-string) so that the output is usu-
ally no wider then fill-width. The filled output is then written on the original
stream.

 The stream argument is not evaluated, and must be a symbol that is bound to a
stream. If stream is t, *standard-output* is used. body may have zero or more
declarations as its first forms.

 fill-width specifies the width of filled lines, and defaults to 80 characters. It is
specified the same way as the :x-spacing option for formatting-table. See Sub-
section 17.1.2, "CLIM Operators for Formatting Tables."

 “Words” are separated by the characters specified in the list break-characters.
When a line is broken to prevent wrapping past the end of a line, the line break
is made at one of these separators. That is, filling-output does not split “words”
across lines, so it might produce output wider than fill-width.

 after-line-break specifies a string to be sent to stream after line breaks; the string
appears at the beginning of each new line. The string must not be wider than
fill-width.

 If the boolean after-line-break-initially is t, then the after-line-break text is to be
written to stream before executing body, that is, at the beginning of the first line.
The default is nil.
Formatted Output

17.4 Bordered Output in CLIM

CLIM provides a mechanism for surrounding arbitrary output with some kind of a border.
The programmer annotates some output-generating code with an advisory macro that de-
scribes the type of border to be drawn. The following code produces the output shown in
Figure 34.

For example, the following produces three pieces of output, which are surrounded by a rect-
angle, highlighted with a dropshadow, and underlined, respectively.

(defun border-test (stream)
 (fresh-line stream)
 (surrounding-output-with-border
 (stream :shape :rectangle)
 (format stream "This is some output with a rectangular border"))
 (terpri stream) (terpri stream)
 (surrounding-output-with-border
 (stream :shape :drop-shadow)
 (format stream "This has a drop-shadow under it"))
 (terpri stream) (terpri stream)
 (surrounding-output-with-border
 (stream :shape :underline)
 (format stream "And this output is underlined")))

Figure 34. Examples of Bordered Output

surrounding-output-with-border [Macro]

Arguments: (&optional stream &key shape (move-cursor t)) &body body
Summary: Binds the local environment in such a way the output of body will be surrounded

by a border of the specified shape. Supported shapes are :rectangle (the default),
:oval, :drop-shadow, and :underline. :rectangle draws a rectangle around the
bounding rectangle of the output. :oval draws an oval around the bounding rect-

This is some output with a rectangular border.

And this output is underlined.

This has a drop-shadow under it.
<Bold>426CLIM User Guide

angle of the output. :drop-shadow draws a “drop shadow” around the lower
right edge of the bounding rectangle of the output. :underline draws a thin line
along the baseline of all of the text in the output, but does not draw anything
underneath non-textual output.

 If the boolean move-cursor is t (the default), then the text cursor will be moved
so that it immediately follows the lower right corner of the bordered output.

 stream is an output recording stream to which output will be done. The stream
argument is not evaluated, and must be a symbol that is bound to a stream. If
stream is t (the default), *standard-output* is used. body may have zero or
more declarations as its first forms.

define-border-type [Macro]

Arguments: shape arglist &body body
Summary: Defines a new kind of border named shape. arglist must be a subset of the

“canonical” arglist (using string-equal to do the comparison) (&key stream
record left top right bottom). body is the code that actually draws the border. It
has lexical access to stream, record, left, top, right, and bottom, which are
respectively, the stream being drawn on, the output record being surrounded, and
the coordinates of the left, top, right, and bottom edges of the bounding rectangle
of the record. body may have zero or more declarations as its first forms.
Formatted Output

17.5 Advanced Topics

The material in this subsection is advanced; most CLIM programmers can skip to the next
section. This section discusses Table, Item List, and Graph Formatting Protocols.

All of table, item list, and graph formatting is implemented on top of the basic output re-
cording protocol, using with-new-output-record to specify the appropriate type of output
record. The following examples show specifically how tables and graphs are implemented.

Example 1: Tables formatting-table first collects all the output that belongs in
the table into a collection of row, column, and cell output
records, all of which are children of a single table output
record. During this phase, stream-drawing-p is bound to
nil and stream-recording-p is bound to t. When all the out-
put has been generated, the table layout constraint solver
(adjust-table-cells or adjust-item-list-cells) is called to
compute the table layout, taking into account such factors as
the widest cell in a given column. If the table is to be split
into multiple columns, adjust-multiple-columns is now
called. Finally, the table output record is positioned on the
stream at the current text cursor position and then displayed
by calling replay on the table (or item list) output record.

Example 2: Graphs format-graph-from-roots first collects all the graph node
output records that belong in the graph by calling gener-
ate-graph-nodes. All these output records are children of a
single graph output record. During this phase,
stream-drawing-p is bound to nil and stream-recording-p
is bound to t. When all the output has been generated, the
graph layout code (layout-graph-nodes and lay-
out-graph-edges) is called to compute the graph layout. Fi-
nally, the graph output record is positioned on the stream at
the current text cursor position and then displayed by calling
replay on the graph output record.
<Bold>428CLIM User Guide

17.5.1 The Table Formatting Protocol

Any output record class that implements the following generic functions is said to support
the table formatting protocol.

In the following subsections, the term “non-table output records” will be used to mean any
output record that is not a table, row, column, cell, or item list output record. When CLIM
“skips over intervening non-table output records,” this means that it will bypass all the out-
put records between two such table output records (such as a table and a row, or a row and
a cell) that are not records of those classes (most notably, presentation output records).
CLIM detects invalid nesting of table output records, such as a row within a row, a cell
within a cell, or a row within a cell. Note that this does not prohibit the nesting of calls to
formatting-table, it simply requires that programmers include the inner table within one
of the cells of the outer table.

table-output-record [Protocol Class]

Summary: The protocol class that represents tabular output records; a subclass of out-
put-record. If you want to create a new class that behaves like a table output
record, it should be a subclass of table-output-record. Subclasses of table-out-
put-record must obey the table output record protocol.

table-output-record-p [Function]

Arguments: object
Summary: Returns t if object is a table output record; otherwise, it returns nil.

:x-spacing [Initarg]

:y-spacing [Initarg]

:multiple-columns-x-spacing [Initarg]

:equalize-column-widths [Initarg]

Summary: All subclasses of table-output-record must handle these initargs, which are
used to specify, respectively, the x and y spacing, the multiple column x spacing,
and equal-width columns attributes of the table.

standard-table-output-record [Class]

Summary: The instantiable class of output record that represents tabular output. Its children
will be a sequence of either rows or columns, with presentation output records
possibly intervening. This is a subclass of table-output-record.
Formatted Output

map-over-table-elements [Generic Function]

Arguments: function table-record type
Summary: Applies function to all the rows or columns of table-record that are of type type.

type is either :row, :column, or :row-or-column. function is a function of one
argument, an output record; it has dynamic extent. map-over-table-elements
ensures that rows, columns, and cells are properly nested. It skips over interven-
ing non-table output record structure, such as presentations.

adjust-table-cells [Generic Function]

Arguments: table-record stream
Summary: This function is called after the tabular output has been collected, but before it

has been replayed. The method on standard-table-output-record implements
the usual table layout constraint solver by moving the rows or columns of the
table output record table-record and the cells within the rows or columns. stream
is the stream on which the table is displayed.

adjust-multiple-columns [Generic Function]

Arguments: table-record stream
Summary: This is called after adjust-table-cells to account for the case where the program-

mer wants to break the entire table up into multiple columns. Each of those col-
umns will have some of the rows of the “original” table, and those rows may each
have several columns. For example:

 Original table:

a 1 alpha

b 2 beta

c 3 gamma

d 4 delta

 Multiple column version:

a 1 alpha c 3 gamma

b 2 beta d 4 delta

 table-record and stream are as for adjust-table-cells.
<Bold>430CLIM User Guide

17.5.1.1 The Row and Column Formatting Protocol

Any output record class that implements the following generic functions is said to support
the row (or column) formatting protocol.

row-output-record [Protocol Class]

Summary: The protocol class that represents one row in a table; a subclass of out-
put-record. If you want to create a new class that behaves like a row output
record, it should be a subclass of row-output-record. Subclasses of row-out-
put-record must obey the row output record protocol.

row-output-record-p [Function]

Arguments: object
Summary: Returns t if object is a row output record; otherwise, it returns nil.

standard-row-output-record [Class]

Summary: The instantiable class of output record that represents a row of output within a
table. Its children will be a sequence of cells, and its parent (skipping intervening
non-tabular records such as presentations) will be a table output record. This is a
subclass of row-output-record.

map-over-row-cells [Generic Function]

Arguments: function row-record
Summary: Applies function to all the cells in the row row-record, skipping intervening

non-table output record structure. function is a function of one argument, an out-
put record corresponding to a table cell within the row; it has dynamic extent.

column-output-record [Protocol Class]

Summary: The protocol class that represents one column in a table; a subclass of out-
put-record. If you want to create a new class that behaves like a column output
record, it should be a subclass of column-output-record. Subclasses of col-
umn-output-record must obey the column output record protocol.

column-output-record-p [Function]

Arguments: object
Summary: Returns t if object is a column output record; otherwise, it returns nil.
Formatted Output

standard-column-output-record [Class]

Summary: The instantiable class of output record that represents a column of output within
a table. Its children will be a sequence of cells, and its parent (skipping interven-
ing non-tabular records such as presentations) will be a table output record; pre-
sentation output records may intervene. This is a subclass of
column-output-record.

map-over-column-cells [Generic Function]

Arguments: function column-record
Summary: Applies function to all the cells in the column column-record, skipping interven-

ing non-table output record structure. function is a function of one argument, an
output record corresponding to a table cell within the column; it has dynamic
extent.

17.5.1.2 The Cell Formatting Protocol

Any output record class that implements the following generic functions is said to support
the cell formatting protocol.

cell-output-record [Protocol Class]

Summary: The protocol class that represents one cell in a table or an item list; a subclass of
output-record. If you want to create a new class that behaves like a cell output
record, it should be a subclass of cell-output-record. Subclasses of cell-out-
put-record must obey the cell output record protocol.

cell-output-record-p [Function]

Arguments: object
Summary: Returns t if object is a cell output record; otherwise. it returns nil.

:align-x [Initarg]

:align-y [Initarg]

:min-width [Initarg]

:min-height [Initarg]

Summary: All subclasses of cell-output-record must handle these initargs, which are used
to specify, respectively, the x and y alignment, and the minimum width and
height attributes of the cell.
<Bold>432CLIM User Guide

standard-cell-output-record [Class]

Summary: The instantiable class of output record that represents a single piece of output
within a table row or column, or an item list. Its children will either be presenta-
tions or output records that represent displayed output. This is a subclass of
cell-output-record.

cell-align-x [Generic Function]

Arguments: cell

cell-align-y [Generic Function]

Arguments: cell

cell-min-width [Generic Function]

Arguments: cell

cell-min-height [Generic Function]

Arguments: cell
Summary: These functions return, respectively, the x and y alignment and minimum width

and height of the cell output record cell.

17.5.2 The Item List Formatting Protocol

item-list-output-record [Protocol Class]

Summary: The protocol class that represents an item list; a subclass of output-record. If
you want to create a new class that behaves like an item list output record, it
should be a subclass of item-list-output-record. Subclasses of item-list-out-
put-record must obey the item list output record protocol.

item-list-output-record-p [Function]

Arguments: object
Summary: Returns t if object is an item list output record; otherwise, it returns nil.

:x-spacing [Initarg]

:y-spacing [Initarg]

:initial-spacing [Initarg]
Formatted Output

:n-rows [Initarg]

:n-columns [Initarg]

:max-width [Initarg]

:max-height [Initarg]

Summary: All subclasses of item-list-output-record must handle these initargs, which
specify, respectively, the x and y spacing, the initial spacing, the desired number
of rows and columns, and maximum width and height attributes of the item list.

standard-item-list-output-record [Class]

Summary: The output record that represents item list output. Its children will be a sequence
of cells, with presentations possibly intervening. This is a subclass of
item-list-output-record.

map-over-item-list-cells [Generic Function]

Arguments: function item-list-record
Summary: Applies function to all of the cells in item-list-record. map-over-item-list-cells

skips over intervening non-table output record structure, such as presentations.
function is a function of one argument, an output record corresponding to a cell
in the item list; it has dynamic extent.

adjust-item-list-cells [Generic Function]

Arguments: item-list-record stream
Summary: This function is called after the item list output has been collected, but before

the record has been replayed. The method on standard-item-list-output-record
implements the usual item list layout constraint solver. item-list-record is the
item list output record, and stream is the stream on which the item list is dis-
played.

17.5.3 The Graph Formatting Protocol

graph-output-record [Protocol Class]

Summary: The protocol class that represents a graph; a subclass of output-record. If you
want to create a new class that behaves like a graph output record, it should be a
subclass of graph-output-record. Subclasses of graph-output-record must
obey the graph output record protocol.
<Bold>434CLIM User Guide

graph-output-record-p [Function]

Arguments: object
Summary: Returns t if object is a graph output record, otherwise returns nil.

:orientation [Initarg]

:center-nodes [Initarg]

:cutoff-depth [Initarg]

:merge-duplicates [Initarg]

:generation-separation [Initarg]

:within-generation-separation [Initarg]

:hash-table [Initarg]

Summary: All the graph output records must handle these seven initargs, which are used to
specify, respectively, the orientation, node centering, cutoff depth, merge dupli-
cates, generation and within-generation spacing, and the node hash table of a
graph output record.

define-graph-type [Macro]

Arguments: graph-type class
Summary: Defines a new graph type graph-type that is implemented by the class class (a

subclass of graph-output-record). Neither of the arguments is evaluated.

graph-root-nodes [Generic Function]

Arguments: graph-record
Summary: Returns a sequence of the graph node output records corresponding to the root

objects for the graph output record graph-record.

(setf graph-root-nodes) [Generic Function]

Arguments: roots graph-record
Summary: Sets the root nodes of graph-record to roots.

generate-graph-nodes [Generic Function]

Arguments: graph-record stream root-objects object-printer inferior-producer &key
duplicate-key duplicate-test

Summary: This function is responsible for generating all the graph node output records of
the graph. graph-record is the graph output record, and stream is the output
stream. The graph node output records are generating by calling the object
Formatted Output

printer on the root objects, then (recursively) calling the inferior producer on the
root objects and calling the object printer on all inferiors. After all the graph node
output records have been generated, the value of graph-root-nodes of
graph-record must be set to be a sequence of those graph node output records
that correspond to the root objects.

 root-objects, object-printer, inferior-producer, duplicate-key, and duplicate-test
are as for format-graph-from-roots.

layout-graph-nodes [Generic Function]

Arguments: graph-record stream
Summary: This function is responsible for laying out the nodes in the graph contained in

the output record graph-record. It is called after the graph output has been col-
lected, but before the graph record has been displayed. The method on stan-
dard-graph-output-record implements the usual graph layout constraint
solver. stream is the stream on which the graph is displayed.

layout-graph-edges [Generic Function]

Arguments: graph-record stream arc-drawer arc-drawing-options
Summary: This function is responsible for laying out the edges in the graph. It is called after

the graph nodes have been laid out, but before the graph record has been dis-
played. The method on standard-graph-output-record simply causes thin lines
to be drawn from each node to all of its children. graph-record and stream are as
for layout-graph-nodes.

graph-node-output-record [Protocol Class]

Summary: The protocol class that represents a node in graph; a subclass of output-record.
If you want to create a new class that behaves like a graph node output record, it
should be a subclass of graph-node-output-record. Subclasses of
graph-node-output-record must obey the graph node output record protocol.

graph-node-output-record-p [Function]

Arguments: object
Summary: Returns t if object is a graph node output record; otherwise, it returns nil.

standard-graph-node-output-record [Class]

Summary: The instantiable class of output record that represents a graph node. Its parent
will be a graph output record. This is a subclass of graph-node-output-record.
<Bold>436CLIM User Guide

graph-node-parents [Generic Function]

Arguments: graph-node-record
Summary: Returns a sequence of the graph node output records whose objects are “parents”

of the object corresponding to the graph node output record graph-node-record.
This differs from output-record-parent, as graph-node-parents can return
output records that are not the parent records of graph-node-record.

(setf graph-node-parents) [Generic Function]

Arguments: parents graph-node-record
Summary: Sets the parents of graph-node-record to be parents. parents must be a list of

graph node records.

graph-node-children [Generic Function]

Arguments: graph-node-record
Summary: Returns a sequence of the graph node output records whose objects are “chil-

dren” of the object corresponding to the graph node output record
graph-node-record. This differs from output-record-children, as
graph-node-children can return output records that are not child records of
graph-node-record.

(setf graph-node-children) [Generic Function]

Arguments: children graph-node-record
Summary: Sets the children of graph-node-record to be children. children must be a list of

graph node records.

graph-node-object [Generic Function]

Arguments: graph-node-record
Summary: Returns the object that corresponds to the output record graph-node-record. This

function only works correctly while inside the call to format-graph-from-roots.
Unspecified results are returned outside format-graph-from-roots, as CLIM
does not capture application objects that might have dynamic extent.
Formatted Output

<Bold>438CLIM User Guide

Chapter 18 Sheets
Sheets

18.1 Overview of Window Facilities

A central notion in organizing user interfaces is allocating screen regions to particular tasks
and recursively subdividing these regions into subregions. The windowing layer of CLIM
defines an extensible framework for constructing, using, and managing such hierarchies of
interactive regions. This framework allows uniform treatment of the following things:

■ Window objects like those in X or NeWS

■ Lightweight gadgets typical of toolkit layers, such as Motif or OpenLook

■ Structured graphics such as output records and an application’s presentation objects

■ Objects that act as Lisp handles for windows or gadgets implemented in a different lan-
guage (such as OpenLook gadgets implemented in C)

From the perspective of most CLIM users, CLIM’s windowing layer plays the role of a win-
dow system. However, CLIM usually uses the services of a window system platform to pro-
vide efficient windowing, input, and output facilities. We will refer to such window system
platforms as host window systems or as display servers.

The fundamental window abstraction defined by CLIM is called a sheet. A sheet can par-
ticipate in a relationship called a windowing relationship. This relationship is one in which
one sheet called the parent provides space to a number of other sheets called children. Sup-
port for establishing and maintaining this kind of relationship is the essence of what win-
dow systems provide. At any point in time, CLIM allows a sheet to be a child in one rela-
tionship and a parent in another relationship.

Programmers can manipulate unrooted hierarchies of sheets (those without a connection to
any particular display server). However, a sheet hierarchy must be attached to a display
server to make it visible. Ports and grafts provide the functionality for managing this capa-
bility. A port is an abstract connection to a display service that is responsible for managing
host display server resources and for processing input events received from the host display
server. A graft is a special kind of sheet that represents a host window, typically a root win-
dow (that is, a screen-level window). A sheet is attached to a display by making it a child
of a graft, which represents an appropriate host window. The sheet will then appear to be a
child of that host window. In other words, a sheet is put onto a particular screen by making
it a child of an appropriate graft and enabling it. Ports and grafts are described in detail in
Chapter 19, “Ports, Grafts, and Mirrored Sheets.”
<Bold>440CLIM User Guide

As has been discussed previously, CLIM users will typically be dealing with panes, rather
than with sheets, ports, grafts, or mediums, as a call to make-application-frame automat-
ically results in a port specification, a graft instantiation, and the allocation of a medium, to
which output directed to the pane will be forwarded.

18.1.1 Properties of Sheets

Sheets have the following properties:

■ A coordinate system—Provides the ability to refer to locations in a sheet’s abstract
plane.

■ A region—Defines an area within a sheet’s coordinate system that indicates the area of
interest within the plane, that is, a clipping region for output and input. This typically
corresponds to the visible region of the sheet on the display.

■ A parent—A sheet that is the parent in a windowing relationship in which this sheet is
a child.

■ Children—An ordered set of sheets that are each children in a windowing relationship
in which this sheet is a parent. The ordering of the set corresponds to the stacking order
of the sheets. Not all sheets have children.

■ A transformation—Determines how points in this sheet’s coordinate system are
mapped into points in its parents’ coordinate system.

■ An enabled flag—Indicates whether the sheet is currently actively participating in the
windowing relationship with its parent and siblings.

■ An event handler—A procedure invoked when the display server wishes to inform
CLIM of external events.

■ Output state—A set of values used when CLIM causes graphical or textual output to
appear on the display. This state is often represented by a medium.

18.1.2 Sheet Protocols

A sheet is a participant in a number of protocols. Every sheet must provide methods for the
generic functions that make up these protocols. These protocols are:

■ The windowing protocol—Describes the relationships between the sheet and its parent
and children (and, by extension, all of its ancestors and descendants).
Sheets

■ The input protocol—Provides the event handler for a sheet. Events may be handled syn-
chronously, asynchronously, or not at all.

■ The output protocol—Provides graphical and textual output, and manages descriptive
output state such as color, transformation, and clipping.

■ The repaint protocol—Invoked by the event handler and by user programs to ensure
that the output appearing on the display device appears as the program expects it to ap-
pear.

■ The notification protocol—Invoked by the event handler and user programs to ensure
that CLIM’s representation of window system information is equivalent to the display
server’s.

These protocols may be handled directly by a sheet, queued for later processing by some
other agent, or passed on to a delegate sheet for further processing.
<Bold>442CLIM User Guide

18.2 Basic Sheet Classes

There are no standard sheet classes in CLIM, and no pre-packaged way to create sheets in
general. If a programmer needs to create an instance of some class of sheet, make-instance
must be used. In most cases, application programmers will not deal with sheets directly, but
instead will use a subclass of sheets known as panes. Panes can be created by calling the
make-pane function. For a more detailed discussion on panes, see Chapter 10, “Panes and
Gadgets.”

sheet [Protocol Class]

Summary: The protocol class that corresponds to a sheet, a subclass of bounding-
rectangle. If you want to create a new class that behaves like a sheet, it should
be a subclass of sheet. Subclasses of sheet must obey the sheet protocol.

 All of the subclasses of sheet are mutable.

sheetp [Function]

Arguments: object
Summary: Returns t if object is a sheet; otherwise, it returns nil.

basic-sheet [Class]

Summary: The basic class on which all CLIM sheets are built, a subclass of sheet. This
class is an abstract class intended only to be subclassed, not instantiated.
Sheets

18.3 Relationships Between Sheets

Sheets are arranged in a tree-structured, acyclic, top-down hierarchy. Thus, in general, a
sheet has one or no parents and zero or more children. A sheet may have zero or more sib-
lings (that is, other sheets that share the same parent). In order to describe the relationships
between sheets, we define the following terms.

■ Adopted—A sheet is said to be adopted if it has a parent. A sheet becomes the parent
of another sheet by adopting that sheet.

■ Disowned—A sheet is said to be disowned if it does not have a parent. A sheet ceases
to be a child of another sheet by being disowned.

■ Grafted—A sheet is said to be grafted when it is part of a sheet hierarchy whose highest
ancestor is a graft. In this case, the sheet may be visible on a particular window server.

■ Degrafted—A sheet is said to be degrafted when it is part of a sheet hierarchy that can-
not be visible on a server, that is, the highest ancestor is not a graft.

■ Enabled—A sheet is said to be enabled when it is actively participating in the window-
ing relationship with its parent. If a sheet is enabled and grafted, and all its ancestors
are enabled (they are grafted by definition), then the sheet will be visible if it occupies
a portion of the graft region that isn’t clipped by its ancestors or ancestor’s siblings.

■ Disabled—The opposite of enabled is disabled.

18.3.1 Sheet Relationship Functions

The generic functions in this section comprise the sheet protocol. All sheet objects must im-
plement or inherit methods for each of these generic functions.

sheet-parent [Generic Function]

Arguments: sheet
Summary: Returns the parent of the sheet sheet, or nil if the sheet has no parent.

sheet-children [Generic Function]

Arguments: sheet
Summary: Returns a list of sheets that are the children of the sheet sheet. Some sheet classes

support only a single child; in this case, the result of sheet-children will be a list
<Bold>444CLIM User Guide

of one element. This function returns objects that reveal CLIM’s internal state;
do not modify those objects.

sheet-adopt-child [Generic Function]

Arguments: sheet child
Summary: Adds the child sheet child to the set of children of the sheet sheet, and makes the

sheet the child’s parent. If child already has a parent, the sheet-already-has-
parent error will be signaled.

 Some sheet classes support only a single child. For such sheets, attempting to
adopt more than a single child will cause the sheet-supports-only-one-child
error to be signaled.

sheet-disown-child [Generic Function]

Arguments: sheet child &key (errorp t)
Summary: Removes the child sheet child from the set of children of the sheet sheet, and

makes the parent of the child be nil. If child is not actually a child of sheet and
errorp is t, then the sheet-is-not-child error will be signaled.

sheet-siblings [Generic Function]

Arguments: sheet
Summary: Returns a list of all of the siblings of the sheet sheet. The sibling are all of the

children of sheet’s parent excluding sheet itself. This function returns fresh
objects that may be modified.

sheet-enabled-children [Generic Function]

Arguments: sheet
Summary: Returns a list of those children of the sheet sheet that are enabled. This function

returns fresh objects that may be modified.

sheet-ancestor-p [Generic Function]

Arguments: sheet putative-ancestor
Summary: Returns t if the the sheet putative-ancestor is in fact an ancestor of the sheet

sheet; otherwise, it returns nil.

raise-sheet [Generic Function]

Arguments: sheet
Sheets

bury-sheet [Generic Function]

Arguments: sheet
Summary: These functions reorder the children of a sheet by raising the sheet sheet to the

top or burying it at the bottom. Raising a sheet puts it at the beginning of the
ordering; burying it puts it at the end. If sheets overlap, the one that appears “on
top” on the display device is earlier in the ordering than the one underneath.

 This may change which parts of which sheets are visible on the display device.

reorder-sheets [Generic Function]

Arguments: sheet new-ordering
Summary: Reorders the children of the sheet sheet to have the new ordering specified by

new-ordering. new-ordering is an ordered list of the child sheets; elements at the
front of new-ordering are “on top” of elements at the rear.

 If new-ordering does not contain all of the children of sheet, the sheet-order-
ing-underspecified error will be signaled. If new-ordering contains a sheet that
is not a child of sheet, the sheet-is-not-child error will be signaled.

sheet-enabled-p [Generic Function]

Arguments: sheet
Summary: Returns t if the the sheet sheet is enabled by its parent; otherwise, it returns nil.

Note that all of a sheet’s ancestors must be enabled before the sheet is viewable.

(setf sheet-enabled-p) [Generic Function]

Arguments: enabled-p sheet
Summary: When enabled-p is t, this enables the the sheet sheet. When enabled-p is nil, this

disables the sheet.

 Note that a sheet is not visible unless it and all of its ancestors are enabled.

sheet-viewable-p [Generic Function]

Arguments: sheet
Summary: Returns t if the sheet sheet and all its ancestors are enabled, and if one of its

ancestors is a graft. See Chapter 19, “Ports, Grafts, and Mirrored Sheets,” for fur-
ther information on grafts.

sheet-occluding-sheets [Generic Function]

Arguments: sheet child
<Bold>446CLIM User Guide

Summary: Returns a list of the sheet child’s siblings that occlude part or all of the region of
the child. In general, these are the siblings that are enabled and appear earlier in
the sheet sheet’s children. If sheet does not permit overlapping among its chil-
dren, sheet-occluding-sheets will return nil.

 This function returns fresh objects that may be modified.

18.3.2 Sheet Genealogy Classes

Different “mix-in” classes are provided that implement the relationship protocol.

sheet-parent-mixin [Class]

Summary: This class is mixed into sheet classes that have a parent.

sheet-leaf-mixin [Class]

Summary: This class is mixed into sheet classes that will never have children.

sheet-single-child-mixin [Class]

Summary: This class is mixed into sheet classes that have at most a single child.

sheet-multiple-child-mixin [Class]

Summary: This class is mixed into sheet classes that may have zero or more children.
Sheets

18.4 Sheet Geometry

Every sheet has a region and a coordinate system. The region refers to its position and ex-
tent on the display device. It is represented by a region object, frequently a rectangle.
A sheet’s coordinate system is represented by a coordinate transformation that converts co-
ordinates in its coordinate system to coordinates in its parent’s coordinate system.

18.4.1 Sheet Geometry Functions

sheet-transformation [Generic Function]

Arguments: sheet

(setf sheet-transformation) [Generic Function]

Arguments: transformation sheet
Summary: Returns a transformation that converts coordinates in the sheet sheet’s coordi-

nate system into coordinates in its parent’s coordinate system. Using setf on this
accessor will modify the sheet’s coordinate system, including moving its region
in its parent’s coordinate system. When the the transformation is changed,
note-sheet-region-changed is called to notify the sheet of the change.

sheet-region [Generic Function]

Arguments: sheet

(setf sheet-region) [Generic Function]

Arguments: region sheet
Summary: Returns a region object that represents the set of points to which the sheet sheet

refers. The region is in the sheet’s coordinate system. Using setf on this accessor
modifies the sheet’s region. When the region is changed,
note-sheet-region-region is called to notify the sheet of the change.

move-sheet [Generic Function]

Arguments: sheet x y
Summary: Moves the sheet sheet to the new position (x, y). x and y are expressed in the

coordinate system of sheet’s parent.
<Bold>448CLIM User Guide

resize-sheet [Generic Function]

Arguments: sheet width height
Summary: Resizes the sheet sheet to have a new width width and height height. width and

height are real numbers.

move-and-resize-sheet [Generic Function]

Arguments: sheet x y width height
Summary: Moves the sheet sheet to the new position (x, y.) and changes its size to the new

width width and height height. x and y are expressed in the coordinate system of
sheet’s parent. width and height are real numbers.

map-sheet-position-to-parent [Generic Function]

Arguments: sheet x y
Summary: Applies the sheet sheet’s transformation to the point (x, y), returning the coor-

dinates of that point in sheet’s parent’s coordinate system.

map-sheet-position-to-child [Generic Function]

Arguments: sheet x y
Summary: Inverts sheet’s transformation of the point (x, y) in sheet’s parent’s coordinate

system. It returns the coordinates of the point in sheet’s coordinate system.

map-sheet-rectangle*-to-parent [Generic Function]

Arguments: sheet x1 y1 x2 y2
Summary: Applies sheet’s transformation to the bounding rectangle specified by the corner

points (x1, y1) and (x2, y2), returning the bounding rectangle of the transformed
region as four values, min-x, min-y, max-x, and max-y. The arguments x1, y1, x2,
and y2 are canonicalized in the same way as for make-bounding-rectangle.

map-sheet-rectangle*-to-child [Generic Function]

Arguments: sheet x1 y1 x2 y2
Summary: Applies the inverse of the sheet sheet’s transformation to the bounding rectangle

delimited by the corner points (x1, y1) and (x2, y2) (represented in sheet’s par-
ent’s coordinate system), returning the bounding rectangle of the transformed
region as four values, min-x, min-y, max-x, and max-y. The arguments x1, y1, x2,
and y2 are canonicalized in the same way as for make-bounding-rectangle.
Sheets

child-containing-position [Generic Function]

Arguments: sheet x y
Summary: Returns the topmost enabled direct child of the sheet sheet whose region contains

the position (x, y). The position is expressed in sheet’s coordinate system.

children-overlapping-region [Generic Function]

Arguments: sheet region

children-overlapping-rectangle* [Generic Function]

Arguments: sheet x1 y1 x2 y2
Summary: Returns the list of enabled direct children of the sheet sheet whose region over-

laps the region region. children-overlapping-rectangle* is a special case of
children-overlapping-region in which the region is a bounding rectangle whose
corner points are (x1, y1) and (x2, y2). The region is expressed in sheet’s coordi-
nate system. This function returns fresh objects that may be modified.

sheet-delta-transformation [Generic Function]

Arguments: sheet ancestor
Summary: Returns a transformation that is the composition of all the sheet transformations

between the sheets sheet and ancestor. If ancestor is nil, this returns the transfor-
mation to the root of the sheet hierarchy. If ancestor is not an ancestor of sheet,
the sheet-is-not-ancestor error will be signaled.

 The computation of the delta transformation is likely to be cached.

sheet-allocated-region [Generic Function]

Arguments: sheet child
Summary: Returns the visible region of the sheet child in the sheet sheet’s coordinate sys-

tem. If child is occluded by any of its siblings, those siblings’ regions are sub-
tracted (using region-difference) from child’s actual region.

18.4.2 Sheet Geometry Classes

Each of the following implements the sheet geometry protocol in a different manner, ac-
cording to the sheet’s requirements.

sheet-identity-transformation-mixin [Class]
<Bold>450CLIM User Guide

Summary: This class is mixed into sheet classes whose coordinate systems are identical to
that of their parent.

sheet-translation-mixin [Class]

Summary: This class is mixed into sheet classes whose coordinate systems are related to
that of their parent by a simple translation.

sheet-y-inverting-transformation-mixin [Class]

Summary: This class is mixed into sheet classes whose coordinate systems are related to
that of their parent by inverting the y coordinate system, and optionally translat-
ing by some amount in x and y.

sheet-transformation-mixin [Class]

Summary: This class is mixed into sheet classes whose coordinate systems are related to
that of their parent by an arbitrary affine transformation.
Sheets

18.5 Sheet Protocols: Input

CLIM’s windowing substrate provides an input architecture and standard functionality for
notifying clients of input that is distributed to their sheets. Input includes such events as the
pointer entering and exiting sheets, pointer motion (whose granularity is defined by perfor-
mance limitations), and pointer button and keyboard events. At this level, input is repre-
sented as event objects.

Sheets either participate fully in the input protocol or are mute for input. If any functions in
the input protocol are called on a sheet that is mute for input, the sheet-is-mute-for-input
error will be signaled.

In addition to handling input event, a sheet is also responsible for providing other input ser-
vices, such as controlling the pointer’s appearance, and polling for current pointer and key-
board state.

Input is processed on a per-port basis.

The event-processing mechanism has three main tasks when it receives an event. First, it
must determine to which client the event is addressed; this process is called distributing.
Typically, the client is a sheet, but there are other special-purpose clients to which events
can also be dispatched. Next, it formats the event into a standard format, and finally it dis-
patches the event to the client. A client may then either handle the event synchronously, or
it may queue it for later handling by another process.

Input events can be broadly categorized into pointer events and keyboard events. By de-
fault, pointer events are dispatched to the lowest sheet in the hierarchy whose region con-
tains the location of the pointer. Keyboard events are dispatched to the port’s keyboard in-
put focus; the accessor port-keyboard-input-focus contains the event client that receives
the port’s keyboard events.

18.5.1 Input Protocol Functions

In the functions listed here, the client argument is typically a sheet, but it may be another
object that supports event distribution, dispatching, and handling.
<Bold>452CLIM User Guide

port-keyboard-input-focus [Generic Function]

Arguments: port

(setf port-keyboard-input-focus) [Generic Function]

Arguments: focus port
Summary: Returns the client to which keyboard events are to be dispatched.

distribute-event [Generic Function]

Arguments: port event
Summary: The event is distributed to the port’s proper client. In general, this will be the

keyboard input focus for keyboard events, and the lowest sheet under the pointer
for pointer events.

dispatch-event [Generic Function]

Arguments: client event
Summary: This function is called to inform a client about an event of interest. It is invoked

synchronously by whatever process called process-next-event, so many meth-
ods for this function will simply queue the event for later handling. Certain
classes of clients and events may cause this function to call either queue-event
or handle-event immediately, or else to ignore the event entirely.

queue-event [Generic Function]

Arguments: client event
Summary: Places the event event into the queue of events for the client client.

handle-event [Generic Function]

Arguments: client event
Summary: Implements the client’s policy with respect to the event. For example, if the pro-

grammer wishes to highlight a sheet in response to an event that informs it that
the pointer has entered its territory, there would be a method to carry out the pol-
icy that specializes the appropriate sheet and event classes.

In addition to queue-event, the queued input protocol handles the following generic func-
tions:

event-read [Generic Function]

Arguments: client
Summary: Takes the next event out of the queue of events for this client.
Sheets

event-read-no-hang [Generic Function]

Arguments: client
Summary: Takes the next event out of the queue of events for this client. It returns nil if

there are no events in the queue.

event-peek [Generic Function]

Arguments: client &optional event-type
Summary: Returns the next event in the queue without removing it from the queue. If

event-type is supplied, events that are not of that type are first removed and dis-
carded.

event-unread [Generic Function]

Arguments: client event
Summary: Places the event at the head of the client’s event queue, to be the event read next.

event-listen [Generic Function]

Arguments: client
Summary: Returns t if there are any events queued for client; otherwise, it returns nil.

18.5.2 Input Protocol Classes

Most classes of sheets will have one of the following input protocol classes mixed in. Of
course, a sheet can always have a specialized method for a specific class of event that will
override the default. For example, a sheet may need to have only pointer click events dis-
patched to itself, and may delegate all other events to some other input client. Such a sheet
should have delegate-sheet-input-mixin as a superclass, and have a more specific method
for dispatch-event on its class and pointer-button-click-event.

standard-sheet-input-mixin [Class]

Summary: This class of sheet provides a method for dispatch-event that calls queue-event
on each device event. Configuration events invoke handle-event immediately.

immediate-sheet-input-mixin [Class]

Summary: This class of sheet provides a method for dispatch-event that calls handle-event
immediately for all events.
<Bold>454CLIM User Guide

mute-sheet-input-mixin [Class]

Summary: This is mixed into any sheet class that does not handle any input events.

delegate-sheet-input-mixin [Class]

Summary: This class of sheet provides a method for dispatch-event that calls dis-
patch-event on a designated substitute and the event. The initialization argument
:delegate or the accessor delegate-sheet-delegate may be used to set the recip-
ient of dispatched events. A value of nil will cause input events to be discarded.

delegate-sheet-delegate [Generic Function]

Arguments: sheet

(setf delegate-sheet-delegate) [Generic Function]

Arguments: delegate sheet
Summary: This may be set to another recipient of events dispatched to a sheet of class

delegate-sheet-input-mixin. If the delegate is nil, events are discarded.
Sheets

18.6 Standard Device Events

An event is a CLIM object that represents some sort of user gesture (such as moving the
pointer or pressing a key on the keyboard) or that corresponds to some sort of notification
from the display server. Event objects store such things as the sheet associated with the
event, the x and y position of the pointer within that sheet, the key name or character corre-
sponding to a key on the keyboard, and so forth.

Figure 35 shows all the event classes. All classes are indented to the right of their super-
classes.

Figure 35. CLIM Event Classes

event [Protocol Class]

Summary: The protocol class that corresponds to any sort of event. If you want to create a
new class that behaves like an event, it should be a subclass of event. Subclasses
of event must obey the event protocol.

event
device-event

keyboard-event
key-press-event
key-release-event

pointer-event
pointer-button-event

pointer-button-press-event
pointer-button-release-event
pointer-button-hold-event

pointer-motion-event
pointer-enter-event
pointer-exit-event

window-event
window-configuration-event
window-repaint-event

timer-event
<Bold>456CLIM User Guide

 All of the event classes are immutable.

eventp [Function]

Arguments: object
Summary: Returns t if object is an event; otherwise, it returns nil.

:timestamp [Initarg]

Summary: All subclasses of event must take a :timestamp initarg, which is used to specify
the timestamp for the event.

event-timestamp [Generic Function]

Arguments: event
Summary: Returns an integer that is a monotonically increasing timestamp for the event

event. The timestamp must have at least as many bits of precision as a fixnum.

event-type [Generic Function]

Arguments: event
Summary: For the event event, returns a keyword with the same name as the class name,

except stripped of the “-event” ending. For example, the keyword :key-press is
returned by event-type for an event whose class is key-press-event.

 All event classes must implement methods for event-type and event-timestamp.

device-event [Class]

:sheet [Initarg]

:modifier-state [Initarg]

Summary: The class that corresponds to any sort of device event. This is a subclass of
event.

 All subclasses of device-event must take the :sheet and :modifier-state initargs,
which are used to specify the sheet and modifier state components for the event.

event-sheet [Generic Function]

Arguments: device-event
Summary: Returns the sheet associated with the event device-event.
Sheets

event-modifier-state [Generic Function]

Arguments: device-event
Summary: Returns a value that encodes the state of all the modifier keys on the keyboard.

This will be a mask consisting of the logical-or of +shift-key+, +control-key+,
+meta-key+, +super-key+, and +hyper-key+.

 All device event classes must implement methods for event-sheet and
event-modifier-state.

keyboard-event [Class]

:key-name [Initarg]

Summary: The class corresponding to any keyboard event; a subclass of device-event.

 All subclasses of keyboard-event must take the :key-name initarg, which is
used to specify the key name component for the event.

keyboard-event-key-name [Generic Function]

Arguments: keyboard-event
Summary: Returns the name of the key pressed or released in a keyboard event. This will

be a symbol whose value is port-specific. Key names corresponding to standard
characters such as the alphanumerics will be symbols in the keyword package.

keyboard-event-character [Generic Function]

Arguments: keyboard-event
Summary: Returns the character associated with the event keyboard-event, if there is any.

 All keyboard event classes must implement methods for key-
board-event-key-name and keyboard-event-character.

key-press-event [Class]

key-release-event [Class]

Summary: The classes corresponding to key press or release events. They are subclasses of
keyboard-event.

pointer-event [Class]

:pointer [Initarg]

:button [Initarg]
<Bold>458CLIM User Guide

:x [Initarg]

:y [Initarg]

Summary: The class corresponding to any pointer event. This is a subclass of device-event.

 All subclasses of pointer-event must take the :pointer, :button, :x, and :y ini-
targs, which are used to specify the pointer object, pointer button, and native x
and y position of the pointer at the time of the event. The sheet’s x and y positions
are derived from the supplied native x and y positions and the sheet itself.

pointer-event-x [Generic Function]

Arguments: pointer-event

pointer-event-y [Generic Function]

Arguments: pointer-event
Summary: Returns the x and y position of the pointer at the time the event occurred, in the

coordinate system of the sheet that received the event. All pointer events must
implement a method for these generic functions.

pointer-event-native-x [Generic Function]

Arguments: pointer-event

pointer-event-native-y [Generic Function]

Arguments: pointer-event
Summary: Returns the x and y position of the pointer at the time the event occurred, in the

pointer’s native coordinate system. All pointer events must implement a method
for these generic functions.

pointer-event-pointer [Generic Function]

Arguments: pointer-event
Summary: Returns the pointer object to which this event refers.

pointer-event-button [Generic Function]

Arguments: pointer-event
Summary: Returns an integer, the number of the pointer button that was pressed. Programs

should compare this against the constants +pointer-left-button+,
+pointer-middle-button+, and +pointer-right-button+ to see what value was
returned.
Sheets

 All pointer event classes must implement methods for pointer-event-x,
pointer-event-y, pointer-event-native-x, pointer-event-native-y,
pointer-event-pointer, and pointer-event-button.

pointer-event-shift-mask [Generic Function]

Arguments: pointer-button-event
Summary: Returns the state of the keyboard’s shift keys when pointer-button-event

occurred.

pointer-button-event [Class]

Summary: The class corresponding to any sort of pointer button event. It is a subclass of
pointer-event.

pointer-button-press-event [Class]

pointer-button-release-event [Class]

pointer-button-hold-event [Class]

Summary: The classes that correspond to a pointer button press, button release, and
click-and-hold events. These are subclasses of pointer-button-event.

pointer-button-click-event [Class]

pointer-button-double-click-event [Class]

pointer-button-click-and-hold-event [Class]

Summary: The classes that correspond to a pointer button press followed by (respectively)
a button release, another button press, or pointer motion. These are subclasses of
pointer-button-event. Ports are not required to generate these events.

pointer-motion-event [Class]

Summary: The class that corresponds to any sort of pointer motion event. This is a subclass
of pointer-event.

pointer-enter-event [Class]
<Bold>460CLIM User Guide

pointer-exit-event [Class]

Summary: The classes that correspond to a pointer enter or exit event. This is a subclass of
pointer-motion-event.

window-event [Class]

:region [Initarg]

Summary: The class that corresponds to any sort of windowing event. This is a subclass of
device-event.

 All subclasses of window-event must take a :region initarg, which is used to
specify the damage region associated with the event.

window-event-region [Generic Function]

Arguments: window-event
Summary: Returns the region of the sheet that is affected by a window event.

window-event-native-region [Generic Function]

Arguments: window-event
Summary: Returns the region of the sheet in native coordinates.

window-event-mirrored-sheet [Generic Function]

Arguments: window-event
Summary: Returns the mirrored sheet that is attached to the mirror on which the event

occurred.

 All window event classes must implement methods for window-event-region,
window-event-native-region, and window-event-mirrored-sheet.

window-configuration-event [Class]

Summary: The class that corresponds to a window changing its size or position. This is a
subclass of window-event.

window-repaint-event [Class]

Summary: The class that corresponds to a request to repaint the window. This is a subclass
of window-event.

timer-event [Class]

Summary: The class that corresponds to a timeout event. This is a subclass of event.
Sheets

+pointer-left-button+ [Constant]

+pointer-middle-button+ [Constant]

+pointer-right-button+ [Constant]

Summary: Constants that correspond to the left, middle, and right button on a pointing
device. pointer-event-button will returns one of these three values.

+shift-key+ [Constant]

+control-key+ [Constant]

+meta-key+ [Constant]

+super-key+ [Constant]

+hyper-key+ [Constant]

Summary: Constants that correspond to the SHIFT, CONTROL, META, SUPER, and HYPER
modifier keys being held down on the keyboard. These constants must be powers
of 2 so that they can be combined with logical-or and tested with logtest.
event-modifier-state will return some combination of these values.

 CLIM does not provide default key mappings for META, HYPER, or SUPER mod-
ifier keys, as they are keyboard/X-server specific.

key-modifier-state-match-p [Macro]

Arguments: button modifier-state &body clauses
Summary: This macro generates code that will check whether the modifier state modi-

fier-state and the pointer button button match all of the clauses. clauses are
implicitly grouped by and. Matching a button or a modifier means that the mod-
ifier state indicates that the button or modifier is pressed.

 A clause may be one of:

• A pointer button (one of :left, :middle, or :right)

• A modifier key (one of :shift, :control, :meta, :super, or :hyper)

• (and [clause]+)
<Bold>462CLIM User Guide

• (or [clause]+)

• (not clause)
Sheets

18.7 Sheet Protocols: Output

The output protocol is concerned with the appearance of displayed output on the window
associated with a sheet. The sheet output protocol is responsible for providing a means of
doing output to a sheet, and for delivering repaint requests to the sheet’s client.

Sheets either participate fully in the output protocol or are mute for output. If any functions
in the output protocol are called on a sheet that is mute for output, the
sheet-is-mute-for-output error will be signaled.

18.7.1 Mediums and Output Properties

Each sheet retains some output state that logically describes how output is to be rendered
on its window. Such information as the foreground and background ink, line thickness, and
transformation to be used during drawing are provided by this state. This state may be
stored in a medium associated with the sheet itself, may be derived from a parent, or may
have some global default, depending on the sheet itself.

If a sheet is mute for output, it is an error to set any of these values.

medium [Protocol Class]

Summary: The protocol class that corresponds to the output state for some kind of sheet.
There is no single advertised standard medium class. If you want to create a new
class that behaves like a medium, it should be a subclass of medium. Subclasses
of medium must obey the medium protocol.

mediump [Function]

Arguments: object
Summary: Returns t if object is a medium; otherwise, it returns nil.

basic-medium [Class]

Summary: The basic class on which all CLIM mediums are built, a subclass of medium.
This class is an abstract class intended only to be subclassed, not instantiated.

The following generic functions comprise the basic medium protocol. All mediums must
implement methods for these generic functions. Often, a sheet class that supports the output
<Bold>464CLIM User Guide

protocol will implement a “trampoline” method that passes the operation on to sheet-me-
dium of the sheet.

medium-foreground [Generic Function]

Arguments: medium

(setf medium-foreground) [Generic Function]

Arguments: ink medium
Summary: Returns (or sets) the current foreground ink for the medium medium. For details,

see Subsection 3.1, “CLIM Mediums.”

medium-background [Generic Function]

Arguments: medium

(setf medium-background) [Generic Function]

Arguments: ink medium
Summary: Returns (or sets) the current background ink for the medium medium. This is

described in detail in Subsection 3.1, “CLIM Mediums.”

medium-ink [Generic Function]

Arguments: medium

(setf medium-ink) [Generic Function]

Arguments: ink medium
Summary: Returns (or sets) the current drawing ink for the medium medium. This is

described in detail in Subsection 3.1, “CLIM Mediums.”

medium-transformation [Generic Function]

Arguments: medium

(setf medium-transformation) [Generic Function]

Arguments: transformation medium
Summary: Returns (or sets) the user transformation that converts the coordinates presented

to the drawing functions by the programmer to the medium medium’s coordinate
system. By default, it is the identity transformation. This is described in detail in
Subsection 3.1, “CLIM Mediums.”
Sheets

medium-clipping-region [Generic Function]

Arguments: medium

(setf medium-clipping-region) [Generic Function]

Arguments: region medium
Summary: Returns (or sets) the clipping region that encloses all output performed on the

medium medium. It is returned and set in user coordinates. That is, to convert the
user clipping region to medium coordinates, it must be transformed by the value
of medium-transformation. For example, the values returned by:

 (let (cr1 cr2)
 ;; Ensure that the sheet’s clipping region
 ;; and transformation will be reset:
 (with-drawing-options
 (sheet :transformation +identity-transformation+
 :clipping-region +everywhere+)
 (setf (medium-clipping-region sheet)
 (make-rectangle* 0 0 10 10))
 (setf (medium-transformation sheet)
 (clim:make-scaling-transformation 2 2))
 (setf cr1 (medium-clipping-region sheet))
 (setf (medium-clipping-region sheet)
 (make-rectangle* 0 0 10 10))
 (setf (medium-transformation sheet) +identity-transformation+)
 (setf cr2 (medium-clipping-region sheet)))
 (values cr1 cr2))

 are two rectangles. The first one has edges of (0, 0, 5, 5), while the second one
has edges of (0, 0, 20, 20).

 By default, the user clipping region is the value of +everywhere+.

medium-line-style [Generic Function]

Arguments: medium

(setf medium-line-style) [Generic Function]

Arguments: line-style medium
Summary: Returns (or sets) the current line style for the medium medium. This is described

in detail in Subsection 3.1, “CLIM Mediums.”

medium-text-style [Generic Function]

Arguments: medium
<Bold>466CLIM User Guide

(setf medium-text-style) [Generic Function]

Arguments: text-style medium
Summary: Returns (or sets) the current text style for the medium medium of any textual out-

put that may be displayed on the window. This is described in detail in Subsec-
tion 3.1, “CLIM Mediums.”

medium-default-text-style [Generic Function]

Arguments: medium

(setf medium-default-text-style) [Generic Function]

Arguments: text-style medium
Summary: Returns (or sets) the default text style for output on the medium medium. This is

described in detail in Section 3.2, “Using CLIM Drawing Options.”

medium-merged-text-style [Generic Function]

Arguments: medium
Summary: Returns the actual text style used in rendering text on the medium medium. It

returns the result of:

 (merge-text-styles (medium-text-style medium)
 (medium-default-text-style medium))

 Those components of the current text style that are not nil will replace the
defaults from medium’s default text style. Unlike the preceding text style func-
tion, medium-merged-text-style is read-only.

18.7.2 Output Protocol Functions

The output protocol functions on mediums (and sheets that support the standard output pro-
tocol) include those functions described in Section 2.4, “Graphics Protocols.”

18.7.3 Output Protocol Classes

The following classes implement the standard output protocols.

standard-sheet-output-mixin [Class]
Sheets

Summary: This class is mixed into any sheet that provides the standard output protocol,
such as repainting and graphics.

mute-sheet-output-mixin [Class]

Summary: This class is mixed into any sheet that provides none of the output protocol.

permanent-medium-sheet-output-mixin [Class]

Summary: This class is mixed into any sheet that always has a medium associated with it.

temporary-medium-sheet-output-mixin [Class]

Summary: This class is mixed into any sheet that may have a medium associated with it,
but does not necessarily have a medium at any given instant.

18.7.4 Associating a Medium With a Sheet

Before a sheet may be used for output, it must be associated with a medium. Some sheets
are permanently associated with mediums for output efficiency; for example, CLIM win-
dow stream sheets have mediums that are permanently allocated to windows.

However, many kinds of sheets only perform output infrequently, and therefore do not need
to be associated with a medium except when output is actually required. Sheets without a
permanently associated medium can be much more lightweight than they otherwise would
be. For example, in a program that creates a sheet for the purpose of displaying a border for
another sheet, the border sheet receives output only when the window’s shape is changed.

To associate a sheet with a medium, use the macro with-sheet-medium.

Usually CLIM application programmers will not deal with mediums directly. In most cases,
panes will automatically be associated with a medium upon creation. The specific medium
object is chosen based on the port being used. An exception is when a “special” medium is
created and used with sheets that normally default to a different medium.

with-sheet-medium [Macro]

Arguments: (medium sheet) &body body
Summary: Within the body, the variable medium is bound to the sheet’s medium. If the sheet

does not have a medium permanently allocated, one will be allocated, associated
with the sheet for the duration of the body, and deallocated when the body has
<Bold>468CLIM User Guide

been exited. The values of the last form of the body are returned as the values of
with-sheet-medium.

 The medium argument is not evaluated, and must be a symbol that is bound to a
medium. body may have zero or more declarations as its first forms.

with-sheet-medium-bound [Macro]

Arguments: (sheet medium) &body body
Summary: with-sheet-medium-bound is used to associate the specific medium medium

with the sheet sheet for the duration of the body body. Typically, a single medium
will be allocated and passed to several different sheets that can use the same
medium.

 If the sheet already has a medium allocated to it, the new medium will not be
given to the sheet. If the value of medium is nil, with-sheet-medium-bound is
exactly equivalent to with-sheet-medium. The values of the last form of the
body are returned as the values of with-sheet-medium-bound.

 body may have zero or more declarations as its first forms.

sheet-medium [Generic Function]

Arguments: sheet
Summary: Returns the medium associated with the sheet sheet. If sheet does not have a

medium allocated to it, sheet-medium returns nil.
Sheets

18.8 Repaint Protocol

The repaint protocol is the mechanism whereby a program keeps the display up-to-date, re-
flecting the results of both synchronous and asynchronous events. The repaint mechanism
may be invoked by user programs each time through their top-level command loop. It may
also be invoked directly or indirectly as a result of events received from the display server
host. For example, if a window is on display with another window overlapping it and the
second window is buried, a “damage notification” event may be sent by the server. CLIM
would then cause a repaint to be executed for the newly-exposed region.

18.8.1 Repaint Protocol Functions

queue-repaint [Generic Function]

Arguments: sheet region
Summary: Requests that a repaint event for the region region be placed in the input queue

of the sheet sheet. A program that reads events out of the queue will be expected
to call handle-event for the repaint region; the method for that generic function
on repaint events will generally call repaint-sheet.

handle-repaint [Generic Function]

Arguments: sheet region
Summary: Implements repainting for a given sheet class. It may only be called on a sheet

that has an associated medium. sheet and region are as for dispatch-repaint.

repaint-sheet [Generic Function]

Arguments: sheet medium region
Summary: Recursively causes repainting of the sheet sheet and any of its children that over-

lap the region region. medium is the medium to use for the repainting; if it is nil,
handle-repaint will allocate a medium and associate it with the sheet. han-
dle-repaint will call repaint-sheet on sheet, and then call handle-repaint on all
of the children of sheet.
<Bold>470CLIM User Guide

18.8.2 Repaint Protocol Classes

standard-repainting-mixin [Class]

Summary: Defines a dispatch-repaint method that calls queue-repaint.

immediate-repainting-mixin [Class]

Summary: Defines a dispatch-repaint method that calls handle-repaint.

mute-repainting-mixin [Class]

Summary: Defines a dispatch-repaint method that calls queue-repaint, and a method on
repaint-sheet that does nothing. This means that its children will be recursively
repainted when the repaint event is handled.
Sheets

18.9 Sheet Notification Protocol

The notification protocol allows sheet clients to be notified when a sheet hierarchy is
changed. Sheet clients can observe modification events by providing :after methods for
functions defined by this protocol.

18.9.1 Relationship to Window System Change
Notifications

note-sheet-grafted [Generic Function]

Arguments: sheet

note-sheet-degrafted [Generic Function]

Arguments: sheet

note-sheet-adopted [Generic Function]

Arguments: sheet

note-sheet-disowned [Generic Function]

Arguments: sheet

note-sheet-enabled [Generic Function]

Arguments: sheet

note-sheet-disabled [Generic Function]

Arguments: sheet
Summary: These notification functions are invoked when a state change has been made to

the sheet sheet.

18.9.2 Sheet Geometry Notifications

note-sheet-region-changed [Generic Function]

Arguments: sheet
<Bold>472CLIM User Guide

note-sheet-transformation-changed [Generic Function]

Arguments: sheet
Summary: These notification functions are invoked when the region or transformation of

the sheet sheet has been changed. When the regions and transformations of a
sheet are changed directly, the client is required to call
note-sheet-region-changed or note-sheet-transformation-changed.
Sheets

<Bold>474CLIM User Guide

Chapter 19 Ports, Grafts, and Mirrored
Sheets

Ports, Grafts, and Mirrored Sheets

19.1 Introduction

A sheet hierarchy must be attached to a display server so as to permit input and output. This
is managed by the use of objects known as ports and grafts.
<Bold>476CLIM User Guide

19.2 Ports

A port is a logical connection to a display server. It is responsible for managing display out-
put and server resources and for handling incoming input events. Typically, the program-
mer will create a single port that will manage all of the windows on the display.

A port is described by a server path. A server path is a list whose first element is a keyword
that selects the kind of port. The remainder of the server path is a list of alternating key-
words and values whose interpretation is specific to the port type.

port [Protocol Class]

Summary: The protocol class that corresponds to a port. If you want to create a new class
that behaves like a port, it should be a subclass of port. Subclasses of port must
obey the medium protocol.

portp [Function]

Arguments: object
Summary: Returns t if object is a port; otherwise, it returns nil.

basic-port [Class]

Summary: The basic class on which all CLIM ports are built, a subclass of port. This class
is an abstract class intended only to be subclassed, not instantiated.

find-port [Function]

Arguments: &key (server-path *default-server-path*)
Summary: Finds a port that provides a connection to the window server addressed by

server-path. If no such connection exists, a new connection will be constructed
and returned. find-port is called automatically by make-application-frame.

The following server paths are currently supported on the appropriate platforms:

:motif [Server Path]

:win32 [Server Path]

Arguments: &key host display-number screen-id
Ports, Grafts, and Mirrored Sheets

Summary: Given this server path, find-port finds a port for the X server on the given host,
using the display-id and screen-id.

 On a Unix host, if these values are not supplied, the defaults are derived from the
DISPLAY environment variable.

default-server-path [Variable]

Summary: This special variable is used by find-port and its callers to default the choice of
a display service to locate. Binding this variable in a dynamic context will affect
the defaulting of this argument to these functions. This variable will be defaulted
according to the environment. In the Unix environment, for example, CLIM tries
to set this variable based on the value of the DISPLAY environment variable.

port [Generic Function]

Arguments: object
Summary: Returns the port associated with object. port is defined for all sheet classes

(including grafts and streams that support the CLIM graphics protocol), medi-
ums, and application frames. For degrafted sheets or other objects that aren’t cur-
rently associated with particular ports, port will return nil.

with-port-locked [Macro]

Arguments: port &body body
Summary: Executes body after grabbing a lock associated with the port port, which may be

a port or any object on which the function port works. If object currently has no
port, body will be executed without locking.

 body may have zero or more declarations as its first forms.

port-server-path [Generic Function]

Arguments: port
Summary: Returns the server path associated with the port port.

port-properties [Generic Function]

Arguments: port indicator

(setf port-properties) [Generic Function]

Arguments: property port indicator
Summary: These functions provide a port-based property list. They are primarily intended

to support users of CLIM who may need to associate certain information with
<Bold>478CLIM User Guide

ports. For example, the implementor of a special graphics package may need to
maintain resource tables for each port on which it is used.

map-over-ports [Function]

Arguments: function
Summary: Invokes function on each existing port. function is a function of one argument,

the port; it has dynamic extent.

restart-port [Generic Function]

Arguments: port
Summary: In a multi-process Lisp, restart-port restarts the global input processing loop

associated with the port port. All pending input events are discarded. Server
resources may or may not be released and reallocated during or after this action.

destroy-port [Generic Function]

Arguments: port
Summary: Destroys the connection with the window server represented by the port port.

All sheet hierarchies that are associated with port are forcibly degrafted by dis-
owning the children of grafts on port using sheet-disown-child. All server
resources utilized by such hierarchies or by any graphics objects on port are
released as part of the connection shutdown.
Ports, Grafts, and Mirrored Sheets

19.3 Grafts

A graft is a special sheet that is directly connected to a display server. Typically, a graft is
the CLIM sheet that represents the root window of the display. There may be several grafts
that are all attached to the same root window but that have differing coordinate systems.

To display a sheet on a display, it must have a graft as an ancestor. In addition, the sheet and
all of its ancestors must be enabled, including the graft. In general, a sheet becomes grafted
when it (or one of its ancestors) is adopted by a graft.

sheet-grafted-p [Generic Function]

Arguments: sheet
Summary: Returns t if any of the sheet’s ancestors is a graft; otherwise, it returns nil.

find-graft [Function]

Arguments: &key (port (find-port)) (server-path *default-server-path*) (orientation
:default) (units :device)

Summary: Finds a graft that represents the display device on the port port that also matches
the other supplied parameters. If no such graft exists, a new graft is constructed
and returned. find-graft is called automatically by make-application-frame.

 If server-path is supplied, find-graft finds a graft whose port provides a connec-
tion to the window server addressed by server-path.

 It is an error to provide both port and server-path in a call to find-graft.

 orientation specifies the orientation of the graft’s coordinate system. It is one of:

• :default—a coordinate system with its origin is in the upper left hand corner
of the display device with y increasing from top to bottom and x increasing
from left to right.

• :graphics—a coordinate system with its origin in the lower left hand corner of
the display device with y increasing from bottom to top and x increasing from
left to right.

 units specifies the units of the coordinate system and defaults to :device, which
means the device units of the host window system (such as pixels). Other sup-
ported values include :inches, :millimeters, and :screen-sized, which means
that one unit in each direction is the width and height of the display device.
<Bold>480CLIM User Guide

graft [Generic Function]

Arguments: object
Summary: Returns the graft currently associated with object. graft is defined for all sheet

classes (including streams that support the CLIM graphics protocol), mediums,
and application frames. For degrafted sheets or other objects that aren’t currently
associated with a particular graft, graft will return nil.

map-over-grafts [Function]

Arguments: function port
Summary: Invokes function on each existing graft associated with the port port. function is

a function of one argument, the graft; it has dynamic extent.

with-graft-locked [Macro]

Arguments: graft &body body
Summary: Executes body after grabbing a lock associated with the graft graft, which may

be a graft or any object on which the function graft works. If object currently has
no graft, body will be executed without locking.

 body may have zero or more declarations as its first forms.

graft-orientation [Generic Function]

Arguments: graft
Summary: Returns the orientation of the graft graft’s coordinate system. The returned value

is either :default or :graphics; see the orientation argument to find-graft.

graft-units [Generic Function]

Arguments: graft
Summary: Returns the units of graft’s coordinate system, which will be one of :device,

:inches, :millimeters, or :screen-sized; see the units argument to find-graft.

graft-width [Generic Function]

Arguments: graft &key (units :device)

graft-height [Generic Function]

Arguments: graft &key (units :device)
Summary: Returns the width and height of graft (and by extension the associated host win-

dow) in the units indicated. units may be any of :device, :inches, :millimeters,
Ports, Grafts, and Mirrored Sheets

or :screen-sized; see the units argument to find-graft. Note that if a unit of
:screen-sized is specified, both of these functions will return a value of 1.

graft-pixels-per-millimeter [Function]

Arguments: graft

graft-pixels-per-inch [Function]

Arguments: graft
Summary: Returns the number of pixels per millimeter or inch of graft. These are only for

convenience; you can write similar functions with graft-width or graft-height.
<Bold>482CLIM User Guide

19.4 Mirrors and Mirrored Sheets

A mirrored sheet is a special class of sheet that is attached directly to a window on a display
server. Grafts, for example, are always mirrored sheets. However, any sheet anywhere in a
sheet hierarchy may be a mirrored sheet. A mirrored sheet will usually contain a reference
to a window system object, called a mirror. For example, a mirrored sheet attached to a Mo-
tif server might have an X window system object stored in one of its slots. Allowing mir-
rored sheets at any point in the hierarchy enables the adaptive toolkit facilities.

Since not all sheets in the hierarchy have mirrors, there is no direct correspondence between
the sheet hierarchy and the mirror hierarchy. However, on those display servers that support
hierarchical windows, the hierarchies must be parallel. If a mirrored sheet is an ancestor of
another mirrored sheet, their corresponding mirrors must have a similar ancestor/descen-
dant relationship.

CLIM interacts with mirrors when it must display output or process events. On output, the
mirrored sheet closest in ancestry to the sheet on which we wish to draw provides the mirror
on which to draw. The mirror’s drawing clipping region is set up to be the intersection of
the user’s clipping region and the sheet’s region (both transformed to the appropriate coor-
dinate system) for the duration of the output. On input, events are delivered from mirrors
to the sheet hierarchy. The CLIM port must determine which sheet shall receive events
based on information such as the location of the pointer.

In both of these cases, we must have a coordinate transformation that converts coordinates
in the mirror (so-called “native” coordinates) into coordinates in the sheet and vice-versa.

19.4.1 Mirror Functions

A mirror is the Lisp object that is the handle to the actual toolkit window or gadget.

sheet-direct-mirror [Generic Function]

Arguments: sheet
Summary: Returns the mirror of the sheet sheet. If the sheet is not mirrored (or does not

currently have a mirror), sheet-mirror returns nil.

sheet-mirrored-ancestor [Generic Function]

Arguments: sheet
Ports, Grafts, and Mirrored Sheets

Summary: Returns the nearest mirrored ancestor of the sheet sheet.

sheet-mirror [Generic Function]

Arguments: sheet
Summary: Returns the mirror of the sheet sheet. If the sheet is not itself mirrored,

sheet-mirror returns the direct mirror of its nearest mirrored ancestor.
sheet-mirror could be implemented as:

 (defun sheet-mirror (sheet)
 (sheet-direct-mirror (sheet-mirrored-ancestor sheet)))

realize-mirror [Generic Function]

Arguments: port mirrored-sheet
Summary: Creates a mirror for the sheet mirrored-sheet on the port port, if it does not

already have one. The returned value is the sheet’s mirror.

19.4.2 Internal Interfaces for Native Coordinates

sheet-native-transformation [Generic Function]

Arguments: sheet
Summary: Returns the transformation for the sheet sheet that converts sheet coordinates

into native coordinates. The object returned by this function is volatile, so pro-
grammers must not depend on the components of the object remaining constant.

sheet-native-region [Generic Function]

Arguments: sheet
Summary: Returns the region for the sheet sheet in native coordinates. The object returned

by this function is volatile, so programmers must not depend on the components
of the object remaining constant.

sheet-device-transformation [Generic Function]

Arguments: sheet
Summary: Returns the transformation used by the graphics output routines when drawing

on the mirror. This is the composition of the sheet’s native transformation and the
user transformation. The object returned by this function is volatile, so program-
mers must not depend on the components of the object remaining constant.
<Bold>484CLIM User Guide

sheet-device-region [Generic Function]

Arguments: sheet
Summary: Returns the actual clipping region to be used when drawing on the mirror. This

is the intersection of the user’s clipping region (transformed by the device trans-
formation) with the sheet’s native region. The object returned by this function is
volatile, so programmers must not depend on the components of the object
remaining constant.

invalidate-cached-transformations [Generic Function]

Arguments: sheet
Summary: sheet-native-transformation and sheet-device-transformation typically

cache the transformations for performance reasons. invalidate-cached-
transformations clears the cached native and device values for the sheet sheet’s
transformation and clipping region. It is invoked when a sheet’s native transfor-
mation changes, which happens when a sheet’s transformation is changed or
when invalidate-cached-transformations is called on any of its ancestors.

invalidate-cached-regions [Generic Function]

Arguments: sheet
Summary: sheet-native-region and sheet-device-region typically cache the regions for

performance reasons. invalidate-cached-regions clears the cached native and
device values for the sheet sheet’s native clipping region. It is invoked when a
sheet’s native clipping region changes, which happens when the clipping region
changes or when invalidate-cached-regions is called on any of its ancestors.

•

Ports, Grafts, and Mirrored Sheets

<Bold>486CLIM User Guide

Appendices

<Bold>488CLIM User Guide

Appendix A Glossary

abstract panes Panes that are defined only in terms of their programmer
interface or behavior. The protocol for an abstract pane
specifies the pane in terms of its overall purpose, rather
than in terms of its specific appearance or particular in-
teractive details, so that multiple implementations of the
pane are possible, each defining its own look and feel.
CLIM selects the appropriate pane implementation,
based on factors outside the control of the application.
See adaptive pane.

adaptive panes A subset of the abstract panes (q.v.), adaptive panes are
defined to integrate well across all CLIM operating plat-
forms.

adaptive toolkit A uniform interface to the standard “widget” or “gadget”
toolkits available in many environments. The adaptive
toolkit enables a single user interface to adopt the indi-
vidual look and feel of a variety of host systems.

adopted A sheet is said to be adopted when it has a parent sheet.
A sheet becomes the child of another sheet by adoption.

affine transformation See transformation.

ancestors The parent of a sheet or an output record, and all of its an-
cestors, recursively.

applicable A presentation translator is said to be applicable when the
pointer is pointing to a presentation whose presentation
type matches the current input context, and the other cri-
teria for translator matching have been met.

application frame 1. A program that interacts directly with a user to perform
some specific task.
2. A Lisp object that holds the information associated
with such a program, including the panes of the user in-
terface and application state variables.

area A region that has two dimensions, length and width.

background ink Ink that has the same design as the background, so that
drawing with it results in erasure.

bounded design A design that is transparent everywhere beyond a certain
distance from a certain point. Drawing a bounded design
has no effect on the drawing plane outside that distance.

bounded region A region that contains at least one point and for which
there exists a number, d, called the region’s diameter,
such that if p1 and p2 are points in the region, the dis-
tance between p1 and p2 is always less than or equal to d.

bounding rectangle 1. The smallest rectangle that surrounds a bounded re-
gion and contains every point in the region, and that may
contain additional points as well. The sides of a bounding
rectangle are parallel to the coordinate axes.
2. A Lisp object that represents a bounding rectangle.

cache value A value used during incremental redisplay to determine
whether or not a piece of output has changed.
<Bold>490CLIM User Guide

callback A function that informs an application that one of its gad-
gets has been used.

children The direct descendants of a sheet or an output record.

clip, clipping region A parent window is said to clip its child when only the
part of the child window that overlaps the parent is view-
able. A clipping region is that part of a window to which
the output of a bitmap or a list of rectangles has been re-
stricted.

color 1. An object representing the intuitive definition of a col-
or, such as black or red.
2. A Lisp object that represents a color.

colored design A design whose points have color.

colorless design A design whose points have no color. Drawing a color-
less design uses the default color specified by the medi-
um’s foreground design.

command 1. The way CLIM represents a user interaction.
2. A Lisp object that represents a command.

command name A symbol that designates a particular command.

command table 1. A way of collecting and organizing a group of related
commands and defining the interaction styles that can be
used to invoke those commands.
2. A Lisp object that represents a command table.

command table designator A Lisp object that is either a command table or a symbol
that names a command table.

completion A facility provided by CLIM for completing user input
over a set of possibilities.

composite pane A pane that can have a child pane (cf. leaf pane).

compositing The creation of a design whose appearance at each point
is a composite of the appearances of two other designs at
that point. There are three varieties of compositing: com-
posing over, composing in, and composing out.

composition The transformation from one coordinate system to anoth-
er, then from the second to a third, can be represented by
a single transformation that is the composition of the two
component transformations. Transformations are closed
under composition. Composition is not commutative.
Any arbitrary transformation can be built up by compos-
ing a number of simpler transformations, but that compo-
sition is not unique.

context-dependent input In the presentation-type system, presentation input is
context-dependent because only presentations that match
the requirements of the application are accepted as input.

DAG See directed acyclic graph.

degrafted Not grafted; see grafted.

descendants All of the children of a sheet or an output record, and all
of their descendants, recursively.
<Bold>492CLIM User Guide

design An object that represents a way of arranging colors and
opacities in the drawing plane. A mapping from an (x, y)
pair into color and opacity values.

device transformation The transformation used by the graphics output routines
when drawing on the mirror. It is the composition of the
sheet’s native transformation and the user transforma-
tion.

directed acyclic graph A graph with no closed paths whose arcs have direction.

disowned Having no parent. An object ceases being the child of an-
other object by being disowned. See also adopted.

disabled Not enabled; See enabled.

dispatching The process of sending an input event to the client to
which it is addressed.

display server A window system; a screen and its input devices, togeth-
er with the combination of graphics display, hardware,
and X server software that drives them.

displayed output record 1. An output record that corresponds to a visible piece of
output, such as text or graphics.
2. The leaves of the output record tree.

distributing The process of determining to which client an input
event (q.v.) is addressed.

drawing plane An infinite two-dimensional plane on which graphical
output occurs. A drawing plane contains an arrangement

of colors and opacities that is modified by each graphical
output operation.

enabled A sheet is said to be enabled when its parent has provided
space for it. If a sheet and its ancestors are enabled and
grafted (q.v.), then the sheet will be visible if it occupies
a portion of the graft region that is not clipped (q.v.) by
its ancestors or their siblings.

event 1. A significant action, such as a user gesture (e.g., mov-
ing the pointer, pressing a pointer button, or typing a key-
stroke) or a window configuration change (e.g., resizing
a window).
2. A Lisp object that represents an event.

extended input stream A kind of sheet that supports CLIM’s extended input
stream protocol, e.g., by supporting a pointing device.

extended output stream A kind of sheet that supports CLIM’s extended output
stream protocol, e.g., by supporting a variable line-height
text rendering.

false 1. The boolean value false.
2. The Lisp object nil.

flipping ink 1. An ink that interchanges occurrences of two designs,
such as might be done by (xor) on a monochrome dis-
play.
2. A Lisp object that represents a flipping ink.

foreground The design used when drawing with +foreground-ink+.
<Bold>494CLIM User Guide

formatted output 1. Output that obeys some high-level constraints on its
appearance, such as being arranged in a tabular format or
justified within some margins.
2. The CLIM facility that provides a programmer with
the tools to produce such output.

frame See application frame.

frame manager An object that controls the realization of the look and feel
of an application frame.

fully specified A text style is said to be fully specified when none of its
components are nil and when its size is not relative (that
is, neither :smaller nor :larger).

gesture Some sort of input action by a user, such as typing a char-
acter or clicking a pointer button.

gesture name A symbol that designates a particular gesture, e.g., :se-
lect is commonly used to indicate a left pointer button
click.

graft A kind of mirrored sheet (q.v.) that represents a host win-
dow, typically a root window. The graft is where the
CLIM window hierarchy is “spliced” onto that of the
host system. The graft maintains screen invariants, such
as the number of pixels per inch.

grafted A sheet is said to be grafted when it has an ancestor sheet
that is a graft.

highlighting Making some piece of output stand out, for example by
changing its color or drawing a colored line around it.
CLIM often highlights the presentation under the pointer
to indicate that it is sensitive.

immutable 1. (of an object) Having components that cannot be mod-
ified once the object has been created, such as regions,
colors and opacities, text styles, and line styles.
2. (of a class) An immutable class is a class all of whose
objects are immutable.

implementor A programmer who implements CLIM.

incremental redisplay 1. Redrawing part of some output (typically the portion
that has been changed) while leaving other output as is.
2. The CLIM facility that implements this behavior.

indirect ink An ink such as +foreground+ or +background+, whose
value is some other ink.

ink Any member of the class design supplied as the :ink ar-
gument to a CLIM drawing function.

input context The input requirements of a particular application. Also
an object used to implement context-dependent input
(q.v.).

input editor The CLIM facility allowing a user to modify typed-in in-
put.

input editing stream A CLIM stream that supports input editing.
<Bold>496CLIM User Guide

input stream designator A Lisp object that is either an input stream or the symbol
t, which is taken to mean *query-io*.

interactive stream A stream that both accepts input from and supports out-
put to the user.

layout 1. The arrangement of panes within an application frame.
2. A kind of pane that is responsible for allocating space
to its children, taking their preferred sizes into account.

leaf pane A pane that cannot have a child pane (cf. composite
pane).

line style 1. Advice to CLIM’s rendering substrate on how to ren-
der a path, such as a line or an unfilled ellipse or polygon.
2. A Lisp object that represents a line style.

medium 1. A destination for output, having a drawing plane, two
designs called the medium’s foreground and back-
ground, a transformation, a clipping region, a line style,
and a text style.
2. A Lisp object that represents a medium.

mirror The host window system object associated with a mir-
rored sheet, such as a window object on an X11 display
server.

mirrored sheet A special class of sheet attached directly to a window on
a display server. A graft (q.v.) is one kind of a mirrored
sheet.

mutable 1. A mutable object has components that can be modified
(via setf accessors) once the object has been created, such
as streams and output records.
2. A mutable class is a class all of whose objects are mu-
table.

non-uniform design See uniform design.

opacity 1. An object that controls how graphical output appears
to cover previous output. Opacity ranges from fully
opaque through various levels of translucency to com-
pletely transparent.
2. A Lisp object that represents an opacity.

output history The highest level output record for an output recording
stream.

output record 1. An object that remembers the output performed to a
stream or medium; the result of an output recording.
2. A Lisp object that represents an output record.

output recording The process of documenting the output performed to a
stream.

output recording stream A CLIM stream that supports output recording.

output stream designator A Lisp object that is either an output stream or the sym-
bol t, which is taken to mean *standard-output*.

pane A specialized sheet that understands issues pertaining to
space requirements. A pane appears as the child of a
<Bold>498CLIM User Guide

frame or of another pane. Composite panes can hold oth-
er panes; leaf panes cannot.

parent The direct ancestor of a sheet or an output record.

path A region that has one dimension, length.

patterning The process of creating a bounded rectangular arrange-
ment of designs, such as a checkerboard. A pattern is a
design created by this process.

pixmap An “off-screen window,” that is, a sheet that can be used
for graphical output but that is not visible on any display
device.

point 1. A region that has dimensionality 0; i.e., has only a po-
sition.
2. A Lisp object that represents a point.

pointer A physical device used for pointing, such as a mouse, or
the cursor that shows the position of the mouse on the
screen.

pointer documentation Text that describes something about what the mouse is
over; the mechanism for displaying that text, which ap-
pears in a pointer-documentation-pane.

port An abstract connection to a display server that is respon-
sible for managing host display server resources and for
processing input events received from the host display
server.

position 1. A location on a plane such as the abstract drawing
plane.
2. Two real number values x and y that represent a loca-
tion.

presentation 1. An association between an object and a presentation
type with some output on a output recording stream.
2. A Lisp object that represents a presentation.

presentation tester A predicate that restricts the applicability of a presenta-
tion translator.

presentation translator A mapping from an object of one presentation type, input
context, and gesture to an object of another presentation
type.

presentation type 1. A description of a class of presentations.
2. An extension to CLOS that implements this.

presentation type specifier A Lisp object used to specify a presentation type.

programmer A person who writes application programs using CLIM.

protocol class An “abstract” class having no methods or slots that is
used to indicate that a class obeys a certain protocol. For
example, all classes that inherit from the bounding-rect-
angle class obey the bounding rectangle protocol.

rectangle 1. A four-sided polygon whose sides are parallel to the
coordinate axes.
2. A Lisp object that represents a rectangle.
<Bold>500CLIM User Guide

redisplay See incremental redisplay.

reflection A transformation in which each point is mapped to a
symmetric point with respect to a line; reflections pre-
serve length and magnitude of angles.

region 1. A set of mathematical points in a plane; a mapping
from an (x, y) pair into either t or nil (meaning member
or not a member, respectively, of the region). In CLIM,
all regions include their boundaries (i.e., are closed) and
have infinite resolution.
2. A Lisp object that represents a region.

region set 1. A “compound” region, that is, a region consisting of
several other regions related by one of the operations
union, intersection, or difference.
2. A Lisp object that represents a region set.

rendering The process of drawing a shape (such as a line or a circle)
on a display device. Rendering is an approximate pro-
cess, as abstract shapes exists in a continuous coordinate
system having infinite precision, whereas display devic-
es must necessarily draw discrete points having some
measurable size.

replaying The process of redrawing a set of output records.

repainting Redrawing a window that has been exposed or uncov-
ered.

rotation A transformation that moves all points around the center
of rotation. A rotation maintains each point’s distance to
the center of rotation and to each other.

sensitive A presentation is sensitive if some action will take place
when the user clicks on it with the pointer. Sensitive pre-
sentations are usually highlighted.

server path A server path is a list used to specify a port. The first el-
ement is a keyword that selects the kind of port. The re-
mainder of the server path is a list of alternating
keywords and values whose interpretation is
port-type-specific.

sheet 1. A visible interface object that specifies the destination
for graphical output. A sheet has properties including a
coordinate system, a region, an enabled flag, an event
handler, an output state, and optionally a parent, a trans-
formation, and children.
2. A Lisp class, a subclass of bounding-rectangle, that
represents a sheet.

sheet region The area within a sheet’s coordinate system where ac-
tions take place, that is, a clipping region for output and
input. This typically corresponds to the visible region of
the sheet on the display.

sheet transformation Describes how points in a sheet’s coordinate system are
mapped onto points in its parents’ coordinate system.

solid design A design comprised of completely opaque and/or com-
pletely transparent points. A solid design can be opaque
at some points and transparent at others.

spread point argument Functions that take spread point arguments take a pair of
arguments that correspond to the x and y coordinates of
the point. Such functions have an asterisk in their name:
draw-line*. Cf. structured point argument.
<Bold>502CLIM User Guide

stencil A kind of pattern that contains only opacities.

stencil opacity The opacity at one point in a design that would result
from drawing the design onto a fictitious medium whose
drawing plane is initially completely transparent black
(opacity and all color components are zero), and whose
foreground and background are both opaque black. The
stencil opacity of an opacity is simply its value.

stream A kind of sheet that implements the stream protocol
(such as maintaining a text cursor).

structured point argument Functions that take structured point arguments take the
argument as a single point object. Cf. spread point ar-
gument.

text cursor The visible underscore or block that shows where user
input will appear on the command line or in a text editor.
Cf. pointer, the cursor that tracks the movement of the
mouse.

text style 1. A description of how textual output should appear
with respect to its font family, face code, and size.
2. A Lisp object that represents a text style.

tiling The process of repeating a rectangular portion of a design
throughout the drawing plane. A tile is a design so creat-
ed.

trampoline A function is said to trampoline when the only thing it
does is call the corresponding function in the object’s su-
perclass.

transformation 1. A mapping from one coordinate system onto another
that preserves straight lines, such as a translation, scal-
ing, rotation, or reflection.
2. A Lisp object that represents a transformation.

translation A transformation in which the new coordinate axes are
parallel to the original ones. A translation preserves
length, angle, and orientation of all geometric entities.

translucent design A design that is not solid, that is, that has at least one
point with an opacity somewhere between completely
opaque and transparent.

true, t 1. The boolean value true; not false.
2. Any Lisp object that is not nil.

unbounded design A design that has at least one point of non-zero opacity
arbitrarily far from the origin. Drawing an unbounded de-
sign affects the entire drawing plane.

unbounded region A region that either contains no points or contains points
arbitrarily far apart.

uniform design A design that has the same color and opacity at every
point in the drawing plane. Uniform designs are always
unbounded, unless they are completely transparent.

unique id During incremental redisplay, the unique id is an object
used to identify each piece of output. The output named
by the unique id will often have a cache value associated
with it.
<Bold>504CLIM User Guide

user A person using an application program written with
CLIM.

user transformation A transformation that is apparent to the user (as opposed
to an internal transformation, such as that used to deal
with disparate display devices). A user transformation
may be set by the user and is associated with a medium.

view 1. A way of displaying data (e.g., as numbers, bars in a
bar graph, etc.).
2. A Lisp object that represents a view.

viewport The portion of the drawing plane of a sheet’s medium
that is visible on a display device.

volatile An immutable object is said to be volatile if it has com-
ponents that cannot be modified by the programmer at
the protocol level, but which may be modified internally
by CLIM. Volatile objects reflect the internal state of
CLIM.

window A pane that is a subclass of clim-stream-pane. A win-
dow is another name for a stream pane or other pane that
supports the stream protocol.

<Bold>506CLIM User Guide

Appendix B Implementation Specifics

B.1 Setting Up Your Packages to Use CLIM

You can set up your user packages to use CLIM as follows:

(in-package :user)

(defpackage "FOO"
 (:use :clim-lisp :clim))

The package :clim-lisp is a version of the :lisp package that shadows some of the Com-
mon Lisp symbols. The :clim package is the exported CLIM interface.

B.2 CLIM Packages

LispWorks and Liquid CLIM both make use of the following packages:

■ CLIM-USER—This is analogous to the USER package. It uses CLIM and
CLIM-LISP.

■ COMMON-LISP-USER—The USER package has been renamed.

■ COMMON-LISP—The LISP package has been renamed.

■ CLIM-INTERNALS—For internal use only.

■ CLIM-SILICA—For internal use only.

■ CLIM-SYS—Exported, portable Lisp system utilities not officially part of CLIM,
such as multitasking, resources, etc.

■ CLIM—The official, exported CLIM functionality.

■ CLIM-LISP—CLIM’s carefully constructed LISP package. It imports, shadows,
and adds symbols to create a portable namespace for CLIM.

■ CLIM-DEMO—An example of a newly-defined, user-level package that uses
CLIM and CLIM-LISP.

■ CLIM-UTILS—Contains unexported Lisp utilities used by the Lisp system.

The official way to make a package for CLIM is as follows:

(defpackage "MY-CLIM-PACKAGE" (:use :CLIM-LISP :CLIM :CLIM-SYS))
<Bold>508CLIM User Guide

Appendix C The CLIM-SYS Package

The CLIM-SYS package contains useful, “system-like” utilities such as resources and
multi-processing primitives. These utilities are neither part of Common Lisp nor con-
ceptually within the province of CLIM itself.

All of the symbols documented in this appendix are accessible as external symbols in
the CLIM-SYS package.

C.1 Resources

CLIM provides a facility called resources that allows you to reuse objects. A resource
describes how to construct an object, how to initialize and deinitialize it, and how an
object should be selected from the resource of objects based on a set of parameters.

defresource [Macro]

Arguments: name parameters &key constructor initializer deinitializer matcher
initial-copies

Summary: Defines a resource named name, which must be a symbol. parameters is a
lambda-list giving names and default values (for optional and keyword
parameters) of parameters to an object of this type.

 constructor is a form that creates an object; it is called when someone tries
to allocate an object from the resource and no suitable free objects exist. The
constructor form can access the parameters as variables. This argument is
required.

 initializer is a form used to initialize an object gotten from the resource. It
can access the parameters as variables, and also has access to a variable

called name, which is the object to be initialized. The initializer is called both
on newly created objects and objects that are being reused.

 deinitializer is a form used to deinitialize an object when it is about to be
returned to the resource. It can access the parameters as variables, and also
has access to a variable called name, the object to be deinitialized. It is called
whenever an object is deallocated back to the resource, but is not called by
clear-resource. Deinitializers are typically used to clear references to other
objects.

 matcher is a form that ensures that an object in the resource “matches” the
specified parameters, which it can access as variables. The matcher also has
access to a variable called name, which is the object in the resource being
matched against. If no matcher is supplied, the system remembers the values
of the parameters (including optional ones that defaulted) that were used to
construct the object, and assumes that it matches those particular values for
all time. This comparison is done with equal. The matcher returns t if there
is a match, and otherwise nil.

 initial-copies specifies the number of objects to be initially put into the
resource. It must be an integer or nil (the default), meaning that no initial
copies should be made. If initial copies are made and there are parameters,
all the parameters must be optional; the initial copies will then have the
default values of the parameters.

using-resource [Macro]

Arguments: (variable name &rest parameters) &body body
Summary: The forms in body are evaluated with variable bound to an object allocated

from the resource named name, using the parameters given by parameters.
The parameters (if any) are evaluated, but name is not.

 After body has been evaluated, using-resource returns the object in variable
to the resource. If a form in the body sets variable to nil, the object is not
returned to the resource. Otherwise, the body should not change the value of
variable.

allocate-resource [Function]

Arguments: name &rest parameters
Summary: Allocates an object from the resource name, using the parameters given by

para-meters. name must be a symbol naming a resource. It returns the allo-
cated object.
<Bold>510CLIM User Guide

deallocate-resource [Function]

Arguments: name object
Summary: Returns the object object to the resource name. name must be a symbol nam-

ing a resource. object must be an object originally allocated from the same
resource.

clear-resource [Function]

Arguments: name
Summary: Clears the resource named name, that is, removes all of the resourced object

from the resource. name must be a symbol that names a resource.

map-resource [Function]

Arguments: function name
Summary: Calls function once on each object in the resource named name. function is

a function of three arguments, the object, a boolean value that is t if the
object is in use or nil if it is free, and name. function has dynamic extent.

C.2 Multi-Processing

Most Lisp implementations provide some form of multi-processing. CLIM provides a
set of functions that implement a uniform interface to the multi-processing functional-
ity.

make-process [Function]

Arguments: function &key name
Summary: Creates a process named name. The new process will evaluate the function

function. On systems that do not support multi-processing, make-process
will signal an error.

destroy-process [Function]

Arguments: process
Summary: Terminates the process process. process is an object returned by make-pro-

cess.

current-process [Function]

Summary: Returns the currently running process, which will be the same kind of object
as would be returned by make-process.

all-processes [Function]

Summary: Returns a sequence of all of the processes.

process-wait [Function]

Arguments: reason predicate
Summary: Causes the current process to wait until predicate returns t. reason is a string

or symbol that gives an explanation for the wait. On systems that do not sup-
port multi-processing, process-wait will loop until predicate returns t.

process-wait-with-timeout [Function]

Arguments: reason timeout predicate
Summary: Causes the current process to wait until predicate returns t or the number of

seconds specified by timeout has elapsed. reason is a string or symbol that
gives an explanation for the wait. On systems that do not support multi-pro-
cessing, process-wait-with-timeout loops until predicate returns t or the
timeout elapses.

process-yield [Function]

Summary: Allows other processes to run. On systems that do not support multi-pro-
cessing, this does nothing.

process-interrupt [Function]

Arguments: process function
Summary: Interrupts the process process and causes it to evaluate the function function.

On systems that do not support multi-processing, this is equivalent to fun-
call’ing function.

without-scheduling [Macro]

Arguments: &body body
Summary: Evaluates body in a context that is guaranteed to be free from interruption

by other processes. On systems that do not support multi-processing, with-
out-scheduling is equivalent to progn.
<Bold>512CLIM User Guide

C.3 Locks

In the course of multi-processing, it is important to ensure that two processes do not
modify the same data simultaneously. This is done by creating a lock, which is an extra
memory location in a data structure that can be checked to determine whether that
structure is in use. If the value of a lock is nil, no process is using the data structure;
otherwise, the value should be a process that is currently using the structure.

The following symbols for creating locks will work with all CLIM ports.

with-lock-held [Macro]

Arguments: (place &optional state) &body body
Summary: Evaluates body with the lock named by place. place is a reference to a lock

created by make-lock. state specifies the process to store in the place loca-
tion; the default value is the value of the variable *current-process*.

 On systems that do not support locking, with-lock-held is equivalent to
progn.

make-lock [Function]

Arguments: &optional name
Summary: Creates a lock whose name is name. On systems that do not support locking,

this will return a new list of one element, nil.

with-recursive-lock-held [Macro]

Arguments: (place &optional state) &body body
Summary: Evaluates body with the recursive lock named by place. place is a reference

to a recursive lock created by make-recursive-lock. A recursive lock differs
from an ordinary lock in that a process that already holds the recursive lock
can call with-recursive-lock-held on the same lock without blocking.

 On systems that do not support locking, with-recursive-lock-held is equiv-
alent to progn.

make-recursive-lock [Function]

Arguments: &optional name
Summary: Creates a recursive lock whose name is name. On systems that do not sup-

port locking, this will return a new list of one element, nil.

C.4 Multiple-Value Setf

CLIM provides a facility, sometimes referred to as setf*, that allows setf to be used on
“places” that name multiple values. For example, output-record-position returns the
position of an output record as two values that correspond to the x and y coordinates.
In order to change the position of an output record, the programmer would like to in-
voke (setf output-record-position). However, setf only takes a single value with
which to modify the specified place. The setf* facility provides a “multiple-value” ver-
sion of setf that allows an expression that returns multiple values to be used to update
the specified place.

defgeneric* [Macro]

Arguments: name lambda-list &body options
Summary: Defines a setf* generic function named name. The last argument in

lambda-list is intended to be class specialized, just as normal setf generic
functions are. options are as for defgeneric.

defmethod* [Macro]

Arguments: name (method-qualifier* specialized-lambda-list &body body)
Summary: Defines a setf* method for the generic function name. The last argument in

specialized-lambda-list is intended to be class specialized, just as normal
setf methods are. (method-qualifier)* and body are as for defgeneric. For
example, output-record-position and its setf* method for a class called
sample-output-record might be defined as follows:

(defgeneric output-record-position (record)
 (declare (values x y)))
(defgeneric* (setf output-record-position) (x y record))
(defmethod output-record-position ((record sample-out-
put-record))

 (with-slots (x y)
 (values x y)))
(defmethod* (setf output-record-position)
 (nx ny (record sample-output-record))
 (with-slots (x y)
 (setf x nx
 y ny)))

 The position of such an output record could then be changed as follows:

(setf (output-record-position record) (values nx ny))
<Bold>514CLIM User Guide

(setf (output-record-position record1)
 (output-record-position record2))

Appendix D Common Lisp Streams

CLIM performs all of its character-based input and output operations on objects called
streams. Streams are divided into two layers, the basic stream protocol, which is char-
acter-based and compatible with existing Common Lisp programs, and the extended
stream protocol, which introduces extended gestures such as pointer gestures and syn-
chronous window-manager communication.

This appendix describes the basic stream-based input and output protocol used by
CLIM. The protocol is taken from the STREAM-DEFINITION-BY-USER proposal
to the X3J13 committee, made by David Gray of TI. This proposal was not accepted as
part of the ANSI Common Lisp language definition, but CLIM provides an implemen-
tation of the basic output stream facilities. For a description of the CLIM specialization
of this protocol, see Chapter 15 "Extended Stream Input Facilities"

Note that in CLIM, many of the generic functions described in the following sections
are called by Common Lisp stream functions. For example, force-output calls
stream-force-output.

D.1 Stream Classes

The following classes are used as superclasses of user-defined stream classes. They are
not intended to be directly instantiated; they just provide places to hang default meth-
ods.

The predicate functions may return t for other objects that are not members of the fun-
damental-stream class (or its subclasses) but that claim to serve as streams.
<Bold>516CLIM User Guide

fundamental-stream [Class]

Summary: This class is the base class for all CLIM streams. It is a subclass of stream
and of standard-object.

streamp [Generic Function]

Arguments: object
Summary: Returns t if object is a member of the class fundamental-stream.

fundamental-input-stream [Class]

Summary: A subclass of fundamental-stream that implements input streams.

input-stream-p [Generic Function]

Arguments: object
Summary: Returns t when called on any object that is a member of the class funda-

mental-input-stream.

fundamental-output-stream [Class]

Summary: A subclass of fundamental-stream that implements output streams.

output-stream-p [Generic Function]

Arguments: object
Summary: Returns t when called on any object that is a member of the class funda-

mental-output-stream.

 Bidirectional streams can be formed by including both fundamen-
tal-input-stream and fundamental-output-stream.

fundamental-character-stream [Class]

Summary: A subclass of fundamental-stream. It provides a method for stream-ele-
ment-type, which returns character.

fundamental-binary-stream [Class]

Summary: A subclass of fundamental-stream. Any instantiable class that includes
this needs to define a method for stream-element-type.

fundamental-character-input-stream [Class]

Summary: A subclass of fundamental-input-stream and fundamental-charac-
ter-stream, providing default methods for generic functions for character
input.

fundamental-character-output-stream [Class]

Summary: A subclass of fundamental-output-stream and fundamental-charac-
ter-stream, providing default methods for generic functions for character
output.

fundamental-binary-input-stream [Class]

Summary: A subclass of fundamental-input-stream and fundamen-
tal-binary-stream.

fundamental-binary-output-stream [Class]

Summary: A subclass of fundamental-output-stream and fundamen-
tal-binary-stream.

D.2 Basic Stream Functions

These generic functions must be defined for all stream classes.

stream-element-type [Generic Function]

Arguments: stream
Summary: This existing Common Lisp function is made generic, but otherwise behaves

the same. Class fundamental-character-stream provides a default method
that returns character.

open-stream-p [Generic Function]

Arguments: stream
Summary: This function is made generic. A default method is provided by class fun-

damental-stream that returns t if close has not been called on the stream.
<Bold>518CLIM User Guide

close [Generic Function]

Arguments: stream &key abort
Summary: The existing Common Lisp function close is redefined to be a generic func-

tion, but otherwise it behaves the same. The default method provided by the
class fundamental-stream sets a flag used by open-stream-p. The value
returned by close will be as specified by the X3J13 issue
closed-stream-operations.

stream-pathname [Generic Function]

Arguments: stream

stream-truename [Generic Function]

Arguments: stream
Summary: These are used to implement pathname and truename. There is no default

method because these are not valid for all streams.

D.3 Character Input

A character input stream can be created by defining a class that includes fundamen-
tal-character-input-stream and defining methods for the following generic functions.

stream-read-char [Generic Function]

Arguments: stream
Summary: Reads one character from stream, and returns either a character object or the

symbol :eof if the stream is at end-of-file. There is no default method for this
generic function, so every subclass of fundamental-charac-
ter-input-stream must define a method.

stream-unread-char [Generic Function]

Arguments: stream character
Summary: Undoes the last call to stream-read-char, as in unread-char, and returns

nil. There is no default method for this, so every subclass of fundamental-
character-input-stream must define a method.

stream-read-char-no-hang [Generic Function]

Arguments: stream
Summary: Returns either a character, or nil if no input is currently available, or :eof if

end-of-file is reached. This is used to implement read-char-no-hang. The
default method provided by fundamental-character-input-stream simply
calls stream-read-char; this is sufficient for file streams, but interactive
streams should define their own method.

stream-peek-char [Generic Function]

Arguments: stream
Summary: Returns either a character or :eof without removing the character from the

stream’s input buffer. This is used to implement peek-char; this corresponds
to peek-type of nil. The default method calls stream-read-char and
stream-unread-char.

stream-listen [Generic Function]

Arguments: stream
Summary: Returns t if there is any input pending on stream; otherwise, it returns nil.

This is used by listen. The default method uses stream-read-char-no-hang
and stream-unread-char. Most streams should define their own method, as
it will usually be trivial and will generally be more efficient than the default
method.

stream-read-line [Generic Function]

Arguments: stream
Summary: Returns a string as the first value, and t as the second value if the string was

terminated by end-of-file instead of the end of a line. This is used by
read-line. The default method uses repeated calls to stream-read-char.

stream-clear-input [Generic Function]

Arguments: stream
Summary: Clears any buffered input associated with stream, and returns nil. This is

used to implement clear-input. The default method does nothing.
<Bold>520CLIM User Guide

D.4 Character Output

A character output stream can be created by defining a class that includes fundamen-
tal-character-output-stream and defining methods for the following generic func-
tions.

stream-write-char [Generic Function]

Arguments: stream character
Summary: Writes character to stream, and returns character as its value. Every sub-

class of fundamental-character-output-stream must have a method
defined for this function.

stream-line-column [Generic Function]

Arguments: stream
Summary: This function returns the column number where the next character will be

written on stream, or nil if that is not meaningful. The first column on a line
is numbered 0. This function is used in the implementation of pprint and the
format ~T directive. Every character output stream class must define a
method for this, although it is permissible for it to always return nil.

stream-start-line-p [Generic Function]

Arguments: stream
Summary: Returns t if stream is positioned at the beginning of a line; otherwise, it

returns nil. It is permissible to always return nil. This is used in the imple-
mentation of fresh-line.

 Note that while a value of 0 from stream-line-column also indicates the
beginning of a line, there are cases where stream-start-line-p can be mean-
ingfully implemented when stream-line-column cannot. For example, for a
window using variable-width characters, the column number isn’t very
meaningful, but the beginning of the line does have a clear meaning. The
default method for stream-start-line-p on class fundamental-charac-
ter-output-stream uses stream-line-column, so if that is defined to return
nil, a method should be provided for either stream-start-line-p or
stream-fresh-line.

stream-write-string [Generic Function]

Arguments: stream string &optional (start 0) end
Summary: Writes the string string to stream. If start and end are supplied, they specify

what part of string to output. string is returned as the value. This is used by
write-string. The default method provided by fundamental-charac-
ter-output-stream uses repeated calls to stream-write-char.

stream-terpri [Generic Function]

Arguments: stream
Summary: Writes an end-of-line character on stream and returns nil. This is used by

terpri. The default method does stream-write-char of #\Newline.

stream-fresh-line [Generic Function]

Arguments: stream
Summary: Writes an end-of-line character on stream only if the stream is not at the

beginning of the line. This is used by fresh-line. The default method uses
stream-start-line-p and stream-terpri.

stream-finish-output [Generic Function]

Arguments: stream
Summary: Ensures that all the output sent to stream has reached its destination, and

only then return nil. This is used by finish-output. The default method does
nothing.

stream-force-output [Generic Function]

Arguments: stream
Summary: Like stream-finish-output, except that it may return nil without waiting for

the output to complete. This is used by force-output. The default method
does nothing.

stream-clear-output [Generic Function]

Arguments: stream
Summary: Aborts any outstanding output operation in progress and returns nil. This is

used by clear-output. The default method does nothing.

stream-advance-to-column [Generic Function]

Arguments: stream column
<Bold>522CLIM User Guide

Summary: Writes enough blank space on stream so that the next character will be writ-
ten at the position specified by column. Returns t if the operation is success-
ful, or nil if it is not supported for this stream. This is intended for use by
pprint and format ~T. The default method uses stream-line-column and
repeated calls to stream-write-char with a #\Space character; it returns
nil if stream-line-column returns nil.

D.5 Binary Streams

Binary streams can be created by defining a class that includes either fundamental-bi-
nary-input-stream or fundamental-binary-output-stream (or both) and defining a
method for stream-element-type and for one or both of the following generic func-
tions.

stream-read-byte [Generic Function]

Arguments: stream
Summary: Returns either an integer or the symbol :eof if stream is at end-of-file. This

is used by read-byte.

stream-write-byte [Generic Function]

Arguments: stream integer
Summary: Writes integer to stream and returns integer as the result. This is used by

write-byte.

D.6 Hardcopy Streams in CLIM

CLIM supports hardcopy output through the macro with-output-to-post-
script-stream.

with-output-to-postscript-stream [Macro]

Arguments: (stream-var file-stream &key (:display-device clim::*postscript-device*)
:header-comments :multi-page) &body body

Summary: Within body, stream-var is bound to a stream that produces PostScript code.

The following example writes a PostScript program that draws a square, a circle, and a
triangle to a file named icons-of-high-tech.ps.

(defun print-icons-of-high-tech-to-file ()
 (with-open-file
 (file-stream "icons-of-high-tech.ps" :direction :output)
 (clim:with-output-to-postscript-stream
 (stream file-stream)
 (let* ((x1 150) (y 250) (size 100)
 (x2 (+ x1 size))
 (radius (/ size 2))
 (base-y (+ y (/ (* size (sqrt 3)) 2))))
 (clim:draw-rectangle* stream
 (- x1 size) (- y size)
 x1 y)
 (clim:draw-circle* stream
 (+ x2 radius) (- y radius)
 radius)
 (clim:draw-triangle* stream
 (+ x1 radius) y
 x1 base-y
 x2 base-y)))))

The second example uses multi-page mode to draw a graph of the superclasses of the
class window-stream by writing a PostScript program to the file some-pathname.

(with-open-file (file some-pathname :direction :output)
 (clim:with-output-to-postscript-stream
 (stream file :multi-page t)
 (clim:format-graph-from-root
 (clos:find-class ’clim-internals::window-stream)
 #’(lambda (object s)
 (write-string (string (clos:class-name object)) s))
 #’clos:class-direct-superclasses
 :stream stream)))

Note that with-output-to-postscript-stream is defined in the loadable module
"clim-postscript". See section 1.5 on page 15 for details of how to load CLIM and as-
sociated modules.
<Bold>524CLIM User Guide

Appendix E Windows

E.1 Window Stream Operations in CLIM

A window is a CLIM stream pane that supports all window and stream operations. Win-
dows are primarily included for compatibility with CLIM 1.1, although it is sometimes
useful to be able to perform operations directly on a window.

E.1.1 Clearing and Refreshing the Drawing Plane

CLIM supports the following operators for clearing and refreshing the drawing plane:

window-clear [Generic Function]

Arguments: window
Summary: Clears the entire drawing plane of window, filling it with the background

ink.

window-erase-viewport [Generic Function]

Arguments: window
Summary: Clears the visible part of window’s drawing plane, filling it with background

ink.

window-refresh [Generic Function]

Arguments: window
Summary: Clears the visible part of the drawing plane of window, and then replays all

of the output records in the visible part of the drawing plane.

E.1.2 The Viewport and Scrolling

A window stream viewport is the region of the drawing plane that is visible through the
window. You can change the viewport by scrolling or by reshaping the window. The
viewport does not change if the window is covered by another window (that is, the
viewport is the region of the drawing plane that would be visible if the window were
on top).

A window stream has an end-of-line action and an end-of-page action, which control
what happens when the cursor position moves out of the viewport
(with-end-of-line-action and with-end-of-page-action, respectively).

E.1.3 Viewport and Scrolling Operators

window-viewport [Generic Function]

Arguments: window
Summary: Returns a region that is the window’s current viewport, an object of type

area. (See Subsection 10.2.3, “Composite Pane Generic Functions,” for the
generic function pane-viewport, which returns a viewport.)

window-viewport-position* [Generic Function]

Arguments: window
Summary: Returns the x and y coordinates of the top-left corner of the window’s view-

port.

window-set-viewport-position* [Generic Function]

Arguments: window x y
Summary: Moves the top-left corner of the window’s viewport. Use this to scroll a win-

dow.
<Bold>526CLIM User Guide

E.2 Functions for Operating on Windows
Directly

You can use open-window-stream to give you a CLIM window without incorporating
it into a frame. After calling open-window-stream, call window-expose to make the
resulting window stream visible.

The following operators are available for manipulating the CLIM primitive layer for
window streams.

open-window-stream [Function]

Arguments: &key port left top right bottom width height borders console
default-text-margin default-text-style depth display-device-type
draw-p end-of-line-action end-of-page-action initial-cursor-visibility
input-buffer label name output-record record-p save-under scroll-bars
stream-background stream-foreground text-cursor text-margin
viewport vsp window-class

Summary: A handy function for creating a CLIM window, but one not normally used.
Most often windows are created by an application frame or by the menu and
dialog functions.

window-parent [Generic Function]

Arguments: window
Summary: Returns the window that is the parent (superior) of window.

window-children [Generic Function]

Arguments: window
Summary: Returns a list of all of the windows that are children (inferiors) of window.

window-label [Generic Function]

Arguments: window
Summary: Returns the label (a string) associated with window, or nil if there is none.

with-input-focus [Macro]

Arguments: (stream) &body body

Summary: Temporarily gives the keyboard input focus to the given window, most often
an interactor pane. By default, a frame will give the input focus to the
frame-query-io pane.

The following functions are most usefully applied to the top level sheet of a frame. For
example: (clim:frame-top-level-sheet clim:*applica-
tion-frame*).

window-expose [Generic Function]

Arguments: window
Summary: Makes the window visible on the screen.

window-stack-on-bottom [Generic Function]

Arguments: window
Summary: Puts the window underneath all other windows that it overlaps.

window-stack-on-top [Generic Function]

Arguments: window
Summary: Puts the window on top of all the others it overlaps so that you can see all of

it.

window-visibility [Generic Function]

Arguments: stream
Summary: A predicate that returns t if the window is visible. You can use setf on win-

dow-visibility to expose or deexpose the window.

The following operators can be applied to a window to determine its position and size.

window-inside-edges [Generic Function]

Arguments: window
Summary: Returns four values, the coordinates of the left, top, right, and bottom inside

edges of the window window.

window-inside-left [Function]

Arguments: window
Summary: Returns the coordinate of the left edge of the window window.
<Bold>528CLIM User Guide

window-inside-top [Function]

Arguments: window
Summary: Returns the coordinate of the top edge of the window window.

window-inside-right [Function]

Arguments: window
Summary: Returns the coordinate of the right edge of the window window.

window-inside-bottom [Function]

Arguments: window
Summary: Returns the coordinate of the bottom edge of the window window.

window-inside-size [Generic Function]

Arguments: window
Summary: Returns the inside width and height of window as two values.

window-inside-width [Function]

Arguments: window
Summary: Returns the inside width of window.

window-inside-height [Function]

Arguments: window
Summary: Returns the inside height of window.

<Bold>530CLIM User Guide

Index
Symbols
(setf command-enabled) (generic function) 209
(setf cursor-visibility) (generic function) 326
(setf delegate-sheet-delegate) (generic function)

455
(setf frame-command-table) (generic function) 204
(setf frame-current-layout) (generic function) 207
(setf frame-manager) (generic function) 214
(setf frame-manager-dialog-view) (generic func-

tion) 310
(setf frame-manager-menu-view) (generic func-

tion) 303
(setf frame-pretty-name) (generic function) 204
(setf frame-properties) (generic function) 212
(setf gadget-client) (generic function) 246
(setf gadget-id) (generic function) 246
(setf gadget-label) (generic function) 250
(setf gadget-label-align-x) (generic function) 250
(setf gadget-label-align-y) (generic function) 251
(setf gadget-label-text-style) (generic function) 251
(setf gadget-max-value) (generic function) 251
(setf gadget-min-value) (generic function) 251
(setf gadget-value) (generic function) 248
(setf graph-node-children) (generic function) 437
(setf graph-node-parents) (generic function) 437
(setf graph-root-nodes) (generic function) 435
(setf medium-background) (generic function) 67,

465
(setf medium-buffering-output-p) (generic func-

tion) 332
(setf medium-clipping-region) (generic function)

68, 466
(setf medium-default-text-style) (generic function)

69, 467
(setf medium-foreground) (generic function) 67,

465
(setf medium-ink) (generic function) 67, 465
(setf medium-line-style) (generic function) 68, 466
(setf medium-text-style) (generic function) 467
(setf medium-transformation) (generic function)

68, 465
(setf pointer-cursor) (generic function) 373

(setf pointer-sheet) (generic function) 373
(setf port-keyboard-input-focus) (generic func-

tion) 453
(setf port-properties) (generic function) 478
(setf presentation-object) (generic function) 123
(setf presentation-single-box) (generic function)

123
(setf presentation-type) (generic function) 123
(setf radio-box-current-selection) (generic func-

tion) 256, 257
(setf sheet-enabled-p) (generic function) 446
(setf sheet-region) (generic function) 448
(setf sheet-transformation) (generic function) 448
(setf space-requirement-height) (function) 232
(setf space-requirement-max-height) (function)

232
(setf space-requirement-max-width) (function)

231
(setf space-requirement-min-height) (function)

232
(setf space-requirement-min-width) (function)

231
(setf space-requirement-width) (function) 231
(setf stream-current-output-record) (generic func-

tion) 348
(setf stream-default-view) (generic function) 159
(setf stream-drawing-p) (generic function) 348
(setf stream-end-of-line-action) (generic function)

330
(setf stream-end-of-page-action) (generic function)

330
(setf stream-input-buffer) (generic function) 364
(setf stream-insertion-pointer) (generic function)

400
(setf stream-primary-pointer) (generic function)

365
(setf stream-recording-p) (generic function) 347
(setf stream-scan-pointer) (generic function) 401
(setf stream-text-cursor) (generic function) 326
(setf stream-text-margin) (generic function) 328
(setf text-style-mapping) (generic function) 101
(setf window-viewport-position) (generic function)

333
(setf* cursor-position) (generic function) 326
(setf* output-record-end-cursor-position) (gener-

ic function) 340
<Bold>531

(setf* output-record-position) (generic function)
339

(setf* output-start-cursor-position) (generic func-
tion) 340

(setf* pointer-position) (generic function) 373
(setf* stream-cursor-position) (generic function)

327
(setf* stream-pointer-position) (generic function)

365
abort-gestures (variable) 368
accelerator-gestures (variable) 368
activation-gestures (variable) 388
application-frame (variable) 188, 204
command-argument-delimiters (variable) 297
command-dispatchers (variable) 282, 284
command-name-delimiters (variable) 297
command-parser (variable) 297
command-unparser (variable) 297
completion-gestures (variable) 393
default-frame-manager (variable) 214
default-server-path (variable) 478
default-text-style (variable) 94
delimiter-gestures (variable) 389
help-gestures (variable) 393
input-context (variable) 125
input-wait-handler (variable) 366
input-wait-test (variable) 366
null-presentation (variable) 131
numeric-argument-marker (variable) 297
partial-command-parser (variable) 297
pointer-button-press-handler (variable) 366
pointer-documentation-output (variable) 205
possibilities-gestures (variable) 393
standard-activation-gestures (variable) 388
undefined-text-style (variable) 95
unsupplied-argument-marker (variable) 297
+background-ink+ (constant) 108
+control-key+ (constant) 462
+everywhere+ (constant) 41
+fill+ (constant) 225
+flipping-ink+ (constant) 109
+foreground-ink+ (constant) 108
+gadget-dialog-view+ (constant) 160
+gadget-menu-view+ (constant) 160
+hyper-key+ (constant) 462
+identity-transformation+ (constant) 83
+meta-key+ (constant) 462

+nowhere+ (constant) 41
+pointer-documentation-view+ (constant) 160
+pointer-left-button+ (constant) 462
+pointer-middle-button+ (constant) 462
+pointer-right-button+ (constant) 462
+shift-key+ (constant) 462
+super-key+ (constant) 462
+textual-dialog-view+ (constant) 160
+textual-menu-view+ (constant) 160
:activate-callback (initarg) 249
:align-x (initarg) 250, 432
:align-x (option) 226
:align-y (initarg) 250, 432
:align-y (option) 226
:armed-callback (initarg) 246
:background (initarg) 322
:background (option) 223
:button (initarg) 458
:calling-frame (initarg) 189
:center-nodes (initarg) 435
:client (initarg) 246
:clipping-region (option) 72
:command-table (initarg) 188
:contents (option) 224
:current-selection (initarg) 256, 257
:cutoff-depth (initarg) 435
:decimal-places (initarg) 261
:default-text-style (initarg) 322
:default-view (initarg) 322
:disabled-commands (initarg) 188
:disarmed-callback (initarg) 246
:display-after-commands (option) 235
:display-function (option) 236
:display-string (option) 236
:display-time (option) 236
:drag-callback (initarg) 259, 261
:draw (option) 237
:editable-p (initarg) 263
:end-of-line-action (initarg) 322
:end-of-line-action (option) 237
:end-of-page-action (initarg) 322
:end-of-page-action (option) 237
:equalize-column-widths (initarg) 429
:foreground (initarg) 322
:foreground (option) 223
:generation-separation (initarg) 435
:hash-table (initarg) 435
<Bold>532CLIM User Guide

:height (option) 225
:id (initarg) 246
:incremental-redisplay (option) 236
:indicator-type (initarg) 264
:initial-spacing (initarg) 433
:ink (option) 71
:input-buffer (initarg) 364
:items (initarg) 253, 254
:key-name (initarg) 458
:label (initarg) 250
:line-cap-shape (option) 76
:line-dashes (option) 76
:line-joint-shape (option) 75
:line-style (option) 72
:line-thickness (option) 75
:line-unit (option) 75
:max-height (initarg) 434
:max-height (option) 225
:max-value (initarg) 251
:max-width (initarg) 434
:max-width (option) 225
:menu-bar (initarg) 189
:merge-duplicates (initarg) 435
:min-height (initarg) 432
:min-height (option) 225
:min-value (initarg) 251
:min-width (initarg) 432
:min-width (option) 225
:mode (initarg) 253
:modifier (initarg) 124
:modifier-state (initarg) 457
:motif (server-path) 477
:multiple-columns-x-spacing (initarg) 429
:name (initarg) 188
:name (option) 223
:name-key (initarg) 253, 254
:n-columns (initarg) 434
:ncolumns (initarg) 263
:nlines (initarg) 263
:n-rows (initarg) 434
:number-of-quanta (initarg) 262
:number-of-tick-marks (initarg) 262
:object (initarg) 124
:orientation (initarg) 249, 435
:output-record (option) 237
:panes (initarg) 189
:parent (initarg) 338

:pointer (initarg) 364, 458
:port (initarg) 372
:pretty-name (initarg) 188
:properties (initarg) 189
:record (option) 237
:region (initarg) 461
:scroll-down-line-callback (initarg) 259
:scroll-down-page-callback (initarg) 259
:scroll-to-bottom-callback (initarg) 259
:scroll-to-top-callback (initarg) 259
:scroll-up-line-callback (initarg) 259
:scroll-up-page-callback (initarg) 259
:sheet (initarg) 325, 457
:show-as-default (initarg) 255
:show-value-p (initarg) 261
:single-box (initarg) 124
:size (initarg) 338
:spacing (option) 226
:state (initarg) 189
:test (initarg) 253, 254
:text-cursor (initarg) 364
:text-face (option) 97
:text-family (option) 96
:text-margin (initarg) 322
:text-margin (option) 236
:text-size (option) 97
:text-style (option) 73, 223
:timestamp (initarg) 457
:transformation (option) 72
:type (initarg) 124
:value (initarg) 248
:value-changed-callback (initarg) 248
:value-key (initarg) 253, 254
:vertical-spacing (initarg) 322
:vertical-spacing (option) 236
:view (initarg) 124
:width (option) 225
:win32 (server-path) 477
:within-generation-separation (initarg) 435
:x (initarg) 459
:x-position (initarg) 338
:x-spacing (initarg) 429, 433
:x-spacing (option) 226
:y (initarg) 459
:y-position (initarg) 338
:y-spacing (initarg) 429, 433
:y-spacing (option) 226
<Bold>533

A
abbreviations

pane 190
presentation type

operators for 156
abort-gesture (condition) 368
abort-gesture-event (generic function) 368
abort-gestures (variable) 368
abstract gadget classes 252
abstract gadgets 241
abstract panes 220
accelerator-gesture (condition) 368
accelerator-gesture-event (generic function) 368
accelerator-gesture-numeric-argument (generic

function) 369
accelerator-gestures (variable) 368
accelerators, keystroke 293
accept (function) 127
accept (presentation method) 153
accept methods, errors and conditions in 390
accept-1 (function) 128
accept-from-string (function) 129
accepting-values (macro) 306
accept-present-default (presentation method) 155
accept-values (application frame) 308
accept-values-command-button (macro) 309
accept-values-pane (command table) 278
accept-values-pane-displayer (function) 308
accept-values-resynchronize (generic function)

309
accessible (of commands) 276
accessing slots and components of application

frames 200
accessors for

application frames 203, 204
ellipses 58
polygons, polylines 50

action-gadget (class) 249
actions 268
:activate-callback (initarg) 249
activate-callback (callback) 249
activate-gadget (generic function) 247
activation gestures 388
activation-gesture-p (function) 388
activation-gestures (variable) 388
adaptive panes 220

adaptive toolkit 10
add-character-output-to-text-record (generic

function) 345
add-command-to-command-table (function) 277
add-gesture-name (function) 370
add-keystroke-to-command-table (function) 293
add-menu-item-to-command-table (function) 288
add-output-record (generic function) 342
add-pointer-gesture-name (function) 169
add-presentation-translator-to-command-table

(function) 291
add-string-output-to-text-record (generic func-

tion) 346
adjust-item-list-cells (generic function) 434
adjust-multiple-columns (generic function) 430
adjust-table-cells (generic function) 430
adopted frames 212
adopted sheets 444
adopt-frame (generic function) 215
affine transformations 79
:align-x (initarg) 250, 432
:align-x (option) 226
:align-y (initarg) 250, 432
:align-y (option) 226
allocate-pixmap (generic function) 34
allocate-resource (function) 510
allocate-space (generic function) 234
all-processes (function) 512
and (presentation type) 137
application frames 6, 184

accessing slots and components 200
accessors for 203, 204
defining 186
examples 201
initializing 197
interfacing with presentation types 216
operators for 203
protocol 188
template for 15
using :accept-values pane in 197

application objects, user interaction with 113
figure of 114

application-frame (variable) 188, 204
application-frame (protocol class) 188
application-frame-p (function) 188
application-pane (leaf pane) 238
applications
<Bold>534CLIM User Guide

exiting 201
quitting 201
running 200

operators 207
applications, building portable, figure of 5
apply-presentation-generic-function (macro) 162
arcs

circular 54
elliptical 54

constructors for 57
area (protocol class) 40
areap (function) 40
:armed-callback (initarg) 246
armed-callback (callback) 247
arrow 420
axes, x and y

figure of 21

B
:background (initarg) 322
:background (option) 223
background 104

ink 108
+background-ink+ (constant) 108
basic gadget classes 245
basic input streams 362
basic stream protocol 516
basic-gadget (class) 245
basic-medium (class) 464
basic-pane (class) 221
basic-port (class) 477
basic-sheet (class) 443
bboard-pane (composite pane) 228
beep (generic function) 331
binary streams 523
binding forms, text style 100
blank-area (presentation type) 131
boolean (presentation type) 131
bordered output 426

examples of 426
bounded regions 38
bounding rectangle protocol 62
bounding rectangles 59

figure of 60
bounding-rectangle (generic function) 62
bounding-rectangle (protocol class) 60

bounding-rectangle* (generic function) 62
bounding-rectangle-height (generic function) 64
bounding-rectangle-max-x (generic function) 63
bounding-rectangle-max-y (generic function) 64
bounding-rectangle-min-x (generic function) 63
bounding-rectangle-min-y (generic function) 63
bounding-rectangle-p (function) 61
bounding-rectangle-position (generic function) 63
bounding-rectangle-size (generic function) 64
bounding-rectangle-width (generic function) 64
buffered output 331
bury-sheet (generic function) 445
:button (initarg) 458

C
callbacks 240
:calling-frame (initarg) 189
call-presentation-menu (function) 179
call-presentation-translator (function) 179
cell formatting protocol 432
cell-align-x (generic function) 433
cell-align-y (generic function) 433
cell-min-height (generic function) 433
cell-min-width (generic function) 433
cell-output-record (protocol class) 432
cell-output-record-p (function) 432
:center-nodes (initarg) 435
change-space-requirements (generic function) 233
changing-space-requirements (macro) 233
character (presentation type) 132
characters

input streams 519
output streams 521

check-box (class) 257
check-box gadget 256
check-box-current-selection (generic function) 257
check-box-pane (class) 258
check-box-selections (generic function) 257
child sheets 440
child-containing-position (generic function) 450
children-overlapping-rectangle* (generic func-

tion) 450
children-overlapping-region (generic function)

450
circular arcs 54
classes
<Bold>535

basic sheet 443
CLIM events, figure of 456
extended stream pane 237
gadgets

abstract 252
basic 245

output records 343
panes

layout 226
repaint protocol 471
sheet genealogy 447
sheet geometry 450
sheet input protocol 454
sheet output protocol 467
stream 516
structure of regions, figure of 39

class-presentation-type-name (function) 142
clear-output-record (generic function) 342
clear-resource (function) 511
:client (initarg) 246
clients 241
clim-stream-pane (leaf pane) 237
:clipping-region (option) 72
close (generic function) 519
color (protocol class) 105
color-ihs (generic function) 107
colorp (function) 105
color-rgb (generic function) 107
colors 105

background
ink 108

concepts 104
examples of drawing in 109
foreground

ink 108
objects 105
operators 106
predefined names 108
rendering 105

column-output-record (protocol class) 431
column-output-record-p (function) 431
command

objects 272
command (presentation type) 139, 280
command line names 270
command line processors 292

input editing 292

command loops 13, 184, 282
command menus 287
command names 270
command processors 282, 296

input editor 282
command tables 268, 275, 285

conditions 279
predefined 278

command translators 13
command-accessible-in-command-table-p (func-

tion) 286
command-already-present (error condition) 279
command-argument-delimiters (variable) 297
command-arguments (function) 272
command-dispatchers (variable) 282, 284
command-enabled (generic function) 209

(setf command-enabled) (generic function)
209

command-line-command-parser (function) 296
command-line-command-unparser (function) 296
command-line-name-for-command (function)

286, 293
command-line-read-remaining-arguments-for-

partial-command (function) 296
command-menu-item-options (function) 290
command-menu-item-type (function) 290
command-menu-item-value (function) 290
command-menu-pane (leaf pane) 238
command-name (function) 272
command-name (presentation type) 139, 281
command-name-delimiters (variable) 297
command-not-accessible (error condition) 279
command-not-present (error condition) 279
command-or-form (presentation type) 139, 281
command-parser (variable) 297
command-present-in-command-table-p (function)

286
commands 268

accessible 276
defined 272
defining 269
input editor 385
present 275
presentation types for 280
processor 282, 296

:command-table (initarg) 188
command-table (protocol class) 276
<Bold>536CLIM User Guide

command-table-already-exists (error condition)
279

command-table-complete-input (function) 287
command-table-error (error condition) 279
command-table-inherit-from (generic function)

276
command-table-name (generic function) 276
command-table-not-found (error condition) 279
command-table-p (function) 276
command-unparser (variable) 297
complete-from-generator (function) 395
complete-from-possibilities (function) 396
complete-input (function) 393
completing-from-suggestions (macro) 396
completion (presentation type) 134
completion, string 393
completion-gestures (variable) 393
complex (presentation type) 132
compose-rotation-with-transformation (function)

86
compose-scaling-with-transformation (function)

86
compose-space (generic function) 234
compose-transformations (generic function) 85
compose-transformation-with-rotation (function)

86
compose-transformation-with-scaling (function)

86
compose-transformation-with-translation (func-

tion) 86
compose-translation-with-transformation (func-

tion) 86
composite panes 220
composition, region 42
compound drawing functions 30
constructors for

ellipses and elliptical arcs 57
polygons and polylines 49
transformations 80

:contents (option) 224
contrasting-dash-pattern-limit (generic function)

77
contrasting-inks-limit (generic function) 107
+control-key+ (constant) 462
coordinate (type) 40
coordinate system, local 22

figure of 22

coordinates 21
copy-area (generic function) 35
copy-from-pixmap (generic function) 35
copy-to-pixmap (generic function) 34
current-process (function) 512
:current-selection (initarg) 256, 257
cursor (protocol class) 325
cursorp (function) 325
cursor-position (generic function) 326

(setf* cursor-position) (generic function) 326
cursors

stream text
protocol 326

text
protocol 325

cursors, text 323
cursor-sheet (generic function) 325
cursor-visibility (generic function) 326

(setf cursor-visibility) (generic function) 326
:cutoff-depth (initarg) 435

D
DAG (directed acyclic graph) 418
deactivate-gadget (generic function) 247
deallocate-pixmap (generic function) 34
deallocate-resource (function) 511
:decimal-places (initarg) 261
default-describe-presentation-type (function) 142
default-frame-manager (variable) 214
default-frame-top-level (generic function) 208
default-server-path (variable) 478
default-text-style (variable) 94
:default-text-style (initarg) 322
:default-view (initarg) 322
defgeneric* (macro) 514
define-application-frame (macro) 186, 203
define-border-type (macro) 427
define-command (macro) 272
define-command-table (macro) 276
define-default-presentation-method (macro) 161
define-drag-and-drop-translator (macro) 173
define-gesture-name (macro) 370
define-graph-type (macro) 435
define-presentation-action (macro) 172
define-presentation-generic-function (macro) 161
define-presentation-method (macro) 152
<Bold>537

define-presentation-to-command-translator
(macro) 172, 271

define-presentation-translator (macro) 170
define-presentation-type (macro) 150
define-presentation-type-abbreviation (macro)

157
defining

application frames 186
commands 269
pane types 239
presentation methods 152
presentation translators 175

examples 175
operators for 170

presentation types
abbreviations, operators for 156
concepts 146
examples 148
operators for 150

defmethod* (macro) 514
defresource (macro) 509
degrafted sheets 444
delegate-sheet-delegate (generic function) 455

(setf delegate-sheet-delegate) (generic func-
tion) 455

delegate-sheet-input-mixin (class) 455
delete-gesture-name (function) 371
delete-output-record (generic function) 342
delimiter gestures 388
delimiter-gesture-p (function) 389
delimiter-gestures (variable) 389
derived bounding rectangles 59
describe-presentation-type (function) 139
describe-presentation-type (presentation method)

154
destroy-port (generic function) 479
destroy-process (function) 511
device events 456
device events, standard 456
device-event (class) 457
dialogs

concepts 300
examples 310
operators for 306

directed acyclic graphs 418
figure of 418

disable-command (function) 284

disabled frames 212
disabled sheets 444
:disabled-commands (initarg) 188
disable-frame (generic function) 215
:disarmed-callback (initarg) 246
disarmed-callback (callback) 247
disowned frames 212
disowned sheets 444
disown-frame (generic function) 215
dispatch-event (generic function) 453
:display-after-commands (option) 235
display-command-menu (generic function) 210,

288
display-command-table-menu (generic function)

287
display-cursor (generic function) 326
displayed-output-record (protocol class) 338
displayed-output-record-p (function) 338
display-exit-boxes (generic function) 308
:display-function (option) 236
:display-string (option) 236
:display-time (option) 236
distribute-event (generic function) 453
do-command-table-inheritance (macro) 285
document-presentation-translator (function) 179
:drag-callback (initarg) 259, 261
drag-callback (callback) 260, 261
dragging-output (macro) 378
drag-output-record (generic function) 377
:draw (option) 237
draw-arrow (function) 30
draw-arrow* (function) 30
draw-circle (function) 29
draw-circle* (function) 29
draw-ellipse (function) 28
draw-ellipse* (function) 28
drawing functions 24

compound 30
examples 23
figure of 23
general behavior of 36
medium-specific 37
spread version 46

drawing options, using 70
drawing plane 20

figure of 20
draw-line (function) 25
<Bold>538CLIM User Guide

draw-line* (function) 25
draw-lines (function) 26
draw-lines* (function) 26
draw-oval (function) 31
draw-oval* (function) 31
draw-pattern* (function) 32
draw-point (function) 24
draw-point* (function) 25
draw-points (function) 25
draw-points* (function) 25
draw-polygon (function) 26
draw-polygon* (function) 26
draw-rectangle (function) 27
draw-rectangle* (function) 27
draw-rectangles (function) 27
draw-rectangles* (function) 27
draw-standard-menu (function) 304
draw-text (function) 29
draw-text* (function) 29

E
:editable-p (initarg) 263
editing, input 382
ellipse

bounding parallelogram, table of 55
ellipse (protocol class) 56
ellipse-center-point (generic function) 58
ellipse-center-point* (generic function) 58
ellipse-end-angle (generic function) 59
ellipsep (function) 56
ellipse-radii (generic function) 58
ellipses 54

accessors for 58
as specified by parallelograms, figure of 55
constructors for 57

ellipse-start-angle (generic function) 59
elliptical arcs 54

constructors for 57
elliptical-arc (protocol class) 56
elliptical-arc-p (function) 56
enable-command (function) 284
enabled frames 212
enabled sheets 444
enable-frame (generic function) 215
:end-of-line-action (initarg) 322
:end-of-line-action (option) 237

:end-of-page-action (initarg) 322
:end-of-page-action (option) 237
:equalize-column-widths (initarg) 429
erase-input-buffer (generic function) 402
erase-output-record (generic function) 341
even-scaling-transformation-p (generic function)

85
event (protocol class) 456
event classes, figure of 456
event-listen (generic function) 454
event-modifier-state (generic function) 458
eventp (function) 457
event-peek (generic function) 454
event-read (generic function) 453
event-read-no-hang (generic function) 454
events 9, 456

client 452
defined 168
dispatching 452
distributing 452
keyboard 452
pointer 452
standard device 456

event-sheet (generic function) 457
event-timestamp (generic function) 457
event-type (generic function) 457
event-unread (generic function) 454
+everywhere+ (constant) 41
execute-frame-command (generic function) 209,

283
exiting an application 201
expand-presentation-type-abbreviation (function)

158
expand-presentation-type-abbreviation-1 (func-

tion) 158
expression (presentation type) 138
extended input streams 363

conditions 368
protocol 364

extended output streams 321
extended stream panes 184, 220, 234

classes 237
making 238
options 234

extended stream protocol 516
extended-input-stream (protocol class) 363
extended-input-stream-p (function) 363
<Bold>539

extended-output-stream (protocol class) 322
extended-output-stream-p (function) 322

F
+fill+ (constant) 225
filled-in areas 73
filling-output (macro) 425
find-applicable-translators (function) 178
find-command-from-command-line-name (func-

tion) 286, 292
find-command-table (function) 277
find-frame-manager (function) 213
find-graft (function) 480
find-innermost-applicable-presentation (function)

180
find-keystroke-item (function) 294
find-menu-item (function) 290
find-pane-for-frame (generic function) 216
find-pane-named (generic function) 206
find-port (function) 477
find-presentation-translator (function) 292
find-presentation-translators (function) 177
find-presentation-type-class (function) 142
flipping ink 109

example 111
+flipping-ink+ (constant) 109
float (presentation type) 132
:foreground (initarg) 322
:foreground (option) 223
foreground 104

ink 108
+foreground-ink+ (constant) 108
form (presentation type) 138
format-graph-from-roots (function) 419
format-items (function) 410
format-textual-list (function) 410, 424
formatting

cells
protocol 432

graphs 418
concepts 418
examples 422
operators for 419
protocol 434

item lists 405
protocol 433

protocols for tables, item lists, and graphs 428
rows and columns

protocol 431
tables 404

calendar month example, figure of 414
examples 411
figure of 415, 417
from a list, figure of 412
operators for 405
output records of, figure of 337
protocol 429

text 424
formatting-cell (macro) 408
formatting-column (macro) 407
formatting-item-list (macro) 408
formatting-row (macro) 407
formatting-table (macro) 405
frame managers 10, 184, 212

finding 213
layout protocol 230
operators 214

frame-calling-frame (generic function) 206
frame-command-table (generic function) 204

(setf frame-command-table) (generic func-
tion) 204

frame-current-layout (generic function) 207
(setf frame-current-layout) (generic function)

207
frame-current-panes (generic function) 206
frame-document-highlighted-presentation (gener-

ic function) 217
frame-drag-and-drop-feedback (generic function)

218
frame-drag-and-drop-highlighting (generic func-

tion) 218
frame-error-output (generic function) 205
frame-exit (generic function) 210
frame-exit (restart) 210
frame-find-innermost-applicable-presentation

(generic function) 217
frame-input-context-button-press-handler (ge-

neric function) 217
frame-maintain-presentation-histories (generic

function) 217
frame-manager (generic function) 214

(setf frame-manager) (generic function) 214
frame-manager (protocol class) 212
<Bold>540CLIM User Guide

frame-manager-dialog-view(generic function) 310
frame-manager-frames (generic function) 215
frame-manager-menu-choose (generic function)

303
frame-manager-menu-view(generic function) 303
frame-manager-notify-user (generic function) 211
frame-manager-p (function) 213
frame-name (generic function) 204
frame-panes (generic function) 206
frame-parent (generic function) 206
frame-pointer-documentation-output (generic

function) 205
frame-pretty-name (generic function) 204

(setf frame-pretty-name) (generic function)
204

frame-properties (generic function) 212
(setf frame-properties) (generic function) 212

frame-query-io (generic function) 205
frame-replay (generic function) 211
frames 6, 184

adopted 212
application 6, 184

accessing slots and components 200
accessors for 203, 204
defining 186
examples 201
initializing 197
operators for 203
protocol 188

disabled 212
disowned 212
enabled 212
shrunk 212

frame-standard-input (generic function) 204
frame-standard-output (generic function) 205
frame-state (generic function) 215
frame-top-level-sheet (generic function) 207
funcall-presentation-generic-function (macro)

161
functions

composite pane 229
drawing 24

compound 30
examples 23
figure of 23
general behavior of 36
medium-specific 37

spread versions of 46
low-level, for presentation translators 177
mirrored sheet 483
mirrors 483
presentation type 139
repaint protocol 470
sheet geometry 448
sheet input protocol 452
sheet output protocol 467
stream 518
text style 97
transformation 85
window stream pane 332

fundamental-binary-input-stream (class) 518
fundamental-binary-output-stream (class) 518
fundamental-binary-stream (class) 517
fundamental-character-input-stream (class) 517
fundamental-character-output-stream (class) 518
fundamental-character-stream (class) 517
fundamental-input-stream (class) 517
fundamental-output-stream (class) 517
fundamental-stream (class) 517

G
gadget (protocol class) 245
gadget id 242
gadget-activate-callback (generic function) 249
gadget-active-p (generic function) 247
gadget-armed-callback (generic function) 246
gadget-client (generic function) 246

(setf gadget-client) (generic function) 246
+gadget-dialog-view+ (constant) 160
gadget-dialog-view (class) 160
gadget-disarmed-callback (generic function) 246
gadget-id (generic function) 246

(setf gadget-id) (generic function) 246
gadget-label (generic function) 250

(setf gadget-label) (generic function) 250
gadget-label-align-x (generic function) 250

(setf gadget-label-align-x) (generic function)
250

gadget-label-align-y (generic function) 250
(setf gadget-label-align-y) (generic function)

251
gadget-label-text-style (generic function) 251

(setf gadget-label-text-style) (generic func-
<Bold>541

tion) 251
gadget-max-value (generic function) 251

(setf gadget-max-value) (generic function)
251

+gadget-menu-view+ (constant) 160
gadget-menu-view (class) 160
gadget-min-value (generic function) 251

(setf gadget-min-value) (generic function) 251
gadget-orientation (generic function) 250
gadget-output-record (class) 265
gadgetp (function) 245
gadget-range (generic function) 252
gadget-range* (generic function) 252
gadgets 240

abstract 241
abstract classes 252
basic classes 245
check-box 256
client 241
id 242
implementing 243
integrating with output records 264
label 252
list-pane 253
menu-button 255
option-pane 253
panes 184
push-button 255
radio-box 256
scroll-bar 258
slider 261
text-editor 262
text-field 262
toggle-button 263
using 241

gadget-show-value-p (generic function) 262
gadget-value (generic function) 248, 254, 257,

261, 262, 263, 264
(setf gadget-value) (generic function) 248

gadget-value (generic function) 263
gadget-value-changed-callback (generic function)

248
generate-graph-nodes (generic function) 435
generate-panes (generic function) 216
:generation-separation (initarg) 435
generic-list-pane (class) 254
generic-option-pane (class) 254

geometric objects 38
geometry, sheet 448

functions 448
notifications 472

geometry, sheet classes 450
gesture names 168, 369

standard 371
gestures 369

activation 388
defined 168
delimiter 388
keyboard 369
pointer 168, 369

get-frame-pane (generic function) 206
global-command-table (command table) 278
graft (generic function) 481
grafted sheets 444
graft-height (generic function) 481
graft-orientation (generic function) 481
graft-pixels-per-inch (function) 482
graft-pixels-per-millimeter (function) 482
grafts 8, 440, 480
graft-units (generic function) 481
graft-width (generic function) 481
graphics

mixing with text 329
output recording 349
output records 344
protocols 36

graphics-displayed-output-record (protocol class)
344

graphics-displayed-output-record-p (function)
344

graph-node-children (generic function) 437
(setf graph-node-children) (generic function)

437
graph-node-object (generic function) 437
graph-node-output-record (protocol class) 436
graph-node-output-record-p (function) 436
graph-node-parents (generic function) 437

(setf graph-node-parents) (generic function)
437

graph-output-record (protocol class) 434
graph-output-record-p (function) 435
graph-root-nodes (generic function) 435

(setf graph-root-nodes) (generic function) 435
graphs
<Bold>542CLIM User Guide

acyclic 418
directed 418
directed acyclic 418

figure of 418
formatting 418

concepts 418
examples 422
operators for 419
protocol 434

horizontal
figure of 422

vertical
figure of 423

H
handle-event (generic function) 453
handle-repaint (generic function) 470
hardcopy streams 523
:hash-table (initarg) 435
hbox-pane (composite pane) 226
:height (option) 225
help-gestures (variable) 393
hierarchies of interactive regions 440
highlight-applicable-presentation (function) 181
highlight-output-record (generic function) 341
highlight-presentation (presentation method) 156
horizontally (macro) 226
hrack-pane (composite pane) 228
+hyper-key+ (constant) 462

I
:id (initarg) 246
+identity-transformation+ (constant) 83
identity-transformation-p (generic function) 84
immediate-repainting-mixin (class) 471
immediate-rescan (generic function) 401
immediate-sheet-input-mixin (class) 454
implementing gadgets 243
incremental redisplay

concepts 354
defined 354
example 359
operators for 355
using updating-output 357

:incremental-redisplay (option) 236
indenting-output (macro) 424
:indicator-type (initarg) 264
indirect inks 108
inheritance (in presentation types) 116, 147
initializing application frames 197
:initial-spacing (initarg) 433
:ink (option) 71
inks

background 108
flipping 109

example 111
foreground 108
indirect 108

input
accepting, operators for 125
by means of gadgets 124
contexts 167

nested 167
from users 124
operators 125
sheet protocol classes 454
sheet protocol functions 452
sheet protocols 452
standard 204, 237

input buffers, reading and writing tokens in 391
input contexts 12, 115, 125
input editing 292, 382
input editing stream protocol 400
input editor commands 385

table of 386
input editors 282
input of presentation types 124
input streams

basic 362
character 519
editing 382
extended 363

conditions 368
protocol 364

:input-buffer (initarg) 364
input-context (variable) 125
input-editing-stream (protocol class) 384
input-editing-stream-p (function) 384
input-not-of-required-type (condition) 390
input-not-of-required-type (function) 390
input-stream-p (generic function) 517
<Bold>543

input-wait-handler (variable) 366
input-wait-test (variable) 366
integer (presentation type) 132
integrating gadgets and output records 264
interacting via

command line 292
command menus 287
keystroke accelerators 293
translators 291

interaction styles 280
command line 292
command menus 287
keystroke accelerators 293
mouse 291

interactive regions, hierarchies of 440
interactive-stream-p (generic function) 384
interactor-pane (leaf pane) 237
invalidate-cached-regions (generic function) 485
invalidate-cached-transformations (generic func-

tion) 485
invertible-transformation-p (generic function) 84
invert-transformation (generic function) 85
invoke-accept-values-command-button (generic

function) 309
invoke-updating-output (generic function) 355
invoke-with-drawing-options (generic function) 71
invoke-with-new-output-record (generic function)

352
invoke-with-output-recording-options (generic

function) 351
invoke-with-output-to-output-record (generic

function) 353
invoke-with-text-style (generic function) 100
item lists

formatting protocol 433
item-list-output-record (protocol class) 433
item-list-output-record-p (function) 433
:items (initarg) 253, 254

K
keyboard events 452
keyboard gestures 369
keyboard-event (class) 458
keyboard-event-character (generic function) 458
keyboard-event-key-name (generic function) 458
key-modifier-state-match-p (macro) 462

:key-name (initarg) 458
key-press-event (class) 458
key-release-event (class) 458
keystroke accelerators 293

table of 386
keyword (presentation type) 131

L
:label (initarg) 250
label gadgets 252
labelled-gadget-mixin (class) 250
labelling (macro) 252
label-pane (leaf pane) 252
layering CLIM over the host system, figure of 5
layout panes 184, 224

classes 226
options 224

layout, protocol 230
layout-frame (generic function) 207
layout-graph-edges (generic function) 436
layout-graph-nodes (generic function) 436
leaf panes 220

defining 239
line (protocol class) 50
line protocol 51
line styles 74

options 74
line wrapping (text) 329
:line-cap-shape (option) 76
:line-dashes (option) 76
line-end-point (generic function) 52
line-end-point* (generic function) 51
:line-joint-shape (option) 75
linep (function) 51
lines 47, 50

cap shapes, figure of 76
joint shapes, figure of 76

line-start-point (generic function) 52
line-start-point* (generic function) 51
:line-style (option) 72
line-style (protocol class) 74
line-style-cap-shape (generic function) 76
line-style-dashes (generic function) 76
line-style-joint-shape (generic function) 75
line-style-p (function) 74
line-style-thickness (generic function) 75
<Bold>544CLIM User Guide

line-style-unit (generic function) 75
:line-thickness (option) 75
:line-unit (option) 75
list-pane (class) 253
list-pane gadgets 253
local coordinate system 22

figure of 22
lookup-keystroke-command-item (function) 295
lookup-keystroke-item (function) 295

M
make-3-point-transformation (function) 82
make-3-point-transformation* (function) 82
make-application-frame (function) 187, 203
make-bounding-rectangle (function) 61
make-clim-application-pane (function) 239
make-clim-interactor-pane (function) 239
make-clim-stream-pane (function) 238
make-command-table (function) 277
make-contrasting-dash-patterns (function) 77
make-contrasting-inks (function) 106
make-design-from-output-record (generic func-

tion) 353
make-device-font-text-style (function) 102
make-ellipse (function) 57
make-ellipse* (function) 57
make-elliptical-arc (function) 57
make-elliptical-arc* (function) 57
make-flipping-ink (function) 109
make-gray-color (function) 106
make-ihs-color (function) 106
make-line (function) 51
make-line* (function) 51
make-line-style (function) 74
make-lock (function) 513
make-pane (function) 222
make-pane-1 (generic function) 222
make-pattern (function) 31
make-point (function) 47
make-polygon (function) 49
make-polygon* (function) 49
make-polyline (function) 49
make-polyline* (function) 49
make-presentation-type-specifier (function) 143,

158
make-process (function) 511

make-rectangle (function) 53
make-rectangle* (function) 53
make-rectangular-tile (function) 32
make-recursive-lock (function) 513
make-reflection-transformation (function) 81
make-reflection-transformation* (function) 81
make-rgb-color (function) 106
make-rotation-transformation (function) 80
make-rotation-transformation* (function) 80
make-scaling-transformation (function) 81
make-scaling-transformation* (function) 81
make-space-requirement (function) 231
make-text-style (function) 96
make-transformation (function) 82
make-translation-transformation (function) 80
managers, frame 10, 184, 212

finding 213
layout protocol 230
operators for 214

map-over-column-cells (generic function) 432
map-over-command-table-commands (function)

285
map-over-command-table-keystrokes (function)

294
map-over-command-table-menu-items (function)

290
map-over-command-table-names (function) 285,

293
map-over-command-table-translators (function)

292
map-over-grafts (function) 481
map-over-item-list-cells (generic function) 434
map-over-output-records-containing-position

(generic function) 343
map-over-output-records-overlapping-region

(generic function) 343
map-over-polygon-coordinates (generic function)

50
map-over-polygon-segments (generic function) 50
map-over-ports (function) 479
map-over-presentation-type-supertypes (func-

tion) 142
map-over-presentation-type-supertypes (presen-

tation method) 155
map-over-region-set-regions (generic function) 44
map-over-row-cells (generic function) 431
map-over-table-elements (generic function) 430
<Bold>545

mappings
text style 101

map-resource (function) 511
map-sheet-position-to-child (generic function) 449
map-sheet-position-to-parent (generic function)

449
map-sheet-rectangle*-to-child (generic function)

449
map-sheet-rectangle*-to-parent (generic function)

449
matching (presentation translators) 166
:max-height (initarg) 434
:max-height (option) 225
:max-value (initarg) 251
:max-width (initarg) 434
:max-width (option) 225
medium (protocol class) 464
medium-background (generic function) 67, 465

(setf medium-background) (generic function)
67, 465

medium-buffering-output-p (generic function) 332
(setf medium-buffering-output-p) (generic

function) 332
medium-clipping-region (generic function) 68, 466

(setf medium-clipping-region) (generic func-
tion) 68, 466

medium-current-text-style (generic function) 69
medium-default-text-style (generic function) 69,

467
(setf medium-default-text-style) (generic

function) 69, 467
medium-draw-ellipse* (generic function) 38
medium-draw-line* (generic function) 37
medium-draw-lines* (generic function) 37
medium-draw-point* (generic function) 37
medium-draw-points* (generic function) 37
medium-draw-polygon* (generic function) 37
medium-draw-rectangle* (generic function) 37
medium-draw-text* (generic function) 38
medium-foreground (generic function) 67, 465

(setf medium-foreground) (generic function)
67, 465

medium-ink (generic function) 67, 465
(setf medium-ink) (generic function) 67, 465

medium-line-style (generic function) 68, 466
(setf medium-line-style) (generic function) 68,

466

medium-merged-text-style (generic function) 467
mediump (function) 464
mediums 9, 22, 94, 464

associating with a sheet 468
components 66
defined 66

medium-text-style (generic function) 69, 466
(setf medium-text-style) (generic function) 69,

467
medium-transformation (generic function) 68, 465

(setf medium-transformation) (generic func-
tion) 68, 465

member (presentation type abbreviation) 135
member-alist (presentation type abbreviation) 135
member-sequence (presentation type abbreviation)

135
:menu-bar (initarg) 189
menu-button (class) 255
menu-button gadgets 255
menu-button-pane (class) 255
menu-choose (generic function) 300
menu-choose-command-from-command-table

(function) 288
menu-choose-from-drawer (generic function) 303
menu-command-parser (function) 296
menu-item-display (function) 305
menu-item-options (function) 305
menu-item-value (function) 305
menu-read-remaining-arguments-for-partial-

command (function) 296
menus

concepts 300
examples 310

:merge-duplicates (initarg) 435
merge-text-styles (generic function) 97
+meta-key+ (constant) 462
methods

presentation 152
Microsoft Windows

themes 11
:min-height (initarg) 432
:min-height (option) 225
:min-value (initarg) 251
:min-width (initarg) 432
:min-width (option) 225
mirrored sheets 483
mirrors 483
<Bold>546CLIM User Guide

functions 483
:mode (initarg) 253
:modifier (initarg) 124
:modifier-state (initarg) 457
:motif (server-path) 477
move-and-resize-sheet (generic function) 449
move-sheet (generic function) 448
:multiple-columns-x-spacing (initarg) 429
multiple-value setf 514
multi-processing 511
mute-repainting-mixin (class) 471
mute-sheet-input-mixin (class) 455
mute-sheet-output-mixin (class) 468

N
:name (initarg) 188
:name (option) 223
:name-key (initarg) 253, 254
:n-columns (initarg) 434
:ncolumns (initarg) 263
nested input context 167
nested presentations 168
nil (presentation type) 130
:nlines (initarg) 263
note-command-disabled (generic function) 216
note-command-enabled (generic function) 216
note-frame-state-changed (generic function) 216
note-gadget-activated (generic function) 247
note-gadget-deactivated (generic function) 247
note-sheet-adopted (generic function) 472
note-sheet-degrafted (generic function) 472
note-sheet-disabled (generic function) 472
note-sheet-disowned (generic function) 472
note-sheet-enabled (generic function) 472
note-sheet-grafted (generic function) 472
note-sheet-region-changed (generic function) 472
note-sheet-transformation-changed (generic func-

tion) 472
note-space-requirements-changed (generic func-

tion) 233
notify-user (generic function) 211
+nowhere+ (constant) 41
:n-rows (initarg) 434
null (presentation type) 131
null-or-type (presentation type abbreviation) 138
null-presentation (variable) 131

number (presentation type) 131
:number-of-quanta (initarg) 262
:number-of-tick-marks (initarg) 262
numeric-argument-marker (variable) 297

O
:object (initarg) 124
objects

application 113
figure of 114

color 105
command 272
controlling sensitivity 164
geometric 38
inheritance in presentation types 116, 147
line style 74
point 46
text style 95

open-stream-p (generic function) 518
open-window-stream (function) 527
operators for

application frames 203
defining presentation translators 170
defining presentation types 150
dialogs 306
drawing in color 106
formatting graphs 419
formatting tables 405
frame managers 214
incremental redisplay 355
input 125
output 120
output recording 337
pointer gestures 169
presentation type abbreviations 156
presentation types 139
primitive window layer 527
running applications 207
viewport and scrolling in windows 526
views of presentation types 159

option-pane (class) 254
option-pane gadgets 253
options

application frames
:layouts 190
<Bold>547

example 192

figure of 193, 194, 196
:pane 189

example 192
:panes 190

example 192
drawing

using 70
extended stream pane 234
layout panes 224
line style 74
pane initialization 222
text style 96

or (presentation type) 137
:orientation (initarg) 249, 435
oriented-gadget-mixin (class) 249
origin 21
outlined-pane (composite pane) 228
outlining (macro) 228
output

bordered 426
examples of 426

buffered 331
character streams 521
flushing 331
sheet properrties 464
sheet protocol classes 467
sheet protocol functions 467
sheet protocols 464
standard 205, 238
with attached semantics 115

output operators 120
output recording

concepts 336
graphics 349
operators for 337
protocol 339
text 349
utilities 350

output recording streams 347
protocol 347

output records 108, 336
bounding rectangle of, figure of 60
classes 343
graphics-displayed 344
history 336

integrating with gadgets 264
presentations 337
protocol

database 342
replaying 108
text-displayed 345
top-level 346
tree structure of, figure of 336

output streams
basic 320
extended 321

:output-record (option) 237
output-record (protocol class) 338
output-record-children (generic function) 342
output-record-count (generic function) 343
output-record-end-cursor-position (generic func-

tion) 340
(setf* output-record-end-cursor-position)

(generic function) 340
output-recording-stream (protocol class) 347
output-recording-stream-p (function) 347
output-record-p (function) 338
output-record-parent (generic function) 340
output-record-position (generic function) 339

(setf* output-record-position) (generic func-
tion) 339

output-record-refined-sensitivity-test (generic
function) 341

output-record-start-cursor-position (generic func-
tion) 339

(setf* output-start-cursor-position) (generic
function) 340

output-stream-p (generic function) 517

P
packages, user 507
pane (protocol class) 221
pane hierarchy 230
pane-background (generic function) 223
pane-foreground (generic function) 223
pane-frame (generic function) 223
pane-name (generic function) 223
pane-needs-redisplay (generic function) 210
panep (function) 221
:panes (initarg) 189
panes 6, 184, 220
<Bold>548CLIM User Guide

abbreviation 190
abstract 220
adaptive 220
composite 220

functions 229
constructing 221
defining 239

example 239
extended stream 184, 220, 234

classes 237
making 238
options 234

gadget 184
hierarchy 230
initialization options 222
layout 184, 224, 226
leaf 220
properties of 223
space allocation 230
space composition 230
space requirement 230
using :accept-values in application frames 197
window 332

stream, functions 332
pane-scroller (generic function) 229
panes-need-redisplay (generic function) 210
pane-viewport (generic function) 229
pane-viewport-region (generic function) 229
:parent (initarg) 338
parent sheets 440
parse-error (condition) 390
parse-error (function) 390
parse-text-style (generic function) 97
partial-command-p (function) 272
partial-command-parser (variable) 297
path (protocol class) 39
pathname (presentation type) 133
pathp (function) 40
patterns 31
permanent-medium-sheet-output-mixin (class)

468
pixmap-depth (generic function) 34
pixmap-height (generic function) 34
pixmaps 33
pixmap-width (generic function) 34
plane, drawing 20
plist 316

point
coordinates 21

point (protocol class) 46
:pointer (initarg) 364, 458
pointer

documentation 170, 190
events 452
gestures 168, 369

operators for 169
protocol 372
tracking 373

pointer (protocol class) 372
pointer-button-click-and-hold-event (class) 460
pointer-button-click-event (class) 460
pointer-button-double-click-event (class) 460
pointer-button-event (class) 460
pointer-button-hold-event (class) 460
pointer-button-press-event (class) 460
pointer-button-press-handler (variable) 366
pointer-button-release-event (class) 460
pointer-button-state (generic function) 373
pointer-cursor (generic function) 373

(setf pointer-cursor) (generic function) 373
pointer-documentation-output (variable) 205
pointer-documentation-pane (leaf-pane) 238
+pointer-documentation-view+ (constant) 160
pointer-documentation-view (class) 160
pointer-enter-event (class) 460
pointer-event (class) 458
pointer-event-button (generic function) 459
pointer-event-native-x (generic function) 459
pointer-event-native-y (generic function) 459
pointer-event-pointer (generic function) 459
pointer-event-shift-mask (generic function) 460
pointer-event-x (generic function) 459
pointer-event-y (generic function) 459
pointer-exit-event (class) 460
pointer-input-rectangle (function) 380
pointer-input-rectangle* (function) 379
+pointer-left-button+ (constant) 462
+pointer-middle-button+ (constant) 462
pointer-motion-event (class) 460
pointerp (function) 372
pointer-place-rubber-band-line* (function) 379
pointer-port (generic function) 372
pointer-position (generic function) 373

(setf* pointer-position) (generic function) 373
<Bold>549

+pointer-right-button+ (constant) 462
pointer-sheet (generic function) 372

(setf pointer-sheet) (generic function) 373
pointp (function) 47
point-position (generic function) 47
points 46

objects 46
protocol 47

point-x (generic function) 47
point-y (generic function) 47
polygon (class) 48
polygonp (function) 48
polygon-points (generic function) 50
polygons 48

accessors for 50
constructors for 49

polyline (protocol class) 48
polyline-closed (generic function) 50
polylinep (function) 48
polylines 47

accessors for 50
closed 48
constructors for 49

:port (initarg) 372
port (generic function) 478
port (protocol class) 477
port-keyboard-input-focus (generic function) 453

(setf port-keyboard-input-focus) (generic
function) 453

portp (function) 477
port-properties (generic function) 478

(setf port-properties) (generic function) 478
ports 8, 440, 477
port-server-path (generic function) 478
possibilities-gestures (variable) 393
predicates

region 41
transformation 84

present (function) 121
present (of commands) 275
present (presentation method) 154
presentation (protocol class) 122
presentation methods 152
presentation translators 13, 116, 125, 176, 291

applicability 166
concepts 164
defining

examples 175
operators for 170

low-level functions 177
matching 166
using, figure of 14

presentation type specifiers 117
presentation types 12, 115

abbreviations, operators for defining 156
basic 130
character 132
command 138, 280
compound 137
concepts 113
constructor 137
defining 146

examples 148
operators for 150

form 138
functions 139
inheritance 116, 119, 147
input 124
interfacing application frames with 216
numeric 131
one-of 133

table of 16, 134
operators for 139
output 119
pathname 133
predefined 130
sequence 136
some-of 133

table of 16, 134
specifying 117
string 132
views for 159
views, operators for 159

presentation-default-preprocessor (presentation
method) 160

presentation-matches-context-type (function) 179
presentation-modifier (generic function) 124
presentation-object (generic function) 123

(setf presentation-object) (generic function)
123

presentationp (function) 122
presentation-refined-position-test (presentation

method) 156
presentation-replace-input (generic function) 391
<Bold>550CLIM User Guide

presentations 12, 114, 337
finding applicable 180
nested 168
sensitive 164

presentation-single-box (generic function) 123
presentation-subtypep (function) 141
presentation-subtypep (presentation method) 155
presentation-type (generic function) 123

(setf presentation-type) (generic function) 123
presentation-type-direct-supertypes (function)

142
presentation-type-history (presentation method)

156
presentation-type-name (function) 140
presentation-type-of (function) 141
presentation-type-options (function) 140
presentation-typep (function) 140
presentation-typep (presentation method) 154
presentation-type-parameters (function) 140
presentation-type-specifier-p (function) 141
presentation-type-specifier-p (presentation meth-

od) 154
present-to-string (function) 122
:pretty-name (initarg) 188
print-menu-item (function) 305
process-interrupt (function) 512
process-wait (function) 512
process-wait-with-timeout (function) 512
process-yield (function) 512
prompt-for-accept (generic function) 129
prompt-for-accept-1 (function) 130
:properties (initarg) 189
properties of panes 223
protocols

application frame 188
basic stream 516
bounding rectangle 62
cell formatting 432
extended input stream 364
extended stream 516
formatting

for tables, item lists, and graphs 428
item lists 433

graph formatting 434
graphics 36
input editing stream 400
layout 230

line 51
output record 339
output record database 342
output recording stream 347
point 47
pointer 372
rectangle 53
repaint 470
repaint classes 471
repaint functions 470
row and column formatting 431
sheet 441, 444
sheet input 452
sheet input classes 454
sheet input functions 452
sheet notification 472
sheet output 464
sheet output classes 467
sheet output functions 467
stream text cursor 326
table formatting 429
text 327
text cursor 325
transformation 83

push-button (class) 255
push-button gadgets 255
push-button-pane (class) 256
push-button-show-as-default (generic function)

256

Q
query identifier 306
queue-event (generic function) 453
queue-repaint (generic function) 470
queue-rescan (generic function) 401
quitting an application 201

R
radio-box (class) 256
radio-box gadgets 256
radio-box-current-selection (generic function) 256

(setf radio-box-current-selection) (generic
function) 256

radio-box-pane (class) 257
<Bold>551

radio-box-selections (generic function) 257
raise-sheet (generic function) 445
range-gadget-mixin (class) 251
ratio (presentation type) 132
rational (presentation type) 132
read-command (function) 282
read-command-using-keystrokes (function) 284
read-frame-command (generic function) 209, 283
read-gesture (function) 366
reading tokens 391
read-token (function) 391
realize-mirror (generic function) 484
:record (option) 237
rectangle (protocol class) 52
rectangle-edges* (generic function) 53
rectangle-height (generic function) 54
rectangle-max-point (generic function) 53
rectangle-max-x (generic function) 53
rectangle-max-y (generic function) 54
rectangle-min-point (generic function) 53
rectangle-min-x (generic function) 53
rectangle-min-y (generic function) 53
rectanglep (function) 52
rectangles 52

bounding 59
derived bounding 59
protocol 53

rectangle-size (generic function) 54
rectangle-width (generic function) 54
rectilinear-transformation-p (generic function) 85
redisplay (function) 356
redisplay, incremental

defined 354
example 359
operators for 355
using updating-output 357

redisplay-frame-pane (generic function) 210
redisplay-frame-panes (generic function) 211
redisplay-output-record (generic function) 357
redraw-input-buffer (generic function) 402
reflection 79
reflection-transformation-p (generic function) 84
reflection-underspecified (error condition) 83
:region (initarg) 461
region (protocol class) 39
region composition 42
region set 42

examples, figure of 46
normalization of rectangular, figure of 44

region-contains-position-p (generic function) 41
region-contains-region-p (generic function) 41
region-difference (generic function) 45
region-equal (generic function) 41
region-intersection (generic function) 45
region-intersects-region-p (generic function) 41
regionp (function) 39
regions 38

bounded 38
class structure of, figure of 39
examples, figure of 46
normalization 43

figure of 44
predicates 41
unbounded 38

region-set (protocol class) 42
region-set-p (function) 42
region-set-regions (generic function) 43
region-union (generic function) 44
remove-command-from-command-table (func-

tion) 278
remove-keystroke-from-command-table (func-

tion) 294
remove-menu-item-from-command-table (func-

tion) 289
remove-pointer-gesture-name (function) 169
remove-presentation-translator-from-command-

table (function) 291
rendering 20, 105

figure of 20
reorder-sheets (generic function) 446
repaint protocol 470

classes 471
functions 470

repaint-sheet (generic function) 470
replace-input (generic function) 391
replay (function) 340
replay-output-record (generic function) 341
rescan-if-necessary (generic function) 402
reset-scan-pointer (generic function) 401
resize-sheet (generic function) 449
resources 509
restart 210
restart-port (generic function) 479
restraining (macro) 229
<Bold>552CLIM User Guide

restraining-pane (composite pane) 229
rigid-transformation-p (generic function) 84
rotation 79
row-output-record (protocol class) 431
row-output-record-p (function) 431
rows and columns, formatting protocol 431
run-frame-top-level (:around method) 208
run-frame-top-level (generic function) 208
running applications 200

operators for 207

S
scaling transformations 79
scaling-transformation-p (generic function) 85
scroll-bar (class) 258
scroll-bar gadgets 258
scroll-bar-drag-callback (generic function) 259
scroll-bar-pane (class) 261
scroll-bar-scroll-down-line-callback (generic

function) 259
scroll-bar-scroll-down-page-callback (generic

function) 259
scroll-bar-scroll-to-bottom-callback (generic

function) 259
scroll-bar-scroll-to-top-callback (generic function)

259
scroll-bar-scroll-up-line-callback (generic func-

tion) 259
scroll-bar-scroll-up-page-callback (generic func-

tion) 260
:scroll-down-line-callback (initarg) 259
scroll-down-line-callback (callback) 260
:scroll-down-page-callback (initarg) 259
scroll-down-page-callback (callback) 260
scroller-pane (composite pane) 228
scroll-extent (generic function) 229
scrolling 526
scrolling (macro) 228
:scroll-to-bottom-callback (initarg) 259
scroll-to-bottom-callback (callback) 260
:scroll-to-top-callback (initarg) 259
scroll-to-top-callback (callback) 260
:scroll-up-line-callback (initarg) 259
scroll-up-line-callback (callback) 260
:scroll-up-page-callback (initarg) 259
scroll-up-page-callback (callback) 260

sensitive 164
sensitivity, controlling 164
sequence (presentation type) 136
sequence-enumerated (presentation type) 137
server paths 477
set, region 42
set-application-themed (function) 11
(setf command-enabled) (generic function) 209
(setf cursor-visibility) (generic function) 326
(setf delegate-sheet-delegate) (generic function)

455
(setf frame-command-table) (generic function) 204
(setf frame-current-layout) (generic function) 207
(setf frame-manager) (generic function) 214
(setf frame-manager-dialog-view) (generic func-

tion) 310
(setf frame-manager-menu-view) (generic func-

tion) 303
(setf frame-pretty-name) (generic function) 204
(setf frame-properties) (generic function) 212
(setf gadget-client) (generic function) 246
(setf gadget-id) (generic function) 246
(setf gadget-label) (generic function) 250
(setf gadget-label-align-x) (generic function) 250
(setf gadget-label-align-y) (generic function) 251
(setf gadget-label-text-style) (generic function) 251
(setf gadget-max-value) (generic function) 251
(setf gadget-min-value) (generic function) 251
(setf gadget-value) (generic function) 248
(setf graph-node-children) (generic function) 437
(setf graph-node-parents) (generic function) 437
(setf graph-root-nodes) (generic function) 435
(setf medium-background) (generic function) 67,

465
(setf medium-buffering-output-p) (generic func-

tion) 332
(setf medium-clipping-region) (generic function)

68, 466
(setf medium-default-text-style) (generic function)

69, 467
(setf medium-foreground) (generic function) 67,

465
(setf medium-ink) (generic function) 67, 465
(setf medium-line-style) (generic function) 68, 466
(setf medium-text-style) (generic function) 467
(setf medium-transformation) (generic function)

68, 465
<Bold>553

(setf pointer-cursor) (generic function) 373
(setf pointer-sheet) (generic function) 373
(setf port-keyboard-input-focus) (generic func-

tion) 453
(setf port-properties) (generic function) 478
(setf presentation-object) (generic function) 123
(setf presentation-type) (generic function) 123
(setf radio-box-current-selection) (generic func-

tion) 256
(setf sheet-enabled-p) (generic function) 446
(setf sheet-region) (generic function) 448
(setf sheet-transformation) (generic function) 448
(setf space-requirement-height) (function) 232
(setf space-requirement-max-height) (function)

232
(setf space-requirement-max-width) (function)

231
(setf space-requirement-min-height) (function)

232
(setf space-requirement-min-width) (function)

231
(setf space-requirement-width) (function) 231
(setf stream-current-output-record) (generic func-

tion) 348
(setf stream-default-view) (generic function) 159
(setf stream-drawing-p) (generic function) 348
(setf stream-end-of-line-action) (generic function)

330
(setf stream-end-of-page-action) (generic function)

330
(setf stream-input-buffer) (generic function) 364
(setf stream-insertion-pointer) (generic function)

400
(setf stream-primary-pointer) (generic function)

365
(setf stream-recording-p) (generic function) 347
(setf stream-scan-pointer) (generic function) 401
(setf stream-text-cursor) (generic function) 326
(setf stream-text-margin) (generic function) 328
(setf text-style-mapping) (generic function) 101
(setf window-viewport-position) (generic function)

333
(setf* cursor-position) (generic function) 326
(setf* output-record-end-cursor-position) (gener-

ic function) 340
(setf* output-record-position) (generic function)

339

(setf* output-start-cursor-position) (generic func-
tion) 340

(setf* pointer-position) (generic function) 373
(setf* stream-cursor-position) (generic function)

327
(setf* stream-pointer-position) (generic function)

365
setf* defined 514
set-highlighted-presentation (function) 181
:sheet (initarg) 325, 457
sheet (protocol class) 443
sheet-adopt-child (generic function) 445
sheet-allocated-region (generic function) 450
sheet-ancestor-p (generic function) 445
sheet-children (generic function) 444
sheet-delta-transformation (generic function) 450
sheet-device-region (generic function) 485
sheet-device-transformation (generic function)

484
sheet-direct-mirror (generic function) 483
sheet-disown-child (generic function) 445
sheet-enabled-children (generic function) 445
sheet-enabled-p (generic function) 446

(setf sheet-enabled-p) (generic function) 446
sheet-grafted-p (generic function) 480
sheet-identity-transformation-mixin (class) 450
sheet-leaf-mixin (class) 447
sheet-medium (generic function) 469
sheet-mirror (generic function) 484
sheet-mirrored-ancestor (generic function) 483
sheet-multiple-child-mixin (class) 447
sheet-native-region (generic function) 484
sheet-native-transformation (generic function) 484
sheet-occluding-sheets (generic function) 446
sheetp (function) 443
sheet-parent (generic function) 444
sheet-parent-mixin (class) 447
sheet-region (generic function) 448
sheets 8, 23, 440

adopted 444
associating with a medium 468
basic classes 443
child 440
degrafted 444
disabled 444
disowned 444
enabled 444
<Bold>554CLIM User Guide

genealogy classes 447
geometry 448
geometry classes 450
geometry functions 448
geometry notifications 472
grafted 444
input protocol 452
input protocol classes 454
input protocol functions 452
mediums and output properties 464
mirrored 483

functions 483
mirrors

functions 483
notification protocol 472
output protocol 464
output protocol classes 467
output protocol functions 467
parent 440
properties of 441
protocol 441, 444
relationships between 444

sheet-siblings (generic function) 445
sheet-single-child-mixin (class) 447
sheet-transformation (generic function) 448

(setf sheet-transformation) (generic function)
448

sheet-transformation-mixin (class) 451
sheet-translation-mixin (class) 451
sheet-viewable-p (generic function) 446
sheet-y-inverting-transformation-mixin (class)

451
+shift-key+ (constant) 462
:show-as-default (initarg) 255
:show-value-p (initarg) 261
shrink-frame (generic function) 215
shrunk frames 212
simple-parse-error (condition) 390
simple-parse-error (function) 390
:single-box (initarg) 124
singular-transformation (error condition) 83
:size (initarg) 338
slider (class) 261
slider gadgets 261
slider-drag-callback (generic function) 261
slider-pane (class) 262
solid shapes 73

space
allocation 230
composition 230
requirement 230

space-requirement (protocol class) 231
space-requirement+ (function) 232
space-requirement+* (function) 232
space-requirement-combine (function) 232
space-requirement-components (generic function)

232
space-requirement-height (function) 231

(setf space-requirement-height) (function)
232

space-requirement-max-height (function) 232
(setf space-requirement-max-height) (func-

tion) 232
space-requirement-max-width (function) 231

(setf space-requirement-max-width) (func-
tion) 231

space-requirement-min-height (function) 232
(setf space-requirement-min-height) (func-

tion) 232
space-requirement-min-width (function) 231

(setf space-requirement-min-width) (func-
tion) 231

space-requirement-width (function) 231
(setf space-requirement-width) (function)

231
:spacing (option) 226
spacing (macro) 227
spacing-pane (composite pane) 227
specifiers, presentation type 117
spread versions of drawing functions 46
standard input 204, 237
standard output 205, 238
standard-activation-gestures (variable) 388
standard-application-frame (class) 189
standard-bounding-rectangle (class) 61
standard-cell-output-record (class) 433
standard-column-output-record (class) 432
standard-command-table (class) 276
standard-ellipse (class) 56
standard-elliptical-arc (class) 56
standard-extended-input-stream (class) 364
standard-extended-output-stream (class) 322
standard-graph-node-output-record (class) 436
standard-input-editing-stream (class) 384
<Bold>555

standard-input-stream (class) 362
standard-item-list-output-record (class) 434
standard-line (class) 51
standard-line-style (class) 74
standard-output-recording-stream (class) 347
standard-output-stream (class) 320
standard-point (class) 47
standard-pointer (class) 372
standard-polygon (class) 48
standard-polyline (class) 48
standard-presentation (class) 124
standard-rectangle (class) 52
standard-rectangle-set (class) 42
standard-region-difference (class) 42
standard-region-intersection (class) 42
standard-region-union (class) 42
standard-repainting-mixin (class) 471
standard-row-output-record (class) 431
standard-sequence-output-record (class) 343
standard-sheet-input-mixin (class) 454
standard-sheet-output-mixin (class) 467
standard-table-output-record (class) 429
standard-text-cursor (class) 325
standard-text-style (class) 96
standard-tree-output-history (class) 346
standard-tree-output-record (class) 344
:state (initarg) 189
stencils 31
stream-accept (generic function) 127
stream-add-character-output (generic function)

350
stream-add-output-record (generic function) 348
stream-add-string-output (generic function) 350
stream-advance-to-column (generic function) 321,

522
stream-baseline (generic function) 329
stream-character-width (generic function) 327
stream-clear-input (generic function) 363, 520
stream-clear-output (generic function) 321, 522
stream-close-text-output-record (generic function)

350
stream-current-output-record (generic function)

348
(setf stream-current-output-record) (generic

function) 348
stream-cursor-position (generic function) 327

(setf* stream-cursor-position) (generic func-

tion) 327
stream-default-view (generic function) 159

(setf stream-default-view) (generic function)
159

stream-drawing-p (generic function) 348
(setf stream-drawing-p) (generic function)

348
stream-element-type (generic function) 518
stream-end-of-line-action (generic function) 329

(setf stream-end-of-line-action) (generic func-
tion) 330

stream-end-of-page-action (generic function) 330
(setf stream-end-of-page-action) (generic

function) 330
stream-finish-output (generic function) 321, 522
stream-force-output (generic function) 321, 522
stream-fresh-line (generic function) 321, 522
stream-increment-cursor-position (generic func-

tion) 327
stream-input-buffer (generic function) 364, 400

(setf stream-input-buffer) (generic function)
364

stream-input-wait (generic function) 367
stream-insertion-pointer (generic function) 400

(setf stream-insertion-pointer) (generic func-
tion) 400

stream-line-column (generic function) 320, 521
stream-line-height (generic function) 328
stream-listen (generic function) 363, 520
stream-output-history (generic function) 348
stream-output-history-mixin (class) 346
streamp (generic function) 517
stream-pathname (generic function) 519
stream-peek-char (generic function) 362, 520
stream-pointer-position (generic function) 365

(setf* stream-pointer-position) (generic func-
tion) 365

stream-pointers (generic function) 364
stream-present (generic function) 121
stream-primary-pointer (generic function) 365

(setf stream-primary-pointer) (generic func-
tion) 365

stream-process-gesture (generic function) 402
stream-read-byte (generic function) 523
stream-read-char (generic function) 362, 519
stream-read-char-no-hang (generic function) 362,

520
<Bold>556CLIM User Guide

stream-read-gesture (generic function) 366, 402
stream-read-line (generic function) 363, 520
stream-recording-p (generic function) 347

(setf stream-recording-p) (generic function)
347

stream-replay (generic function) 348
stream-rescanning-p (generic function) 401
stream-restore-input-focus (generic function) 365
streams 11, 23, 516

basic
protocol 516

basic input 362
basic output 320
binary 523
character input 519
character output 521
classes 516
extended

panes 184
protocol 516

extended input 363
conditions 368
protocol 364

extended output 321
functions 518
hardcopy 523
input editing 382

protocol 400
output recording 347

protocol 347
window 525
window operations 525
window, pane functions 332

stream-scan-pointer (generic function) 401
(setf stream-scan-pointer) (generic function)

401
stream-set-input-focus (generic function) 365
stream-start-line-p (generic function) 320, 521
stream-string-width (generic function) 328
stream-terpri (generic function) 321, 522
stream-text-cursor (generic function) 326

(setf stream-text-cursor) (generic function)
326

stream-text-margin (generic function) 328
(setf stream-text-margin) (generic function)

328
stream-text-output-record (generic function) 349

stream-truename (generic function) 519
stream-unread-char (generic function) 362, 519
stream-unread-gesture (generic function) 368, 402
stream-vertical-spacing (generic function) 328
stream-write-byte (generic function) 523
stream-write-char (generic function) 320, 521
stream-write-string (generic function) 320, 522
string (presentation type) 133
string completion 393
styles

interaction 280
command line 292
command menus 287
keystroke accelerators 293
mouse 291

line 74
subset (presentation type abbreviation) 136
subset-alist (presentation type abbreviation) 136
subset-completion (presentation type) 135
subset-sequence (presentation type abbreviation)

136
substitute-numeric-argument-marker (function)

295
suggest (function) 397
+super-key+ (constant) 462
surrounding-output-with-border (macro) 426
symbol (presentation type) 131

T
t (presentation type) 130
table-output-record (protocol class) 429
table-output-record-p (function) 429
table-pane (composite pane) 227
tables

command 275, 285
conditions 279
predefined 278

formatting 404
calendar month example, figure of 414
examples 411
figure of 415, 417
from a list, figure of 412
operators for 405
output records of, figure of 337
protocol 429

tabling (macro) 227
<Bold>557

template for application frame 15
temporary-medium-sheet-output-mixin (class)

468
:test (initarg) 253, 254
test-presentation-translator (function) 177
:text-style (option) 223
text 327

cursors 323
protocol 325
stream, protocol 326

formatting 424
line wrapping 329
mixing with graphics 329
output recording 349
output records 345
protocol 327

text styles 94
ascent 98
binding forms 100
descent 98
face 94, 96, 101
family 94, 96
functions 97
height 99
mapping 101
objects 95
options 96
size 94, 96

:text-cursor (initarg) 364
text-displayed-output-record (protocol class) 345
text-displayed-output-record-p (function) 345
text-displayed-output-record-string (generic func-

tion) 346
text-editor (class) 263
text-editor gadgets 262
text-editor-pane (class) 263
:text-face (option) 97
:text-family (option) 96
text-field (class) 262
text-field gadgets 262
text-field-pane (class) 263
:text-margin (initarg) 322
:text-margin (option) 236
:text-size (option) 97
text-size (generic function) 99
:text-style (option) 73
text-style (protocol class) 96

text-style-ascent (generic function) 98
text-style-components (generic function) 98
text-style-descent (generic function) 98
text-style-face (generic function) 97, 98
text-style-family (generic function) 96, 98
text-style-fixed-width-p (generic function) 99
text-style-height (generic function) 99
text-style-mapping (generic function) 101

(setf text-style-mapping) (generic function)
101

text-style-p (function) 96
text-style-size (generic function) 97, 98
text-style-width (generic function) 99
+textual-dialog-view+ (constant) 160
textual-dialog-view (class) 160
+textual-menu-view+ (constant) 160
textual-menu-view (class) 159
throw-highlighted-presentation (function) 180
timer-event (class) 461
:timestamp (initarg) 457
title-pane (leaf pane) 238
toggle-button (class) 264
toggle-button gadgets 263
toggle-button-indicator-type (generic function)

264
toggle-button-pane (class) 264
token-or-type (presentation type abbreviation) 138
tokens, reading and writing 391
toolkit, adaptive 10
top-level output records 346
tracking-pointer (macro) 373
:transformation (option) 72
transformation (protocol class) 83
transformation-equal (generic function) 84
transformation-error (error condition) 83
transformationp (function) 83
transformations 78

affine 79
applying 89
composition 80
constructors 80
functions 85
graphic, example, figure of 78
predicates 84
protocol 83
reflection 79
rotation 79
<Bold>558CLIM User Guide

scaling 79
translation 79

transformation-underspecified (error condition)
83

transform-distance (generic function) 90
transform-position (generic function) 90
transform-rectangle* (generic function) 90
transform-region (generic function) 89
translate 125
translation 79
translation-transformation-p (generic function) 84
translators, presentation 116, 125, 176, 291

applicability 166
concepts 164
defining

examples 175
operators for 170

low-level functions 177
matching 166
using, figure of 14

:type (initarg) 124
type-or-string (presentation type abbreviation) 138
types of output records 343

U
unbounded regions 38
undefined-text-style (variable) 95
unhighlight-highlighted-presentation (function)

181
unread-gesture (function) 367
unsupplied-argument-marker (variable) 297
untransform-distance (generic function) 90
untransform-position (generic function) 90
untransform-rectangle* (generic function) 91
untransform-region (generic function) 89
updating-output (macro) 355
user packages 507
user-command-table (command table) 278
using drawing options 70
using gadgets 241
using-resource (macro) 510

V
:value (initarg) 248

:value-changed-callback (initarg) 248
value-changed-callback (callback) 248
value-gadget (class) 248
:value-key (initarg) 253, 254
vbox-pane (composite pane) 227
vertically (macro) 227
:vertical-spacing (initarg) 322
:vertical-spacing (option) 236
:view (initarg) 124
view (protocol class) 159
viewp (function) 159
viewports 228

defined 526
views

of presentation types
operators for 159

with presentation types 159
vrack-pane (composite pane) 228

W
:width (option) 225
:win32 (server-path) 477
window-children (generic function) 527
window-clear (generic function) 332, 525
window-configuration-event (class) 461
window-erase-viewport (generic function) 333,

525
window-event (class) 461
window-event-mirrored-sheet (generic function)

461
window-event-native-region (generic function) 461
window-event-region (generic function) 461
window-expose (generic function) 528
windowing relationships 440
window-inside-bottom (function) 529
window-inside-edges (generic function) 528
window-inside-height (function) 529
window-inside-left (function) 528
window-inside-right (function) 529
window-inside-size (generic function) 529
window-inside-top (function) 529
window-inside-width (function) 529
window-label (generic function) 527
window-parent (generic function) 527
window-refresh (generic function) 332, 525
window-repaint-event (class) 461
<Bold>559

windows 332, 525
concepts 440
functions for direct operation 527
operators for

viewport and scrolling 526
origin 21
primitive layer operators 527
stream operations 525
stream pane functions 332
streams 525

Windows themes 11
window-set-viewport-position* (generic function)

526
window-stack-on-bottom (generic function) 528
window-stack-on-top (generic function) 528
window-viewport (generic function) 333, 526
window-viewport-position (generic function) 333

(setf window-viewport-position) (generic
function) 333

window-viewport-position* (generic function) 526
window-visibility (generic function) 528
with-accept-help (macro) 397
with-activation-gestures (macro) 388
with-application-frame (macro) 188
with-bounding-rectangle* (macro) 63
with-command-table-keystrokes (macro) 283
with-delimiter-gestures (macro) 389
with-drawing-options (macro) 70
with-end-of-line-action (macro) 330
with-end-of-page-action (macro) 331
with-first-quadrant-coordinates (macro) 89
with-frame-manager (macro) 214
with-graft-locked (macro) 481
:within-generation-separation (initarg) 435
with-input-context (macro) 126
with-input-editing (macro) 385
with-input-editor-typeout (macro) 385
with-input-focus (macro) 366, 527
with-local-coordinates (macro) 88
with-lock-held (macro) 513
with-look-and-feel-realization (macro) 222
with-menu (macro) 305
with-new-output-record (macro) 351
with-ouput-as-gadget (macro) 265
with-output-as-presentation (macro) 120
with-output-buffered (macro) 332
with-output-recording-options (macro) 351

with-output-to-output-record (macro) 352
with-output-to-pixmap (macro) 35
with-output-to-postscript-stream (macro) 524
without-scheduling (macro) 512
with-port-locked (macro) 478
with-presentation-type-decoded (macro) 140
with-presentation-type-options (macro) 141
with-presentation-type-parameters (macro) 141
with-radio-box (macro) 258
with-recursive-lock-held (macro) 513
with-room-for-graphics (macro) 329
with-rotation (macro) 88
with-scaling (macro) 88
with-sheet-medium (macro) 468
with-sheet-medium-bound (macro) 469
with-text-face (macro) 101
with-text-family (macro) 101
with-text-size (macro) 101
with-text-style (macro) 100
with-translation (macro) 87
wrapping text lines 329
write-token (function) 392
writing tokens 391

X
:x (initarg) 459
X resources

defaults 11
file 11

:x-position (initarg) 338
:x-spacing (initarg) 429, 433
:x-spacing (option) 226

Y
:y (initarg) 459
:y-position (initarg) 338
:y-spacing (initarg) 429, 433
:y-spacing (option) 226
<Bold>560CLIM User Guide

	LispWorks® Common Lisp Interface Manager User Guide
	Copyright and Trademarks
	Contents
	Preface
	Chapter 1 Using CLIM
	1.1 Conceptual Overview
	1.2 Highlights of Tools and Techniques
	1.3 How CLIM Helps You Achieve a Portable User Interface
	1.4 What Is CLIM?
	1.4.1 The Core of CLIM
	1.4.2 CLIM Facilities
	1.4.3 Summary

	1.5 Loading CLIM
	1.6 Testing Code Examples
	1.7 The CLIM demos

	Chapter 2 Drawing Graphics
	2.1 Conceptual Overview of Drawing Graphics
	2.1.1 Drawing Functions and Options
	2.1.2 The Drawing Plane
	2.1.3 Coordinates
	2.1.4 Mediums, Sheets, and Streams

	2.2 Examples of Using CLIM Drawing Functions
	2.3 CLIM Drawing Functions
	2.3.1 Arguments
	2.3.2 Compound Drawing Functions
	2.3.3 Patterns and Stencils
	2.3.4 Pixmaps

	2.4 Graphics Protocols
	2.4.1 Arguments
	2.4.2 General Behavior of Drawing Functions
	2.4.3 Medium-Specific Drawing Functions

	2.5 General Geometric Objects in CLIM
	2.5.1 Regions in CLIM
	2.5.2 CLIM Point Objects
	2.5.3 Polygons and Polylines in CLIM
	2.5.4 Lines in CLIM
	2.5.5 Rectangles in CLIM
	2.5.6 Ellipses and Elliptical Arcs in CLIM
	2.5.7 Bounding Rectangles

	Chapter 3 The CLIM Drawing Environment
	3.1 CLIM Mediums
	3.2 Using CLIM Drawing Options
	3.2.1 Set of CLIM Drawing Options
	3.2.2 Using the :filled Option

	3.3 CLIM Line Styles
	3.4 Transformations in CLIM
	3.5 The Transformations Used by CLIM
	3.5.1 CLIM Transformation Constructors
	3.5.2 CLIM Transformation Protocol
	3.5.3 CLIM Transformation Predicates
	3.5.4 CLIM Transformation Functions
	3.5.5 Applying CLIM Transformations

	Chapter 4 Text Styles
	4.1 Conceptual Overview of Text Styles
	4.2 CLIM Text Style Objects
	4.3 CLIM Text Style Functions
	4.4 Text Style Binding Forms
	4.5 Controlling Text Style Mappings

	Chapter 5 Drawing in Color
	5.1 Conceptual Overview of Drawing With Color
	5.1.1 Color Objects
	5.1.2 Rendering

	5.2 CLIM Operators for Drawing in Color
	5.3 Predefined Color Names in LispWorks CLIM
	5.4 Indirect Inks
	5.5 Flipping Ink
	5.6 Examples of Simple Drawing Effects
	5.6.1 Using Flipping Ink

	Chapter 6 Presentation Types
	6.1 Conceptual Overview of CLIM Presentation Types
	6.1.1 User Interaction With Application Objects
	6.1.2 Presentations and Presentation Types
	6.1.3 Output With Its Semantics Attached
	6.1.4 Input Context
	6.1.5 Inheritance
	6.1.6 Presentation Translators
	6.1.7 What the Application Programmer Does

	6.2 How to Specify a CLIM Presentation Type
	6.3 Using CLIM Presentation Types for Output
	6.3.1 CLOS Operators
	6.3.2 Additional Functions for Operating on Presentations in CLIM

	6.4 Using CLIM Presentation Types for Input
	6.5 Predefined Presentation Types
	6.5.1 Basic Presentation Types
	6.5.2 Numeric Presentation Types
	6.5.3 Character and String Presentation Types
	6.5.4 Pathname Presentation Types
	6.5.5 One-Of and Some-Of Presentation Types
	6.5.6 Sequence Presentation Types
	6.5.7 Constructor Presentation Types
	6.5.8 Compound Presentation Types
	6.5.9 Command and Form Presentation Types

	6.6 Functions That Operate on CLIM Presentation Types

	Chapter 7 Defining a New Presentation Type
	7.1 Conceptual Overview of Defining a New Presentation Type
	7.1.1 CLIM Presentation Type Inheritance
	7.1.2 Defining an Accept for a Structure With Several Fields

	7.2 CLIM Operators for Defining New Presentation Types
	7.2.1 Presentation Methods in CLIM
	7.2.2 CLIM Operators for Defining Presentation Type Abbreviations

	7.3 Using Views With CLIM Presentation Types
	7.4 Advanced Topics

	Chapter 8 Presentation Translators in CLIM
	8.1 Conceptual Overview of Presentation Translators
	8.2 Applicability of CLIM Presentation Translators
	8.2.1 Input Contexts in CLIM
	8.2.2 Nested Presentations in CLIM

	8.3 Pointer Gestures in CLIM
	8.4 CLIM Operators for Defining Presentation Translators
	8.5 Examples of Defining Presentation Translators in CLIM
	8.5.1 Defining a Translation from Floating Point Number to Integer
	8.5.2 Defining a Presentation-to-Command Translator
	8.5.3 Defining Presentation Translators for the Blank Area
	8.5.4 Defining a Presentation Action

	8.6 Advanced Topics

	Chapter 9 Defining Application Frames
	9.1 Conceptual Overview of CLIM Application Frames
	9.2 Defining CLIM Application Frames
	9.2.1 The Application Frame Protocol
	9.2.2 Using the :pane Option
	9.2.3 Using the :panes and :layouts Options
	9.2.4 Example of the :pane Option to define-application-frame
	9.2.5 Examples of the :panes and :layout Options to define-application-frame
	9.2.6 Using an :accept-values Pane in a CLIM Application Frame

	9.3 Initializing CLIM Application Frames
	9.4 Accessing Slots and Components of CLIM Application Frames
	9.5 Running a CLIM Application
	9.6 Exiting a CLIM Application
	9.7 Examples of CLIM Application Frames
	9.7.1 Defining a CLIM Application Frame
	9.7.2 Constructing a Function as Part of Running an Application

	9.8 Application Frame Operators and Accessors
	9.8.1 CLIM Application Frame Accessors
	9.8.2 Operators for Running CLIM Applications

	9.9 Frame Managers
	9.9.1 Finding Frame Managers
	9.9.2 Frame Manager Operators

	9.10 Advanced Topics

	Chapter 10 Panes and Gadgets
	10.1 Panes
	10.1.1 Basic Pane Construction
	10.1.2 Pane Initialization Options
	10.1.3 Pane Properties

	10.2 Layout Panes
	10.2.1 Layout Pane Options
	10.2.2 Layout Pane Classes
	10.2.3 Composite Pane Generic Functions
	10.2.4 The Layout Protocol

	10.3 Extended Stream Panes
	10.3.1 Extended Stream Pane Options
	10.3.2 Extended Stream Pane Classes
	10.3.3 Making CLIM Extended Stream Panes

	10.4 Defining A New Pane Type: Leaf Panes
	10.5 Gadgets
	10.5.1 Abstract Gadgets
	10.5.2 Basic Gadget Classes
	10.5.3 Abstract Gadget Classes
	10.5.4 Integrating Gadgets and Output Records

	Chapter 11 Commands
	11.1 Introduction to CLIM Commands
	11.2 Defining Commands the Easy Way
	11.2.1 Command Names and Command Line Names
	11.2.2 The Command-Defining Macro

	11.3 Command Objects
	11.4 CLIM Command Tables
	11.5 CLIM Predefined Command Tables
	11.6 Conditions Relating to CLIM Command Tables
	11.7 Styles of Interaction Supported by CLIM
	11.8 Command-Related Presentation Types
	11.9 The CLIM Command Processor
	11.10 Advanced Topics
	11.10.1 CLIM Command Tables
	11.10.2 CLIM Command Menu Interaction Style
	11.10.3 Mouse Interaction Via Presentation Translators
	11.10.4 CLIM Command Line Interaction Style
	11.10.5 CLIM Keystroke Interaction Style
	11.10.6 The CLIM Command Processor

	Chapter 12 Menus and Dialogs
	12.1 Conceptual Overview of Menus and Dialogs
	12.2 CLIM Menu Operators
	12.3 CLIM Dialog Operators
	12.4 Examples of Menus and Dialogs in CLIM
	12.4.1 Using accepting-values
	12.4.2 Using accept-values-command-button
	12.4.3 Using :resynchronize-every-pass in accepting-values
	12.4.4 Using the third value from accept in accepting-values
	12.4.5 Using menu-choose
	12.4.6 Using menu-choose-from-drawer

	Chapter 13 Extended Stream Output Facilities
	13.1 Basic Output Streams
	13.2 Extended Output Streams
	13.3 The Text Cursor
	13.3.1 The Text Cursor Protocol
	13.3.2 The Stream Text Cursor Protocol

	13.4 Text
	13.4.1 The Text Protocol
	13.4.2 Mixing Text and Graphics
	13.4.3 Wrapping Text Lines

	13.5 Attracting the User’s Attention
	13.6 Buffering Output
	13.7 CLIM Window Stream Pane Functions

	Chapter 14 Output Recording and Redisplay
	14.1 Conceptual Overview of Output Recording
	14.2 CLIM Operators for Output Recording
	14.2.1 The Basic Output Record Protocol
	14.2.2 The Output Record “Database” Protocol
	14.2.3 Types of Output Records
	14.2.4 Output Recording Streams

	14.3 Conceptual Overview of Incremental Redisplay
	14.4 CLIM Operators for Incremental Redisplay
	14.5 Using updating-output
	14.6 Example of Incremental Redisplay in CLIM

	Chapter 15 Extended Stream Input Facilities
	15.1 Basic Input Streams
	15.2 Extended Input Streams
	15.2.1 The Extended Input Stream Protocol
	15.2.2 Extended Input Stream Conditions

	15.3 Gestures and Gesture Names
	15.4 The Pointer Protocol
	15.5 Pointer Tracking

	Chapter 16 Input Editing and Completion Facilities
	16.1 Input Editing
	16.1.1 Operators for Input Editing
	16.1.2 Input Editor Commands

	16.2 Activation and Delimiter Gestures
	16.3 Signalling Errors Inside accept Methods
	16.4 Reading and Writing Tokens
	16.5 Completion
	16.6 Using with-accept-help: some examples
	16.7 Advanced Topics

	Chapter 17 Formatted Output
	17.1 Formatting Tables in CLIM
	17.1.1 Conceptual Overview of Formatting Tables
	17.1.2 CLIM Operators for Formatting Tables
	17.1.3 Examples of Formatting Tables

	17.2 Formatting Graphs in CLIM
	17.2.1 Conceptual Overview of Formatting Graphs
	17.2.2 CLIM Operators for Graph Formatting
	17.2.3 Examples of CLIM Graph Formatting

	17.3 Formatting Text in CLIM
	17.4 Bordered Output in CLIM
	17.5 Advanced Topics
	17.5.1 The Table Formatting Protocol
	17.5.2 The Item List Formatting Protocol
	17.5.3 The Graph Formatting Protocol

	Chapter 18 Sheets
	18.1 Overview of Window Facilities
	18.1.1 Properties of Sheets
	18.1.2 Sheet Protocols

	18.2 Basic Sheet Classes
	18.3 Relationships Between Sheets
	18.3.1 Sheet Relationship Functions
	18.3.2 Sheet Genealogy Classes

	18.4 Sheet Geometry
	18.4.1 Sheet Geometry Functions
	18.4.2 Sheet Geometry Classes

	18.5 Sheet Protocols: Input
	18.5.1 Input Protocol Functions
	18.5.2 Input Protocol Classes

	18.6 Standard Device Events
	18.7 Sheet Protocols: Output
	18.7.1 Mediums and Output Properties
	18.7.2 Output Protocol Functions
	18.7.3 Output Protocol Classes
	18.7.4 Associating a Medium With a Sheet

	18.8 Repaint Protocol
	18.8.1 Repaint Protocol Functions
	18.8.2 Repaint Protocol Classes

	18.9 Sheet Notification Protocol
	18.9.1 Relationship to Window System Change Notifications
	18.9.2 Sheet Geometry Notifications

	Chapter 19 Ports, Grafts, and Mirrored Sheets
	19.1 Introduction
	19.2 Ports
	19.3 Grafts
	19.4 Mirrors and Mirrored Sheets
	19.4.1 Mirror Functions
	19.4.2 Internal Interfaces for Native Coordinates

	Appendix A Glossary
	Appendix B Implementation Specifics
	B.1 Setting Up Your Packages to Use CLIM
	B.2 CLIM Packages

	Appendix C The CLIM-SYS Package
	C.1 Resources
	C.2 Multi-Processing
	C.3 Locks
	C.4 Multiple-Value Setf

	Appendix D Common Lisp Streams
	D.1 Stream Classes
	D.2 Basic Stream Functions
	D.3 Character Input
	D.4 Character Output
	D.5 Binary Streams
	D.6 Hardcopy Streams in CLIM

	Appendix E Windows
	E.1 Window Stream Operations in CLIM
	E.1.1 Clearing and Refreshing the Drawing Plane
	E.1.2 The Viewport and Scrolling
	E.1.3 Viewport and Scrolling Operators

	E.2 Functions for Operating on Windows Directly

	Index

