
LispWorks® for the Windows® Operating System

CAPI User Guide
Version 6.1

Copyright and Trademarks
CAPI User Guide (Windows version)

Version 6.1

August 2011

Copyright © 2011 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be construed as a
commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or inaccuracies that may appear in this
publication. The software described in this book is furnished under license and may only be used or copied in accordance with the terms of
that license.

LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the registered trade-
marks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986, 1987, 1988 Xerox
Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, pro-
vided that this copyright and permission notice appear in all copies and supporting documentation, and that the name of M.I.T. not be used
in advertising or publicity pertaining to distribution of the software without specific, written prior permission. M.I.T. makes no representa-
tion about the suitability of this software for any purpose. It is provided “as is” without express or implied warranty. M.I.T. disclaims all war-
ranties with regard to this software, including all implied warranties of merchantability and fitness. In no event shall M.I.T. be liable for any
special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of con-
tract, negligence or other tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of ICU software obtained from http://source.icu-project.org and which bears the following copyright and permis-
sion notice:
ICU License - ICU 1.8.1 and later
COPYRIGHT AND PERMISSION NOTICE
Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Soft-
ware"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright
notice(s) and this permission notice appear in all copies of the Software and that both the above copyright notice(s) and this permission
notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIM-
ITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF
THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or
other dealings in this Software without prior written authorization of the copyright holder. All trademarks and registered trademarks men-
tioned herein are the property of their respective owners.

US Government Restricted Rights
The LispWorks Software is a commercial computer software program developed at private expense and is provided with restricted rights.
The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth in the accompanying End User
License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR 12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14
Alt III, as applicable. Rights reserved under the copyright laws of the United States.

Address

LispWorks Ltd
St. John’s Innovation Centre
Cowley Road
Cambridge
CB4 0WS
England

Telephone

From North America: 877 759 8839
(toll-free)

From elsewhere: +44 1223 421860

Fax
From North America: 617 812 8283
From elsewhere: +44 870 2206189

www.lispworks.com

http://www.lispworks.com

Contents
 Preface vii

1 Introduction to the CAPI 1

What is the CAPI? 1
The history of the CAPI 2
The CAPI model 2

2 Getting Started 5

Using the CAPI package 5
Creating a window 6
Linking code into CAPI elements 8

3 Creating Common Windows 11

Generic properties 11
Specifying titles 14
Displaying and entering text 16
Displaying formatted text 20
Stream panes 20
Miscellaneous button elements 21
Adding a toolbar to an interface 23

iii

iv
Tooltips 24

4 General Considerations 27

The correct thread for CAPI operations 27
Support for multiple monitors 28

5 Host Window System Configuration 29

Properties of the host window system 29
Using Motif 31

6 Choices 35

Button classes 36
List panels 38
Trees 43
Graph panes 44
Option panes 47
Text input choice 48
Menu components 48
General properties of choices 48

7 Laying Out CAPI Panes 53

Organizing panes in columns and rows 54
Other types of layout 57
Combining different layouts 58
Constraining the size of layouts 60
Advanced pane layouts 65

8 Modifying CAPI Windows 71

Initialization 71
Resizing and positioning 72
Scrolling 73
Swapping panes and layouts 74
Specifying panes and layouts dynamically 75
Updating pane contents 75
Iconifying and restoring windows 77
Closing windows 78
Quitting applications 78

9 Creating Menus 79

Creating a menu 79
Grouping menu items together 80
Creating individual menu items 83
The CAPI menu hierarchy 84
Mnemonics in menus 86
Alternative menu items 87
Disabling menu items 88
Menus with images 90
Popup menus for panes 90

10 Defining Interface Classes 93

The define-interface macro 93
An example interface 94
Adapting the example 96
Connecting an interface to an application 102
Controlling the interface title 105
Querying and modifying interface geometry 106

11 Prompting for Input 109

Some simple dialogs 110
Prompting for values 111
Window-modal Cocoa dialogs 117
Dialog Owners 119
Creating your own dialogs 119
In-place completion 124

12 Creating Your Own Panes 131

Displaying graphics 131
Receiving input from the user 134
Creating graphical objects 136

13 Graphics Ports 145

Introduction 145
Features 146
Graphics state 148
Drawing functions 149

 v

vi
Graphics state transforms 150
Combining source and target pixels 152
Pixmap graphics ports 153
Portable font descriptions 154
Working with images 156

14 The Color System 165

Introduction 165
Reading the color database 166
Color specs 167
Color aliases 168
Color models 169
Loading the color database 171
Defining new color models 171

15 Printing from the CAPI—the Hardcopy API 173

Printers 173
Printer definition files 174
PPD files 174
Print jobs 175
Handling pages—page on demand printing 175
Handling pages—page sequential printing 175
Printing a page 175
Other printing functions 176

16 Drag and Drop 177

Overview of drag and drop in CAPI 177
Dragging 178
Dropping 181
Limitations of CAPI drag and drop 183

 Index 185

Preface
This preface contains information you need when using the rest of the CAPI
documentation. It discusses the purpose of this manual, the typographical
conventions used, and gives a brief description of the rest of the contents.

Assumptions

The CAPI documentation assumes that you are familiar with:

• LispWorks

• Common Lisp and CLOS, the Common Lisp Object System

• The Microsoft Windows environment

Illustrations in this manual show the CAPI running on Microsoft Windows XP
with the default Windows XP theme, so if you use a different Windows ver-
sion or theme you should expect some variation from the figures depicted
here.

Unless otherwise stated, examples given in this document assume that the
current package has CAPI on its package-use-list.

Conventions used in the manual

Throughout this manual, certain typographical conventions have been
adopted to aid readability.

1. Whenever an instruction is given, is numbered and printed like this.
vii

viii
Text which you should enter explicitly is printed like this.

A Description of the Contents

This guide forms an introductory course in developing applications using the
CAPI. Please note that, like the rest of the LispWorks documentation, it does
assume knowledge of Common Lisp.

Chapter 1, Introduction to the CAPI, introduces the principles behind the CAPI,
some of its fundamental concepts, and what it sets out to achieve.

Chapter 2, Getting Started, presents a series of simple examples whose aim is to
familiarize you with some of the most important elements and functions.

Chapter 4, General Considerations, covers some general issues that you should
be aware of when using CAPI, including information about the host window
system.

Chapter 3, Creating Common Windows, introduces more of the fundamental
CAPI elements and common themes. These elements are explained in greater
detail in the remainder of the manual.

Chapter 6, Choices, explains the key CAPI concept of the choice. A choice
groups CLOS objects together and provides the notion of there being a
selected object amongst that group of objects. Button panels and list panels are
examples of choices.

Chapter 7, Laying Out CAPI Panes introduces the idea of layouts. These let you
combine different CAPI elements inside a single window.

Chapter 8, Modifying CAPI Windows, outlines basic techniques for modifying
existing windows.

Chapter 9, Creating Menus, shows you how to add menus to a window.

Chapter 10, Defining Interface Classes, introduces the macro define-inter-
face. This macro can be used to define interface classes composed of CAPI
elements — either the predefined elements explained elsewhere in this man-
ual or your own.

Chapter 11, Prompting for Input, discusses the ways in which dialog boxes may
be used to prompt the user for input.

Chapter 12, Creating Your Own Panes, shows you how you can define your
own classes when those provided by the CAPI are not sufficient for your
needs.

Chapter 13, Graphics Ports, provides information on the Graphics Ports pack-
age, which provides a selection of drawing and image tranformation func-
tions. Although not part of the CAPI package, and therefore not strictly part of
the CAPI, the Graphics Ports functions are used in conjunction with CAPI
panes, and are therefore documented in this manual and the LispWorks CAPI
Reference Manual.

Chapter 14, The Color System, allows applications to use keyword symbols as
aliases for colors in Graphics Ports drawing functions. They can also be used
for backgrounds and foregrounds of windows and CAPI objects.

Chapter 15, Printing from the CAPI—the Hardcopy API, describes the
programmatic printing of Graphics Ports.

Chapter 16, Drag and Drop, describes how you can implement drag and drop
in your CAPI application.

The Reference Manual

The second part of the CAPI documentation is the LispWorks CAPI Reference
Manual. This provides a complete description of every CAPI class, function
and macro, and also provides a reference chapter on the Graphics Port func-
tions. Entries are listed alphabetically, and the typographical conventions
used are similar to those used in Common Lisp: the Language (2nd Edition)
(Steele, 1990).
 ix

x

1

1 Introduction to the CAPI
1.1 What is the CAPI?
The CAPI (Common Application Programmer’s Interface) is a library for
implementing portable window-based application interfaces. It is a
conceptually simple, CLOS-based model of interface elements and their
interaction. It provides a standard set of these elements and their behaviors, as
well as giving you the opportunity to define elements of your own.

The CAPI’s model of window-based user interfaces is an abstraction of the
concepts that are shared between all contemporary window systems, such
that you do not need to consider the details of a particular system. These
hidden details are taken care of by a back end library written for that system
alone.

An advantage of making this abstraction is that each of the system-specific
libraries can be highly specialized, concentrating on getting things right for
that particular window system. Furthermore, because the implementation
libraries and the CAPI model are completely separate, libraries can be written
for new window systems without affecting either the CAPI model or the
applications you have written with it.

The CAPI currently runs under X Window System with either GTK+ or Motif,
Microsoft Windows and Mac OS X. Using CAPI with Motif is deprecated.
1

1 Introduction to the CAPI

2

1.2 The history of the CAPI
Window-based applications written with LispWorks 3 and previous used
CLX², CLUE, and the LispWorks Toolkit. Such applications are restricted to
running under X Windows. Because we and our customers wanted a way to
write portable window code, we developed a new system for this purpose: the
CAPI.

Part of this portability exercise was undertaken before the development of the
CAPI, for graphics ports, the generic graphics library. This includes the porta-
ble color, font, and image systems in LispWorks. The CAPI is built on top of
this technology, and has been implemented for Motif, Microsoft Windows,
Cocoa and GTK+.

All Lisp-based environment and application development in LispWorks Ltd
now uses the CAPI. We recommend that you use the CAPI for window-based
application development in preference to the systems mentioned earlier.

1.3 The CAPI model
The CAPI provides an abstract hierarchy of classes which represent different
sorts of window interface elements, along with functions for interacting with
them. Instances of these classes represent window objects in an application,
with their slots representing different aspects of the object, such as the text on
a button, or the items on a menu. These instances are not actual window
objects but provide a convenient representation of them for you. When you
ask the CAPI to display your object, it creates a real window system object to
represent it. This means that if you display a CAPI button, a real Windows
button is created for it when running on Microsoft Windows, a real GTK+ but-
ton when running on GTK+, and a real Cocoa button when running on Cocoa.

A different approach would have been to simulate the window objects and
their look and feel. This approach is problematic. Because the library makes
itself entirely responsible for the application’s look and feel, it may not
simulate it correctly in obscure cases. Also, manufacturers occasionally
change the look and feel of their window systems. Applications written with a
library that simulates window objects will continue to have the old look and
feel until the application is recompiled with an updated library.

1.3 The CAPI model
The CAPI’s approach makes the production of the screen objects the
responsibility of the native window system, so it always produces the correct
look and feel. Furthermore, the CAPI’s use of the real interface to the window
system means that it does not need to be upgraded to account for look and
feel changes, and anything written with it is upwardly compatible, just like
any well-written application.

1.3.1 CAPI Classes

There are four basic objects in the CAPI model: interfaces, menus, panes and lay-
outs.

Everything that the CAPI displays is contained within an interface (an
instance of the class interface). When an interface is displayed a window
appears containing all the menus and panes you have specified for it.

An interface can contain a number of menus which are collected together on a
menu bar. Each menu on the menu bar can contain menu items or other
menus. Items can be grouped together visually and functionally inside menu
components. Menus, menu items, and menu components are, respectively,
instances of the classes menu, menu-item, and menu-component.

Panes are window objects such as buttons and lists. They can be positioned
anywhere in an interface. The CAPI provides many different kinds of pane
class, among them push-button, list-panel, editor-pane, tree-view and
graph-pane.

The positions of panes are controlled by a layout, which allows objects to be
collected together and positioned either regularly (with instances of the
classes column-layout, row-layout or grid-layout) or arbitrarily using a
pinboard-layout. Layouts themselves can be laid out by other layouts — for
example, a row of buttons can be laid out above a list by placing both the row-
layout and the list in a column-layout.
 3

1 Introduction to the CAPI

4

2

2 Getting Started
This chapter introduces some of the most basic CAPI elements and functions.
The intention is simply that you should become familiar with the most useful
elements available, before learning how you can use them constructively. You
should work through the examples in this chapter.

A CAPI application consists of a hierarchy of CAPI objects. CAPI objects are
created using make-instance, and although they are standard CLOS objects,
CAPI slots should generally be accessed using the documented accessors, and
not using the CLOS slot-value function. You should not rely on slot-value
because the implementation of the CAPI classes may evolve.

Once an instance of a CAPI object has been created in an interface, it can be
displayed on your screen using the function display.

2.1 Using the CAPI package
All symbols in this manual are exported from either the CAPI or COMMON-
LISP packages unless explicitly stated otherwise. To access CAPI symbols, you
5

2 Getting Started

6

could qualify them all explicitly in your code, for example capi:output-
pane.

However it is more convenient to create a package which has CAPI on its
package-use-list:

(defpackage "MY-PACKAGE"
(:add-use-defaults t)
(:use "CAPI")

)

This creates a package in which all the CAPI symbols are accessible. To run the
examples in this guide, first evaluate

(in-package "MY-PACKAGE")

2.2 Creating a window
This section shows how easy it is to create a simple window, and how to
include CAPI elements, such as panes, in your window.

1. Enter the following in a listener

(make-instance 'interface
 :visible-min-width 200
 :title "My Interface")

(display *)

Figure 2.1 Creating a simple window

A small window appears on your screen, called "My Interface". This is the
most simple type of window that can be created with the CAPI.

Note: By default, if you do not use MDI mode, this window has a menu bar
with the Works menu. The Works menu gives you access to a variety of Lisp-
Works tools, just like the Works menu of any window in the LispWorks IDE. It

2.2 Creating a window
is automatically provided by default for any interface you create. You can omit
it by passing :auto-menus nil.

The usual way to display an instance of a CAPI window is display. However,
another function, contain, is provided to help you during the course of
development.

Notice that the "My Interface" window cannot be made smaller than the mini-
mum width specified. All CAPI geometry values (window size and position)
are integers and represent pixel values relative to the topmost/leftmost visible
pixel of the primary monitor.

Only a top level CAPI element is shown by display — that is, an instance of
an interface. To display other CAPI elements (for example, buttons, editor
panes, and so on), you must provide information about how they are to be
arranged in the window. Such an arrangement is called a layout — you will
learn more about layouts in Chapter 7.

On the other hand, contain automatically provides a default layout for any
CAPI element you specify, and subsequently displays it. During development,
it can be useful for displaying individual elements of interest on your screen,
without having to create an interface for them explicitly. However, contain is
only provided as a development tool, and should not be used for the final
implementation of a CAPI element. See Chapter 10, “Defining Interface
Classes” on how to display CAPI elements in an interface.

Note that a displayed CAPI element should only be accessed in its own
thread. See “The correct thread for CAPI operations” on page 27 for more
information about this.

This is how you can create and display a button using contain.

1. Enter the following into a listener:

(make-instance 'push-button
 :data "Button")
 7

2 Getting Started

8

(contain *)

Figure 2.2 Creating a push-button interface

This creates an interface which contains a single push-button, with a label
specified by the :data keyword. Notice that you could have performed the
same example using display, but you would also have had to create a layout
so that the button could have been placed in an interface and displayed.

You can click on the button, and it will respond in the way you would expect
(it will depress). However, no code will be run which performs an action asso-
ciated with the button. How to link code to window items is the topic of the
next section.

2.3 Linking code into CAPI elements
Getting a CAPI element to perform an action is done by specifying a callback.
This is a function which is performed whenever you change the state of a
CAPI element. It calls a piece of code whenever a choice is made in a window.

Note that the result of the callback function is ignored, and that its usefulness
is in its side-effects.

1. Try the following:

(make-instance 'push-button
 :data "Hello"
 :callback
 #'(lambda (&rest args)
 (display-message
 "Hello World")))

2.3 Linking code into CAPI elements
(contain *)

Figure 2.3 Specifying a callback

2. Click on the Hello button.

A dialog appears containing the message “Hello World”.

Figure 2.4 A dialog displayed by a callback.

The CAPI provides the function display-message to allow you to pop
up a dialog box containing a message and a Confirm button. This is one
of many pre-defined facilities that the CAPI offers.

Note: When you develop CAPI applications, your application windows are
run in the same Window system event loop as the LispWorks IDE. This - and
the fact that in Common Lisp user code exists in the same global namespace as
the Common Lisp implementation - means that a CAPI application running in
the LispWorks IDE can modify the same values as you can concurrently mod-
ify from one of the the LispWorks IDE programming tools.

For example, your CAPI application might have a button that, when pressed,
sets a slot in a particular object that you could also set by hand in the Listener.
 9

2 Getting Started

10
Such introspection can be useful but can also lead to unexpected values and
behavior while testing your application code.

3

3 Creating Common Windows
So far you have only seen two types of CAPI element: the interface (which is
the top level CAPI element, and is present in any CAPI window) and the
push-button. This section shows how you can use the CAPI to create other
common windowing elements you are likely to need.

Before trying out the examples in this chapter, define the functions test-
callback and hello in your Listener. The first displays the list of arguments
it is given, and returns nil. The second just displays a message.

(defun test-callback (data interface)
 (display-message "Data ~S in interface ~S"
 data interface))

(defun hello (data interface)
 (declare (ignore data interface))
 (display-message "Hello World"))

We will use these callbacks in future examples.

3.1 Generic properties
Because CAPI elements are just like CLOS classes, many elements share a
common set of properties. This section describes the properties that all the
classes described in this chapter inherit.
11

3 Creating Common Windows

12
3.1.1 Scroll bars

The CAPI lets you specify horizontal or vertical scroll bars for any subclass of
the simple-pane element (including all of the classes described in this
chapter).

Horizontal and vertical scroll bars can be specified using the keywords
:horizontal-scroll and :vertical-scroll. By default, both :vertical-
scroll and :horizontal-scroll are nil.

3.1.2 Background and foreground colors

All subclasses of the simple pane element can have different foreground and
background colors, using the :background and :foreground keywords. For
example, including

:background :blue
:foreground :yellow

in the make-instance of a text pane would result in a pane with a blue back-
ground and yellow text.

3.1.3 Fonts

The CAPI interface supports the use of other fonts for text in title panes and
other CAPI objects, such as buttons, through the use of the :font keyword. If
the CAPI cannot find the specified font it reverts to the default font. The :font
keyword applies to data following the :text keyword. The value is a graphics
ports gp:font-description object specifying various attributes of the font.

On systems running X Windows, the xlsfonts command can be used to list
which fonts are available. The X logical font descriptor can be explicitly
passed as a string to the :font initarg, which will convert them.

Here is an example of a title-pane with an explicit font:

3.1 Generic properties
(contain
 (make-instance 'title-pane
 :text "A title pane"
 :font (gp:make-font-description
 :family "Times"
 :size 12
 :weight :medium
 :slant :roman)))

Here is an example of using :font to produce a title pane with larger letter-
ing. Note that the CAPI automatically resized the pane to fit around the text.

(contain
 (make-instance 'title-pane
 :text "A large piece of text"
 :font (gp:make-font-description
 :family "Times"
 :size 34
 :weight :medium
 :slant :roman)))

Figure 3.1 An example of the use of font descriptions

3.1.4 Mnemonics

This section applies to Windows and GTK+ only.

Underlined letters in menus, titles and buttons are called mnemonics. The
user can select the element by pressing the corrresponding key.

3.1.4.1 Controlling Mnemonics

For individual buttons, menus, menu items and title panes, you can use the
:mnemonic initarg to control them. For example:
 13

3 Creating Common Windows

14
(capi:contain (make-instance 'capi:push-button
 :data "FooBar"
 :mnemonic #\B))

For more information on mnemonics in buttons, see “Mnemonics in buttons”
on page 23 and the LispWorks CAPI Reference Manual.

For information on controlling mnemonics in button panels, see “Mnemonics
in button panels” on page 38. For information on controlling mnemonics in
menus, see “Mnemonics in menus” on page 86.

The initarg :mnemonic-title allows you to specify the mnemonic in the title
for many pane classes including list-panel, text-input-pane and option-
pane. Also grid-layout supports mnemonic-title when has-title-column-p is
true. For the details see titled-object in the LispWorks CAPI Reference Man-
ual.

3.1.4.2 Mnemonics on Microsoft Windows

On Microsoft Windows the user can make the mnemonics visible by holding
down the Alt key.

Windows XP can hide mnemonics when the user is not using the keyboard.
This is controlled by

Control Panel > Display > Appearance > Effects > Hide underlined letters...

3.2 Specifying titles
It is possible to specify a title for a window, or part of a window. Several of the
examples that you have already seen have used titles. There are two ways that
you can create titles: by using the title-pane class, or by specifying a title
directly to any subclass of titled-object.

3.2.1 Title panes

A title pane is a blank pane into which text can be placed in order to form a
title.

3.2 Specifying titles
(setq title (make-instance 'title-pane
 :visible-min-width 200
 :text "Title"))

(contain title)

Figure 3.2 A title pane

3.2.2 Specifying titles directly

You can specify a title directly to all CAPI panes, using the :title keyword.
This is much easier than using title-panes, since it does not necessitate using a
layout to group two elements together.

Any class that is a subclass of titled-object supports the :title keyword.
All of the standard CAPI panes inherit from this class. You can find all the
subclasses of titled-object by graphing them using the class browser.

3.2.2.1 Window titles

Specify a title for a CAPI window by supplying the :title initarg for the
interface, and access it with interface-title.

Further control over the title of your application windows can be acheived by
using set-default-interface-prefix-suffix and/or specializing inter-
face-extend-title as illustrated in “Controlling the interface title” on page
105.

3.2.2.2 Titles for elements

The position of any title can be specified by using the :title-position key-
word. Most panes default their title-position to :top, although some use
:left.
 15

3 Creating Common Windows

16
You can place the title in a frame (like a groupbox) around its element by
specifying :title-position :frame.

You may specify the font used in the title via the keyword :title-font.

The title of a titled-object, and its font, may be changed interactively with
the use of setf, if you wish.

1. Create a push button by evaluating the code below:

(setq button (make-instance 'push-button
 :text "Hello"
 :title "Press: "
 :title-position :left
 :callback 'hello))

(contain button)

2. Now evaluate the following:

(apply-in-pane-process
 button #'(setf titled-object-title) "Press here: " button)

As soon as the form is evaluated, the title of the pane you just created changes.

3. Lastly evaluate the following:

(apply-in-pane-process
 button #'(setf titled-object-title-font)
 (gp:merge-font-descriptions
 (gp:make-font-description :size 42)
 (gp:convert-to-font-description
 button
 (titled-object-title-font button))) button)

Notice how the window automatically resizes in steps 2 and 3, to make allow-
ance for the new size of the title.

3.3 Displaying and entering text
There are a variety of ways in which an application can display text, accept
text input or allow editing of text by the user. Display panes show non-edit-
able text, text input panes are used for entering short pieces of text, and editor
panes are commonly used for dealing with large amounts of text such as files.
Rich text panes are available on Cocoa and Windows, supporting formatted
text.

3.3 Displaying and entering text
3.3.1 Display panes

Display panes can be used to display text messages on the screen. The text in
these messages cannot be edited, so they can be used by the application to
present a message to the user. The :text keyword can be used to specify the
message that is to appear in the pane.

1. Create a display pane by evaluating the code below:

(setq display (make-instance 'display-pane
 :text "This is a message"))

(contain display)

Figure 3.3 A display pane

Note that the window title, which defaults to "Container" for windows created
by contain, may appear truncated.

3.3.2 Text input panes

When you want the user to enter a line of text — for instance a search string —
a text input pane can be used.
 17

3 Creating Common Windows

18
(setq text (make-instance 'text-input-pane
 :title "Search: "
 :callback 'test-callback))

(contain text)

Figure 3.4 A text input pane

Notice that the default title position for text input panes is :left.

You can place text programmatically in the text input pane by supplying a
string for the :text initarg, or later by calling (setf text-input-pane-
text) in the appropriate process.

You can add toolbar buttons for easier user input via the :buttons initarg.
This example allows the user to enter the filename of an existing Lisp source
file, either directly or by selecting the file in a dialog raised by the Browse File
button. There is also a Cancel button, but the default OK button is not dis-
played:

(capi:contain
 (make-instance
 'capi:text-input-pane
 :buttons
 (list :cancel t
 :ok nil
 :browse-file
 (list :operation :open
 :filter "*.LISP;*.LSP"))))

For a larger quantity of text use multi-line-text-input-pane.

3.3.3 Editor panes

Editor panes can be created using the editor-pane element.

3.3 Displaying and entering text
(setq editor
 (make-instance 'editor-pane
 :text
 "some text in an editor pane"))

(contain editor)

The Editor tool in the LispWorks IDE, as described in the LispWorks IDE User
Guide and the LispWorks Editor User Guide, uses editor-pane.

Figure 3.5 An editor pane

Note: when you supply the :buffer-name initarg and/or the :text initarg
with positive length, then the editor-pane initially displays a new buffer
containing that text and/or with the specified buffer name. If you do not sup-
ply one of those arguments, then the editor-pane displays some existing edi-
tor buffer chosen at random. See the LispWorks CAPI Reference Manual for
details.
 19

3 Creating Common Windows

20
The cursor in an editor-pane blinks on and off under the control of the edi-
tor-pane-blink-rate mechanism.

An editor-pane can be made non-editable by users with the initarg
:enabled :read-only, or completely disabled with :enabled nil.

3.4 Displaying formatted text
Two classes allow you to display the Rich Text and HTML formats.

3.4.1 Rich text

On Microsoft Windows and Cocoa, rich-text-pane allows you to display
and edit rich text. It supports character attributes such as font, size and color,
and paragraph attributes such as alignment and tab-stops.

See the example in:

examples/capi/applications/rich-text-editor.lisp

3.4.2 HTML

On Microsoft Windows and Cocoa, browser-pane allows you to display
HTML, navigate, refresh, handle errors, redirect to another URL, and so on.

3.5 Stream panes
There are three subclasses of editor-pane which handle Common Lisp
streams.

3.5.1 Collector panes

A collector pane displays anything printed to the stream associated with it.
Background output windows, for instance, are examples of collector panes.

1. (contain (make-instance 'collector-pane
 :title "Example collector pane:"))

2. (princ "abc" (collector-pane-stream *))

3.6 Miscellaneous button elements
3.5.2 Interactive streams

An interactive stream is the building block on which listener-pane is built.

(contain (make-instance 'interactive-stream
 :title "Stream:"))

3.5.3 Listener panes

The listener-pane class is a subclass of interactive-stream, and allows
you to create interactive Common Lisp sessions. You may occasionally want
to include a listener pane in a tool (as, for instance, in the LispWorks IDE
Debugger).

(contain (make-instance 'listener-pane
 :title "Listener:"))

3.6 Miscellaneous button elements
A variety of different buttons can be created for use in an application. These
include push buttons, which you have already seen, and check buttons. But-
ton panels can also be created, and are described in Chapter 6, “Choices”.

3.6.1 Push buttons

You have already seen push buttons in earlier examples. The :enabled key-
word can be used to specify whether or not the button should be selectable
when it is displayed. This can be useful for disabling a button in certain situa-
tions.

The following code creates a push button which cannot be selected.

(setq offbutton (make-instance 'push-button
 :data "Button"
 :enabled nil))

(contain offbutton)

These setf expansions enable and disable the button:
 21

3 Creating Common Windows

22
(apply-in-pane-process
 offbutton #'(setf button-enabled) t offbutton)

(apply-in-pane-process
 offbutton #'(setf button-enabled) nil offbutton)

All subclasses of the button class can be disabled in this way.

3.6.2 Check buttons

Check buttons can be produced with the check-button element.

1. Enter the following in a Listener:

(setq check (make-instance 'check-button
 :selection-callback 'hello
 :retract-callback 'test-callback
 :text "Button"))

(contain check)

Figure 3.6 A check button

Notice the use of :retract-callback in the example above, to specify a call-
back when the element is deselected.

Like push buttons, check buttons can be disabled by specifying :enabled
nil.

3.6.3 Radio buttons

Radio buttons can be created explicitly although they are usually part of a but-
ton panel as described in Chapter 6, Choices. The :selected keyword is used
to specify whether or not the button is selected, and the :text keyword can be
used to label the button.

3.7 Adding a toolbar to an interface
(contain (make-instance 'radio-button
 :text "Radio Button"
 :selected t))

Figure 3.7 An explicitly created radio button

Although a single radio button is of limited use, having an explicit radio but-
ton class gives you greater flexibility, since associated radio buttons need not
be physically grouped together. Generally, the easiest way of creating a group
of radio buttons is by using a button panel, but doing so means that they will
be geometrically, as well as semantically, connected.

3.6.4 Mnemonics in buttons

The initarg :mnemonic allows you to supply a character, integer or symbol
specifying a mnemonic for a button.

Alternatively you can specify the button text and its mnemonic together with
the initarg :mnemonic-text, for example:

(contain
 (make-instance 'radio-button
 :mnemonic-text
 "Radio Button with a &Mnemonic"))

3.7 Adding a toolbar to an interface
Top level interfaces can have a toolbar, which is typically displayed at the top
of the window. On Cocoa, this will be a standard foldable toolbar.

The end user can raise a customization dialog to choose which items appear
on the toolbar. See the toolbar-items and toolbar-states initargs for interface
and the functions interface-toolbar-state, interface-default-tool-
bar-states, interface-update-toolbar and interface-customize-
toolbar.
 23

3 Creating Common Windows

24
3.8 Tooltips
A tooltip is a temporary window containing text which appears when the user
positions the cursor over an element for a period. The appearance is slightly
delayed and the text is usually short.

Tooltips are often used for brief help text and identification of GUI elements.
For example the "X" button alongside the Filter area in the Process Browser
tool in the LispWorks IDE has a tooltip "Clear filter". Tooltips can also be used
to complete the display of partially hidden text, for example in the Debugger
tool Backtrace view where the display of long variable values might be trun-
cated.

You can implement tooltips for output-panes, collections, elements,
menu-items and toolbar-buttons.

3.8.1 Tooltips for output panes

To implement tooltips in an output-pane, call display-tooltip via a
:motion gesture in the pane’s input-model. The tooltip text might depend on
the cursor position or, in the case of a pinboard-layout, on the pinboard
object under the cursor.

See the example in examples/capi/graphics/pinboard-help.lisp.

3.8.2 Tooltips for collections, elements and menu items

Supply the :help-callback initarg in an interface, along with a suitable
:help-key initarg for each of its collections, elements and menu-items that
should have a tooltip. help-callback should return a suitable string (which will
be the tooltip text) when passed type :tooltip and the help-key.

See the manual page for interface in the LispWorks CAPI Reference Manual
for an example of a tooltip on a text-input-pane

3.8.3 Tooltips for toolbar buttons

You can implement tooltips for a toolbar-button exactly as for collections
and so on as described in “Tooltips for collections, elements and menu items”
on page 24. Supply help-key for the toolbar-button and a help-callback for the

3.8 Tooltips
interface. For an example of this see examples/capi/elements/tool-
bar.lisp.

However, if your toolbar-buttons are grouped in a toolbar-component it
is simpler to supply the :tooltips initarg. tooltips should be a list containing
a string giving the tooltip text of each button in the component. For an exam-
ple of this see examples/capi/applications/simple-symbol-
browser.lisp.
 25

3 Creating Common Windows

26

4

4 General Considerations
This chapter describes general issues relating to the use of CAPI. Subsequent
chapters address issues specific to the host window system, and then the use
of particular CAPI elements

4.1 The correct thread for CAPI operations
All operations on displayed CAPI elements need to be in the thread (that is,
the mp:process) that runs their interface. On some platforms, display and
contain make a new thread. On Cocoa, all interfaces run in a single thread.

In most cases this issue does not arise, because CAPI callbacks are run in the
correct thread. However, if your code needs to communicate with a CAPI win-
dow from a random thread, it should use execute-with-interface, exe-
cute-with-interface-if-alive, apply-in-pane-process or apply-in-
pane-process-if-alive to send the function to the correct thread.

This is why the brief interactive examples in this manual generally use exe-
cute-with-interface or apply-in-pane-process when modifying a dis-
played CAPI element. In contrast, the demo example in “Connecting an
interface to an application” on page 102 is modified only by callbacks which
run in the demo interface’s own process, and so there is no need to use exe-
cute-with-interface or apply-in-pane-process.
27

4 General Considerations

28
4.2 Support for multiple monitors
CAPI supports positioning (and querying the position of) windows on multi-
ple monitors.

The function screen-monitor-geometries supports the notion of monitor
geometry. The monitor geometry includes "system" areas such as the Mac OS
X menu bar and the Microsoft Windows task bar.

The functions screen-internal-geometries and pane-screen-internal-
geometry support the notion of internal geometry. The internal geometry
excludes the system areas.

There is a "primary monitor" which displays any system areas. The origin of
the coordinate system (as returned by top-level-interface-geometry and
screen-internal-geometry) is the topmost/leftmost visible pixel of the pri-
mary monitor. Thus the origin may be in a system area such as the Mac OS X
menu bar.

The function virtual-screen-geometry returns a rectangle just covering the
full area of all the monitors associated with a screen.

Note that code which relies on the position of a window should not assume
that a window is located where it has just been programmatically displayed,
but should query the current position. This is because the geometry includes
system areas where CAPI windows cannot be displayed. For more informa-
tion about this see “Resizing and positioning” on page 72

Note also that CAPI does not currently support multiple desktops, which are
called workspaces in Linux distros, and called Spaces on Mac OS X.

5

5 Host Window System
Configuration
This chapter describes how the host window system affects the appearance of
CAPI windows, and how to configure it.

5.1 Properties of the host window system
This section describes properties of the host window system that affect the
appearance and behavior of CAPI windows.

5.1.1 Using Windows themes

On Microsoft Windows XP, Vista and Windows 7 LispWorks is themed. That is,
it uses the current theme of the desktop.

It is possible to switch this off by calling the function
win32:set-application-themed with argument nil.

win32:set-application-themed affects only windows that are created after
it was called. Normally, it should be called before any window is created, so
that all LispWorks windows will have a consistent appearance.
29

5 Host Window System Configuration

30
5.1.2 Matching resources

You can configure the LispWorks IDE and your application to use resources
on GTK+ and Motif. The applicable resources determine the default fonts, col-
ors and certain other properties used in CAPI elements.

The element initarg widget-name is used to match resources. CAPI gives a
name for the main widget that it creates for each element that has a represen-
tation in the library. This name is then included in the "path" that GTK+ and
Motif use to match resources for each widget.

5.1.2.1 Matching resources on GTK+

By default, the name of the widget is the name of the class of the element,
downcased (except top level interfaces, see next paragraph). You can override
the name by either passing widget-name when making the element, or by call-
ing (setf element-widget-name) before displaying the element.

To make it easier to define resources specific to the application, the CAPI
GTK+ library, when using the default name, prepends the application-class (see
convert-to-screen) followed by a dot. So for an interface of class
my-interface which is displayed in a screen with application-class
"my-application", the default widget-name is:

 my-application.my-interface

Example GTK+ resource files are in examples/gtk/.

5.1.2.2 Matching resources on X11/Motif

widget-name is used as described for GTK+ in “Matching resources on GTK+”
on page 30, except that the default widget-name for a top level interface does
include the prepended application-class.

The file app-defaults/Lispworks, supplied in the LispWorks library for rel-
evant platforms, contains the application fallback resources for LispWorks 6.1
and illustrates resources you may wish to change.

The files app-defaults/*-classic contain the fallback resources that were
supplied with LispWorks 4.4.

5.2 Using Motif
For further information about X resources, consult documentation for the X
Window system.

5.1.2.3 Resources for LispWorks CAPI applications

Delivered applications which need fallback resources should pass the
:application-class and :fallback-resources keys described in the Lisp-
Works CAPI Reference Manual under convert-to-screen.

There is an example showing how to make a CAPI GUI configurable by GTK+
resources in examples/capi/elements/gtk-resources.lisp. To construct
custom resources for your CAPI/GTK+ application, see the example resource
files in examples/gtk/.

To construct custom X resources for your CAPI/Motif application, consult
app-defaults/Lispworks which illustrates resources you may wish to
change in your application.

5.1.2.4 X resources for in-place completion windows

The special window described in “In-place completion” on page 124 has inter-
face with name "non-focus-list-prompter". This name can be used to
define resources specific to the in-place completion window. The completion
list is a list-panel and the filter is a text-input-pane.

5.1.3 The break gesture

If a CAPI window is busy and unresponsive you can use the break gesture
Ctrl+Break to regain control.

Note that this break gesture is specific to the window system your CAPI pro-
gram is running in.

5.2 Using Motif
This section describes how to use the Motif window system on supported
platforms.
 31

5 Host Window System Configuration

32
5.2.1 Using Motif on Linux, FreeBSD and x86/x64 Solaris

Use of Motif with LispWorks is deprecated on these platforms, but you can
still use it.

LispWorks uses GTK+ as the default window system for CAPI and the Lisp-
Works IDE on Linux, FreeBSD and x86/x64 Solaris.

To use Motif instead you need to load it explicitly, by:

(require "capi-motif")

Requiring the "capi-motif" module makes CAPI use Motif as its default
library.

You can override the default library by specifying the appropriate CAPI
screen. For more information about this, see the screen argument to display
and convert-to-screen.

5.2.2 Using Motif on Macintosh

Use of Motif with LispWorks is deprecated on the Macintosh, but you can still
use it.

LispWorks is supplied as two images. One uses Cocoa as the default window
system for CAPI and the LispWorks IDE, the other uses GTK+ as its default
window system. Only this latter image can use the alternative Motif window
system.

To use Motif you need to load it into the GTK+ LispWorks image, by:

(require "capi-motif")

Requiring the "capi-motif" module makes CAPI use Motif as its default
library.

You can override the default library by specifying the appropriate CAPI
screen. For more information about this, see the screen argument to display
and convert-to-screen.

Note: you cannot load Motif into the Cocoa image.

5.2 Using Motif
Note: the GTK+ LispWorks image is installed on Macintosh when you select
the X11 GUI option at install time. See the LispWorks Release Notes and Installa-
tion Guide for further information on installing this option.

5.2.3 Using Motif on SPARC Solaris and HP-UX

LispWorks on SPARC Solaris and HP-UX does not support GTK+, and Motif
is the only supported window system. You do not need to load it or specify
the screen explicitly on these platforms.
 33

5 Host Window System Configuration

34

6

6 Choices
Some elements of a window interface contain collections of items, for example
rows of buttons, lists of filenames, and groups of menu items. Such elements
are known in the CAPI as collections.

In most collections, items may be selected by the user — for example, a row of
buttons. Collections whose items can be selected are known as choices. Each
button in a row of buttons is either checked or unchecked, showing something
about the application’s state — perhaps that color graphics are switched on
and sound is switched off. This selection state came about as the result of a
choice the user made when running the application, or default choices made
by the application itself.

The CAPI provides a convenient way of producing groups of items from
which collections and choices can be made. The abstract class collection
provides a means of specifying a group of items. The subclass choice
provides groups of selectable items, where you may specify what initial state
they are in, and what happens when the selection is changed. Subclasses of
collection and choice used for producing particular kinds of grouped
elements are described in the sections that follow.

All the choices described in this chapter can be given a print function via the
:print-function keyword. This allows you to control the way in which
items in the element are displayed. For example, passing the argument
35

6 Choices

36
'string-capitalize to :print-function would capitalize the initial let-
ters of all the words of text that an instance of a choice displays.

Some of the examples in this chapter require the functions test-callback
and hello which were introduced in Chapter 3, “Creating Common Win-
dows”.

6.1 Button classes
This section discusses the immediate subclasses of choice which can be used
to build button panels. If you have a group of several buttons, you can use the
appropriate button-panel element to specify them all as a group, rather than
using push-button or check-button to specify each one separately. There are
three such elements altogether: push-button-panel, check-button-panel
and radio-button-panel. The specifics of each are discussed below.

6.1.1 Push button panels

The arrangement of a number of push buttons into one group can be done
with a push-button-panel. Since this provides a panel of buttons which do
not maintain a selection when you click on them, push-button-panel is a
choice that does not allow a selection. When a button is activated it causes a
:selection-callback, but the button does not maintain the selected state.

Here is an example of a push button panel:

(make-instance 'push-button-panel
 :items '(one two three four five)
 :selection-callback 'test-callback
 :print-function 'string-capitalize)

(contain *)

Figure 6.1 A push button panel

6.1 Button classes
The layout of a button panel (for instance, whether items are listed vertically
or horizontally) can be specified using the :layout-class keyword. This can
take two values: 'column-layout if you wish buttons to be listed vertically,
and 'row-layout if you wish them to be listed horizontally. The default value
is 'row-layout. If you define your own layout classes, you can also use these
as values to :layout-class. Layouts, which apply to many other CAPI
objects, are discussed in detail in Chapter 7, “Laying Out CAPI Panes”.

6.1.2 Radio button panels

A group of radio buttons (a group of buttons of which only one at a time can
be selected) is created with the radio-button-panel class. Here is an exam-
ple of a radio button panel:

(setq radio (make-instance 'radio-button-panel
 :items (list 1 2 3 4 5)
 :selection-callback 'test-callback))

(contain radio)

Figure 6.2 A radio button panel

6.1.3 Check button panels

A group of check buttons can be created with the check-button-panel class.
Any number of check buttons can be selected.

Here is an example of a check button panel:
 37

6 Choices

38
(contain
 (make-instance
 'check-button-panel
 :items '("Red" "Green" "Blue")))

Figure 6.3 A check button panel

6.1.4 Mnemonics in button panels

On Windows and GTK+ you can specify the mnemonics (underlined letters)
in a button panel with the :mnemonics initarg, for example:

(contain
 (make-instance 'push-button-panel
 :items '(one two three many)
 :mnemonics '(#\O #\T #\E :none)
 :print-function 'string-capitalize))

Notice that the value :none removes the mnemonic.

6.2 List panels
Lists of selectable items can be created with the list-panel class. Here is a
simple example of a list panel:

(setq list
 (make-instance 'list-panel
 :items '(one two three four)
 :visible-min-height '(character 2)
 :print-function 'string-capitalize))

6.2 List panels
(contain list)

Figure 6.4 A list panel

Notice how the items in the list panel are passed as symbols, and a print-func-
tion is specified which controls how those items are displayed on the screen.

Any item on the list can be selected by clicking on it with the mouse.

By default, list panels are single selection — that is, only one item in the list
may be selected at once. You can use the :interaction keyword to change
this:

(make-instance 'list-panel
 :items (list "One" "Two" "Three" "Four")
 :interaction :multiple-selection)

(contain *)

You can add callbacks to any items in the list using the :selection-callback
keyword.

(make-instance 'list-panel
 :items (list "One" "Two" "Three" "Four")
 :selection-callback 'test-callback)

(contain *)
 39

6 Choices

40
6.2.1 List interaction

If you select different items in the list, only the last item you select remains
highlighted. The way in which the items in a list panel interact upon selection
can be controlled with the :interaction keyword.

The list produced in the example above is known as a single-selection list
because only one item at a time may be selected. List panels are :single-
selection by default.

There are also multiple-selection and extended-selection lists available. The
possible interactions for list panels are:

• :single-selection — only one item may be selected

• :multiple-selection — more than one item may be selected

• :extended-selection — see Section 6.2.2

To get a particular interaction, supply one of the values above to the :inter-
action keyword, like this:

(contain
 (make-instance
 'list-panel
 :items '("Red" "Green" "Blue")
 :interaction :multiple-selection))

Note that :no-selection is not a supported choice for list panels. To display
a list of items with no selection possible you should use a display-pane.

6.2.2 Extended selection

Application users often want to make single and multiple selections from a
list. Some of the time they want a new selection to deselect the previous one,
so that only one selection remains — just like a :single-selection panel.
On other occasions, they want new selections to be added to the previous ones
— just like a :multiple-selection panel.

The :extended-selection interaction combines these two interactions. Here
is an extended-selection list panel:

6.2 List panels
(contain
 (make-instance
 'list-panel
 :items '("Item" "Thing" "Object")
 :interaction :extended-selection))

Before continuing, here are the definitions of a few terms. The action you per-
form to select a single item is called the selection gesture. The action performed
to select additional items is called the extension gesture. There are two exten-
sion gestures. To add a single item to the selection, the extension gesture is a
click of the left button while holding down the Control key. For selecting a
range of items, it is a click of the left button whilst holding down the Shift
key.

6.2.3 Deselection, retraction, and actions

As well as selecting items, users often want to deselect them. Items in
multiple-selection and extended-selection lists may be deselected.

In a multiple-selection list, deselection is done by clicking on the selected item
again with either of the selection or extension gestures.

In an extended-selection list, deselection is done by performing the extension
gesture upon the selected item. (If this was done using the selection gesture,
the list would behave as a single-selection list and all other selections would
be lost.)

Just like a selection, a deselection — or retraction — can have a callback associ-
ated with it.

For a multiple-selection list panel, there may be the following callbacks:

• :selection-callback — called when a selection is made

• :retract-callback — called when a selection is retracted

Consider the following example. The function set-title changes the title of
the interface to the value of the argument passed to it. By using this as the call-
back to the check-button-panel, the title of the interface is set to the current
selection. The retract-callback function displays a message dialog with the
name of the button retracted.

1. Display the example window:
 41

6 Choices

42
(defun set-title (data interface)
 (setf (interface-title interface)
 (format nil "~A" (string-capitalize data))))

(make-instance 'check-button-panel
 :items '(one two three four five)
 :print-function 'string-capitalize
 :selection-callback 'set-title
 :retract-callback 'test-callback)

(contain *)

Figure 6.5 The example check button panel before the callback.

2. Try selecting one of the check buttons. The window title will change:

Figure 6.6 The example check button panel after the callback.

3. Now de-select the button. Notice that the retract-callback is called.

For an extended-selection list pane, there may be the following callbacks:

• :selection-callback — called when a selection is made

• :retract-callback — called when a selection is retracted

• :extend-callback — called when a selection is extended

Also available in extended-selection and single-selection lists is the action call-
back. This is called when you double-click on an item.

• :action-callback — called when a double-click occurs

6.3 Trees
6.2.4 Selections

List panels — all choices, in fact — can have selections, and you can set them
from within Lisp. This is useful for providing default settings in a choice, or
when a user selection has an effect on other settings than just the one they
made.

The selection is represented as a vector of offsets into the list of the choice’s
items, unless it is a single-selection choice, in which case it is just represented
as an offset.

The initial selection is controlled with the initarg :selection. The accessor
choice-selection is provided.

6.2.5 Images and appearance

A list panel can include images displayed on the left of each item. To include
images supply the initarg :image-function. You can use images from an
image-list via the initarg :image-lists.

Additionally, state images are supported on Microsoft Windows, GTK+ and
Motif, via the initarg :state-image-function and, if required, :image-
lists.

A list panel can have an alternating background color on Cocoa and GTK+,
when specified by the initarg alternating-background.

6.2.6 Filters

You can add a filter to a list-panel by passing the :filter initarg.

List panel filters are used in the LispWorks IDE, for example in the Inspector
tool.

6.3 Trees
tree-view is a pane that displays a hierarchical list of items. Each item may
optionally have an image and a checkbox.
 43

6 Choices

44
Callbacks can be specified as for other choice classes. Additionally you can
control how the nodes of the tree are expanded, and there is delete-item-callback
available for use when the user presses the Delete key.

Tree views are used in the LispWorks IDE, for example in the Output Data view
of the Tracer tool and the Backtrace area of the Debugger and Stepper tools.

6.3.1 Tree interaction

tree-view supports only the :single-selection interaction but you can
have :extended-selection functionality by using the subclass extended-
selection-tree-view.

6.3.2 Images and appearance

tree-view can include images displayed on the left of each item. To include
images supply the initarg :image-function. You can use images from an
image-list via the initarg :image-lists.

Additionally, state images are supported on Microsoft Windows, GTK+ and
Motif, via the initarg :state-image-function and, if required, :image-
lists.

A tree view can have an alternating background color on Cocoa and GTK+,
when specified by the initarg alternating-background.

6.4 Graph panes
Another kind of choice is the graph-pane. This is a special pane that can draw
graphs, whose nodes and edges can be selected, and for which callbacks can
be specified, as usual.

Here is a simple example of a graph pane. It draws a small rooted tree:

6.4 Graph panes
(contain
 (make-instance
 'graph-pane
 :roots '(1)
 :children-function
 #'(lambda (x)
 (when (< x 8)
 (list (* 2 x) (1+ (* 2 x)))))))

Figure 6.7 A graph pane

The graph pane is supplied with a :children-function which it uses to cal-
culate the children of the root node, and from those children it continues to
calculate more children until the termination condition is reached. For more
details of this, see the LispWorks CAPI Reference Manual.

graph-pane provides a gesture which expands or collapses a node, depend-
ing on it current state. Click on the circle alongside the node to expand or col-
lapse it.

You can associate selection, retraction, extension, and action callbacks with
any or all elements of a graph. Here is a simple graph pane that has an action
callback on its nodes.
 45

6 Choices

46
First we need a pane which will display the callback messages. Executing the
following form to create this pane:

(defvar *the-collector*
 (contain (make-instance 'collector-pane)))

Then, define the following four callback functions:

(defun test-action-callback (&rest args)
 (format (collector-pane-stream
 the-collector) "Action"))

(defun test-selection-callback (&rest args)
 (format (collector-pane-stream *the-collector*)
 "Selection"))

(defun test-extend-callback (&rest args)
 (format (collector-pane-stream *the-collector*)
 "Extend"))

(defun test-retract-callback (&rest args)
 (format (collector-pane-stream *the-collector*)
 "Retract"))

Now create an extended selection graph pane which uses each of these call-
backs, the callback used depending on the action taken:

(contain
 (make-instance
 'graph-pane
 :interaction :extended-selection
 :roots '(1)
 :children-function
 #'(lambda (x)
 (when (< x 8)
 (list (* 2 x) (1+ (* 2 x)))))
 :action-callback 'test-action-callback
 :selection-callback 'test-selection-callback
 :extend-callback 'test-extend-callback
 :retract-callback 'test-retract-callback))

The selection callback function is called whenever any node in the graph is
selected.

The extension callback function is called when the selection is extended by
middle clicking on another node (thus selecting it too).

6.5 Option panes
The retract callback function is called whenever an already selected node is
deselected.

The action callback function is called whenever an action is performed on a
node (that is, whenever it gets a double-click, or Return is pressed while the
node is selected).

6.5 Option panes
Option panes, created with the option-pane class, display the current selec-
tion from a single-selection list. When you click on the option pane, the list
appears and you can make another selection from it. Once the selection is
made, it is displayed in the option pane.

The appearance of the option-pane list varies between platforms. a drop-
down list box on Microsoft Windows; a combo box on GTK+ or Motif, and a
popup list on Cocoa.

Here is an example option pane, which shows the choice of one of five num-
bers. The initial selection is controlled with :selected-item.

(contain
 (make-instance
 'option-pane
 :items '(1 2 3 4 5)
 :selected-item 3
 :title "One of Five:"))

Figure 6.8 An option pane

6.5.1 Option panes with images

You can add images to option pane items. Supply the :image-function ini-
targ when creating the option-pane, as illustrated in
 47

6 Choices

48
examples/capi/choice/option-pane-with-images.lisp

6.6 Text input choice
A text-input-choice class is provided which allows arbitrary text input
augmented with a choice like an option-pane.

See examples/capi/choice/text-input-choice.lisp.

6.7 Menu components
Menus (covered in Chapter 9) can have components that are also choices.
These components are groups of items that have an interaction upon selection
just like other choices. The :interaction keyword is used to associate radio
or check buttons with the group — with the values :single-selection and
:multiple-selection respectively. By default, a menu component has an
interaction of :no-selection.

See “Grouping menu items together” on page 80 for more details.

6.8 General properties of choices
The behaviors you have seen so far are mostly general properties of choices
rather than being specific to a particular choice. These general properties are
summarized below.

6.8.1 Interaction

All choices have an interaction style, controlled by the :interaction initarg.
The radio-button-panel and check-button-panel are simply button-
panels with their interactions set appropriately. The possibile values for inter-
action are listed below.

:single-selection

Only one item may be selected at a time: selecting an
item deselects any other selected item.

:multiple-selection

6.8 General properties of choices
A multiple selection choice allows the user to select as
many items as she wants. A selected item may be dese-
lected by clicking on it again.

:extended-selection

An extended selection choice is a combination of the
previous two: only one item may be selected, but the
selection may be extended to more than one item.

:no-selection

Forces no interaction. Note that this option is not avail-
able for list panels. To display a list of items with no
selection you should use a display pane instead.

Specifying an interaction style that is invalid for a particular choice causes a
compilation error.

The accessor choice-interaction is provided for accessing the interaction of
a choice.

6.8.2 Selections

All choices have a selection. This is a state representing the items currently
selected. The selection is represented as a vector of offsets into the list of the
choice’s items, unless it is a single-selection choice, in which case it is just rep-
resented as an offset.

The initial selection is controlled with the initarg :selection. The accessor
choice-selection is provided.

Generally, it is easier to refer to the selection in terms of the items selected,
rather than by offsets, so the CAPI provides the notion of a selected item and
the selected items. The first of these is the selected item in a single-selection
choice. The second is a list of the selected items in any choice.

The accessors choice-selected-item and choice-selected-items pro-
vide access to these conceptual slots, and you can also supply the values at
make-instance time via the initargs :selected-item and :selected-items
.

 49

6 Choices

50
6.8.3 Callbacks

All choices can have callbacks associated with them. Callbacks are invoked
both by mouse button presses and keyboard gestures that change the selection
or are "Action Gestures" such as Return. Different sorts of gesture can have
different sorts of callback associated with them.

The following callbacks are available: :selection-callback, :retract-
callback (called when a deselection is made), :extend-callback, :action-
callback (called when a double-click occurs) and :alternative-action-
callback (called when a modified double-click occurs). What makes one
choice different from another is that they permit different combinations of
these callbacks. This is a consequence of the differing interactions. For exam-
ple, you cannot have an :extend-callback in a radio button panel, because
you cannot extend selection in one.

Callbacks pass data to the function they call. There are default arguments for
each type of callback. Using the :callback-type keyword allows you to
change these defaults. Example values of callback-type are :interface (which
causes the interface to be passed as an argument to the callback function),
:data (the value of the selected data is passed), :element (the element
containing the callback is passed) and :none (no arguments are passed). Also
there is a variety of composite :callback-type values, such as :data-
interface (which causes two arguments, the data and the interface, to be
passed). See the callbacks entry in the LispWorks CAPI Reference Manual for a
complete description of :callback-type values.

The following example uses a push button and a callback function to display
the arguments it receives.

(defun show-callback-args (arg1 arg2)
 (display-message "The arguments were ~S and ~S" arg1 arg2))

(setq example-button
 (make-instance 'push-button
 :text "Push Me"
 :callback 'show-callback-args
 :data "Here is some data"
 :callback-type :data-interface))

(contain example-button)

Try changing the :callback-type to other values.

6.8 General properties of choices
If you do not use the :callback-type argument and you do not know what
the default is, you can define your callback function with lambda list (&rest
args) to account for all the arguments that might be passed.

Specifying a callback that is invalid for a particular choice causes a compile-
time error.
 51

6 Choices

52

7

7 Laying Out CAPI Panes
So far, you have seen how you can create a variety of different window ele-
ments using the CAPI. Up to now, though, you have only created interfaces
which contain one of these elements. The CAPI provides a series of layout ele-
ments which allow you to combine several elements in a single window. This
chapter provides an introduction to the different types of layout available and
the ways in which each can be used.

Layouts are created just like any other CAPI element, by using make-
instance. Each layout must contain a description of the CAPI elements it
contains, given as a list to the :description keyword.

A layout is used to group any instances of simple-pane and its subclasses (for
instance all the elements you met in the last chapter), and pinboard object and
its subclasses (discussed in Chapter 12, “Creating Your Own Panes”). Once
again, you should make sure you have defined the test-callback function
before attempting any of the examples in this chapter. Its definition is repeated
here for convenience.

(defun test-callback (data interface)
 (display-message "Data ~S in interface ~S"
 data interface))
53

7 Laying Out CAPI Panes

54
7.1 Organizing panes in columns and rows
You will frequently need to organize a number of different elements in rows
and columns. The column-layout and row-layout elements are provided to
make this easy.

The following is a simple example showing the use of column-layout.

(contain (make-instance 'column-layout
 :description (list
 (make-instance 'text-input-pane)
 (make-instance 'list-panel
 :items '(1 2 3 4 5)))))

Figure 7.1 An example of using column-layout

1. Define the following elements:

(setq button1 (make-instance 'push-button
 :data "Button 1"
 :callback 'test-callback))

(setq button2 (make-instance 'push-button
 :data "Button 2"
 :callback 'test-callback))

(setq editor (make-instance 'editor-pane
 :text "An editor pane"))

7.1 Organizing panes in columns and rows
(setq message (make-instance 'display-pane
 :text "A display pane"))

(setq text (make-instance 'text-input-pane
 :title "Text: "
 :title-position :left
 :callback 'test-callback))

These will be used in the examples throughout the rest of this chapter.

To arrange any number of elements in a column, create a layout using col-
umn-layout, listing the elements you wish to use. For instance, to display
title, followed by text and button1, enter the following into a Listener:

(contain (make-instance 'column-layout
 :description
 (list text button1)))

Figure 7.2 A number of elements displayed in a column

To arrange the same elements in a row, simply replace column-layout in the
example above with row-layout. If you run this example, close the column
layout window first: each CAPI element can only be on the screen once at any
time.

Layouts can be given horizontal and vertical scroll bars, if desired; the key-
words :horizontal-scroll and :vertical-scroll can be set to t or nil,
as necessary.

When creating panes which can be resized (for instance, list panels, editor
panes and so on) you can specify the size of each pane relative to the others by
listing the proportions of each. This can be done via either the :y-ratios key-
word (for column layouts) or the :x-ratios keyword (for row layouts).
 55

7 Laying Out CAPI Panes

56
 (contain (make-instance 'column-layout
 :description (list
 (make-instance 'display-pane)
 (make-instance 'editor-pane)
 (make-instance 'listener-pane))
 :y-ratios '(1 5 3)))

You may need to resize this window in order to see the size of each pane.

Note that the heights of the three panes are in the proportions specified. The
:x-ratios initarg will adjust the width of panes in a row layout in a similar
way.

It is also possible to specify that some panes are fixed at their minimum size
whilst others in the same row or column adjust proportionately when the
interface is resized:

(contain
 (make-instance
 'column-layout
 :description
 (list
 (make-instance 'editor-pane
 :text "Resizable"
 :visible-min-height '(:character 1))
 (make-instance 'editor-pane
 :text "Fixed"
 :visible-min-height '(:character 1))
 (make-instance 'editor-pane
 :text
 (format nil "Resizable~%Resizable~%Resizable")
 :visible-min-height '(:character 3)))
 :y-ratios '(1 nil 3)
))

To arrange panes in your row or column layout with constant gaps between
them, use the :gap initarg:

7.2 Other types of layout
(contain
 (make-instance
 'column-layout
 :description (list
 (make-instance 'output-pane
 :background :red)
 (make-instance 'output-pane
 :background :white)
 (make-instance 'output-pane
 :background :blue))
 :gap 20
 :title "Try resizing this window vertically"
 :background :grey))

To create resizable spaces between panes in your row or column layout, use
the special value nil in the layout description:

(contain (make-instance 'column-layout
 :description (list
 (make-instance 'output-pane
 :background :red)
 nil
 (make-instance 'output-pane
 :background :white)
 nil
 (make-instance 'output-pane
 :background :blue))
 :y-ratios '(1 1 4 1 1)
 :title "Try resizing this window vertically"
 :background :grey))

7.2 Other types of layout
Row and column layouts are the most basic type of layout class available in
the CAPI, and will be sufficient for many things you want to do. A variety of
other layouts are available as well, as described in this section.

7.2.1 Grid layouts

Whereas row and column layouts only allow you to position a pane horizon-
tally or vertically (depending on which class you use), grid layouts let you
specify both, thus allowing you to create a complete grid of different CAPI
panes.
 57

7 Laying Out CAPI Panes

58
grid-layout supports a title column, as illustrated in

examples/capi/layouts/titles-in-grid.lisp

and it supports cells spanning multiple columns or rows, as illustrated in

examples/capi/layouts/extend.lisp

7.2.2 Simple layouts

Simple layouts control the layout of only one pane. Where possible, the pane
is resized to fit the layout. Simple layouts are sometimes useful when you
need to encapsulate a pane.

7.2.3 Pinboard layouts

Pinboard layouts allow you to position a pane anywhere within a window, by
specifying the x and y integer coordinates of the pane precisely. They are a
means of letting you achieve any effect which you cannot create using the
other available layouts, although their use can be correspondingly more com-
plex. They are discussed in more detail in Chapter 12, “Creating Your Own
Panes”.

7.3 Combining different layouts
You will not always want to arrange all your elements in a single row or col-
umn. You can include other layouts in the list of elements used in any layout,
thus enabling you to specify precisely how panes in a window should be
arranged.

For instance, suppose you want to arrange the elements in your window as
shown in Figure 7.3. The two buttons are shown on the right, with the text

7.3 Combining different layouts
input pane and a message on the left. Immediately below this is the editor
pane.

Figure 7.3 A sample layout

The layout in Figure 7.3 can be achieved by creating two row layouts: one con-
taining the display pane and a button, and one containing the text input pane
and the other button, and then creating a column layout which uses these two
row layouts and the editor.

(setq row1 (make-instance 'row-layout
 :description (list message button1)))

(setq row2 (make-instance 'row-layout
 :description (list text button2)))

Message

Text

Button1

Button2

Editor
 59

7 Laying Out CAPI Panes

60
(contain (make-instance 'column-layout
 :description
 (list row1 row2 editor)))

Figure 7.4 An instantiation of the sample layout

As you can see, creating a variety of different layouts is simple. This means
that it is easy to experiment with different layouts, allowing you to concen-
trate on the interface design, rather than its code.

However, remember than each instance of a CAPI element must not be used
in more than one place at the same time.

7.4 Constraining the size of layouts
The size of a layout (often referred to as its geometry) is calculated automati-
cally on the basis of the size of each of its children. The algorithm used takes
account of hints provided by the children, and from the description of the lay-
out itself. Hints are specified via the panes’ initargs when they are created.
The various pane classes have useful default values for these initargs.

7.4 Constraining the size of layouts
7.4.1 Default Constraints

If you do not specify any hints, the CAPI calculates the on-screen geometry
based on its default constraints. With this geometry the various elements are
displayed with adequate space in the window.

This is designed to work regardless of variable factors such as the user's
configuration, for example specifying large font sizes. It is often wrong to
constrain CAPI elements to fixed pixel sizes, as these constraints may lead to
poorer layouts in some configurations.

7.4.2 Width and Height Constraints

In the CAPI, there are three kinds of constraint: external, visible and internal.
The following hints are recognized by all layouts:

External constraints control the size that the pane takes up in its parent:

:external-min-width — the minimum width of the child in its parent

:external-max-width — the maximum width of the child in its parent

:external-min-height — the minimum height of the child in its par-
ent

:external-max-height — the maximum height of the child in its par-
ent

Visible constraints control the size of the part of the pane that you can see:

:visible-min-width — the minimum visible width of the child.

:visible-max-width — the maximum visible width of the child.

:visible-min-height — the minimum visible height of the child.

:visible-max-height — the maximum visible height of the child.

Internal constraints control the size of region used to display the contents of
the pane:

:internal-min-width — the minimum width of the display region.

:internal-max-width — the maximum width of the display region.

:internal-min-height — the minimum height of the display region.
 61

7 Laying Out CAPI Panes

62
:internal-max-height — the maximum height of the display region.

Initargs :min-width, :max-width, :min-height and :max-height are depre-
cated. They are synonyms for the visible constraints :visible-min-width
and so on.

Each external size is the same as the visible size plus the borders.

For a non-scrolling pane, the internal constraints are the same as the visible
constraints.

For a scrolling pane, the internal constraints control the size of region over
which you can scroll and the visible constraints control the size of the view-
port. Usually the internal constraints are computed by the widget. Here is an
illustration of the external, internal and visible sizes in a scrolling pane. ABCD
is the external size, abcd is the visible size, and ABCD is the internal size:

Figure 7.5 External, visible and internal sizes:

7.4.3 Constraint Formats

Hints can take arguments in a number of formats, which are described in full
in the LispWorks CAPI Reference Manual. When given a number, this should be

A

B

C

D

a

b

c

d

a

d

c

b
D

C

B

A

7.4 Constraining the size of layouts
an integer and the layout is constrained to that number of pixels. A constraint
can also be specified in terms of character widths or heights, as shown in the
next section.

7.4.3.1 Character constraints

In “Combining different layouts” on page 58, you created a window with five
panes, by combining row and column layouts. Now consider changing the
definition of the editor pane so that it is required to have a minimum size. This
would be a sensible change to make, because editor panes need to be large
enough to work with comfortably.

(setq editor2
 (make-instance 'editor-pane
 :text "An editor pane with minimum size"
 :visible-min-width '(:character 30)
 :visible-min-height '(:character 10)))

Now display a window similar to the last example, but with the editor2 edi-
tor pane. Note that it is only the decription of the top-level column layout
which differs. Before entering the following into the listener, you should close
all the windows created in this chapter in order to free up the instances of
button1, button2 and so forth.

(contain (make-instance 'column-layout
 :description
 (list row1 row2 editor2)))
 63

7 Laying Out CAPI Panes

64
You will not be able to resize the window any smaller than this:

Figure 7.6 The result of resizing the sample layout

7.4.3.2 String constraints

To make a pane that is wide enough to accomodate a given string, use the
:visible-min-width hint with a (:string string) constraint.

In this example we also supply :visible-max-width t, which fixes the max-
imum visible width to be the same as the minimum visible width. Hence the
pane is wide enough, but no wider:

(defvar *text* "Exactly this wide")

(capi:contain
 (make-instance 'capi:text-input-pane
 :text *text*
 :visible-min-width `(:string ,*text*)
 :visible-max-width t
 :font (gp:make-font-description
 :size (+ 6 (random 30)))))

Note that the width constraint works regardless of the font used.

7.5 Advanced pane layouts
7.4.4 Changing the constraints

If you need to alter the constraints on an existing element, use the function
set-hint-table. See how the interface in “Character constraints” on page 63
resizes after this call:

(apply-in-pane-process editor2
 'set-hint-table editor2 '(:visible-min-width (:character 100)))

If you define your own pinboard-object class, ensure that its hint table
matches the visible geometry and is kept synchronised after any movement of
the object, otherwise redrawing may be incorrect.

Similarly if you draw pinboard objects under a transform, call set-hint-
table with the transformed geometry to ensure correct redrawing.

7.4.4.1 Initial constraints

You can use the initarg :initial-constraints to specify constraints that
apply during creation of the element’s interface, but not after the interface is
displayed.

For example, this creates a window that starts at least 600 pixels high, but can
be made shorter by the user, because that initial constraint is transient.
However, the permanent constraints on the heights of the two output panes
remain in effect:

(contain
 (make-instance 'column-layout
 :description
 (list (make-instance 'output-pane
 :visible-min-height 100
 :background :red)
 (make-instance 'output-pane
 :visible-min-height 200
 :background :blue))
 :initial-constraints '(:visible-min-height 600)))

7.5 Advanced pane layouts
Until now you have used layouts for CAPI elements in which the constituents
were displayed in fixed positions set out by the CAPI. In this chapter we will
be looking at a number of ways in which users can select the layout and dis-
 65

7 Laying Out CAPI Panes

66
play of CAPI elements in an interface once an instance of the interface has
been displayed.

The portable techniques are the use of dividers, switchable layouts and tab
layouts. On Microsoft Windows, there is also Multiple-Document Interface
(MDI).

Throughout this section we will be using three predefined panes, which you
should define before proceeding.

(setq red-pane (make-instance 'output-pane
 :background :red))

(setq green-pane (make-instance 'output-pane
 :background :green))

(setq blue-pane (make-instance 'output-pane
 :background :blue))

7.5.1 Switchable layouts

A switchable layout allows you to place CAPI objects on top of one another
and determine which object is displayed on top through Lisp code, possibly
linked to a button or menu option through a callback. Switchable layouts are
set up using a switchable-layout element in a make-instance. As with the
other layouts, such as column-layout and row-layout, the elements to be
organized are given as a list to the :description keyword. Here is an exam-
ple:

(setq switching-panes (make-instance
 'switchable-layout
 :description (list red-pane green-pane)))

(contain switching-panes)

Note that the default pane to be displayed is the red pane, which was the first
pane in the description list. The two panes can now be switched between
using switchable-layout-visible-child:

7.5 Advanced pane layouts
(apply-in-pane-process
 switching-panes #'(setf switchable-layout-visible-child)
 green-pane switching-panes)

(apply-in-pane-process
 switching-panes #'(setf switchable-layout-visible-child)
 red-pane switching-panes)

7.5.2 Tab layouts

In its simplest mode, a tab layout is similar to a switchable layout, except that
each pane is provided with a labelled tab, like the tabs on filing cabinet folders
or address books. If the tab is clicked on by the user, the pane it is attached to
is pulled to the front. Don’t forget to close the switchable layout window
created in the last example before displaying this:

(make-instance 'tab-layout
 :items (list (list "one" red-pane)
 (list "two" green-pane)
 (list "three" blue-pane))
 :print-function 'car
 :visible-child-function 'second)
 67

7 Laying Out CAPI Panes

68
(contain *)

Figure 7.7 A tab layout

The example needs the :print-function to be car, or else the tabs will be
labelled with the object numbers of the panes as well as the title provided in
the list.

However, a tab layout can also be used in a non-switchable manner, with each
tab responding with a callback to alter the appearance of only one pane. In
this mode the :description keyword is used to describe the main layout of
the tab pane. In the following example the tabs alter the choice of starting
node for one graph pane, by using a callback to the graph-pane-roots acces-
sor:

7.5 Advanced pane layouts
(defun tab-graph (items)
 (let* ((gp (make-instance 'graph-pane))
 (tl (make-instance 'tab-layout
 :description (list gp)
 :items items
 :visible-child-function nil
 :key-function nil
 :print-function (lambda (x) (format nil "~R" x))
 :callback-type :data
 :selection-callback #'(lambda (data)
 (setf (graph-pane-roots gp)
 (list data))))))
 (contain tl)))

(tab-graph '(1 2 4 5 7))

7.5.3 Dividers and separators

If you need adjacent panes in a row or column to have a narrow user-movable
divider between them, supply the special value :divider in the description.
The divider allows the user to resize one pane into the space of the other. To
see this in the column layout below, grab the divider between the two panes
and then drag it vertically to resize both panes:

(contain (make-instance 'column-layout
 :description (list green-pane
 :divider red-pane)))

The arrow keys can also be used to move the divider.

To include a narrow non-movable visible element between adjacent panes,
supply the special value :separator in the description.

If you also specify ratios, the ratio for each occurrence of either of these special
values should be nil to specify that the narrow element is fixed at its
minimum size:
 69

7 Laying Out CAPI Panes

70
(contain (make-instance 'column-layout
 :description (list
 (make-instance 'output-pane
 :background :red)
 :divider
 (make-instance 'output-pane
 :background :white)
 :separator
 (make-instance 'output-pane
 :background :blue))
 :y-ratios '(1 nil 4 nil 1)
 :title "You can drag the divider, but not the separator"
 :background :grey))

Dividers and separators can also be placed between panes in a row-layout or
even combinations of row and column layouts.

7.5.4 Multiple-Document Interface (MDI)

In LispWorks for Windows, the CAPI supports MDI through the class docu-
ment-frame. See the entry for document-frame in the LispWorks CAPI Refer-
ence Manual.

MDI is not supported on other platforms.

8

8 Modifying CAPI Windows
An interface or its children can be altered in many ways. This chapter
describes APIs for the most common of these.

Note: By default, each CAPI interface runs in its process. It is important to
understand that an on-screen interface and its elements must be accessed only
in the process of that interface. In most circumstances the user alters the inter-
face by a callback inside the interface, which will automatically happen in the
correct process. However, calls from other processes (including other CAPI
interfaces) should use execute-with-interface, execute-with-inter-
face-if-alive, apply-in-pane-process or apply-in-pane-process-if-
alive. See the LispWorks CAPI Reference Manual for details of these functions.

8.1 Initialization
If necessary you can run code just before or just after your interface’s win-
dows are displayed on screen.

You can do this by defining a :before or :after method on the generic func-
tion interface-display. Your method will run just before or just after your
interface is displayed on screen. For example:
71

8 Modifying CAPI Windows

72
(defun make-text (self createdp)
 (multiple-value-bind (s m h dd mm yy)
 (decode-universal-time (get-universal-time))
 (format nil "Window ~S ~:[displayed~;created~] at
~2,'0D:~2,'0D:~2,'0D"
 self createdp h m s)))

(capi:define-interface dd () () (:panes (dp capi:display-pane)))

(defmethod capi:interface-display :before ((self dd))
 (with-slots (dp) self
 (setf (capi:display-pane-text dp)
 (make-text self t))))

(capi:contain (make-instance 'dd))

Sometimes initialization code can be put in the create-callback of your inter-
face, though adding it in suitable methods for initialize-instance or
interface-display is usually better.

8.2 Resizing and positioning
Programmatic resizing can be done using the function
set-top-level-interface-geometry. For example, to double the width of
an interface about its center:

(setf interface (contain (make-instance 'interface)))

Use the mouse or window manager-specific gesture to resize the interface,
then evaluate:

(multiple-value-bind (x y w h)
 (top-level-interface-geometry interface)
 (execute-with-interface interface
 'set-top-level-interface-geometry
 interface
 :x (round (- x (* 0.5 w)))
 :y y
 :width (* 2 w)
 :height h))

All resize operations are subject to the constraints. The constraints can be
altered programmatically as described in “Changing the constraints” on page
65.

8.3 Scrolling
Resize operations are also subject to automatic modification by the system in
cases where the new window geometry coincides with a system area such as
the Mac OS X menu bar or the Microsoft Windows taskbar, as described in
“Positioning CAPI windows” on page 73.

8.2.1 Positioning CAPI windows

You should not assume that a window is located where it has just been pro-
grammatically positioned. Instead you should query the current position by
top-level-interface-geometry.

So if you wish to display CAPI interface windows W1 and W2 relative to each
other. You should:

1. Display W1 (by display), then

2. Query position of W1, then

3. Arrange for W2 to have the desired relative position, for example in its
make-instance or later by set-hint-table, then

4. Display W2.

The reason for this is that the window system may disallow certain positions
(for example on the Mac OS X menu bar) therefore you cannot be certain of
the position of W1.

8.3 Scrolling
Programmatic scrolling is implemented with the generic function scroll.
This example shows vertical scrolling in a list-panel:

(setf list-panel
 (contain
 (make-instance 'list-panel
 :items (loop for i below 100 collect i)
 :vertical-scroll t)))

(apply-in-pane-process
 list-panel 'scroll list-panel :vertical :move 50)

Elsewhere this manual shows how an editor-pane can be scrolled using
editor commands.
 73

8 Modifying CAPI Windows

74
8.3.1 Automatic scrolling

Automatic scrolling of the parent to show the focus pane can be specified by
using scroll-if-not-visible-p.

8.4 Swapping panes and layouts
The class switchable-layout is useful when your interface has several panes
of which exactly one should be visible at any time. The class tab-layout pro-
vides similar functionality in a Window-system specific way. See “Advanced
pane layouts” on page 65

To change to another layout, use (setf pane-layout):

(setf layout
 (capi:contain
 (make-instance 'row-layout
 :description
 (list (make-instance 'title-pane :text "One")
 (make-instance 'title-pane :text "Two"))
 :visible-min-height 100)))

(apply-in-pane-process
 layout #'(setf pane-layout)
 (make-instance 'column-layout
 :description
 (list (make-instance 'title-pane :text "Three")
 (make-instance 'title-pane :text "Four")))
 (element-interface layout))

To change the panes within a layout, use (setf layout-description):

(setf layout
 (capi:contain
 (make-instance 'row-layout
 :description
 (list (make-instance 'title-pane :text "One")
 (make-instance 'title-pane :text "Two"))
 :visible-min-height 100)))

(apply-in-pane-process
 layout #'(setf layout-description)
 (list (make-instance 'title-pane :text "Three")
 (make-instance 'title-pane :text "Four")
 (make-instance 'title-pane :text "Five"))
 layout)

8.5 Specifying panes and layouts dynamically
Note: you must not reuse already-displayed panes in a CAPI layout.

8.5 Specifying panes and layouts dynamically
If you create a row-layout or column-layout with an empty description then
you can populate these layouts dynamically

To do this, use make-instance to create the panes, and pass a list of pane
objects to (setf layout-description) in the layout’s process. This can be done
in an initialize-instance :after method.

8.6 Updating pane contents
Use only the documented functions such as the accessors (setf editor-
pane-text) and (setf collection-items) and so on to set the data in a
pane. For details, see the LispWorks CAPI Reference Manual entry for the partic-
ular pane class and its superclasses.

8.6.1 Updating windows in real time

If your code needs to cause visible updates whilst continuing to do further
computation, then you should run your computation in a separate thread
which is not directly associated with the CAPI window.

Consider the following example where real work is represented by calls to
sleep:

1. Evaluate this code:
 75

8 Modifying CAPI Windows

76
(defun change-text (win text)
 (setf (title-pane-text win)
 text))

(defun my-callback (win)
 (change-text win "Go")
 (loop
 for i from 0 to 20 do
 (change-text win (format nil "~D" i))
 (sleep 0.1)))

(defun test ()
 (let* ((p1 (make-instance 'title-pane
 :text "init"))
 (p2 (make-instance
 'button :text "Go"
 :callback-type :none
 :callback #'(lambda ()
 (my-callback p1)))))
 (contain
 (make-instance 'row-layout :description (list p1 nil p2))
 :width 200 :height 200)))

2. Run (test) and note that the updates do not appear until my-callback
returns. This is because it uses only one thread.

3. Now try this modified callback which uses a worker thread to perform
the calculations:

8.7 Iconifying and restoring windows
(defun my-work-function ()
 (let ((mbox (mp:ensure-process-mailbox)))
 ;; This should really have an error handler.
 (loop (let ((event (mp:process-read-event mbox
 "Waiting for events")))
 (cond ((consp event)
 (apply (car event) (cdr event)))
 ((functionp event)
 (funcall event)))))))

(setf *worker*
 (mp:process-run-function "Worker process" ()
 'my-work-function))

(defun change-text (win text)
 (apply-in-pane-process win
 #'(setf title-pane-text)
 text win))

(defun my-callback (win)
 (mp:process-send
 worker
 #'(lambda ()
 (change-text win "Go")
 (loop
 for i from 0 to 20 do
 (change-text win (format nil "~D" i))
 (sleep 0.1)))))

4. Run (test) again: you should see the updates appear immediately.

A real application might also display an Abort button during the computation,
with a callback that aborts the worker process.

8.7 Iconifying and restoring windows
You can iconify an interface window as follows:

 (setf (top-level-interface-display-state interface) :iconic)

You can also make it be hidden, maximized or restore it to normal, and you
have the option to create it in one of these states initally. For details see the
documentation for top-level-interface-display-state in the LispWorks
CAPI Reference Manual.
 77

8 Modifying CAPI Windows

78
8.8 Closing windows
To close a CAPI interface window unconditionally, call the generic function
destroy.

To close a CAPI interface window such that its confirm-destroy-function is
called first to allow the user to confirm, call quit-interface. You must call it
in the window’s process, for example in the callback of a menu item.

8.9 Quitting applications
To make an application quit when one of its CAPI windows is closed, make
that window’s destroy-function call quit.

To arrange for a delivered CAPI application to quit automatically when all of
its CAPI windows are closed, call deliver with :quit-when-no-windows t.

9

9 Creating Menus
You can create menus for an application using the menu class.

You should make sure you have defined the test-callback and hello func-
tions before attempting any of the examples in this chapter. Their definitions
are repeated here for convenience.

(defun test-callback (data interface)
 (display-message "Data ~S in interface ~S"
 data interface))

(defun hello (data interface)
 (declare (ignore data interface))
 (display-message "Hello World"))

9.1 Creating a menu
A menu can be created in much the same way as any of the CAPI classes you
have already met.

1. Enter the following into a Listener:

(make-instance 'menu
 :title "Foo"
 :items '("One" "Two" "Three" "Four")
 :callback 'test-callback)
79

9 Creating Menus

80
(make-instance 'interface
 :menu-bar-items (list *))

(display *)

This creates a CAPI interface with a menu, Foo, which contains four items.
Choosing any of these items displays its arguments. Each item has the call-
back specified by the :callback keyword.

A submenu can be created simply by specifying a menu as one of the items of
the top-level menu.

2. Enter the following into a Listener:

(make-instance 'menu
 :title "Bar"
 :items '("One" "Two" "Three" "Four")
 :callback 'test-callback)

(make-instance 'menu
 :title "Baz"
 :items (list 1 2 * 4 5)
 :callback 'test-callback)

(contain *)

This creates an interface which has a menu, called Baz, which itself contains
five items. The third item is another menu, Bar, which contains four items.
Once again, selecting any item returns its arguments.

Menus can be nested as deeply as required using this method.

9.2 Grouping menu items together
The menu-component class lets you group related items together in a menu.
This allows similar menu items to share properties, such as callbacks, and to
be visually separated from other items in the menus. Menu components are
actually choices.

Here is a simple example of a menu component. This creates a menu called
Items, which has four items. Menu 1 and Menu 2 are ordinary menu items, but
Item 1 and Item 2 are created from a menu component, and are therefore
grouped together in the menu.

9.2 Grouping menu items together
 (setq component (make-instance 'menu-component
 :items '("item 1" "item2")
 :print-function 'string-capitalize
 :callback 'test-callback))

(contain (make-instance 'menu
 :title "Items"
 :items
 (list "menu 1" component "menu 2")
 :print-function 'string-capitalize
 :callback 'hello)
 :width 150
 :height 0)

Figure 9.1 A menu

Menu components allow you to specify, via the :interaction keyword,
selectable menu items — either as multiple-selection or single-selection items.
This is like having radio buttons or check boxes as items in a menu, and is a
popular technique among many GUI-based applications.

The following example shows you how to include a panel of radio buttons in a
menu.

(setq radio (make-instance 'menu-component
 :interaction :single-selection
 :items '("This" "That")
 :callback 'hello))
 81

9 Creating Menus

82
(setq commands (make-instance 'menu
 :title "Commands"
 :items
 (list "Command 1" radio "Command 2")
 :callback 'test-callback))

(contain commands)

Figure 9.2 Radio buttons included in a menu

The menu items This and That are radio buttons, only one of which may be
selected at a time. The other menu items are just ordinary commands, as you
saw in the previous examples. Note that the CAPI automatically groups the
items which are parts of a menu component so that they are separated from
other items in the menu.

This example also illustrates the use of more than one callback in a menu,
which of course is the usual case when you are developing real applications.
Choosing either of the radio buttons displays one message on the screen, and
choosing either Command1 or Command2 returns the arguments of the call-
back.

Checked menu items can be created by specifying :multiple-selection to
the :interaction keyword, as illustrated below.

(setq letters (make-instance 'menu-component
 :interaction :multiple-selection
 :items (list "Alpha" "Beta")))

9.3 Creating individual menu items
(contain (make-instance 'menu
 :title "Greek"
 :items (list letters)
 :callback 'test-callback))

Figure 9.3 An example of checked menu items

Note how the items in the menu component inherit the callback given to the
parent, eliminating the need to specify a separate callback for each item or
component in the menu.

Within a menu or component, you can specify alternatives for a main menu
item that are invoked by modifer keys. See “Alternative menu items” on page
87 for more information.

9.3 Creating individual menu items
The menu-item class lets you create individual menu items. These items can
be passed to menu-components or menus via the :items keyword. Using this
class, you can assign different callbacks to different menu items.

(setq test (make-instance 'menu-item
 :title "Test"
 :callback 'test-callback))

(setq hello (make-instance 'menu-item
 :title "Hello"
 :callback 'hello))

(setq group (make-instance 'menu-component
 :items (list test hello)))
 83

9 Creating Menus

84
(contain group)

Figure 9.4 Individual menu items

Remember that each instance of a menu item must not be used in more than
one place at a time.

9.4 The CAPI menu hierarchy
The combination of menu items, menu components and menus can create a
hierarchical structure as shown schematically in Figure 9.5 and graphically in
Figure 9.6. This menu has five elements, one of which is itself a menu (with
three menu items) and the remainder are menu components and menu items.
Items in a menu inherit values from their parent, allowing similar elements to
share relevant properties whenever possible.

9.4 The CAPI menu hierarchy
(defun menu-item-name (data)
 (format nil "Menu Item ~D" data))

(defun submenu-item-name (data)
 (format nil "Submenu Item ~D" data))

(contain
 (make-instance
 'menu
 :items
 (list
 (make-instance 'menu-component
 :items '(1 2)
 :print-function 'menu-item-name
)
 (make-instance 'menu-component
 :items
 (list 3
 (make-instance
 'menu
 :title "Submenu"
 :items '(1 2 3)
 :print-function
 'submenu-item-name))
 :print-function 'menu-item-name)
 (make-instance 'menu-item
 :data 42))
 :print-function 'menu-item-name))

Figure 9.5 A schematic example of a menu hierarchy

menu item

menu component

menu
menu component

menu item

menu item

submenumenu item

menu item

menu item

menu item
 85

9 Creating Menus

86
Figure 9.6 An example of a menu hierarchy

9.5 Mnemonics in menus
On Microsoft Windows and GTK+ you can control the mnemonics in menu
titles and menu items using the initargs :mnemonic, :mnemonic-title (and
if necessary :mnemonic-escape).

This example illustrates the various ways you can specify the mnemonics in a
menu:

9.6 Alternative menu items
(contain
 (make-instance
 'menu
 :mnemonic-title "M&nemonics"
 :items
 (list
 (make-instance 'menu-item
 :data "Menu Item 1"
 :mnemonic #\1)
 (make-instance 'menu-item
 :data "Menu Item 2"
 :mnemonic 10)
 (make-instance 'menu-item
 :mnemonic-title "Menu Item &3")
 (make-instance 'menu-item
 :mnemonic-title "Menu Item !4"
 :mnemonic-escape #\!)
 (make-instance 'menu-item
 :data "Menu Item 5"
 :mnemonic :default)
 (make-instance 'menu-item
 :data "Menu Item 6"
 :mnemonic :none))))

On Microsoft Windows you may need to press Alt to make the underlines
appear.

9.6 Alternative menu items
Menus can include "alternative" items, which are invoked if some modifiers
are held while selecting the "main" item. The modifiers are defined by the
:accelerator initarg of the item, which also allows the item to be invoked by
a keyboard accelerator key if specified. On Cocoa, the title and accelerator of
the alternative item appear when the appropriate modifier(s) are pressed.

A menu item becomes an alternative to an immediately previous item when it
is made with initarg :alternative t. Each alternative item must have the
same parent as its previous item. That is, they are within the same menu and
menu component, as described in “Grouping menu items together” on page
80. More than one alternative item can be supplied for a given main item by
putting them consecutively in the menu. The main item is the item preceding
the first alternative item.
 87

9 Creating Menus

88
The main item and its alternative items forms a group of items. The
accelerators of all items in the group must consist of the same key, but with
different modifiers. If there is no need for an accelerator key, the main item
should not have no accelerator and the alternative items should have
accelerators with Null as the key, for example "Shift-Null".

When the menu is displayed, only one item from the group will be shown. On
Windows, GTK+ and Motif the main item is always displayed. Cocoa displays
the item with the least number of modifiers initially, so to get a consistent
cross-platform behavior, the main item should have the least number of modi-
fiers. On Cocoa, pressing modifier keys that match alternative items changes
the title and accelerators displayed for the item.

When the user selects an item with the modifiers pressed, the appropriate
alternative item is selected.

To make a menu-item an alternative item, pass the initarg :alternative t
and a suitable value for the initarg :accelerator.

There is an example illustrating alternative menu items in

examples/capi/elements/accelerators.lisp

Note: Accelerators of alternative items do not work on Motif.

9.7 Disabling menu items
A function can be specified via the :enabled-function initarg, that deter-
mines whether or not the menu, menu item, or menu component is enabled.
By default, a menu object is always enabled.

Consider the following example:

9.7 Disabling menu items
(defvar *on* nil)

(contain
 (make-instance 'menu
 :items
 (list
 (make-instance
 'menu-item
 :title "Foo"
 :enabled-function
 #'(lambda (menu) *on*))
 (make-instance
 'menu-item
 :title "Bar"))))

Figure 9.7 A menu with a disabled menu item

Changing the value of *on* between t and nil in the Listener, using setq,
results in the menu item changing between the enabled and disabled states.

9.7.1 Dialogs and disabled menu items

By default, items in the menu bar menus and sub-menus are disabled while a
dialog is on the screen on top of the active window. You can override this by
passing a suitable value for the menu-item initarg :enabled-function-for-
dialog.
 89

9 Creating Menus

90
9.8 Menus with images
You can add images to menu items. Supply the :image-function initarg
when creating the menu, as illustrated in

examples/capi/elements/menu-with-images.lisp

Note: on some platforms support for images in menus is limited to menu
items without text and/or images without transparency. If pane-supports-
menus-with-images returns true, then images are fully supported in menus.

9.9 Popup menus for panes
The CAPI tries to display a popup menu for a pane when the :post-menu
gesture is entered by the user (mouse-right-click or Shift+F10 on Microsoft
Windows, GTK+ or Motif, control-click on Cocoa). See below for the special
case of output-pane.

It first tries to get a menu for the pane. There are two mechanisms by which it
can get a menu: which is tried depends on the value of pane-menu.

1. If the pane’s initarg pane-menu is not :default in the call to make-
instance, then its value is used. If the value is a function or a fbound
symbol, it is called with four arguments: the pane, data (this is the
selected object if there is a selection), x, y. It should return a menu. If it is
not a function or a fbound symbol, it should be a menu, which is used
directly. The :pane-menu mechanism is useful when the menu needs to
be dependent on the location of the mouse inside the pane, or when each
pane requires a unique menu. In other cases, the other mechanism is
more useful.

2. If pane-menu is :default (this the default value), CAPI calls the generic
function make-pane-popup-menu with two arguments: the pane and its
interface. The result should be a menu.

If the chosen mechanism does not produce a menu, the CAPI does not do
anything in response to :post-menu.

The system definition of make-pane-popup-menu calls
pane-popup-menu-items with the pane and the interface, and if this returns
non-nil list, it calls make-menu-for-pane to make the menu. You can define

9.9 Popup menus for panes
make-pane-popup-menu methods that specialize on your pane or interface
classes, but in most cases it is more useful to add methods to
pane-popup-menu-items. make-menu-for-pane is used to generate the
menu, and it makes the menu such that by default all setup callbacks are done
on the pane itself, rather than on the interface. make-pane-popup-menu is use-
ful when the application needs a menu with the same items as the items on the
popup menu, typically to add it to the menu bar.

In output-pane, you control the input behavior using the input-model. By
default, the system assigns :post-menu and :keyboard-post-menu
(Shift+F10) to a callback that raises a menu as described above, but your
code can override this in the input-model.
 91

9 Creating Menus

92

10

10 Defining Interface Classes
So far we have looked at various components for building interfaces. The
CAPI provides all these and more, but instead of continuing with our explora-
tion of the various classes provided, let us see how what we have learned so
far can be combined into a single, non-trivial interface class.

10.1 The define-interface macro
The macro define-interface is used to define subclasses of interface, the
superclass of all CAPI interface classes.

It is an extension to defclass, which provides the functionality of that macro
as well as the specification of the panes, layouts, and menus from which an
interface is composed. It takes the same arguments as defclass, and supports
the additional options :panes, :layouts, :menus, and :menu-bar.

If you specify :panes but no :layouts, then on creating your interface the
CAPI will create a column-layout and arrange the panes in it in the order
they are defined. For real applications you will need some control over how
the panes are laid out, and this is supplied via the :layouts option.

Each component of the interface is named in the code, and a slot of that name
is added to the class created. When an instance of the class is made, each com-
ponent is created automatically and placed in its slot.
93

10 Defining Interface Classes

94
To access a pane, layout or menu in an instance of your interface class you can
define an accessor, like viewer-pane in the example below, or simply use
with-slots.

When defining a component, you can use other components within the
definition simply by giving its name. You can refer to the interface itself by the
special name capi:interface.

10.2 An example interface
Here is a simple example of interface definition done with define-inter-
face:

(define-interface demo ()
 ()
 (:panes
 (page-up push-button
 :text "Page Up")
 (page-down push-button
 :text "Page Down")
 (open-file push-button
 :text "Open File"))
 (:layouts
 (row-of-buttons row-layout
 '(page-up page-down open-file)))
 (:default-initargs :title "Demo"))

An instance of this interface can be displayed as follows:

(make-instance 'demo)

(display *)

At the moment the buttons do nothing, but they will eventually do the follow-
ing:

• Open File will bring up a file prompter and allow you to select a file-
name from a directory. Later on, we will add an editor pane to display
the chosen file’s contents.

• Page Down will scroll downwards so that you can view the lower parts
of the file that cannot be seen initially.

10.2 An example interface
• Page Up will scroll upwards so that you can return to parts of the file
seen before.

Figure 10.1 A demonstration of a CAPI interface

Later on, we will specify callbacks for these buttons to provide this functional-
ity.

The (:default-initargs :title "Demo") part at the end is necessary to
give the interface a title. If no title is given, the default name is “Untitled CAPI
Interface”.

Note: the define-interface form could be generated by the Interface
Builder tool in the LispWorks IDE. See the LispWorks IDE User Guide for
details. As the interface becomes more complex, you will find it more conve-
nient to edit the definition by hand.

10.2.1 How the example works

Examine the define-interface call to see how this interface was built. The
first part of the call to define interface is shown below:

(define-interface demo ()
 ()

This part of the macro is identical to defclass — you provide:

• The name of the interface class being defined

• The superclasses of the interface (defaulting to interface)

• The slot descriptions

The interesting part of the define-interface call occurs after these def-
class-like preliminaries. The remainder of a define-interface call lists all
 95

10 Defining Interface Classes

96
elements that define the interface’s appearance. Here is the :panes part of the
definition:

 (:panes
 (page-up push-button
 :text "Page Up")
 (page-down push-button
 :text "Page Down")
 (open-file push-button
 :text "Open File"))

Two arguments — the name and the class — are required to produce a pane.
You can supply slot values as you would for any pane.

Here is the :layouts part of the definition:

 (:layouts
 (row-of-buttons row-layout
 '(page-up page-down open-file)))

Three arguments — the name, the class, and any child layouts — are required
to produce a layout. Notice how the children of the layout are specified by
using their component names.

The interface information given so far is a series of specifications for panes
and layouts. It could also specify menus and a menu bar. In this case, three
buttons are defined. The layout chosen is a row layout, which displays the
three buttons side by side at the top of the pane.

10.3 Adapting the example
The :panes and :layouts keywords can take a number of panes and layouts,
each specified one after the other. By listing several panes, menus, and so on,
complicated interfaces can be constructed quickly.

To see how simply this is done, let us add an editor pane to our interface. We
need this to display the text contained in the file chosen with the Open File but-
ton.

The editor pane needs a layout. It could be added to the row-layout already
built, or another layout could be made for it. Then, the two layouts would
have to be put inside a third to contain them (see Chapter 7, Laying Out CAPI
Panes).

10.3 Adapting the example
The first thing to do is add the editor pane to the panes description. The old
panes description read:

 (:panes
 (page-up push-button
 :text "Page Up")
 (page-down push-button
 :text "Page Down")
 (open-file push-button
 :text "Open File"))

The new one includes an editor pane named viewer.

(:panes
 (page-up push-button
 :text "Page Up")
 (page-down push-button
 :text "Page Down")
 (open-file push-button
 :text "Open File")
 (viewer editor-pane
 :title "File:"
 :text "No file selected."
 :visible-min-height '(:character 8)
 :reader viewer-pane))

This specifies the editor pane, with a stipulation that it must be at least 8 char-
acters high. This allows you to see a worthwhile amount of the file being
viewed in the pane.

Note the use of :reader, which defines a reader method for the interface
which returns the editor pane. Similarly, you can also specify writers or acces-
sors. If you omit accessor methods, it is still possible to access panes and other
elements in an interface instance using with-slots.

The interface also needs a layout for the editor pane in the layouts section. The
old layouts description read:

 (:layouts
 (row-of-buttons row-layout
 '(page-up page-down open-file)))

The new one reads:
 97

10 Defining Interface Classes

98
 (:layouts
 (main-layout column-layout
 '(row-of-buttons row-with-editor-pane))
 (row-of-buttons row-layout
 '(page-up page-down open-file))
 (row-with-editor-pane row-layout
 '(viewer)))

This creates another row-layout for the new pane and then encapsulates the
two row layouts into a third column-layout called main-layout. This is used
as the default layout, specified by setting the :layout initarg to main-layout
in the :default-initargs section. If there is no default layout specified,
define-interface uses the first one listed.

By putting the layout of buttons and the layout with the editor pane in a col-
umn layout, their relative position has been controlled: the buttons appear in a
row above the editor pane.

The code for the new interface is now as follows:

(define-interface demo ()
 ()
 (:panes
 (page-up push-button
 :text "Page Up")
 (page-down push-button
 :text "Page Down")
 (open-file push-button
 :text "Open File")
 (viewer editor-pane
 :title "File:"
 :text "No file selected."
 :visible-min-height '(:character 8)
 :reader viewer-pane))
 (:layouts
 (main-layout column-layout
 '(row-of-buttons row-with-editor-pane))
 (row-of-buttons row-layout
 '(page-up page-down open-file))
 (row-with-editor-pane row-layout
 '(viewer)))
 (:default-initargs :title "Demo"))

Displaying an instance of the interface by entering the line of code below pro-
duces the window in Figure 10.2:

10.3 Adapting the example
(display (make-instance 'demo))

Figure 10.2 A CAPI interface with editor pane

10.3.1 Adding menus

To add menus to your interface you must first specify the menus themselves,
and then a menu bar of which they will be a part.

Let us add some menus that duplicate the proposed functionality for the but-
tons. We will add:

• A File menu with a Open option, to do the same thing as Open File

• A Page menu with Page Up and Page Down options, to do the same
things as the buttons with those names

The extra code needed in the define-interface call is this:

 (:menus
 (file-menu "File"
 ("Open"))
 (page-menu "Page"
 ("Page Up" "Page Down")))
 (:menu-bar file-menu page-menu)
 99

10 Defining Interface Classes

100
Menu definitions give a slot name for the menu, followed by the title of the
menu, a list of menu item descriptions, and then, optionally, a list of keyword
arguments for the menu.

In this instance the menu item descriptions are just strings naming each item,
but you may wish to supply initialization arguments for an item — in which
case you would enclose the name and those arguments in a list.

The menu bar definition simply names all the menus that will be on the bar, in
the order that they will appear. By default, of course, the environment may
add menus of its own to an interface — for example the Works menu in the
LispWorks IDE in multiple menu bar mode.

The code for the new interface is:

10.3 Adapting the example
(define-interface demo ()
 ()
 (:panes
 (page-up push-button
 :text "Page Up")
 (page-down push-button
 :text "Page Down")
 (open-file push-button
 :text "Open File")
 (viewer editor-pane
 :title "File:"
 :text "No file selected."
 :visible-min-height '(:character 8)
 :reader viewer-pane))
 (:layouts
 (main-layout column-layout
 '(row-of-buttons row-with-editor-pane))
 (row-of-buttons row-layout
 '(page-up page-down open-file))
 (row-with-editor-pane row-layout
 '(viewer)))
 (:menus
 (file-menu "File"
 ("Open"))
 (page-menu "Page"
 ("Page Up" "Page Down")))
 (:menu-bar file-menu page-menu)
 (:default-initargs :title "Demo"))
 101

10 Defining Interface Classes

102
Figure 10.3 A CAPI interface with menu items

The menus contain the items specified — try it out to be sure.

10.4 Connecting an interface to an application
Having defined an interface in this way, you can connect it up to your pro-
gram using callbacks, as described in earlier chapters. Here we define some
functions to perform the operations we required for the buttons and menus,
and then hook them up to the buttons and menus as callbacks.

The functions to perform the page scrolling operations are given below:

(defun scroll-up (data interface)
 (call-editor (viewer-pane interface)
 "Scroll Window Up"))

(defun scroll-down (data interface)
 (call-editor (viewer-pane interface)
 "Scroll Window Down"))

The functions use the generic function call-editor which calls an editor
command (given as a string) on an instance of an editor-pane. The editor

10.4 Connecting an interface to an application
commands Scroll Window Up and Scroll Window Down perform the necessary
operations for Page Up and Page Down respectively.

The function to perform the file-opening operation is given below:

(defun file-choice (data interface)
 (let ((file (prompt-for-file "Select A File:")))
 (when file
 (setf (titled-object-title (viewer-pane interface))
 (format nil "File: ~S" file))
 (setf (editor-pane-text (viewer-pane interface))
 (with-open-file (stream file)
 (let ((buffer
 (make-array 1024
 :element-type
 (stream-element-type stream)
 :adjustable t
 :fill-pointer 0)))
 (do ((char (read-char stream nil nil)
 (read-char stream nil nil)))
 ((null char))
 (vector-push-extend char buffer))
 (subseq buffer 0)))))))

This function prompts for a filename and then displays the file in the editor
pane.

The function first produces a file prompter through which a file may be
selected. Then, the selected file name is shown in the title of the editor pane
(using titled-object-title). Finally, the file name is used to get the con-
tents of the file and display them in the editor pane (using editor-pane-
text).

The correct callback information for the buttons is specified as shown below:
 103

10 Defining Interface Classes

104
 (:panes
 (page-up push-button
 :text "Page Up"
 :selection-callback 'scroll-up)
 (page-down push-button
 :text "Page Down"
 :selection-callback 'scroll-down)
 (open-file push-button
 :text "Open File"
 :selection-callback 'file-choice)
 (viewer editor-pane
 :title "File:"
 :text "No file selected."
 :visible-min-height '(:character 8)
 :reader viewer-pane))

All the buttons and menu items operate on the editor pane viewer. A reader is
set up to allow access to it.

The correct callback information for the menus is specified as shown below:

 (:menus
 (file-menu "File"
 (("Open"))
 :selection-callback 'file-choice)
 (page-menu "Page"
 (("Page Up"
 :selection-callback 'scroll-up)
 ("Page Down"
 :selection-callback 'scroll-down)))

In this case, each item in the menu has a different callback. The complete code
for the interface is listed below — try it out.

10.5 Controlling the interface title
(define-interface demo ()
 ()
 (:panes
 (page-up push-button
 :text "Page Up"
 :selection-callback 'scroll-up)
 (page-down push-button
 :text "Page Down"
 :selection-callback 'scroll-down)
 (open-file push-button
 :text "Open File"
 :selection-callback 'file-choice)
 (viewer editor-pane
 :title "File:"
 :text "No file selected."
 :visible-min-height '(:character 8)
 :reader viewer-pane))
 (:layouts
 (main-layout column-layout
 '(row-of-buttons row-with-editor-pane))
 (row-of-buttons row-layout
 '(page-up page-down open-file))
 (row-with-editor-pane row-layout
 '(viewer)))
 (:menus
 (file-menu "File"
 (("Open"))
 :selection-callback 'file-choice)
 (page-menu "Page"
 (("Page Up"
 :selection-callback 'scroll-up)
 ("Page Down"
 :selection-callback 'scroll-down))))
 (:menu-bar file-menu page-menu)
 (:default-initargs :title "Demo"))

10.5 Controlling the interface title
You can add dynamic control of window titles using the functions illustrated
in the section.

Firstly we add a counter to the title of new demo windows:
 105

10 Defining Interface Classes

106
(defvar *demo-title-counter* 0)

(defmethod capi:interface-extend-title ((self demo) title)
 (let ((counter
 (or (capi:capi-object-property self 'my-title-counter)
 (setf
 (capi:capi-object-property self 'my-title-counter)
 (incf *demo-title-counter*)))))
 (format nil "~A - ~D"
 (call-next-method)
 counter)))

(capi:display (make-instance 'demo))

Then we specify a common prefix for all interface window titles. Note that
this will generally affect all interfaces in the current session except, on
Microsoft Windows only, interfaces inside MDI:

(capi:set-default-interface-prefix-suffix
 :prefix "My " :suffix nil)

(capi:display (make-instance 'demo))

10.6 Querying and modifying interface geometry
The functions screen-monitor-geometries, screen-internal-geome-
tries and pane-screen-internal-geometry support the notions of moni-
tor geometry (which includes "system" areas such as the Mac OS X menu bar
and the Microsoft Windows task bar) and internal geometry (which excludes
the system areas).

Note that code which relies on the position of a window should not assume
that a window is located where it has just been programmatically displayed,
but should query the current position by top-level-interface-geometry.
This is because the geometry includes system areas where CAPI windows
cannot be displayed.

10.6.1 Support for multiple monitors

CAPI supports multiple monitors by providing APIs (such as screen-inter-
nal-geometries) to query "screen rectangles" representing the area of each

10.6 Querying and modifying interface geometry
monitor. The function virtual-screen-geometry returns a rectangle just
enclosing all the screen rectangles.

There is a "primary monitor" which displays any system areas. The origin of
the coordinate system (as returned by top-level-interface-geometry and
screen-internal-geometry) is the topmost/leftmost visible pixel of the pri-
mary monitor. Thus (0,0) may be in a system area such as the Mac OS X menu
bar.

Note also that CAPI does not currently support multiple desktops, which are
called workspaces in Linux distros, and called Spaces on Mac OS X.
 107

10 Defining Interface Classes

108

11

11 Prompting for Input
A dialog is a window that receives some input from the user and returns it to
the application. For instance, if the application wants to know where to save a
file, it could prompt the user with a file dialog. Dialogs can also be cancelled,
meaning that the application should cancel the current operation.

In order to let you know whether or not the dialog was cancelled, CAPI dialog
functions always return two values. The first value is the return value itself,
and the second value is t if the dialog returned normally and nil if the dialog
was cancelled.

On Cocoa you can control whether a CAPI dialog is application-modal or win-
dow-modal. In the latter case the user can work with the application’s other
windows while the dialog is on screen.

The CAPI provides both a large set of predefined dialogs and the means to
create your own. This chapter takes you through some example uses of the
predefined dialogs, and then shows you how to create custom built dialogs.

The last section briefly describes a way to get input for completions via a spe-
cial non-modal window.
109

11 Prompting for Input

110
11.1 Some simple dialogs
The simplest form of dialog is a message dialog. The function display-
message behaves very much like format.

(display-message "Hello world")

Figure 11.1 A message dialog

(display-message
 "This function is ~S"
 'display-message)

Figure 11.2 A second message dialog

Another simple dialog asks the user a question and returns t or nil depend-
ing on whether the user has chosen yes or no. This function is confirm-yes-
or-no.

11.2 Prompting for values
(confirm-yes-or-no
 "Do you own a pet?")

Figure 11.3 A message dialog prompting for confirmation

For more control over such a dialiog, use the function prompt-for-confir-
mation. See the LispWorks CAPI Reference Manual for details.

11.2 Prompting for values
The CAPI provides a number of different dialogs for accepting values from
the user, ranging from accepting strings to accepting whole Lisp forms to be
evaluated.

11.2.1 Prompting for strings

The simplest of the CAPI prompting dialogs is prompt-for-string which
returns the string you enter into the dialog.
 111

11 Prompting for Input

112
(prompt-for-string
 "Enter a string:")

Figure 11.4 A dialog prompting for a string

An initial value can be placed in the dialog by specifying the keyword argu-
ment :initial-value.

11.2.2 Prompting for numbers

The CAPI also provides a number of more specific dialogs that allow you to
enter other types of data. For example, to enter an integer, use the function
prompt-for-integer. Only integers are accepted as valid input for this func-
tion.

(prompt-for-integer
 "Enter an integer:")

There are a number of extra options which allow you to specify more strictly
which integers are acceptable. Firstly, there are two arguments :min and :max
which specify the minimum and maximum acceptable integers.

(prompt-for-integer
 "Enter an integer in the inclusive range [10,20]:"
 :min 10 :max 20)

If this does not provide enough flexibility you can specify a function that
validates the result with the keyword argument :ok-check. This function is
passed the current value and must return non-nil if it is a valid result.

11.2 Prompting for values
(prompt-for-integer
 "Enter an odd integer:"
 :ok-check 'oddp)

Try also the function prompt-for-number.

11.2.3 Prompting for an item in a list

If you would like the user to select an item from a list of items, the function
prompt-with-list should handle the majority of cases. The simplest form
just passes a list to the function and expects a single item to be returned.

(prompt-with-list
 '(:red :yellow :blue)
 "Select a color:")

Figure 11.5 A dialog prompting for a selection from a list

You can also specify the interaction style that you would like for your dialog,
which can be any of the interactions accepted by a choice. The specification of
the interaction style to this choice is made using the keyword argument
:interaction:
 113

11 Prompting for Input

114
(prompt-with-list
 '(:red :yellow :blue)
 "Select a color:"
 :interaction :multiple-selection)

By default, the dialog is created using a list-panel to display the items, but the
keyword argument :choice-class can be specified with any choice pane.
Thus, for instance, you can present a list of buttons.

(prompt-with-list
 '(:red :yellow :blue)
 "Select a color:"
 :interaction :multiple-selection
 :choice-class 'button-panel)

Figure 11.6 Selection from a button panel

Finally, as with any of the prompting functions, you can specify additional
arguments to the pane that has been created in the dialog. Thus to create a col-
umn of buttons instead of the default row, use:

11.2 Prompting for values
(prompt-with-list
 '(:red :yellow :blue)
 "Select a color:"
 :interaction :multiple-selection
 :choice-class 'button-panel
 :pane-args
 '(:layout-class column-layout))

Figure 11.7 Selection from a column of buttons

There is a more complex example in

examples/capi/choice/prompt-with-buttons.lisp

11.2.4 Prompting for files

To prompt for a file, use the function prompt-for-file:

(prompt-for-file
 "Enter a file:")

You can also specify a starting pathname:
 115

11 Prompting for Input

116
(prompt-for-file
 "Enter a filename:"
 :pathname (sys:get-folder-path :common-documents))

Figure 11.8 Selection of a file

Try also the function prompt-for-directory.

11.2.5 Prompting for fonts

To obtain a gp:font object from the user call prompt-for-font.

11.2.6 Prompting for colors

To obtain a color specification from the user call prompt-for-color.

11.3 Window-modal Cocoa dialogs
11.2.7 Prompting for Lisp objects

The CAPI provides a number of dialogs specifically designed for creating Lisp
aware applications. The simplest is the function prompt-for-form which
accepts an arbitrary Lisp form and optionally evaluates it.

(prompt-for-form
 "Enter a form to evaluate:"
 :evaluate t)

(prompt-for-form
 "Enter a form (not evaluated):"
 :evaluate nil)

Another useful function is prompt-for-symbol which prompts the user for
an existing symbol. The simplest usage accepts any symbol, as follows:

(prompt-for-symbol
 "Enter a symbol:")

If you have a list of symbols from which to choose, then you can pass prompt-
for-symbol this list with the keyword argument :symbols.

Finally, using :ok-check you can accept only certain symbols. For example,
to only accept a symbol which names a class, use:

(prompt-for-symbol
 "Enter a class-name symbol:"
 :ok-check #'(lambda (symbol)
 (find-class symbol nil)))

Cocoa programmers will notice that the dialog sheet displayed by this form,
like all those in this chapter so far, prevents input to other LispWorks win-
dows while it is displayed. For information about creating dialog sheets
which are not application-modal, see “Window-modal Cocoa dialogs” on
page 117.

11.3 Window-modal Cocoa dialogs
By default, CAPI dialogs on Cocoa use sheets which are application-modal.
This means that the application waits until the sheet is dismissed and does not
allow the user to work with its other windows until then.
 117

11 Prompting for Input

118
This section describes how to create CAPI dialogs which are window-modal
on Cocoa. This is done with portable code, so Windows, GTK+ and Motif pro-
grammers may wish to code their CAPI dialogs as described in this section,
which would ease a future port to the Cocoa GUI.

11.3.1 The :continuation argument

All CAPI dialog functions take a keyword argument continuation. This is a
function which is called with the results of the dialog.

You do not need to construct the continuation argument yourself, but rather
call the dialog function inside with-dialog-results.

11.3.2 A dialog which is window-modal on Cocoa

To create a dialog which is window-modal on Cocoa, call the dialog function
inside the macro with-dialog-results as in this example:

(with-dialog-results (symbol okp)
 (prompt-for-symbol
 "Enter a class-name symbol:"
 :ok-check #'(lambda (symbol)
 (find-class symbol nil)))
 (when okp
 (display-message "symbol is ~S" symbol)))

On Microsoft Windows, GTK+ and Motif this displays the dialog, calls dis-
play-message when the user clicks OK, and then returns. The effect is no dif-
ferent to what you saw in “Prompting for Lisp objects” on page 117.

On Cocoa, this creates a sheet and returns. display-message is called when
the user clicks OK. The sheet is window-modal, unlike the sheet you saw in
“Prompting for Lisp objects” on page 117.

For more details, see the page for with-dialog-results in the LispWorks
CAPI Reference Manual.

11.4 Dialog Owners
11.4 Dialog Owners
When a dialog appears, it should be "owned" by some window. The main
effect of this "ownership" is that the dialog is always in front of the owner win-
dow. When either the dialog or the owner is raised, the other follows.

All CAPI functions which display a dialog allow you to specify the owner.

11.4.1 The default owner

When a dialog is displayed and the owner is not supplied or is given as nil,
the CAPI tries to identify the appropriate owner. In particular, in the case
where a dialog pops up in a process in which a CAPI interface is displayed, by
default the CAPI uses this interface as the owner window. This case covers
most situations.

11.4.2 Specifying the owner

If the default is not appropriate, then the programmer needs to supply the
owner. This owner argument can be any CAPI pane that is currently displayed,
and the top level interface of the pane is used as the actual owner. A CAPI
pane owner must be running in the current process (see the process argument
to display). Creating cross-process ownership can lead to deadlocks.

The owner can also be a screen object, which tells the system on which screen
to put the dialog, but none of the windows will be the dialog's owner.

The owner can be supplied by the keyword argument :owner in functions
such as display-dialog and print-dialog. Other functions such as
prompt-for-string and prompt-for-file can be supplied an owner in the
:popup-args list as a pair :owner owner.

11.5 Creating your own dialogs
The CAPI provides a number of built-in dialogs which should cover the
majority of most peoples needs. However, there is always the occasional need
to create custom built dialogs, and the CAPI makes this very simple, using the
function display-dialog which displays any CAPI interface as a dialog, and
 119

11 Prompting for Input

120
the functions exit-dialog and abort-dialog as the means to return from
such a dialog.

11.5.1 Using display-dialog

Here is a very simple example that displays a Cancel button in a dialog, and
when that button is pressed the dialog is cancelled. Note that display-dia-
log must receive an interface, so an interface is created for the button by using
the function make-container.

(display-dialog
 (make-container
 (make-instance
 'push-button
 :text "Press this button to cancel"
 :callback 'abort-dialog)
 :title "My Dialog"))

Figure 11.9 A cancel button

The function abort-dialog cancels the dialog returning the values nil and
nil, which represent a return result of nil and the fact that the dialog was
cancelled, respectively. Note also that abort-dialog accepts any values and
just ignores them.

The next problem is to create a dialog that can return a result. Use the function
exit-dialog which returns the value passed to it from the dialog. The exam-
ple below shows a simple string prompter.

(display-dialog
 (make-container
 (make-instance
 'text-input-pane
 :callback-type :data
 :callback 'exit-dialog)
 :title "Enter a string:"))

11.5 Creating your own dialogs
Both of these examples are very simple, so here is a slightly more complicated
one which creates a column containing both a text-input-pane and a Cancel
button.

(display-dialog
 (make-container
 (list
 (make-instance
 'text-input-pane
 :callback-type :data
 :callback 'exit-dialog)
 (make-instance
 'push-button
 :text "Cancel"
 :callback 'abort-dialog))
 :title "Enter a string:"))

Note that this looks very similar to the dialog created by prompt-for-string
except for the fact that it does not provide the standard OK button.

It would be simple to add an OK button in the code above, but since almost
every dialog needs these standard buttons, the CAPI provides a higher level
function called popup-confirmer that adds the standard buttons for you.
Also it arranges for the OK and Cancel buttons to respond to the Return and
Escape keys respectively. popup-confirmer is discussed in the next section.

11.5.2 Using popup-confirmer

The function popup-confirmer is a higher level function provided to add the
standard buttons to user dialogs, and it is nearly always used in preference to
display-dialog. In order to create a dialog using popup-confirmer, all you
need to do is to supply a pane to be placed inside the dialog along with the
buttons and the title. The function also expects a title, like all of the prompter
functions described earlier.

(popup-confirmer
 (make-instance
 'text-input-pane
 :callback-type :data
 :callback 'exit-dialog)
 "Enter a string")
 121

11 Prompting for Input

122
A common thing to want to do with a dialog is to get the return value from
some state in the pane specified. For instance, in order to create a dialog that
prompts for an integer the string entered into the text-input-pane would need
to be converted into an integer. It is possible to do this once the dialog has
returned, but popup-confirmer has a more convenient mechanism. The func-
tion provides a keyword argument, :value-function, which gets passed the
pane, and this function should return the value to return from the dialog. It
can also indicate that the dialog cannot return by returning a second value
which is non-nil.

In order to do this conversion, popup-confirmer provides an alternative exit
function to the usual exit-dialog. This is called exit-confirmer, and it
does all of the necessary work on exiting.

You now have enough information to write a primitive version of prompt-
for-integer.

(defun text-input-pane-integer (pane)
 (let* ((text
 (text-input-pane-text pane))
 (integer
 (parse-integer
 text
 :junk-allowed t)))
 (or (and (integerp integer) integer)
 (values nil t))))

11.5 Creating your own dialogs
(popup-confirmer
 (make-instance
 'text-input-pane
 :callback 'exit-confirmer)
 "Enter an integer:"
 :value-function 'text-input-pane-integer)

Figure 11.10 A example using popup-confirmer

Note that the dialog’s OK button never becomes activated, yet pressing
Return once you have entered a valid integer will return the correct value.
This is because the OK button is not being dynamically updated on each key-
stroke in the text-input-pane so that it activates when the text-input-pane con-
tains a valid integer. The activation of the OK button is recalculated by the
function redisplay-interface, and the CAPI provides a standard callback,
:redisplay-interface, which calls this as appropriate.

Thus, to have an OK button that becomes activated and deactivated dynami-
cally, you need to specify the change-callback for the text-input-pane to be
:redisplay-interface.

(popup-confirmer
 (make-instance
 'text-input-pane
 :change-callback :redisplay-interface
 :callback 'exit-confirmer)
 "Enter an integer:"
 :value-function 'text-input-pane-integer)

Note that the OK button now changes dynamically so that it is only ever active
when the text in the text-input-pane is a valid integer.
 123

11 Prompting for Input

124
Note that the Escape key activates the Cancel button - this too was set up by
popup-confirmer.

The next thing that you might want to do with your integer prompter is to
make it accept only certain values. For instance, you may only want to accept
negative numbers. This can be specified to popup-confirmer by providing a
validation function with the keyword argument :ok-check. This function
receives the potential return value (the value returned by the value function)
and it must return non-nil if that value is valid. Thus to accept only negative
numbers we could pass minusp as the :ok-check.

(popup-confirmer
 (make-instance
 'text-input-pane
 :change-callback :redisplay-interface
 :callback 'exit-confirmer)
 "Enter an integer:"
 :value-function 'text-input-pane-integer
 :ok-check 'minusp)

11.5.3 Modal and non-modal dialogs

By default popup-confirmer and display-dialog create modal dialog win-
dows which prevent input to other application windows until they are dis-
missed by the user clicking on a button or another appropriate gesture. You
can change this behavior by passing the modal keyword argument.

11.6 In-place completion
’In-place completion' allows the user to select from a list of possible
completions displayed in a special non-modal window which appears in front
of an input pane (such as an editor-pane or a text-input-pane) but does
not grab the input focus. Certain gestures including Up, Down and Return
operate on the special window and allow selection of an item. The user can
also continue typing her input in which case the list of possible completions is
updated to reflect the text in the input pane.

11.6.1 In-place completion user interface

This section describes the user interface of in-place completion.

11.6 In-place completion
In-place completion is available in the LispWorks IDE, in the Editor tool and
also in tools that ask for a named object such as the Class Browser and the
Generic Function Browser. Set the Preferences... Environment > General > Use in-
place completion option to use in-place completion in the LispWorks IDE, and
see LispWorks IDE User Guide for further details.

In-place completion is also available to you to use in your CAPI applications.
You may wish to adapt the remainder of this section for your end-user docu-
mentation. See “Programmatic control of in-place completion” on page 128 for
information on how to implement it.

11.6.1.1 Invoking in-place completion in text-input-pane and editor-pane

In a text-input-pane that supports in-place completion, any of the gestures
Up, Down, PageUp, and PageDown invokes the in-place completion unless it is
already displayed.

In an editor-pane, completion commands invoke in-place completion by
default, though you can make them use dialogs instead by setting edi-
tor:*use-in-place-completion* to nil.

There are several Editor commands that invoke in-place completion uncondi-
tionally:

Abbreviated in-place Complete Symbol

Completes the symbol before the point, taking the
string as abbreviation.

In-Place Complete Symbol

Completes the symbol before the point

In-Place Complete Input

Echo Area: Complete the input in the echo area. For file
input, does file completion.

In-Place Expand File Name

Expand the file name at the current point.

In-Place Expand File Name with space

Expand the file name at the current point, allowing
spaces.
 125

11 Prompting for Input

126
See the LispWorks Editor User Guide for information on binding these com-
mands to keyboard gestures. See call-editor in the LispWorks CAPI Refer-
ence Manual for information on calling them from CAPI.

11.6.1.2 Keyboard input handling while the in-place window is displayed

Keyboard input while the in-place window is displayed goes to the input
pane, but some of the input gestures are redirected to the in-place window. By
default, the following gestures are redirected:

Up, Down, PageUp, PageDown

Change the selection in the list of completions in the
obvious way.

Return Perform the completion using the current selected item
in the list. In non-file-completion, or in file-completion
when the item is not a directory, the in-place window
disappears. In file-completion when the selected item is
a directory, the in-place window changes to display the
list of files in the completed directory.

Escape Causes the in-place window to disappear, without
doing anything else. Note that if the text in the input
pane was edited while the in-place window was dis-
played, these edits are not undone.

Control+Return

Toggles the filter.

Control+Shift+Return

Toggles redirection of characters to the filter. A filter is
text-input-pane which filters the list of completions
based on its contents. While the filter is on, the list of
completions shows only the completions that match the
filter.

11.6 In-place completion
While the filter is visible and enabled, all character
input plus Backspace are redirected to the filter. The fil-
ter can be disabled by Control+Shift+Return, which
means it still filters, but characters go to the the input
pane.

The functionality of the in-place completion filter is the
same as the standard filter for list-panel. For a full
description of the pattern matching see "Regular
expression searching" in the LispWorks Editor User
Guide.

Control+Shift+R, Control+Shift+E, Control+Shift+C

Change the setting in the filter.

Other keyboard input goes to the input pane.

While the filter is off (the default), or when the filter is on and disabled, plain
characters go to the input pane, and hence change the text in it.

When the filter is on and is enabled, plain characters go to the filter.

11.6.1.3 Performing a Completion

In a text-input-pane, performing a completion means replacing part of the
text in the pane by the selected completion. In a file-completion, only the last
part of the text (from the last directory separator) is replaced.

If a text-input-pane was made with complete-do-action true, once the com-
pletion was performed, if it is not file-completion and the completion is a
directory, the callback of the pane is invoked.

In an editor-pane, while the in-place window is displayed, the editor high-
lights the part of the text that will be replaced. In non-file-completion it is the
beginning of the "symbol", as seen by the editor, and the end of the "symbol".
In a file-completion it is the part of the filename after the last directory separa-
tor.

Performing the completion in an editor-pane means replacing the high-
lighted text by the selected completion. The replacement is done as a single
separate operation (for example Undo will undo the replacement separately
from any previous changes).
 127

11 Prompting for Input

128
11.6.1.4 Interaction while the in-place window is displayed

Any operation that affects the text between the start of the relevant text (this is
the start in a text-input-pane, and the highlighted area in an editor-pane)
and the current cursor causes the in-place window to recompute the possible
completions and display the new list. These operations include not only actual
changes to the text, but also cursor movement.

In an editor-pane, if the insertion point moves out of the highlighted area
then the in-place window goes away.

If the input pane loses the focus, the in-place window goes away, except on
Motif.

11.6.2 Programmatic control of in-place completion

You can add in-place completion to your application as described in this sec-
tion.

11.6.2.1 Text input panes

A text-input-pane will do in-place completion if you pass either of these
initargs:

:file-completion with value t or a pathname designator, or

:in-place-completion-function with value a suitable function designator

You can add a filter to the in-place window by passing the initarg :in-place-
filter. Additionally you can control the functionality for file completion by
passing :directories-only and :ignore-file-suffices. The keyword
arguments :complete-do-action and :gesture-callbacks also interact
with in-place completion.

The in-place completion can be invoked explicitly for a text-input-pane by
calling text-input-pane-in-place-complete.

See the LispWorks CAPI Reference Manual for details.

11.6 In-place completion
11.6.2.2 Editor panes

An editor-pane does in-place completion when your code calls the function
editor:complete-in-place.

11.6.2.3 Other CAPI panes

You can also implement in-place completion on arbitrary CAPI panes by call-
ing prompt-with-list-non-focus.
 129

11 Prompting for Input

130

12

12 Creating Your Own Panes
The CAPI provides a wide range of built-in panes, but it is still fairly common
to need to create panes of your own. In order to do this, you need to specify
both the input behavior of the pane (how it reacts to keyboard and mouse
events) and its output behavior (how it displays itself). The class output-
pane is provided for this purpose.

An output-pane is a fully functional graphics port. This allows it to use all of
the graphics ports functionality to create graphics, and it also has a powerful
input model which allows it to receive mouse and keyboard input.

12.1 Displaying graphics
The following is a simple example demonstrating how to create an output-
pane and then how to draw a circle on it.
131

12 Creating Your Own Panes

132
(setq output-pane
 (contain
 (make-instance 'output-pane)
 :best-width 300
 :best-height 300))

Figure 12.1 An empty output pane

Now you can draw a circle in the empty output pane by using the graphics
ports function draw-circle. Note that the drawing function must be called in
the process of the interface containing the output pane:

12.1 Displaying graphics
(capi:apply-in-pane-process
 output-pane 'gp:draw-circle output-pane 100 100 50)

Figure 12.2 An output pane containing a circle

Notice that this circle is not permanently drawn on the output-pane, and
when the window is next redisplayed it vanishes. To prove this to yourself,
force the window to be redisplayed (for example by iconifying or resizing it).
At this point, you can draw the circle again yourself but it will not happen
automatically.

(capi:apply-in-pane-process
 output-pane 'gp:draw-circle output-pane 100 100 50)

In order to create a permanent display, you need to provide a function to the
output-pane that is called to redraw sections of the output-pane when they
are exposed. This function is called the display-callback, and it is automatically
called in the correct process. When the CAPI needs to redisplay a region of an
 133

12 Creating Your Own Panes

134
output-pane, it calls that output pane’s display-callback function, passing it the
output-pane and the region in question.

For example, to create a pane that has a permanent circle drawn inside it, do
the following:

(defun draw-a-circle (pane x y
 width height)
 (gp:draw-circle pane 100 100 50))

(contain
 (make-instance
 'output-pane
 :display-callback 'draw-a-circle)
 :best-width 300
 :best-height 300)

Notice that the callback in this example ignores the region that needs redraw-
ing and just redraws everything. This is possible because the CAPI clips the
drawing to the region that needs redisplaying, and hence only the needed part
of the drawing gets done. For maximum efficiency, it would be better to only
draw the minimum area necessary.

The arguments :best-width and :best-height specify the initial width and
height of the interface. More detail can be found in the LispWorks CAPI Refer-
ence Manual.

Now that we can create output panes with our own display functions, we can
create a new class of window by using defclass as follows.

(defclass circle-pane (output-pane)
 ()
 (:default-initargs
 :display-callback 'draw-a-circle))

(contain
 (make-instance 'circle-pane))

12.2 Receiving input from the user
You now know enough to be able to create new classes of window which can
display arbitrary graphics, but to be able to create interactive windows you
need to be able to receive events. The CAPI supports this through the use of

12.2 Receiving input from the user
an input model, which is a mapping of events to the callbacks that should be
run when they occur.

When the event callback is called, it gets passed the output-pane and the x
and y integer coordinates of the mouse pointer at the time of the event. A few
events also pass additional information as necessary; for example, keyboard
events also pass the key that was pressed.

For example, we can create a very simple drawing pane by adding a callback
to draw a point whenever the left button is dragged across the pane. This is
done as follows:

(contain
 (make-instance
 'output-pane
 :input-model '(((:motion :button-1)
 gp:draw-point))))

Figure 12.3 An interactive output pane
 135

12 Creating Your Own Panes

136
The input model above seems quite complicated, but it is just a list of event to
callback mappings, where each one of these mappings is a list containing an
event specification and a callback. An event specification is also a list contain-
ing keywords specifying the type of event required.

There is an example input model in

examples/capi/graphics/pinboard.lisp

See the manual page for output-pane in the LispWorks CAPI Reference Manual
for the full input-model syntax..

12.3 Creating graphical objects
A common feature needed by an application is to have a number of objects
displayed in a window and to make events affect the object underneath the
cursor. The CAPI provides the ability to create graphical objects, to place them
into a window at a specified size and position, and to display them as
necessary. Also a function is provided to determine which object is under any
given point so that events can be dispatched correctly.

These graphical objects are called pinboard objects, as they can only be dis-
played if they are contained within a pinboard-layout. To define a pinboard-
object, you define a subclass of drawn-pinboard-object and specify a draw-
ing routine for it (and you can also specify constraints on the size of your
object). You can then make instances of these objects and place them into lay-
outs just as if they were ordinary panes. You can also place these objects inside
layouts as long as there is a pinboard-layout higher up the layout hierarchy
that contains the panes.

Note: pinboard-objects are implement as graphics on a native window.
Compare this with simple-pane and its subclasses, where each instance is
itself a native window. A consequence of this is that simple-panes do not
work well within a pinboard-layout, since they always appear above the
pinboard-objects. For example, to put labels on a pinboard, use item-pin-
board-object rather than display-pane or title-pane.

Here is an example of the built-in pinboard object class item-pinboard-
object which displays its text like a title-pane. Note that the function con-
tain always creates a pinboard-layout as part of the wrapper for the object

12.3 Creating graphical objects
to be contained, and so it is possible to test the display of pinboard-objects
in just the same way as you can test other classes of CAPI object.

(contain
 ;; CONTAIN makes a pinboard-layout if needed, so we don't
 ;; need one explicitly in this example.
 ;; You will need an explicit pinboard-layout if you define
 ;; your own interface class.
 (make-instance
 'item-pinboard-object
 :text "Hello world"))

Figure 12.4 A pinboard object

There is another example illustrating item-pinboard-object in the file

examples/capi/graphics/pinboard-object-text-pane.lisp

12.3.1 Buffered drawing

Where the display of an output-pane is complex you may see flickering on
screen on some platforms. Typcailly this occurs in a pinboard-layout with
many pinboard objects, or some other characteristic that makes the display
complex.

The flickering can be avoided by passing the draw-with-buffer initarg which
causes the drawing to go to an off-screen pixmap buffer. The screen is then
updated from the buffer.

Note: GTK+ and Cocoa always buffer, so the draw-with-buffer initarg is ignored
on these platforms.

12.3.2 The implementation of graph panes

One of the major uses the CAPI itself makes of pinboard objects is to imple-
ment graph panes. The graph-pane itself is a pinboard-layout and it is built
 137

12 Creating Your Own Panes

138
using pinboard-objects for the nodes and edges. This is because each node
(and sometimes each edge) of the graph needs to react individually to the
user. For instance, when an event is received by the graph-pane, it is told
which pinboard object was under the pointer at the time, and it can then use
this information to change the selection.

Create the following graph-pane and notice that every node in the graph is
made from an item-pinboard-object as described in the previous section
and that each edge is made from a line-pinboard-object.

(defun node-children (node)
 (when (< node 16)
 (list (* node 2)
 (1+ (* node 2)))))

12.3 Creating graphical objects
(contain
 (make-instance
 'graph-pane
 :roots '(1)
 :children-function 'node-children)
 :best-width 300 :best-height 400)

Figure 12.5 A graph pane with pinboard object nodes

As mentioned before, pinboard-layouts can just as easily display ordinary
panes inside themselves, and so the graph-pane provides the ability to spec-
ify the class used to represent the nodes. As an example, here is a graph-pane
with the nodes made from push-buttons.
 139

12 Creating Your Own Panes

140
(contain
 (make-instance
 'graph-pane
 :roots '(1)
 :children-function 'node-children
 :node-pinboard-class 'push-button)
 :best-width 300 :best-height 400)

Figure 12.6 A graph pane with push-button nodes

12.3.3 An example pinboard object

To create your own pinboard objects, the class drawn-pinboard-object is
provided, which is a pinboard-object that accepts a display-callback to dis-

12.3 Creating graphical objects
play itself. The following example creates a new subclass of drawn-pin-
board-object that displays an ellipse.
 141

12 Creating Your Own Panes

142
(defun draw-ellipse-pane (gp pane
 x y
 width height)
 (with-geometry pane
 (let ((x-radius
 (1- (floor %width% 2)))
 (y-radius
 (1- (floor %height% 2))))
 (gp:draw-ellipse
 gp
 (1+ (+ %x% x-radius))
 (1+ (+ %y% y-radius))
 x-radius y-radius
 :filled t
 :foreground
 (if (> x-radius y-radius)
 :red
 :yellow)))))

(defclass ellipse-pane
 (drawn-pinboard-object)
 ()
 (:default-initargs
 :display-callback 'draw-ellipse-pane
 :visible-min-width 50
 :visible-min-height 50))

(contain
 (make-instance 'ellipse-pane)
 :best-width 200
 :best-height 100)

Figure 12.7 An ellipse-pane class

12.3 Creating graphical objects
The with-geometry macro is used to set the size and position, or geometry, of
the ellipse drawn by the draw-ellipse-pane function. The fill color depends
on the radii of the ellipse - try resizing the window to see this. See the Lisp-
Works CAPI Reference Manual for more details of drawn-pinboard-object.

Now that you have a new ellipse-pane class, you can create instances of them
and place them inside layouts. For instance, the example below creates nine
ellipse panes and place them in a three by three grid.
 143

12 Creating Your Own Panes

144
(contain
 (make-instance
 'grid-layout
 :description
 (loop for i below 9
 collect
 (make-instance 'ellipse-pane))
 :columns 3)
 :best-width 300
 :best-height 400)

Figure 12.8 Nine ellipse-pane instances in a layout

13

13 Graphics Ports
13.1 Introduction
Graphics Ports allow you to write source-compatible applications which draw
text, lines, shapes and images, for different host window systems. Graphics
Ports are the destinations for the drawing primitives. They are implemented
with a generic host-independent part and a small host-specific part.

All Graphics Ports symbols are interned in and exported from the graphics-
ports package, nicknamed gp.

Graphics Ports implement a set of drawing functions and a mechanism for
specifying the graphics state to be used in each drawing function call. There
are four categories of graphics ports:

On-screen ports These correspond to visible windows. They are
instances of capi:output-pane or a subclass, and are
integral part of the CAPI panes system.

Pixmap ports These are used for off-screen drawing. Once the draw-
ing is completed they can be copied to another port
(typically the screen, with copy-area), or converted to
an image.

Printer ports These are used for drawing to a printer.
145

13 Graphics Ports

146
Metafile ports These are used for recording drawing operations so that
the drawing can be realized later.

13.1.1 Creating instances

Graphics ports instances are created or temporarily redirected by any of these
interfaces:

On-screen ports make-instance with capi:output-pane or any sub-
class (including capi:editor-pane, capi:pinboard-
layout and capi:graph-pane).

See the LispWorks CAPI Reference Manual documenta-
tion for capi:output-pane and the other CAPI classes.

Pixmap ports create-pixmap-port and with-pixmap-graphics-
port.

Metafile ports capi:with-internal-metafile and capi:with-
external-metafile.

Printer ports capi:with-print-job and capi:simple-print-
port.

See the LispWorks CAPI Reference Manual for full reference entries on all the
Graphics Ports functions, macros, classes and types.

13.2 Features
The main features of graphics ports are:

1. Each port has a “graphics state” which holds all the information about
drawing parameters such as line thickness, fill pattern, line-end-style
and so on. A graphics state object can also be created independently of
any particular graphics port.

2. The graphics state contents can either be enumerated in each drawing
function call, bound to values for the entirety of a set of calls, or perma-
nently changed.

3. The graphics state includes a transform which implements generalized
coordinate transformations on the port’s coordinates.

13.2 Features
4. Off-screen ports can compute the horizontal and vertical bounds of the
results of a set of drawing function calls, thus facilitating image or pix-
map generation.

13.2.1 The drawing mode and anti-aliasing

Graphics ports has two drawing modes:

:compatible Compatible with LispWorks 6.0 and earlier versions

:quality Introduced in LispWorks 6.1, allowing high quality
drawing

The main visible effect is that with drawing-mode :quality, all drawings are
transformed properly.

With drawing-mode :compatible, strings and images are not scaled or rotated
at all, and ellipses are not rotated correctly. Other shapes are transformed "at
the front", that is they are drawn as if the drawing function was called with
transformed coordinates. The target of copy-pixels is also transformed "at
the front", that is the rectangle can be translated, but not scaled or rotated.

With drawing-mode :quality, all drawings are fully transformed correctly.
Shapes are transformed "at the back", that is they are drawn and then the
result of the drawing is transformed. Note that clear-rectangle and pix-
blt are not drawing functions in this sense, and do not take transforms into
account.

Another difference is that drawing-mode :quality supports anti-aliasing on
Windows, and on GTK+ it adds control over anti-aliasing. See shape-mode and
text-mode in the page for graphics-state in the LispWorks CAPI Reference
Manual.

With drawing-mode :quality the operation value in the graphics-state is not
supported and is ignored. This is because operations do not combine sensibly
with anti-aliasing and colors with alpha components. Instead, there is now
compositing-mode. See the page for graphics-state in the LispWorks CAPI Ref-
erence Manual.

On Microsoft Windows with drawing-mode :quality only Truetype fonts are
supported.
 147

13 Graphics Ports

148
The drawing-mode of all graphics ports is :quality by default, except when a
graphics port is made in association with another graphics ports (for exanple,
by create-pixmap-port), in which case the drawing-mode is inherited from
the "parent" graphics port.

All the interfaces that create graphics ports, or modify a graphics port to draw
to another place, take keyword argument :drawing-mode. Its value drawing--
mode can be :quality, :compatible, or nil which is interpreted as use the
default (either inherited or the global default :quality). These interfaces are
listed in “Creating instances” on page 146.

These examples in the examples/capi/graphics/ directory demonstrate fea-
tures that are available only with drawing-mode :quality:

catherine-wheel.lisp

Rotating a string.

compositing-mode-simple.lisp

Using compositing-mode.

compositing-mode.lisp

Using compositing-mode.

images-with-alpha.lisp

Using compositing-mode, transforming an image.

13.3 Graphics state
The graphics-state object associated with each port holds values for param-
eters such as foreground, background, operation, thickness, scale-thickness, mask
and font which affect graphics ports drawing to that port.

The full set of parameters is described under graphics-state in the Lisp-
Works CAPI Reference Manual.

13.3.1 Setting the graphics state

The graphics state values associated with a drawing function call are set by
one of three mechanisms.

1. Enumeration in the drawing function call. For example:

13.4 Drawing functions
(draw-line port 1 1 100 100
 :thickness 10
 :scale-thickness nil
 :foreground :red)

2. Bound using the with-graphics-state macro. For example:

(with-graphics-state (port :thickness 10
 :scale-thickness nil
 :foreground :red)
 (draw-line port 1 1 100 100)
 (draw-rectangle port 2 2 40 50 :filled t))

3. Set by the set-graphics-state function. For example:

(set-graphics-state port :thickness 10
 :scale-thickness nil
 :foreground :red)

The first two mechanisms change the graphics state temporarily. The last one
changes it permanently in port, effectively altering the “default” state.

13.4 Drawing functions
The section describes the various shapes and so on that you can draw with
graphics ports, and lists the relevant drawing functions. The graphics state
foreground color is used for the drawing.

Note: displaying images is described in “Working with images” on page 156.

13.4.1 Text

You can draw text with the functions draw-string and draw-character.

To control the font used, see “Portable font descriptions” on page 154.

13.4.2 Simple lines

You can draw straight lines with the functions draw-line and draw-lines.

You can draw arcs of an ellipse with the functions draw-arc and draw-arcs.
 149

13 Graphics Ports

150
13.4.3 Simple shapes

You can draw ellipses and polygons with the functions draw-ellipse, draw-
rectangle, draw-rectangles, draw-polygon and draw-polygons.

You can specify whether a shape is drawn in outline or is filled (with the
graphics state foreground color) by the argument filled.

For example, to clear a rectangular region of an output pane, do

(draw-rectangle pane x y width height
 :filled t
 :foreground color
 :compositing-mode :copy
 :shape-mode :plain)

:compositing-mode :copy is needed only when the color has alpha, and
:foreground color is needed only if it is different from the foreground in pane’s
graphics state.

13.4.4 Paths

A graphics path is a series of lines, arcs and Bézier curves that together specify
one or more disconnected figures to be drawn.

You can draw a path with the function draw-path.

A path can be drawn in outline or can be filled. A path can also be used as the
clipping mask.

13.5 Graphics state transforms
Coordinate systems for windows generally have the origin (0,0) positioned at
the upper left corner of the window with X positive to the right and Y positive
downwards. This is the “window coordinates” system. Generalized
coordinates are implemented using scaling, rotation and translation
operations such that any Cartesian coordinates can be used within a window.
The Graphics Ports system uses a transform object to achieve this.

13.5 Graphics state transforms
13.5.1 Generalized points

An (x, y) coordinate pair can be transformed to another coordinate system by
scaling, rotation and translation. The first two can be implemented using 2 x 2
matrices to hold the coefficients:

If the point P is (a, b) and it is transformed to the point Q (a’, b’)

P Q or (a, b) (a’, b’)

a’ = pa + rb, b’ = qa + sb.

Translation can be included in this if the points P and Q are regarded as 3-vec-
tors instead of 2-vectors, with the 3rd element being unity:

The coefficients u and v specify the translation.

So, the six elements (p, q, r, s, u, and v) of the 3 x 3 matrix contain all the trans-
formation information. These elements are stored in a list in the graphics state
slot transform.

Transforms can be combined by matrix multiplication to effect successions of
translation, scaling and rotation operations.

Functions are provided in Graphics Ports which apply translation, scaling and
rotation to a transform, combine transforms by pre- or post-multiplication,
invert a transform, perform some operations while ignoring an established
transform, and so on.

Q = PM,
r s

p qwhere M =

Q = PM
 = (a b 1)

r s 0

u v 1

p q 0
 151

13 Graphics Ports

152
13.5.2 Drawing on screen

Drawing functions such as draw-line and draw-ellipse modify pixels, but
you cannot assume that they have exactly the same effect on all platforms.
Some platforms might put pixels below and to the right of integer coordinates
(x y) while others may center the pixel at (x y).

This applies to all the drawing functions which are documented in the Graph-
ics Ports chapter of the LispWorks CAPI Reference Manual - see the entries for
functions with names beginning draw-.

13.6 Combining source and target pixels
This section describes how new drawings are combined with the existing
pixel values in the target of the drawing to generate the result.

13.6.1 Combining pixels with :compatible drawing

When the port’s drawing-mode is :compatible the graphics state parameter
operation determines how the colors are combined, and compositing-mode is
ignored

The allowed values of operation are the values of the Common Lisp constants
boole-1, boole-and and so on. These are the allowed values of the first
argument to the Common Lisp function boole.See the specification of boole
in the ANSI Common Lisp standard for the full list of operations.

The color combination corresponds to the logical operation defined there, as if
by calling

(boole operation new-pixel screen-pixel)

For example, passing :operation boole-andc2 provides a graphics state
where graphics ports drawing functions draw with the bitwise AND of the
foreground color and the complement of the existing color of each pixel.

Note: Graphics State operation is not supported by Cocoa/Core Graphics so
this parameter is ignored on Cocoa.

13.7 Pixmap graphics ports
13.6.2 Combining pixels with :quality drawing

When the port’s drawing-mode is :quality the graphics state parameter com-
positing-mode determines how the colors are combined, and operation is
ignored.

compositing-mode :over means draw over the existing values, blending alpha
values if they exist.

compositing-mode :copy means that the source is written to the destination
ignoring the existing values. If the source has alpha and the target does not,
that has the effect of converting semi-transparent source to solid. :copy is
especially useful for creating transparent and semi-transparent pixmap ports,
which can be displayed directly or converted to images by make-image-
from-port.

Further compositing-mode values are supported on later versions of Cocoa and
GTK+.

13.7 Pixmap graphics ports
Pixmap graphics ports are drawing destinations which exist only as pixel
arrays whose contents are not directly accessible. They can be drawn to using
the draw-thing functions and images can be loaded using load-image, and
their contents can be copied onto other graphics ports. However this copying
can be meaningless unless the conversion of colors uses the same color device
on both ports. Because color devices are associated with regular graphics
ports (Windows) rather than pixmap graphics ports, you have to connect a
pixmap graphics port to a regular graphics port for color conversion. This is
the purpose of the owner slot in pixmap-graphics-port-mixin. The conver-
sion of colors to pixel values is done in the same way as for regular graphics
ports, but the pixmap graphics port’s owner is used to find a color device. You
can draw to pixmap graphics ports using pre-converted colors to avoid color
conversion altogether, in which case a null color owner is OK for a pixmap
graphics port.
 153

13 Graphics Ports

154
13.7.1 Relative drawing in pixmap graphics ports

Many of the drawing functions have a relative argument. If non-nil, it specifies
that when drawing functions draw to the pixmap, the extremes of the pixel
coordinates reached are accumulated. If the drawing strays beyond any edge
of the pixmap port (into negative coordinates or beyond its width or height),
then the drawing origin is shifted so that it all fits on the port. If the drawing
extremes exceed the total size available, some are inevitably lost. If relative is
nil, any part of the drawing which extends beyond the edges of the pixmap is
lost. If relative is nil and collect non-nil, the drawing bounds are collected for
later reading, but no relative shifting of the drawing is performed. The col-
lected bounds are useful when you need to know the graphics motion a series
of drawing calls causes. The rest args are host-dependent. They usually
include a :width and :height pair.

13.8 Portable font descriptions
Portable font descriptions are designed to solve the following problems:

• Specify enough information to uniquely determine a real font.

• Query which real fonts match a partial specification.

• Allow font specification to be recorded and reused in a later run.

All the functions described below are exported from the gp package.

You can obtain the names of all the fonts which are available for a given pane
by calling list-all-font-names, which returns a list of partially-specified
font descriptions.

Portable font descriptions are used only for lookup of real fonts and for stor-
ing the parameters to specify when doing a font lookup operation. To draw
text in a specified font using the Graphics Ports drawing functions, supply in
the graphics state a font object as returned by find-matching-fonts and
find-best-font.

13.8.1 Font attributes and font descriptions

Font attributes are properties of a font, which can be combined to uniquely
specify a font on a given platform. There are some portable attributes which

13.8 Portable font descriptions
can be used on all platforms; other attributes are platform specific and will be
ignored or signal errors when used on the wrong platform.

Font descriptions are externalizable objects which contain a set of font
attributes. When using a font description in a font lookup operation, missing
attributes are treated as wildcards (as are those with value :wild) and invalid
attributes signal errors. The result of a font lookup contains all the attributes
needed to uniquely specify a font on that platform.

The :stock font attribute is special: it can be used to reliably look up a system
font on all platforms.

Font descriptions can be manipulated using the functions
merge-font-descriptions and augment-font-description.

These are the current set of portable font attributes and their portable types:

13.8.2 Fonts

Fonts are the objects which are actually used in drawing operations. They are
made by a font lookup operation on a pane, using a font description as a
pattern.

Table 13.1 Set of portable font attributes

Attribute Possible values Comments

:family string Values are not portable.

:weight (member :normal :bold)

:slant (member :roman :italic)

:size (or (eql :any) (integer 0

*))
:any means a scalable font

:stock (member :system-font :sys-
tem-fixed-font)

Stock fonts are guaranteed
to exist.

:char-
set

keyword
 155

13 Graphics Ports

156
Examples of font lookup operations are find-best-font and
find-matching-fonts.

Once a font object is resolved you can read its properties such as height, width
and average width. The functions get-font-height, get-font-width and
get-font-average-width and so on need a pane that has been created. In
general, you need to call these functions within capi:interface-display, or
a display-callback or possibly a create-callback. See capi:interface for more
information about these initargs.

13.9 Working with images
Graphics Ports supports drawing images, and also reading/writing them
from/to file via your code. A wide range of image types is supported. Also,
several CAPI classes support the same image types.

To draw an image with Graphics Ports, you need an image object which is
associated with an instance of capi:output-pane (or a subclass of this). You
can create a image object from:

• A file of recognized image type

• A registered image identifier (see “Registering images”)

• An external-image object

• An on-screen port

Draw the image to the pane by calling draw-image. Certain images ("Plain
Images") can be manipulated via the Image Access API. The image should be
freed by calling free-image when you are done with it.

capi:image-pinboard-object, capi:button, capi:list-view,
capi:tree-view and capi:toolbar all support images. There is also limited
support for images in capi:menu. These classes handle the drawing and free-
ing for you.

13.9 Working with images
13.9.1 Image formats supported for reading from disk and drawing

This table lists the formats supported at the time of writing:

Functions which load images from a file attempt to identify the image type
from the file type.

Call the function list-known-image-formats to list the formats that the cur-
rent platform supports for reading and drawing.

Note: On X/Motif LispWorks uses the freeware imlib library which seems to
be in all Linux distributions. However it is not in some UNIX systems, so you
may need to install it.

Note: On Microsoft Windows ICO images are supported for certain situations
such as capi:button and draw-image - see the LispWorks CAPI Reference
Manual for details.

Note: On Microsoft Windows LispWorks additionally supports Windows Icon
files with scaling - see load-icon-image in the LispWorks CAPI Reference Man-
ual.

Note: On Microsoft Windows, only bitmaps with maximum 24 bits per pixel
are supported.

Note: LispWorks 4.3 and previous versions supported only Bitmap images.

Table 13.2 Operating system and supported image types

OS Supported Image Types

Microsoft
Windows

BMP, DIB, GIF, JPEG, PNG, TIFF, EMF, ICO

Mac OS X BMP, DIB, GIF, JPEG, TIFF, PICT and many
others.

Also EPS, PDF

GTK+ BMP, DIB, GIF, JPEG, PNG, TIFF and many
others.

X/Motif BMP, DIB, GIF, JPEG, PNG, TIFF, XPM,
PGM, PPM
 157

13 Graphics Ports

158
13.9.2 Image formats supported for writing to disk

Graphic images can be written to files in several formats, using externalize-
and-write-image.

All platforms can write at least BMP, JPG, PNG and TIFF files. Call the func-
tion list-known-image-formats with optional argument for-writing-too t to
list the formats that the current platform supports for writing.

On Microsoft Windows and Cocoa you can also write GIF files, while on
GTK+ you can also write ICO and CUR (cursor) files. The cursor files that are
written with GTK+ can be used on Windows and Cocoa, although on Cocoa it
does not recognize the hot-spot in a CUR file.

There is a simple example of writing a PNG image here:

examples/capi/graphics/images-with-alpha.lisp

13.9.3 External images

An External Image is an intermediate object. It is a representation of a graphic
but is not associated with a port and cannot be used directly for drawing.

An object of type external-image is created by reading an image from a file,
or by externalizing an image object, or by copying an existing external-
image. Or, if you have the image bitmap data, you can create one directly as in
the examples/capi/buttons/button.lisp example.

The external-image contains the bitmap data, potentially compressed. You
can copy external-image objects, or write them to file, or compress the data.

You cannot query the size of the image in an external-image object directly.
To get the dimensions without actually drawing it on screen see “Pixmap
graphics ports” on page 153.

If you create an image and want to externalize it to write it to file, follow this
example:

13.9 Working with images
(let ((image (gp:make-image-from-port pane 10 10 200 200)))
 (unwind-protect
 (gp:externalize-and-write-image pane image filename)
(gp:free-image pane image)))

13.9.3.1 Transparency

An External Image representing an image with a color map can specify a
transparent color. When converted and drawn, this color is drawn using the
background color of the port.

You can specify the transparent color by

 (gp:read-external-image file :transparent-color-index 42)

or by

(setf
 (gp:external-image-transparent-color-index
 external-image) 42)

You can use an image tool such as Gimp (www.gimp.org) to figure out the
transparent color index.

Note: transparent-color-index works only for images with a color map - those
with 256 colors or less.

13.9.3.2 Converting an external image

Convert an external-image to an object of type image ready for drawing to a
port in several ways as described in “Loading images” . Such conversions are
cached but you can remove the caches by clear-external-image-conver-
sions.

You an also convert an image to an external-image by calling externalize-
image.

13.9.4 Registering images

One way to load an image is via a registered image identifier.

To establish a registered image identifer call register-image-translation:
 159

http://www.gimp.org

13 Graphics Ports

160
(gp:register-image-translation
 'info-image
 (gp:read-external-image "info.bmp"
 :transparent-color-index 7))

You can then do:

(gp:load-image port 'info-image)

to obtain the image object.

13.9.5 Loading images

To create an image object suitable for drawing on a given pane, use one of
convert-external-image, read-and-convert-external-image, load-
image, make-image-from-port, make-sub-image or (on Microsoft Windows)
load-icon-image.

Images need to be freed after use. When the pane that an image was created
for is destroyed, the image is freed automatically. However if you want to
remove the image before the pane is destroyed, you must make an explicit call
free-image. If the image is not freed, then a memory leak will occur.

Another way to create an image object is to supply a registered image identi-
fier in a CAPI class that suports images. For example you can specify an image
in a capi:image-pinboard-object. Then, an image object is created implic-
itly when the pinboard object is displayed and freed implicitly when the pin-
board object is destroyed.

In all cases, the functions that create the image object require the pane to be
already created. So if you are displaying the image when first displaying your
window, take care to create the image object late enough, for example in the
:create-callback of the interface or in the first :display-callback of the
pane.

13.9.6 Querying image dimensions

To obtain the pixel dimensions of an image, load the image using load-image
and then use the readers image-width and image-height. The first argument
to load-image must be a pane in a displayed interface.

13.9 Working with images
To query the dimensions before displaying anything you can create and "dis-
play" an interface made with the :display-state :hidden initarg. Call
load-image with this hidden interface and your external-image object, and
then use the readers image-width and image-height.

13.9.7 Drawing images

The function to draw an image is draw-image.

This must be called in the same process as the pane. Use apply-in-pane-
process, apply-in-pane-process-if-alive or execute-with-interface
if necessary.

13.9.8 Image access

You can read and write pixel values in an image via an Image Access object,
but only if the image is a Plain Image. You can ensure you have a Plain Image
by using the result of

(load-image pane image :force-plain t)

To read and/or write pixel values, follow these steps:

1. Start with a Graphics Port (for example a capi:output-pane) and an
image object associated with it, which is a Plain Image. See above for
how to create an image object.

2. Construct an Image Access object by calling make-image-access.

3. To read pixels from the image, first call image-access-transfer-
from-image on the image access object. This notionally transfers all the
pixel data from the window system into the access object. It might do
nothing if the window system allows fast access to the pixel data
directly. Then call image-access-pixel with the coordinates of each
pixel. The pixel values are like those returned from color:convert-
color and can be converted to RGB using color:unconvert-color if
required.

4. To write pixels to the image, you must have already called image-
access-transfer-from-image. Then call (setf image-access-
pixel) with the coordinaes of each pixel to write, and then call image-
 161

13 Graphics Ports

162
access-transfer-to-image on the Image Access object. This notion-
ally transfers all the pixel data back to the window system from the
access object. It might do nothing if the window system allows fast
access to the pixel data directly.

5. Free the image access object by calling free-image-access on it.

There is an example that demonstrates the uses of Image Access objects in:

examples/capi/graphics/image-access.lisp

This further example demonstrates the uses of Image Access objects with
colors that have an alpha component:

examples/capi/graphics/image-access-alpha.lisp

13.9.9 Creating external images from Graphics Ports operations

To create an external-image object from an on-screen window, use with-
pixmap-graphics-port as in this example:

(defun record-picture (output-pane)
 (gp:with-pixmap-graphics-port
 (port output-pane
 400 400
 :clear t
 :background :red)
 (gp:draw-rectangle port 0 0 200 200
 :filled t
 :foreground :blue)
 (let ((image (gp:make-image-from-port port)))
 (gp:externalize-image port image))))

Here output-pane must be a displayed instance of capi:output-pane (or a
subclass). The code does not affect the displayed pane.

If you do not already display a suitable output pane, you can create an
invisible one like this:

13.9 Working with images
(defun record-picture-1 ()
 (let* ((pl (make-instance 'capi:pinboard-layout))
 (win (capi:display
 (make-instance 'capi:interface
 :display-state :hidden
 :layout pl))))
 (prog1 (record-picture pl)
 (capi:destroy win))))

Note: There is no reason to create and destroy the invisible interface each time
a new picture is recorded, so for efficiency you could cache the interface object
and use it repeatedly.
 163

13 Graphics Ports

164

14

14 The Color System
14.1 Introduction
The LispWorks Color System allows applications to use keyword symbols as
aliases for colors in Graphics Ports drawing functions. They can also be used
for backgrounds and foregrounds of windows and CAPI objects.

For example, the call

(gp:draw-line my-port x1 y1 x2 y2
 :foreground :navyblue)

uses the keyword symbol :navyblue for the color of the line.

Colors are looked up in a color database. The LispWorks image is delivered
with a large color database already loaded (approximately 660 entries.) The
color database contains color-specs which define the colors in terms of a stan-
dard color model. When the drawing function is executed, the color-spec is
converted into a colormap index (or “pixel” value).

The LispWorks Color System has facilities for:

• Defining new color aliases in one of several color models

• Loading the color database from a file of color descriptions

• Converting color specifications between color models
165

14 The Color System

166
• Defining new color models

It is accessible from the color package, and all symbols mentioned in this
chapter are assumed to be external to this package unless otherwise stated.
You can qualify them all explicitly in your code, for example color:apropos-
color-names.

However it is more convenient to create a package which has the color pack-
age on its package-use-list:

(defpackage "MY-PACKAGE"
(:add-use-defaults t)
(:use "COLOR" "CAPI")

)

This creates a package in which all the color symbols (and for convenience,
capi as well) are accessible. To run the examples in this chapter, evaluate the
form above and then:

(in-package "MY-PACKAGE")

The color-models available by default are RGB, HSV and GRAY.

14.1.1 Rendering of colors

Some colors do not render exactly as expected in some CAPI classes such as
capi:title-pane - it depends on the palette provided by the rendering sys-
tem.

However, capi:output-pane and its subclasses support non-standard pal-
ettes.

14.2 Reading the color database
To find out what colors are defined in the color database, use the functions
apropos-color-names. For example:

14.3 Color specs
(apropos-color-names "RED") =>
 (:ORANGERED3 :ORANGERED1 :INDIANRED3 :INDIANRED1
 :PALEVIOLETRED :RED :INDIANRED :INDIANRED2
 :INDIANRED4 :ORANGERED :MEDIUMVIOLETRED
 :VIOLETRED :ORANGERED2 :ORANGERED4 :RED1 :RED2 :RED3
 :RED4 :PALEVIOLETRED1 :PALEVIOLETRED2 :PALEVIOLETRED3
 :PALEVIOLETRED4 :VIOLETRED3 :VIOLETRED1 :VIOLETRED2
 :VIOLETRED4)

For information about only aliases or only original entries, use apropos-color-
alias-names or apropos-color-spec-names respectively.

To get a list of all color names in the color database, call get-all-color-
names.

14.3 Color specs
A color spec is an object which numerically defines a color in some color-
model. For example the object returned by the call:

(make-rgb 0.0s0 1.0s0 0.0s0) =>
 #(:RGB 0.0s0 1.0s0 0.0s0)

defines the color green in the RGB color model. (Note that short-floats are
used; this results in the most efficient color conversion process. However, any
floating-point number type can be used.)

To find out what color-spec is associated with a color name, use the function
get-color-spec. It returns the color-spec associated with a symbol. If there is
no color-spec associated with color-name, this function returns nil. If color-
name is the name of a color alias, the color alias is dereferenced until a color-
spec is found.

Color-specs are made using standard functions make-rgb, make-hsv and
make-gray. For example:

(make-rgb 0.0s0 1.0s0 0.0s0)
(make-hsv 1.2s0 0.5s0 0.9s0)
(make-gray 0.66667s0)

To create a color spec with an alpha component using the above constructors,
pass an extra optional argument. For example this specifies green with 40%
transparency:
 167

14 The Color System

168
(make-rgb 0.0s0 1.0s0 0.0s0 0.6s0)

You can also make a transparent color using color-with-alpha:

(color-with-alpha color-spec 0.8s0)

Note that the alpha component is only supported on Cocoa and Windows.

The predicate color-spec-p can be used to test for color-spec objects. The
function color-spec-model returns the model in which a color-spec object
has been defined.

14.4 Color aliases
You can enter a color alias in the color database using the function define-
color-alias. You can remove an entry in the color database using delete-
color-translation.

define-color-alias makes an entry in the color database under a name,
which should be a symbol. LispWorks by convention uses keyword symbols.
The name points to either a color-spec or another color name (symbol):

(define-color-alias :wire-color :darkslategray)

Attempting to replace an existing color-spec in the color database results in an
error. By default, replacement of existing aliases is allowed but there is an
option to control this (see the LispWorks CAPI Reference Manual entry for
define-color-alias).

delete-color-translation removes an entry from the color-database. Both
original entries and aliases can be removed:

(delete-color-translation :wire-color)

As described in Section 14.3 on page 167, the function get-color-spec
returns the color-spec associated with a color alias. The function get-color-
alias-translation returns the ultimate color name for an alias:

(define-color-alias :lispworks-blue
 (make-rgb 0.70s0 0.90s0 0.99s0))
(define-color-alias :color-background
 :lispworks-blue)
(define-color-alias :listener-background
 :color-background)

14.5 Color models
(get-color-alias-translation :listener-background)
 => :lispworks-blue
(get-color-alias-translation :color-background)
 => :lispworks-blue

There is a system-defined color alias :transparent which is useful when
specified as the background of a pane. It is currently supported only on Cocoa.
For example:

(capi:popup-confirmer
 (make-instance 'capi:display-pane
 :text
 (format nil "The background of this pane~%is
transparent")
 :background :transparent)
 "")

14.5 Color models
Three color models are defined by default: RGB, HSV and GRAY. RGB and
HSV allow specification of any color within conventional color space using
three orthogonal coordinate axes, while gray restricts colors to one hue
between white and black. All color models contain an optional alpha compo-
nent, though this is used only on Cocoa and Windows.

Table 14.1 Color models defined by default

Model Name Component: Range

RGB Red Green Blue RED (0.0 to 1.0)

GREEN (0.0 to 1.0)

BLUE (0.0 to 1.0)

ALPHA (0.0 to 1.0)

HSV Hue Saturation Value HUE (0.0 to 5.99999)

SATURATION (0.0 to 1.0)

VALUE (0.0 to 1.0)

ALPHA (0.0 to 1.0)
 169

14 The Color System

170
The Hue value in HSV is mathematically in the open interval [0.0 6.0). All val-
ues must be specified in floating point values.

You can convert color-specs between models using the available ensure-
<model> functions. For example:

(setf green (make-rgb 0.0 1.0 0.0)
 => #(:RGB 0.0 1.0 0.0))
(eq green (ensure-rgb green)) => T

(ensure-hsv green) => #(:HSV 3.0 0.0 1.0)
(eq green (ensure-hsv green) => NIL

(ensure-rgb (ensure-hsv green)) => #(:RGB 0.0 1.0 0.0)
(eq green (ensure-rgb (ensure-hsv green))) => NIL

Of course, information can be lost when converting to GRAY:

(make-rgb 0.3 0.4 0.5) => #(:RGB 0.3 0.4 0.5)
(ensure-gray (make-rgb 0.3 0.4 0.5))
 => #(:GRAY 0.39999965)
(ensure-rgb (ensure-gray
 (make-rgb 0.3 0.4 0.5)))
 => #(:RGB 0.39999965 0.39999965 0.39999965)

There is also ensure-color which takes two color-spec arguments. It con-
verts if necessary the first argument to the same model as the second. For
example:

(ensure-color (make-gray 0.3) green)
 => #(:RGB 0.3 0.3 0.3)

ensure-model-color takes a model as the second argument. For example:

(ensure-model-color (make-gray 0.3) :hsv)
 => #(:HSV 0 1.0 0.3)

The function colors= compares two color-spec objects for color equality.

GRAY Gray GRAY (0.0 to 1.0)

ALPHA (0.0 to 1.0)

Table 14.1 Color models defined by default

Model Name Component: Range

14.6 Loading the color database
Conversion to pixel values is done by convert-color.

14.6 Loading the color database
You can load new color definitions into the color database using read-color-
db and load-color-database.

Given a color definition file my-colors.db of lines like these:

#(:RGB 1.0s0 0.980391s0 0.980391s0) snow
#(:RGB 0.972548s0 0.972548s0 1.0s0) GhostWhite

call

(load-color-database (read-color-db "my-colors.db"))

To clear the color database use the form:

(setf *color-database* (make-color-db))

Note: You should do this before starting the LispWorks IDE (that is, before
env:start-environment is called) or before your application’s GUI starts. Be
sure to load new color definitions for all the colors used in the GUI. The initial
colors were obtained from the config\colors.db file.

You can remove a color database entry with delete-color-translation.

14.7 Defining new color models
Before using the definition described here, you should evaluate the form:

(require "color-defmodel")

The macro define-color-models can be used to define new color models for
use in the color system.

The default color models are defined by the following form:

(define-color-models ((:rgb (red 0.0 1.0)
 (green 0.0 1.0)
 (blue 0.0 1.0))
 (:hsv (hue 0.0 5.99999)
 (saturation 0.0 1.0)
 (value 0.0 1.0))
 (:gray (level 0.0 1.0))))
 171

14 The Color System

172
For example, to define a new color model YMC and keep the existing RGB,
HSV and GRAY models:

(define-color-models ((:rgb (red 0.0 1.0)
 (green 0.0 1.0)
 (blue 0.0 1.0))
 (:hsv (hue 0.0 5.99999)
 (saturation 0.0 1.0)
 (value 0.0 1.0))
 (:gray (level 0.0 1.0))
 (:ymc (yellow 0.0 1.0)
 (magenta 0.0 1.0)
 (cyan 0.0 1.0))))

You must then define some functions to convert YMC color-specs to other
color-specs. In this example, those functions are named

make-ymc-from-rgb
make-ymc-from-hsv
make-ymc-from-gray

 and

make-rgb-from-ymc
make-hsv-from-ymc
make-gray-from-ymc

You can make this easier, of course, by defining the functions

make-ymc-from-hsv
make-ymc-from-gray
make-hsv-from-ymc
make-gray-from-ymc

in terms of make-ymc-from-rgb and make-rgb-from-ymc.

If you never convert between YMC and any other model, you need only
define the function make-rgb-from-ymc.

15

15 Printing from the CAPI—the
Hardcopy API
The CAPI hardcopy API is a mechanism for printing a Graphics Port (and
hence a CAPI output-pane) to a printer. It is arranged in a hierarchy of con-
cepts: printers, print jobs, pagination and outputting.

Printers correspond to the hardware accessible to the OS. Print jobs control
connection to a printer and any printer-specific initialization. Pagination con-
trols the number of pages and which output appears on which page. Output-
ting is the operation of drawing to a page. This is accomplished using the
standard Graphics Ports drawing functions and is not discussed here.

15.1 Printers
You can obtain the current printer, or ask the user to select one, by using cur-
rent-printer. You can ask the user about configuration by using the func-
tions page-setup-dialog and print-dialog which display the standard
Page Setup and Print dialogs.

You can pass the printer object (as returned by current-printer or print-
dialog) to APIs with a printer argument, such as with-print-job, page-
setup-dialog and print-dialog. The printer object itself is opaque but you
can modify the configuration programmatically using set-printer-
options.
173

15 Printing from the CAPI—the Hardcopy API

174
15.1.1 Standard shortcut keys in printer dialogs

On Cocoa by default the standard shortcuts Command+P and Com-
mand+Shift+P invoke Print... and Page Setup... menu commands respectively.

In Microsoft Windows editor emulation by default the standard shortcut
Ctrl+P invokes a Print... menu command.

15.2 Printer definition files
On GTK+ and Motif, CAPI uses its own printer definition files to keep infor-
mation about printers. These files contain a few configuration settings, and
the name of the PPD file if applicable (see “PPD files” on page 174 for infor-
mation about PPD files). When a user saves a printer configuration, the sys-
tem writes such file. Note that because the printer definition file contains the
name of the PPD file, it must only be moved between machines with care: the
PPD file must exist in the same path.

15.3 PPD files
To fully use the functionality of a Postscript printer on GTK+ and Motif, the
system needs a Postscript Printer Description (PPD) file, which is a file in a
standard format defined by Adobe. It describes the options the printer has
and how to control them.

When a print dialog is presented to the user (either by an explicit call to
print-dialog, or by printing), the system uses the PPD file to find what
additional options to present, and how to communicate them to the printer.

A PPD file should be supplied by the manufacturer with the printer itself.
Otherwise, it is normally possible to obtain the PPD file from the website of
the manufacturer. The name of a PPD file should be printername.ppd.

When the user configures a new printer, the first thing the system does is to
show the user all the PPD files that it can find under the *ppd-directory*
(directly, or one level of directories below it). The application should set this
variable to the appropriate directory.

If the value of *ppd-directory* is nil, the system looks at the directory
obtained by evaluating (sys:lispworks-dir "postscript/ppd").

15.4 Print jobs
If the printer does not have a PPD file, the user can still use it by selecting the
default button in the print dialog. This means that the system will let the user
change only the basic properties of the printer, without using its more
complex features.

15.4 Print jobs
A Print job is contained within a use of the macro with-print-job, which
handles connection to the printer and sets up a graphics port for drawing to
the printer.

15.5 Handling pages—page on demand printing
In Page on Demand Printing, the application provides code to print an arbitrary
page. The application should be prepared to print pages in any order. This is
the preferred means of implementing printing. Page on Demand printing uses
the with-document-pages macro, which iterates over all pages in the docu-
ment.

15.6 Handling pages—page sequential printing
Page Sequential Printing may be used when it is inconvenient for the applica-
tion to implement Page on Demand printing. In Page Sequential Printing, the
application prints each page of the document in order. Page on Demand print-
ing uses the with-page macro, with each invocation of the with-page macro
contributing a new page to the document.

15.7 Printing a page
In either mode of printing, the way in which a page is printed is the same. A
suitable transformation must be established between the coordinate system of
the output-pane or printer-port object and the physical page being
printed. The page is then drawn using normal Graphics Ports operations.
 175

15 Printing from the CAPI—the Hardcopy API

176
15.7.1 Establishing a page transform

The with-page-transform macro can be used to establish a page transform
which controls scaling by mapping a rectangular region of the document to
the printable area of the page. The scale matches the screen by default. By
specifying a large rectangle, you can get finer granularity in the drawing. Any
number of invocations of with-page-transform may occur during the print-
ing of a page. For instance, it may be convenient to use a different page trans-
form when printing headers and footers to the page from that used when
printing the main body of the page.

A helper function, get-page-area, is provided to simplify the calculation of
suitable rectangles for use with with-page-transform. It calculates the width
and height of the rectangle in the user’s coordinate space that correspond to
one printable page, based on the logical resolution of the user’s coordinate
space in dpi.

For more specific control over the page transform, the printer metrics can be
queried using get-printer-metrics and the various printer-metrics acces-
sors such as printer-metrics-height.

Margins and the printable area can be set using set-printer-metrics.

There is an example in examples/capi/printing/fit-to-page.lisp.

15.8 Other printing functions
On GTK+ and Motif, printers can be added, removed and configured via
printer-configuration-dialog. On Microsoft Windows, the equivalent
functionality is on the Printer Control Panel. On Cocoa, printers are
configured via the System Preferences.

A simple printing API is available via simple-print-port, which prints the
contents of an output-pane to a printer.

The Hardcopy API also provides a means of printing plain text to a printer.
The functions print-text, print-file and print-editor-buffer can be
used for this.

16

16 Drag and Drop
This chapter discusses how to implement drag and drop functionality in your
CAPI application. The example code in this chapter forms a complete example
allowing the user to drag an item from a tree-view to a list-panel.

16.1 Overview of drag and drop in CAPI
A drag and drop operation occurs when the user clicks and holds the mouse
button in a pane supporting dragging, then drags to a pane supporting drop-
ping, and releases the mouse button.

Visual feedback may be provided indicating that dragging is happening,
whether a drop operation is possible at the current mouse position, and what
operation will occur when the user drops. Usually the operation is the transfer
of data.

You need to decide which CAPI pane(s) and interfaces will support dragging
and then implement it for each, and similarly for dropping. You will imple-
ment drag and drop for one or more specified data formats.
177

16 Drag and Drop

178
16.1.1 Drag and drop with other applications

Certain predefined data formats can be dragged from a CAPI application to
another application such as the Windows Explorer or the Mac OS X Finder,
and vice versa.

You can also specify private data formats that work only within the same
CAPI application image.

16.2 Dragging
First you should decide which CAPI pane(s) and interfaces will support drag-
ging, and which data formats they will support. Data formats are arbitrary
keywords that must be interpreted by the pane where the user can drop.

16.2.1 Dragging values from a choice

To implement dragging in list-panel or tree-view supply the :drag-
callback initarg. When the user drags, drag-callback receives a list of indices
of the choice items being dragged. The drag-callback should return a property
list whose keys are the data formats (such as :string or :image) to be
dragged, along with the values associated with each format.

16.2.1.1 Example: dragging from a tree

This example returns string data for a tree-view defined below:

16.2 Dragging
(defun tree-drag-callback (pane indices)
 (list :string
 (string (elt (capi:collection-items pane)
 (first indices)))))

(defun fruits (x)
 (case x
 (:fruits (list :apple :orange))
 (:apple (list :cox :bramley))
 (:orange (list :blood-orange :seville))
 (t nil)))

(capi:contain
 (make-instance 'capi:tree-view
 :title "Fruit tree"
 :roots '(:fruits)
 :children-function 'fruits
 :drag-callback 'tree-drag-callback))

There is a further example showing dragging from list-panels in

examples/capi/choice/drag-and-drop.lisp

16.2.2 Dragging values from an output-pane

To implement dragging in an output-pane include an appropriate callback
on the (:button-1 :press) gesture in the pane’s input-model. This callback
should call drag-pane-object with arguments which provide the data for-
mats and values associated with each format. See the example file in

examples/capi/output-panes/drag-and-drop.lisp

Note: If you implement dragging of text in an editor-pane, you will use EDI-
TOR functions such as editor:points-to-string to obtain the value for the
:string format.

16.2.3 Data formats

:string Receives a string, potentially from another application.
Is also understood by some other panes that expect text.

:image Receives an image on Cocoa and GTK+. The value
passed should be a gp:image. See “Working with
images” on page 156 for more information about
 179

16 Drag and Drop

180
images.When supplying an image for dragging (that is,
including :image image in the plist argument of drag-
pane-object or in the plist that is returned from the
drop-callback), the dragging mechanism frees the image
(as by gp:free-image) when it finishes with it (which
will be at some indeterminate time later). If you need to
pass an image which you want to use later, you should
make a copy of it by gp:make-sub-image.

When receiving an image (by calling drop-object-
get-object with :image), the received image should
also be freed when you finish with it. However, it will
be freed automatically when the pane supplied to
drop-object-get-object is destroyed, so you do not
need to free it explictly if freeing can wait (which is
probably true in most cases).

See the example in
examples/capi/choice/list-panel-drag-

image.lisp

:filename-list

Receives a list of files. Is understood by other applica-
tions such as the Mac OS X Finder and Windows
Explorer.

You can also use private formats, named by arbitrary keywords, which will
work only in the same Lisp image.

16.2.4 Dragging a Cocoa title bar image

On Cocoa, if there is a drag image in an interface title bar, then dragging
this image will by default return a list containing the interface pathname as
:filename-list data. You could override this by providing a drag-callback for
the interface.

16.3 Dropping
16.3 Dropping
First you should decide which CAPI pane(s) and interfaces will support drop-
ping, where exactly dropping should be allowed, and what should occur on
dropping for each data format that is was made available.

16.3.1 The drop callback

To implement dropping in list-panel or tree-view or output-pane, sup-
ply the :drop-callback initarg.

You can also supply :drop-callback for an interface. When the user drags
an object over a window, the system first tries to call the drop-callback of any
pane under the mouse and otherwise calls the drop-callback of the top-level
interface, if supplied.

The drop-callback receives as arguments a drop-object which is used to commu-
nicate information about the dropping operation and stage which is a key-
word. The drop-callback is called at several stages: when the pane is displayed;
when the user drags over the pane; and when the user drops over the pane.
Various functions are provided which you can use to query the drop-object and
set attributes appropriately.

You will use set-drop-object-supported-formats to specify the data for-
mats that it wants to receive. The :string format can be used to receive a
string from another application and the :filename-list format can be used
to receive a list of filenames from another application such as the Macintosh
Finder or the Windows Explorer. Any other keyword in formats is assumed to
be a private format that can only be used to receive objects from with the same
Lisp image.

You can use drop-object-provides-format to query whether a given data
format is actually available, and then you can call (setf drop-object-drop-
effect) to modify the effect of the dropping operation .

Finally, at the :drop stage, you will use drop-object-get-object to retrieve
(for each data format) the object which was returned by the drag-callback, and
then do something with this object, typically copying or moving it to the pane
in some way.
 181

16 Drag and Drop

182
16.3.2 Dropping in a choice

Addtionally within the drop-callback of a list-panel or tree-view you can
use drop-object-collection-index (or drop-object-collection-item)
to query the index (or item) where the object would currently be dropped.

16.3.2.1 Example: dropping in a list

This drop-callback simply appends the dropped string at the end of the list:

(defun list-drop-callback (pane drop-object stage)
 (format t "list drop callback ~S ~S ~S" pane drop-object stage)
 (case stage
 (:formats
 (set-drop-object-supported-formats drop-object
 (list :string)))
 (:drag
 (when (and (drop-object-provides-format drop-object
 :string)
 (drop-object-allows-drop-effect-p drop-object
 :copy))
 (setf (drop-object-drop-effect drop-object) :copy)))
 (:drop
 (when (and (drop-object-provides-format drop-object
 :string)
 (drop-object-allows-drop-effect-p drop-object
 :copy))
 (setf (drop-object-drop-effect drop-object) :copy)
 (add-list-item pane drop-object)))))

(defun add-list-item (pane drop-object)
 (append-items
 pane
 (list (string-capitalize
 (drop-object-get-object drop-object
 pane :string)))))

(contain
 (make-instance 'list-panel
 :title "Shopping list"
 :items (list "Tea" "Bread")
 :drop-callback 'list-drop-callback))

Try dragging an item from the tree-view created in “Example: dragging from
a tree” on page 178.

16.4 Limitations of CAPI drag and drop
Below is a more sophisticated version of add-list-item which inserts the item
at the expected position within the list. This position is obtained using drop-
object-collection-index:

(defun add-list-item (pane drop-object)
 (multiple-value-bind (index placement)
 (drop-object-collection-index drop-object)
 (list-panel-add-item pane
 (string-capitalize
 (drop-object-get-object
 drop-object pane :string))
 index placement))))))

(defun list-panel-add-item (pane item index placement)
 (let ((item-count (count-collection-items pane)))
 (let ((adjusted-index (if (eq placement :above)
 index
 (1+ index)))
 (current-items (collection-items pane)))
 (setf (collection-items pane)
 (concatenate 'simple-vector
 (subseq current-items 0 adjusted-index)
 (vector item)
 (subseq current-items adjusted-index
 item-count))))))

16.3.3 Dropping text in an editor-pane

Supply the special drop-callback :default to implement dropping text in an
editor-pane.

16.3.4 Dropping in an output-pane

Addtionally within the drop-callback of an output-pane, you can use drop-
object-pane-x and drop-object-pane-y to query the coordinates in the
pane that the object is being dropped over.

16.4 Limitations of CAPI drag and drop
:image format currently works fully only on Cocoa and GTK+. On Microsoft
Windows the :image format works only when dragging between panes in the
same process.
 183

16 Drag and Drop

184
Drag and drop is not implemented in CAPI on Motif.

Not all pane classes support drag and drop.

Index
A
abort-dialog function 120
:accelerator initarg 87
:action-callback initarg 42, 46, 50
:alternative initarg 87
:alternative-action-callback

initarg 50
apply-in-pane-process function

27, 71
apply-in-pane-process-if-

alive function 27, 71
apropos-color-alias-names

function 167
apropos-color-names function 166
apropos-color-spec-names func-

tion 167
augment-font-description func-

tion 155

B
balloon help 24
:best-height initarg 134
:best-width initarg 134
boole function 152
break gesture 31
browser-pane class 20
bubble help 24
:buffer-name initarg 19
button panels

orientation 37

prompting with 114–115
button-panel class 36
buttons

check 22
push 21
radio 22

:buttons initarg 18

C
:callback initarg 18
callbacks

description of 8
general properties 50
graph panes 46
in interfaces 102–105
used for choices 41–42
using callback functions 11

:callback-type initarg 50, 120
call-editor function 102
call-editor generic function 126
CAPI

basic objects 3
description of 1–3
linking code into 8
menu hierarchy 84
using the 5–6

check button panels 37
check buttons 22
check-button class 22, 36
check-button-panel class 36, 37,

42, 48
:children-function initarg 45
choice class 35
:choice-class initarg 114
choice-interaction accessor 49

185

186
choices 35–51
callbacks available 50
description of 35–51
general properties 48–51
relationship to menus 48

choice-selected-item accessor
49

choice-selected-items acces-
sor 49

choice-selection accessor 43, 49
classes

collections 36
creating your own 131–144

clear-external-image-con-
versions function 159

CLUE 2
clues 24
CLX 2
collection class 35
collection-items accessor 75
collections

description of 35
collector panes 20
collector-pane class 20
colors

prompting for 116
colors= function 170
color-spec-model function 168
color-spec-p function 168
column-layout class 37, 54, 98
column-layout class 55
combo box 47
combo boxes 47
complete-in-place function 129
compositing-mode graphics state parame-

ter 153
confirm-yes-or-no function 110
contain function 7, 27, 136
convert-color function 161, 171
convert-external-image func-

tion 160
convert-to-screen function 30,

31, 32
copy-area function 145
:create-callback initarg 72, 160
create-pixmap-port function 146,

148
creating menus 79
creating submenus 80
current-printer function 173
D
:data callback type 50
:data initarg 8, 21
:data-interface callback type 50
default settings

selections 43
:default-initargs class option 95,

98
defclass macro 93, 95, 134
define-color-alias function 168
define-color-models macro 171
define-interface macro 93

arguments supplied to 95
defpackage function 6
delete-color-translation func-

tion 168, 171
deliver function 78
:description initarg 54
description of the CAPI 1–3
destroy generic function 78
dialogs

creating your own 119–124
description of 109–124
in front 119
modal 117
owners 119

display callback 133
display function 7, 8, 27, 32
display panes 17
:display-callback initarg 160
display-dialog function 119, 120,

121, 124
displaying text on screen 17
display-message function 9, 110
display-pane class 17, 56
dividers 69
document-frame class 70
double buffering 145
draw-arc function 149
draw-arcs function 149
draw-character function 149
draw-circle function 133
draw-ellipse function 150
draw-image function 156, 157
draw-line function 149
draw-lines function 149
drawn-pinboard-object class 136,

140, 148
draw-path function 150
draw-point function 135
draw-polygon function 150
draw-polygons function 150

draw-rectangle function 150
draw-rectangles function 150
draw-string function 149
drop-down list box 47

E
editor panes 18
editor-pane class 19, 56, 102, 124,

129, 146
subclasses 20

editor-pane-blink-rate function
20

editor-pane-text accessor 75, 103
:element callback type 50
elements

creating your own 131–144
generic properties of 11–12

element-widget-name accessor 30
:enabled initarg 20, 21
:enabled-function initarg 88
:enabled-function-for-dialog

initarg 89
ensure-color function 170
ensure-model-color function 170
:evaluate keyword argument 117
event handlers 134–136, ??–136
execute-with-interface function

27, 71
execute-with-interface-if-

alive function 27, 71
exit-confirmer function 122
exit-dialog function 120, 122
:extend-callback initarg 42, 46, 50
extended selection

specifying 49
using on diferent platforms 49

:extended-selection interaction
style 40–41, 49

extended-selection-tree-view
class 44

extension gesture 41
external constraints 61
external image

dimensions 160
from displayed window 162
from on-screen window 162
width and height 160

external-image class 156
externalize-and-write-image

function 158
externalize-image function 159
:external-max-height initarg 61

:external-max-width initarg 61
:external-min-height initarg 61
:external-min-width initarg 61

F
:file-completion initarg 128
files

prompting for 115–117
:filter initarg 43
find-best-font function 154
find-matching-fonts function 154
:font initarg 12
fonts 12

attributes 154
lookup 155
prompting for 116

frame 16
free-image function 156, 160
free-image-access function 162
functions

sample 11

G
generic properties of elements 11–12
geometry of interfaces 106
geometry of interfaces, querying 28
geometry of layouts, specifying 60–64
get-all-color-names function 167
get-color-alias-translation

function 168
get-color-spec function 167
get-page-area function 176
get-printer-metrics function 176
graph panes

callbacks 46
graphics

creating permanent displays 133
displaying 131–134

graphics ports 145
drawing functions 152
pixmap 153

graphics state 146
graphics state parameters 148
graphics-state type 147, 148
graph-pane class 44, 146

implementation of 137
grid-layout class 14, 57
groupbox 16
GTK+

resources 30

 187

188
H
hardcopy API 173–176
:help-callback initarg 24
:help-key initarg 24
hierarchy of menus 84
hints 24, 60
:horizontal-scroll initarg 12, 55

I
image class 156
image-access-pixel function 161
image-access-transfer-from-

image function 161
image-access-transfer-to-

image function 161
:image-function initarg 43, 44, 47,

90
image-height accessor 160
image-list class 43, 44
:image-lists initarg 43, 44
image-width accessor 160
index of selected item 43, 49
:initial-constraints initarg 65
:initial-value initarg 112
in-place completion

in applications 128
user interface 124

:in-place-completion-func-
tion initarg 128

:in-place-filter initarg 128
:input-model initarg 135
integers

prompting for 112–113
interaction

general properties 48
in lists 40

:interaction initarg 40, 48, 81, 113
interactive streams 21
interactive-stream class 21
:interface callback type 50
interface class 3, 15, 23, 24, 93
interface-customize-tool-

bar function 23
interface-default-toolbar-

states function 23
interface-display generic func-

tion 71, 156
interface-extend-title

generic function 15
interfaces

defining 93–105
description of 93
geometry 106
layouts, specifying 96
menus, specifying 99–102
panes, specifying 96
specifying geometry 28
title, specifying 95

interface-title accessor 15
interface-toolbar-state func-

tion 23
interface-update-toolbar func-

tion 23
internal constraints 61
:internal-max-height initarg 62
:internal-max-width initarg 61
:internal-min-height initarg 61
:internal-min-width initarg 61
item-pinboard-object class 136
:items initarg 39, 79, 83

K
key press 134–136

L
:layout-class initarg 37
layout-description accessor 74
layouts

combining different 58–60
description of 53–64
introduction to 7
specifying geometry 60–64
specifying size of panes in 55

:layouts interface option 93
letters

underlined in menus etc 13
Lisp forms

prompting for 117
list function 54
list items, specifying 39
list panels 38
list-all-font-names function 154
listener panes 21
listener-pane class 21, 56
list-known-image-formats func-

tion 157, 158
list-panel class 14, 38, 127
lists

actions in 41
deselection in 41
extended selection in 40
extended selections 40

interaction in 40
multiple selection in 40
prompting with 113–115
retraction in 41
single selection in 40

load-color-database function 171
load-icon-image function 157, 160
load-image function 160

M
make-container function 120
make-hsv function 167
make-image-access function 161
make-image-from-port function

153, 160
make-instance function 5
make-menu-for-pane function 90
make-pane-popup-menu generic

function 90
make-rgb function 167, 168
make-sub-image function 160
:max keyword argument 112
max-height 62
max-width 62
MDI 6, 70
menu class 3, 79, 90
:menu-bar interface option 93, 99
:menu-bar-items initarg 80
menu-component class 80
menu-component class 3
menu-item class 3, 83, 89
menus

components 48
creating 79
creating submenus 80
description of 79–89
disabling items in 88–89
grouping items together 80–83
individual items in 83–84
menu hierarchy 84
nesting 80
specifying alternative items 87

:menus interface option 93, 99
merge-font-descriptions func-

tion 155
Microsoft Windows

Multiple-Document Interface 6, 70
themes 29

:min keyword argument 112
min-height 62
min-width 62
:mnemonic initarg 13, 23

mnemonics 13
in a button-panel 38
in menus 86

:mnemonics initarg 38
:mnemonic-text initarg 23
:mnemonic-title initarg 14
modal dialogs 117
Motif

resources 30
multi-line-text-input-pane

class 18
:multiple-selection interaction

style 40, 48, 82

N
New in LispWorks 6.1

.ico image type supported on Microsoft
Windows 157

browser-pane for browsing URLs
and displaying HTML 20

High-quality drawing 147
More image formats can be exported 158
multiple monitors support 28

:none callback type 50
:no-selection interaction style 48, 49

O
off screen 145
off-screen 145
offscreen 145
:ok-check keyword argument 112, 117,

124
on screen 145
on-screen 145
onscreen 145
operation graphics state parameter 147
option panes 47
option-pane class 14, 47
organizing panes 54
output-pane class 24, 90, 131, 145,

146, 166

P
page-setup-dialog function 173
:pane-args initarg 115
panel

button layout 37
pane-layout accessor 74
panels

check button 37
list 38

 189

190
push button 36
radio button 37

:pane-menu initarg 90
pane-popup-menu-items generic

function 90
panes

accessing 97
collector 20
creating your own 131–144
default title position 15
display 17
editor 18
finding 97
graphs 44
listener 21
lookup 97
option 47
organizing 54
sizing 55
text input 17
title 14

:panes interface option 93
pane-screen-internal-geome-

try function 28, 106
pane-supports-menus-with-

images function 90
:pathname keyword argument 116
pinboard

buffered display 137
double buffering 137
flickering 137

pinboard objects 136
creating your own 140–144

pinboard-layout class 24, 58, 136,
137, 146

pinboard-object class 136
popup-confirmer function 121,

122, 124
portable font descriptions 154–155
print function 35
print-dialog function 119, 173
print-editor-buffer function

176
printer-configuration-dia-

log function 176
print-file function 176
:print-function initarg 35
print-text function 176
prompt-for-color function 116
prompt-for-confirmation func-

tion 111
prompt-for-directory function
116
prompt-for-file function 115, 119
prompt-for-font function 116
prompt-for-form function 117
prompt-for-integer function 112,

122
prompt-for-number function 113
prompt-for-string function 111,

119, 121
prompt-for-symbol function 117
prompt-with-list function 113
prompt-with-list-non-focus

function 129
push button panels

creating 36
push buttons 21
push-button class 7, 21, 36
push-button-panel class 36

Q
quit-interface function 78

R
radio button panels

creating 37
radio buttons 22
radio-button class 23
radio-button-panel class 36, 37, 48
read-and-convert-external-

image function 160
read-color-db function 171
:reader slot option 97
redisplay-interface function 123
register-image-translation

function 159
Resources

GTK+ 30
X11/Motif 30

:retract-callback initarg 22, 41,
46, 50

rich-text-pane class 20
row-layout class 37, 54, 55, 98

S
screen-internal-geometries

function 28, 106, 107
screen-internal-geometry func-

tion 28
screen-monitor-geometries

function 28, 106
screentips 24

scroll bars
programmatic control 73
specifying 12

scroll generic function 73
scroll-if-not-visible-p acces-

sor 74
:selected initarg 23
:selected-item initarg 47, 49
:selected-items initarg 49
selecting nth item 43, 49
selection gesture 41
:selection initarg 43, 49
:selection-callback initarg 36, 39,

41, 46, 50, 104
selections 40–43

default settings 43
extending 40
general properties 49
specifying multiple 48

separators 69
set-application-themed function

29
set-default-interface-pre-

fix-suffix function 15
setf function 16, 21
set-graphics-state function 149
set-hint-table function 65
set-printer-metrics function 176
set-printer-options function 173
set-top-level-interface-

geometry function 72
shape-mode graphics state parameter 147
simple-print-port function 146,

176
single selection

specifying 48
:single-selection interaction style

40, 48, 81
slot 5
slot-value function 5
Spaces on Mac OS X 28
:state-image-function initarg 43,

44
streams

interactive 21
strings

prompting for 111
subclasses

finding 15
subclasses, finding 15
symbols

prompting for 117

T
text

displaying 16, 20
displaying on screen 17
editing 16, 20
entering 16, 20

:text initarg 12, 17, 18, 19
text input panes 17
text-input-pane class 14, 18, 124,

128
text-input-pane-in-place-

complete function 128
text-mode graphics state parameter 147
tips 24
:title initarg 15, 95
title panes 14
titled-object class 14
titled-object-title accessor 103
:title-font initarg 16
title-pane class 14, 166
:title-position initarg 16, 55
titles

changing 16, 105
changing interactively 16
for elements 15
for interfaces 15, 105
for windows 15, 105
specifying 14, 14–16
specifying directly 15

toolbar
customize 23
folding 23

toolbar buttons 23
toolbar-button class 24
toolbar-component class 25
toolbars 23
tooltips 24
:tooltips initarg 25
top-level-interface-display-

state function 77
top-level-interface-geometry

function 28, 73, 106
tree-view class 43, 44
Truetype fonts 147

U
unconvert-color function 161
underlined letters 13
user input 109–124
using callback functions 11
using the CAPI 5–6

 191

192
V
:value-function keyword argu-

ment 122
values

prompting for 111–117
:vertical-scroll initarg 12, 55
virtual-screen-geometry func-

tion 28, 107
visible constraints 61
:visible-max-height initarg 61
:visible-max-width initarg 61
:visible-min-height initarg 61
:visible-min-width initarg 61

W
window titles 15, 105
window-modal dialogs 117
Windows themes 29
Windows XP themes 29
with-dialog-results macro 118
with-document-pages macro 175
with-external-metafile macro

146
with-graphics-state macro 149
with-internal-metafile macro

146
with-page macro 175
with-page-transform macro 176
with-pixmap-graphics-port

macro 146, 162
with-print-job macro 146, 173
Works menu

in CAPI objects 6
workspaces on Linux 28

X
X resources

fallback resources 31
in delivered applications 31

X11
resources 30

:x-ratios initarg 55

Y
:y-ratios initarg 55

	LispWorks® for the Windows® Operating System CAPI User Guide
	Copyright and Trademarks
	Contents
	Preface
	1 Introduction to the CAPI
	1.1 What is the CAPI?
	1.2 The history of the CAPI
	1.3 The CAPI model
	1.3.1 CAPI Classes

	2 Getting Started
	2.1 Using the CAPI package
	2.2 Creating a window
	2.3 Linking code into CAPI elements

	3 Creating Common Windows
	3.1 Generic properties
	3.1.1 Scroll bars
	3.1.2 Background and foreground colors
	3.1.3 Fonts
	3.1.4 Mnemonics
	3.1.4.1 Controlling Mnemonics
	3.1.4.2 Mnemonics on Microsoft Windows

	3.2 Specifying titles
	3.2.1 Title panes
	3.2.2 Specifying titles directly
	3.2.2.1 Window titles
	3.2.2.2 Titles for elements

	3.3 Displaying and entering text
	3.3.1 Display panes
	3.3.2 Text input panes
	3.3.3 Editor panes

	3.4 Displaying formatted text
	3.4.1 Rich text
	3.4.2 HTML

	3.5 Stream panes
	3.5.1 Collector panes
	3.5.2 Interactive streams
	3.5.3 Listener panes

	3.6 Miscellaneous button elements
	3.6.1 Push buttons
	3.6.2 Check buttons
	3.6.3 Radio buttons
	3.6.4 Mnemonics in buttons

	3.7 Adding a toolbar to an interface
	3.8 Tooltips
	3.8.1 Tooltips for output panes
	3.8.2 Tooltips for collections, elements and menu items
	3.8.3 Tooltips for toolbar buttons

	4 General Considerations
	4.1 The correct thread for CAPI operations
	4.2 Support for multiple monitors

	5 Host Window System Configuration
	5.1 Properties of the host window system
	5.1.1 Using Windows themes
	5.1.2 Matching resources
	5.1.2.1 Matching resources on GTK+
	5.1.2.2 Matching resources on X11/Motif
	5.1.2.3 Resources for LispWorks CAPI applications
	5.1.2.4 X resources for in-place completion windows

	5.1.3 The break gesture

	5.2 Using Motif
	5.2.1 Using Motif on Linux, FreeBSD and x86/x64 Solaris
	5.2.2 Using Motif on Macintosh
	5.2.3 Using Motif on SPARC Solaris and HP-UX

	6 Choices
	6.1 Button classes
	6.1.1 Push button panels
	6.1.2 Radio button panels
	6.1.3 Check button panels
	6.1.4 Mnemonics in button panels

	6.2 List panels
	6.2.1 List interaction
	6.2.2 Extended selection
	6.2.3 Deselection, retraction, and actions
	6.2.4 Selections
	6.2.5 Images and appearance
	6.2.6 Filters

	6.3 Trees
	6.3.1 Tree interaction
	6.3.2 Images and appearance

	6.4 Graph panes
	6.5 Option panes
	6.5.1 Option panes with images

	6.6 Text input choice
	6.7 Menu components
	6.8 General properties of choices
	6.8.1 Interaction
	6.8.2 Selections
	6.8.3 Callbacks

	7 Laying Out CAPI Panes
	7.1 Organizing panes in columns and rows
	7.2 Other types of layout
	7.2.1 Grid layouts
	7.2.2 Simple layouts
	7.2.3 Pinboard layouts

	7.3 Combining different layouts
	7.4 Constraining the size of layouts
	7.4.1 Default Constraints
	7.4.2 Width and Height Constraints
	7.4.3 Constraint Formats
	7.4.3.1 Character constraints
	7.4.3.2 String constraints

	7.4.4 Changing the constraints
	7.4.4.1 Initial constraints

	7.5 Advanced pane layouts
	7.5.1 Switchable layouts
	7.5.2 Tab layouts
	7.5.3 Dividers and separators
	7.5.4 Multiple-Document Interface (MDI)

	8 Modifying CAPI Windows
	8.1 Initialization
	8.2 Resizing and positioning
	8.2.1 Positioning CAPI windows

	8.3 Scrolling
	8.3.1 Automatic scrolling

	8.4 Swapping panes and layouts
	8.5 Specifying panes and layouts dynamically
	8.6 Updating pane contents
	8.6.1 Updating windows in real time

	8.7 Iconifying and restoring windows
	8.8 Closing windows
	8.9 Quitting applications

	9 Creating Menus
	9.1 Creating a menu
	9.2 Grouping menu items together
	9.3 Creating individual menu items
	9.4 The CAPI menu hierarchy
	9.5 Mnemonics in menus
	9.6 Alternative menu items
	9.7 Disabling menu items
	9.7.1 Dialogs and disabled menu items

	9.8 Menus with images
	9.9 Popup menus for panes

	10 Defining Interface Classes
	10.1 The define-interface macro
	10.2 An example interface
	10.2.1 How the example works

	10.3 Adapting the example
	10.3.1 Adding menus

	10.4 Connecting an interface to an application
	10.5 Controlling the interface title
	10.6 Querying and modifying interface geometry
	10.6.1 Support for multiple monitors

	11 Prompting for Input
	11.1 Some simple dialogs
	11.2 Prompting for values
	11.2.1 Prompting for strings
	11.2.2 Prompting for numbers
	11.2.3 Prompting for an item in a list
	11.2.4 Prompting for files
	11.2.5 Prompting for fonts
	11.2.6 Prompting for colors
	11.2.7 Prompting for Lisp objects

	11.3 Window-modal Cocoa dialogs
	11.3.1 The :continuation argument
	11.3.2 A dialog which is window-modal on Cocoa

	11.4 Dialog Owners
	11.4.1 The default owner
	11.4.2 Specifying the owner

	11.5 Creating your own dialogs
	11.5.1 Using display-dialog
	11.5.2 Using popup-confirmer
	11.5.3 Modal and non-modal dialogs

	11.6 In-place completion
	11.6.1 In-place completion user interface
	11.6.1.1 Invoking in-place completion in text-input-pane and editor-pane
	11.6.1.2 Keyboard input handling while the in-place window is displayed
	11.6.1.3 Performing a Completion
	11.6.1.4 Interaction while the in-place window is displayed

	11.6.2 Programmatic control of in-place completion
	11.6.2.1 Text input panes
	11.6.2.2 Editor panes
	11.6.2.3 Other CAPI panes

	12 Creating Your Own Panes
	12.1 Displaying graphics
	12.2 Receiving input from the user
	12.3 Creating graphical objects
	12.3.1 Buffered drawing
	12.3.2 The implementation of graph panes
	12.3.3 An example pinboard object

	13 Graphics Ports
	13.1 Introduction
	13.1.1 Creating instances

	13.2 Features
	13.2.1 The drawing mode and anti-aliasing

	13.3 Graphics state
	13.3.1 Setting the graphics state

	13.4 Drawing functions
	13.4.1 Text
	13.4.2 Simple lines
	13.4.3 Simple shapes
	13.4.4 Paths

	13.5 Graphics state transforms
	13.5.1 Generalized points
	13.5.2 Drawing on screen

	13.6 Combining source and target pixels
	13.6.1 Combining pixels with :compatible drawing
	13.6.2 Combining pixels with :quality drawing

	13.7 Pixmap graphics ports
	13.7.1 Relative drawing in pixmap graphics ports

	13.8 Portable font descriptions
	13.8.1 Font attributes and font descriptions
	13.8.2 Fonts

	13.9 Working with images
	13.9.1 Image formats supported for reading from disk and drawing
	13.9.2 Image formats supported for writing to disk
	13.9.3 External images
	13.9.3.1 Transparency
	13.9.3.2 Converting an external image

	13.9.4 Registering images
	13.9.5 Loading images
	13.9.6 Querying image dimensions
	13.9.7 Drawing images
	13.9.8 Image access
	13.9.9 Creating external images from Graphics Ports operations

	14 The Color System
	14.1 Introduction
	14.1.1 Rendering of colors

	14.2 Reading the color database
	14.3 Color specs
	14.4 Color aliases
	14.5 Color models
	14.6 Loading the color database
	14.7 Defining new color models

	15 Printing from the CAPI—the Hardcopy API
	15.1 Printers
	15.1.1 Standard shortcut keys in printer dialogs

	15.2 Printer definition files
	15.3 PPD files
	15.4 Print jobs
	15.5 Handling pages—page on demand printing
	15.6 Handling pages—page sequential printing
	15.7 Printing a page
	15.7.1 Establishing a page transform

	15.8 Other printing functions

	16 Drag and Drop
	16.1 Overview of drag and drop in CAPI
	16.1.1 Drag and drop with other applications

	16.2 Dragging
	16.2.1 Dragging values from a choice
	16.2.1.1 Example: dragging from a tree

	16.2.2 Dragging values from an output-pane
	16.2.3 Data formats
	16.2.4 Dragging a Cocoa title bar image

	16.3 Dropping
	16.3.1 The drop callback
	16.3.2 Dropping in a choice
	16.3.2.1 Example: dropping in a list

	16.3.3 Dropping text in an editor-pane
	16.3.4 Dropping in an output-pane

	16.4 Limitations of CAPI drag and drop

	Index

