CAPI User Guide

\Version 6.1

Copyright and Trademarks
CAPI User Guide (Unix version)
\ersion 6.1

August 2011

Copyright © 2011 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be construed as a
commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or inaccuracies that may appear in this
publication. The software described in this book is furnished under license and may only be used or copied in accordance with the terms of
that license.

LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the registered trade-
marks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986, 1987, 1988 Xerox
Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:

Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, pro-
vided that this copyright and permission notice appear in all copies and supporting documentation, and that the name of M.1.T. not be used
in advertising or publicity pertaining to distribution of the software without specific, written prior permission. M.1.T. makes no representa-
tion about the suitability of this software for any purpose. It is provided “as is” without express or implied warranty. M.1.T. disclaims all war-
ranties with regard to this software, including all implied warranties of merchantability and fitness. In no event shall M.1.T. be liable for any
special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of con-
tract, negligence or other tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of ICU software obtained from http://source.icu-project.org and which bears the following copyright and permis-
sion notice:

ICU License - ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Soft-
ware"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright
notice(s) and this permission notice appear in all copies of the Software and that both the above copyright notice(s) and this permission
notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIM-
ITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF
THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or
other dealings in this Software without prior written authorization of the copyright holder. All trademarks and registered trademarks men-
tioned herein are the property of their respective owners.

US Government Restricted Rights

The LispWorks Software is a commercial computer software program developed at private expense and is provided with restricted rights.
The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth in the accompanying End User
License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR 12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14
Alt 111, as applicable. Rights reserved under the copyright laws of the United States.

Address Telephone Fax

LispWorks Ltd 1 Centre From North America: 877 759 8839 From North America: 617 812 8283
Cowley Road (toll-free) From elsewhere: +44 870 2206189
Cambridge From elsewhere: +44 1223 421860

England

www.lispworks.com

http://www.lispworks.com

Contents

Preface vii

1 Introduction to the CAPI 1

What is the CAPI? 1
The history of the CAPI 2
The CAPI model 2

2 Getting Started 5

Using the CAPI package 5
Creating a window 6
Linking code into CAPI elements 8

3 Creating Common Windows 11

Generic properties 11

Specifying titles 14

Displaying and entering text 17
Displaying formatted text 19
Stream panes 20

Miscellaneous button elements 21
Adding a toolbar to an interface 23

Tooltips 23

General Considerations 25

The correct thread for CAPI operations 25
Support for multiple monitors 26

Host Window System Configuration

Properties of the host window system 27
Using Motif 29

Choices 33

Button classes 34

List panels 36

Trees 41

Graph panes 42

Option panes 45

Text input choice 46

Menu components 46

General properties of choices 46

Laying Out CAPI Panes 51

Organizing panes in columns and rows 52
Other types of layout 55

Combining different layouts 56
Constraining the size of layouts 58
Advanced pane layouts 64

Modifying CAPI Windows 69

Initialization 69

Resizing and positioning 70
Scrolling 71

Swapping panes and layouts 72

Specifying panes and layouts dynamically 73

Updating pane contents 73
Iconifying and restoring windows 75
Closing windows 76

Quitting applications 76

27

10

11

12

13

Creating Menus 77

Creating amenu 77

Grouping menu items together 78
Creating individual menu items 81
The CAPI menu hierarchy 82
Mnemonics in menus 84
Alternative menu items 85
Disabling menu items 86

Menus with images 87

Popup menus for panes 88

Defining Interface Classes 91

The define-interface macro 91

An example interface 92

Adapting the example 94

Connecting an interface to an application 100
Controlling the interface title 103

Querying and modifying interface geometry 104

Prompting for Input 107

Some simple dialogs 108
Prompting for values 109
Window-modal Cocoa dialogs 116
Dialog Owners 118

Creating your own dialogs 118
In-place completion 123

Creating Your Own Panes 129

Displaying graphics 129
Receiving input from the user 132
Creating graphical objects 134

Graphics Ports 143

Introduction 143
Features 144
Graphics state 146
Drawing functions 147

vi

14

15

16

Graphics state transforms 148
Combining source and target pixels 150
Pixmap graphics ports 151

Portable font descriptions 152

Working with images 154

The Color System 163

Introduction 163

Reading the color database 164
Color specs 165

Color aliases 166

Color models 167

Loading the color database 169
Defining new color models 169

Printing from the CAPI—the Hardcopy API

Printers 171

Printer definition files 172

PPD files 172

Print jobs 173

Handling pages—page on demand printing 173
Handling pages—page sequential printing 173
Printingapage 173

Other printing functions 174

Drag and Drop 175

Overview of drag and drop in CAPI 175
Dragging 176

Dropping 179

Limitations of CAPI drag and drop 181

Index 183

171

Preface

This preface contains information you need when using the rest of the CAPI
documentation. It discusses the purpose of this manual, the typographical
conventions used, and gives a brief description of the rest of the contents.

Assumptions
The CAPI documentation assumes that you are familiar with:
= LispWorks
e Common Lisp and CLOS, the Common Lisp Object System

= UNIX, Linux or FreeBSD, and the X Window System with GTK+ or
Motif

Illustrations in this manual show the CAPI running on Linux under GTK+
with a particular window manager and theme, so if you use GTK+ with a
different window manager or theme, or Motif, you should expect some varia-
tion from the figures depicted here.

Unless otherwise stated, examples given in this document assume that the
current package has capz on its package-use-list.

vii

viii

Conventions used in the manual

Throughout this manual, certain typographical conventions have been
adopted to aid readability.

1. Whenever an instruction is given, is numbered and printed like this.

Text which you should enter explicitly is printed 1ike this.

A Description of the Contents

This guide forms an introductory course in developing applications using the
CAPI. Please note that, like the rest of the LispWorks documentation, it does
assume knowledge of Common Lisp.

Chapter 1, Introduction to the CAPI, introduces the principles behind the CAPI,
some of its fundamental concepts, and what it sets out to achieve.

Chapter 2, Getting Started, presents a series of simple examples whose aim is to
familiarize you with some of the most important elements and functions.

Chapter 4, General Considerations, covers some general issues that you should
be aware of when using CAPI, including information about the host window
system.

Chapter 3, Creating Common Windows, introduces more of the fundamental
CAPI elements and common themes. These elements are explained in greater
detail in the remainder of the manual.

Chapter 6, Choices, explains the key CAPI concept of the choice. A choice
groups CLOS objects together and provides the notion of there being a
selected object amongst that group of objects. Button panels and list panels are
examples of choices.

Chapter 7, Laying Out CAPI Panes introduces the idea of layouts. These let you
combine different CAPI elements inside a single window.

Chapter 8, Modifying CAPI Windows, outlines basic techniques for modifying
existing windows.

Chapter 9, Creating Menus, shows you how to add menus to a window.

Chapter 10, Defining Interface Classes, introduces the macro define-inter-
face. This macro can be used to define interface classes composed of CAPI

elements — either the predefined elements explained elsewhere in this man-
ual or your own.

Chapter 11, Prompting for Input, discusses the ways in which dialog boxes may
be used to prompt the user for input.

Chapter 12, Creating Your Own Panes, shows you how you can define your
own classes when those provided by the CAPI are not sufficient for your
needs.

Chapter 13, Graphics Ports, provides information on the Graphics Ports pack-
age, which provides a selection of drawing and image tranformation func-
tions. Although not part of the CAPI package, and therefore not strictly part of
the CAPI, the Graphics Ports functions are used in conjunction with CAPI
panes, and are therefore documented in this manual and the LispWorks CAPI
Reference Manual.

Chapter 14, The Color System, allows applications to use keyword symbols as
aliases for colors in Graphics Ports drawing functions. They can also be used
for backgrounds and foregrounds of windows and CAPI objects.

Chapter 15, Printing from the CAPI—the Hardcopy API, describes the
programmatic printing of Graphics Ports.

Chapter 16, Drag and Drop, describes how you can implement drag and drop
in your CAPI application.

The Reference Manual

The second part of the CAPI documentation is the LispWorks CAPI Reference
Manual. This provides a complete description of every CAPI class, function
and macro, and also provides a reference chapter on the Graphics Port func-
tions. Entries are listed alphabetically, and the typographical conventions
used are similar to those used in Common Lisp: the Language (2nd Edition)
(Steele, 1990).

1

Introduction to the CAPI

1.1 What is the CAPI?

The CAPI (Common Application Programmer’s Interface) is a library for
implementing portable window-based application interfaces. It is a
conceptually simple, CLOS-based model of interface elements and their
interaction. It provides a standard set of these elements and their behaviors, as
well as giving you the opportunity to define elements of your own.

The CAPI's model of window-based user interfaces is an abstraction of the
concepts that are shared between all contemporary window systems, such
that you do not need to consider the details of a particular system. These
hidden details are taken care of by a back end library written for that system
alone.

An advantage of making this abstraction is that each of the system-specific
libraries can be highly specialized, concentrating on getting things right for
that particular window system. Furthermore, because the implementation
libraries and the CAPI model are completely separate, libraries can be written
for new window systems without affecting either the CAPI model or the
applications you have written with it.

The CAPI currently runs under X Window System with either GTK+ or Motif,
Microsoft Windows and Mac OS X. Using CAPI with Motif is deprecated.

1

Introduction to the CAPI

1.2 The history of the CAPI

Window-based applications written with LispWorks 3 and previous used
CLX?, CLUE, and the LispWorks Toolkit. Such applications are restricted to
running under X Windows. Because we and our customers wanted a way to
write portable window code, we developed a new system for this purpose: the
CAPI.

Part of this portability exercise was undertaken before the development of the
CAPI, for graphics ports, the generic graphics library. This includes the porta-
ble color, font, and image systems in LispWorks. The CAPI is built on top of
this technology, and has been implemented for Motif, Microsoft Windows,
Cocoa and GTK+.

All Lisp-based environment and application development in LispWorks Ltd
now uses the CAPI. We recommend that you use the CAPI for window-based
application development in preference to the systems mentioned earlier.

1.3 The CAPI model

The CAPI provides an abstract hierarchy of classes which represent different
sorts of window interface elements, along with functions for interacting with
them. Instances of these classes represent window objects in an application,
with their slots representing different aspects of the object, such as the text on
a button, or the items on a menu. These instances are not actual window
objects but provide a convenient representation of them for you. When you
ask the CAPI to display your object, it creates a real window system object to
represent it. This means that if you display a CAPI button, a real Windows
button is created for it when running on Microsoft Windows, a real GTK+ but-
ton when running on GTK+, and a real Cocoa button when running on Cocoa.

A different approach would have been to simulate the window objects and
their look and feel. This approach is problematic. Because the library makes
itself entirely responsible for the application’s look and feel, it may not
simulate it correctly in obscure cases. Also, manufacturers occasionally
change the look and feel of their window systems. Applications written with a
library that simulates window objects will continue to have the old look and
feel until the application is recompiled with an updated library.

1.3 The CAPI model

The CAPI's approach makes the production of the screen objects the
responsibility of the native window system, so it always produces the correct
look and feel. Furthermore, the CAPI’s use of the real interface to the window
system means that it does not need to be upgraded to account for look and
feel changes, and anything written with it is upwardly compatible, just like
any well-written application.

1.3.1 CAPI Classes

There are four basic objects in the CAPI model: interfaces, menus, panes and lay-
outs.

Everything that the CAPI displays is contained within an interface (an
instance of the class interface). When an interface is displayed a window
appears containing all the menus and panes you have specified for it.

An interface can contain a number of menus which are collected together on a
menu bar. Each menu on the menu bar can contain menu items or other
menus. Items can be grouped together visually and functionally inside menu
components. Menus, menu items, and menu components are, respectively,
instances of the classes menu, menu-item, and menu-component.

Panes are window objects such as buttons and lists. They can be positioned
anywhere in an interface. The CAPI provides many different kinds of pane
class, among them push-button, list-panel, editor-pane, tree-viewand
graph-pane.

The positions of panes are controlled by a layout, which allows objects to be
collected together and positioned either regularly (with instances of the
classes column-layout, row-layout Or grid-layout) Or arbitrarily using a
pinboard-layout. Layouts themselves can be laid out by other layouts — for
example, a row of buttons can be laid out above a list by placing both the row-
layout and the list in a column-layout.

1 Introduction to the CAPI

2

Getting Started

This chapter introduces some of the most basic CAPI elements and functions.
The intention is simply that you should become familiar with the most useful
elements available, before learning how you can use them constructively. You
should work through the examples in this chapter.

A CAPI application consists of a hierarchy of CAPI objects. CAPI objects are
created using make-instance, and although they are standard CLOS objects,
CAPI slots should generally be accessed using the documented accessors, and
not using the CLOS slot-value function. You should not rely on slot-value
because the implementation of the CAPI classes may evolve.

Once an instance of a CAPI object has been created in an interface, it can be
displayed on your screen using the function display.

2.1 Using the CAPI package

All symbols in this manual are exported from either the CAPI or COMMON-
LISP packages unless explicitly stated otherwise. To access CAPI symbols, you

2 Getting Started

could qualify them all explicitly in your code, for example capi:output-
pane.

However it is more convenient to create a package which has CAPI on its
package-use-list:

(defpackage "MY-PACKAGE"
(:add-use-defaults t)
(:use "CAPI")

)

This creates a package in which all the CAPI symbols are accessible. To run the
examples in this guide, first evaluate

(in-package "MY-PACKAGE")

2.2 Creating a window

This section shows how easy it is to create a simple window, and how to
include CAPI elements, such as panes, in your window.

1. Enter the following in a listener
(make-instance 'interface
:visible-min-width 200
:title "My Interface")

(display *)

Figure 2.1 Creating a simple window

My Interface
Works

A small window appears on your screen, called "My Interface". This is the
most simple type of window that can be created with the CAPI.

Note: By default this window has a menu bar with the Works menu. The
Works menu gives you access to a variety of LispWorks tools, just like the
Works menu of any window in the LispWorks IDE. It is automatically pro-

2.2 Creating a window

vided by default for any interface you create. You can omit it by passing

tauto-menus nil.

The usual way to display an instance of a CAPI window is display. However,
another function, contain, is provided to help you during the course of
development.

Notice that the "My Interface" window cannot be made smaller than the mini-
mum width specified. All CAPI geometry values (window size and position)
are integers and represent pixel values relative to the topmost/leftmost visible
pixel of the primary monitor.

Only a top level CAPI element is shown by display — that is, an instance of
an interface. To display other CAPI elements (for example, buttons, editor
panes, and so on), you must provide information about how they are to be
arranged in the window. Such an arrangement is called a layout — you wiill
learn more about layouts in Chapter 7.

On the other hand, contain automatically provides a default layout for any
CAPI element you specify, and subsequently displays it. During development,
it can be useful for displaying individual elements of interest on your screen,
without having to create an interface for them explicitly. However, contain is
only provided as a development tool, and should not be used for the final
implementation of a CAPI element. See Chapter 10, “Defining Interface
Classes” on how to display CAPI elements in an interface.

Note that a displayed CAPI element should only be accessed in its own
thread. See “The correct thread for CAPI operations” on page 25 for more
information about this.

This is how you can create and display a button using contain.
1. Enter the following into a listener:

(make-instance 'push-button
:data "Button")

2 Getting Started

(contain *)

Figure 2.2 Creating a push-button interface

This creates an interface which contains a single push-button, with a label
specified by the :data keyword. Notice that you could have performed the
same example using display, but you would also have had to create a layout
so that the button could have been placed in an interface and displayed.

You can click on the button, and it will respond in the way you would expect
(it will depress). However, no code will be run which performs an action asso-
ciated with the button. How to link code to window items is the topic of the
next section.

2.3 Linking code into CAPI elements

Getting a CAPI element to perform an action is done by specifying a callback.
This is a function which is performed whenever you change the state of a
CAPI element. It calls a piece of code whenever a choice is made in a window.

Note that the result of the callback function is ignored, and that its usefulness
is in its side-effects.

1. Try the following:

(make-instance 'push-button
:data "Hello"
:callback
#' (lambda (&rest args)
(display-message
"Hello World")))

2.3 Linking code into CAPI elements

(contain *)

Figure 2.3 Specifying a callback

2. Click on the Hello button.
A dialog appears containing the message “Hello World”.

Figure 2.4 A dialog displayed by a callback.

Information

The CAPI provides the function display-message to allow you to pop
up a dialog box containing a message and a Confirm button. This is one
of many pre-defined facilities that the CAPI offers.

Note: When you develop CAPI applications, your application windows are
run in the same Window system event loop as the LispWorks IDE. This - and
the fact that in Common Lisp user code exists in the same global namespace as
the Common Lisp implementation - means that a CAPI application running in
the LispWorks IDE can modify the same values as you can concurrently mod-
ify from one of the the LispWorks IDE programming tools.

2 Getting Started

For example, your CAPI application might have a button that, when pressed,
sets a slot in a particular object that you could also set by hand in the Listener.
Such introspection can be useful but can also lead to unexpected values and
behavior while testing your application code.

10

3

Creating Common Windows

So far you have only seen two types of CAPI element: the interface (which is
the top level CAPI element, and is present in any CAPI window) and the
push-button. This section shows how you can use the CAPI to create other
common windowing elements you are likely to need.

Before trying out the examples in this chapter, define the functions test-
callback and hello in your Listener. The first displays the list of arguments
it is given, and returns nil. The second just displays a message.

(defun test-callback (data interface)
(display-message "Data ~S in interface ~S"
data interface))

(defun hello (data interface)
(declare (ignore data interface))
(display-message "Hello World"))

We will use these callbacks in future examples.

3.1 Generic properties

Because CAPI elements are just like CLOS classes, many elements share a
common set of properties. This section describes the properties that all the
classes described in this chapter inherit.

11

3 Creating Common Windows

12

3.1.1 Scroll bars

The CAPI lets you specify horizontal or vertical scroll bars for any subclass of
the simple-pane element (including all of the classes described in this
chapter).

Horizontal and vertical scroll bars can be specified using the keywords
:horizontal-scroll and :vertical-scroll. By default, both :vertical-
scroll and :horizontal-scroll are nil.

3.1.2 Background and foreground colors

All subclasses of the simple pane element can have different foreground and
background colors, using the :background and : foreground keywords. For
example, including

:background :blue
:foreground :yellow

in the make-instance Of a text pane would result in a pane with a blue back-
ground and yellow text.

3.1.3 Fonts

The CAPI interface supports the use of other fonts for text in title panes and
other CAPI objects, such as buttons, through the use of the : font keyword. If
the CAPI cannot find the specified font it reverts to the default font. The : font
keyword applies to data following the : text keyword. The value is a graphics
ports gp: font-description oObject specifying various attributes of the font.

On systems running X Windows, the x1sfonts command can be used to list
which fonts are available. The X logical font descriptor can be explicitly
passed as a string to the : font initarg, which will convert them.

Here is an example of a title-pane With an explicit font:

3.1 Generic properties

(contain
(make-instance 'title-pane

:text "A title pane"

:font (gp:make-font-description
:family "Times"
:size 12
:weight :medium
:slant :roman)))

Here is an example of using : font to produce a title pane with larger letter-
ing. Note that the CAPI automatically resized the pane to fit around the text.

(contain
(make-instance 'title-pane

:text "A large piece of text"

:font (gp:make-font-description
:family "Times"
:size 34
:weight :medium
:slant :roman)))

Figure 3.1 An example of the use of font descriptions

Container

Works

A large piece of tex

3.1.4 Mnemonics
This section applies to Windows and GTK+ only.

It is also possible to make mnemonics work on Motif, but not straightforward.
Contact Lisp Support if you need help with that.

Underlined letters in menus, titles and buttons are called mnemonics. The
user can select the element by pressing the corrresponding key.

13

3 Creating Common Windows

14

3.1.4.1 Controlling Mnemonics

For individual buttons, menus, menu items and title panes, you can use the
:mnemonic initarg to control them. For example:

(capi:contain (make-instance 'capi:push-button
:data "FooBar"
:mnemonic #\B))

For more information on mnemonics in buttons, see “Mnemonics in buttons”
on page 23 and the LispWorks CAPI Reference Manual.

For information on controlling mnemonics in button panels, see “Mnemonics
in button panels” on page 36. For information on controlling mnemonics in
menus, see “Mnemonics in menus” on page 84.

The initarg :mnemonic-title allows you to specify the mnemonic in the title
for many pane classes including 1ist-panel, text-input-pane and option-
pane. AlSO grid-layout supports mnemonic-title when has-title-column-p is
true. For the details see titled-object in the LispWorks CAPI Reference Man-
ual.

3.1.4.2 Mnemonics on Microsoft Windows

On Microsoft Windows the user can make the mnemonics visible by holding
down the alt key.

Windows XP can hide mnemonics when the user is not using the keyboard.
This is controlled by

Control Panel > Display > Appearance > Effects > Hide underlined letters...

3.2 Specifying titles

It is possible to specify a title for a window, or part of a window. Several of the
examples that you have already seen have used titles. There are two ways that
you can create titles: by using the title-pane class, or by specifying a title
directly to any subclass of titled-object.

3.2 Specifying titles

3.2.1 Title panes

A title pane is a blank pane into which text can be placed in order to form a
title.

(setqg title (make-instance 'title-pane
:visible-min-width 200
:text "Title"))

(contain title)

Figure 3.2 Atitle pane

Container

3.2.2 Specifying titles directly

You can specify a title directly to all CAPI panes, using the : title keyword.
This is much easier than using title-panes, since it does not necessitate using a
layout to group two elements together.

Any class that is a subclass of titled-object supports the : title keyword.
All of the standard CAPI panes inherit from this class. You can find all the
subclasses of titled-object by graphing them using the class browser.

3.2.2.1 Window titles

Specify a title for a CAPI window by supplying the :title initarg for the
interface, and access it with interface-title.

Further control over the title of your application windows can be acheived by
using set-default-interface-prefix-suffix and/or specializing inter-
face-extend-title as illustrated in “Controlling the interface title” on page
103.

15

3 Creating Common Windows

3.2.2.2 Titles for elements

The position of any title can be specified by using the : title-position key-
word. Most panes default their title-position to : top, although some use
:left.

You can place the title in a frame (like a groupbox) around its element by
specifying :title-position :frame.
You may specify the font used in the title via the keyword :title-£font.

The title of a titled-object, and its font, may be changed interactively with
the use of setf£, if you wish.

1. Create a push button by evaluating the code below:

(setqg button (make-instance 'push-button
:text "Hello"
:title "Press: "
:title-position :left
:callback 'hello))

(contain button)
2. Now evaluate the following:

(apply-in-pane-process
button #'(setf titled-object-title) "Press here: " button)

As soon as the form is evaluated, the title of the pane you just created changes.
3. Lastly evaluate the following:

(apply-in-pane-process
button #'(setf titled-object-title-font)
(gp:merge-font-descriptions
(gp:make-font-description :size 42)
(gp:convert-to-font-description
button
(titled-object-title-font button))) button)

Notice how the window automatically resizes in steps 2 and 3, to make allow-
ance for the new size of the title.

16

3.3 Displaying and entering text

3.3 Displaying and entering text

There are a variety of ways in which an application can display text, accept
text input or allow editing of text by the user. Display panes show non-edit-
able text, text input panes are used for entering short pieces of text, and editor
panes are commonly used for dealing with large amounts of text such as files.
Rich text panes are available on Cocoa and Windows, supporting formatted
text.

3.3.1 Display panes

Display panes can be used to display text messages on the screen. The text in
these messages cannot be edited, so they can be used by the application to
present a message to the user. The : text keyword can be used to specify the
message that is to appear in the pane.

1. Create a display pane by evaluating the code below:

(setq display (make-instance 'display-pane
:text "This is a message"))

(contain display)

Figure 3.3 A display pane

Works

This is a message

Note that the window title, which defaults to "Container" for windows created
by contain, may appear truncated.

3.3.2 Text input panes

When you want the user to enter a line of text — for instance a search string —
a text input pane can be used.

17

3 Creating Common Windows

(setqg text (make-instance 'text-input-pane
:title "Search: "
:callback 'test-callback))

(contain text)

Figure 3.4 A text input pane

Container

Notice that the default title position for text input panes is : left.

You can place text programmatically in the text input pane by supplying a
string for the : text initarg, or later by calling (setf text-input-pane-
text) in the appropriate process.

You can add toolbar buttons for easier user input via the :buttons initarg.
This example allows the user to enter the filename of an existing Lisp source
file, either directly or by selecting the file in a dialog raised by the Browse File
button. There is also a Cancel button, but the default OK button is not dis-
played:

(capi:contain
(make-instance
'capi:text-input-pane
:buttons
(list :cancel t
:ok nil
:browse-£file
(list :operation :open
:filter "*.LISP;*.LSP"))))

For a larger quantity of text use multi-line-text-input-pane.

3.3.3 Editor panes

Editor panes can be created using the editor-pane element.

18

3.4 Displaying formatted text

(setq editor
(make-instance 'editor-pane
stext
"some text in an editor pane"))

(contain editor)

The Editor tool in the LispWorks IDE, as described in the LispWorks IDE User
Guide and the LispWorks Editor User Guide, uses editor-pane.

Figure 3.5 An editor pane

Container

Works

Eume text in an editors
pane

Note: when you supply the :buffer-name initarg and/or the : text initarg
with positive length, then the editor-pane initially displays a new buffer
containing that text and/or with the specified buffer name. If you do not sup-
ply one of those arguments, then the editor-pane displays some existing edi-
tor buffer chosen at random. See the LispWorks CAPI Reference Manual for
details.

The cursor in an editor-pane blinks on and off under the control of the edi-
tor-pane-blink-rate mechanism.

An editor-pane can be made non-editable by users with the initarg
:enabled :read-only, or completely disabled with :enabled nil.

3.4 Displaying formatted text

Two classes allow you to display the Rich Text and HTML formats.

19

3 Creating Common Windows

20

3.4.1 Rich text

On Microsoft Windows and Cocoa, rich-text-pane allows you to display
and edit rich text. It supports character attributes such as font, size and color,
and paragraph attributes such as alignment and tab-stops.

See the example in:

examples/capi/applications/rich-text-editor.lisp

3.4.2 HTML

On Microsoft Windows and Cocoa, browser-pane allows you to display
HTML, navigate, refresh, handle errors, redirect to another URL, and so on.

3.5 Stream panes

There are three subclasses of editor-pane Which handle Common Lisp
streams.

3.5.1 Collector panes

A collector pane displays anything printed to the stream associated with it.
Background output windows, for instance, are examples of collector panes.

1l. (contain (make-instance 'collector-pane
:title "Example collector pane:"))

2. (princ "abc" (collector-pane-stream *))

3.5.2 Interactive streams
An interactive stream is the building block on which 1istener-pane is built.
(contain (make-instance 'interactive-stream

:title "Stream:"))

3.5.3 Listener panes

The 1istener-pane class is a subclass of interactive-stream, and allows
you to create interactive Common Lisp sessions. You may occasionally want

3.6 Miscellaneous button elements

to include a listener pane in a tool (as, for instance, in the LispWorks IDE
Debugger).

(contain (make-instance 'listener-pane
:title "Listener:"))

3.6 Miscellaneous button elements

A variety of different buttons can be created for use in an application. These
include push buttons, which you have already seen, and check buttons. But-
ton panels can also be created, and are described in Chapter 6, “Choices”.

3.6.1 Push buttons

You have already seen push buttons in earlier examples. The : enabled key-
word can be used to specify whether or not the button should be selectable
when it is displayed. This can be useful for disabling a button in certain situa-
tions.

The following code creates a push button which cannot be selected.

(setqg offbutton (make-instance 'push-button
:data "Button"
:enabled nil))

(contain offbutton)
These setf expansions enable and disable the button:

(apply-in-pane-process
offbutton #' (setf button-enabled) t offbutton)

(apply-in-pane-process
offbutton #' (setf button-enabled) nil offbutton)

All subclasses of the button class can be disabled in this way.

3.6.2 Check buttons
Check buttons can be produced with the check-button element.

1. Enter the following in a Listener:

21

3 Creating Common Windows

22

(setqg check (make-instance 'check-button
:selection-callback 'hello
:retract-callback 'test-callback
:text "Button"))

(contain check)

Figure 3.6 A check button

Notice the use of :retract-callback in the example above, to specify a call-
back when the element is deselected.

Like push buttons, check buttons can be disabled by specifying : enabled

nil.

3.6.3 Radio buttons

Radio buttons can be created explicitly although they are usually part of a but-
ton panel as described in Chapter 6, Choices. The :selected keyword is used

to specify whether or not the button is selected, and the : text keyword can be
used to label the button.

(contain (make-instance 'radio-button
:text "Radio Button"
:selected t))

Figure 3.7 An explicitly created radio button

(_)‘Radio Button

3.7 Adding a toolbar to an interface

Although a single radio button is of limited use, having an explicit radio but-
ton class gives you greater flexibility, since associated radio buttons need not
be physically grouped together. Generally, the easiest way of creating a group
of radio buttons is by using a button panel, but doing so means that they will
be geometrically, as well as semantically, connected.

3.6.4 Mnemonics in buttons

The initarg :mnemonic allows you to supply a character, integer or symbol
specifying a mnemonic for a button.

Alternatively you can specify the button text and its mnemonic together with
the initarg :mnemonic-text, for example:

(contain
(make-instance 'radio-button
:mnemonic-text
"Radio Button with a &Mnemonic"))

3.7 Adding a toolbar to an interface

Top level interfaces can have a toolbar, which is typically displayed at the top
of the window. On Cocoa, this will be a standard foldable toolbar.

The end user can raise a customization dialog to choose which items appear
on the toolbar. See the toolbar-items and toolbar-states initargs for interface
and the functions interface-toolbar-state, interface-default-tool-
bar-states, interface-update-toolbar and interface-customize-
toolbar.

3.8 Tooltips

A tooltip is a temporary window containing text which appears when the user
positions the cursor over an element for a period. The appearance is slightly
delayed and the text is usually short.

Tooltips are often used for brief help text and identification of GUI elements.
For example the "X" button alongside the Filter area in the Process Browser
tool in the LispWorks IDE has a tooltip "Clear filter". Tooltips can also be used
to complete the display of partially hidden text, for example in the Debugger

23

3 Creating Common Windows

24

tool Backtrace view where the display of long variable values might be trun-
cated.

You can implement tooltips for output-paneS, collections, elements,
menu-itemS and toolbar-buttons.

3.8.1 Tooltips for output panes

To implement tooltips in an output-pane, call display-tooltip viaa
:motion gesture in the pane’s input-model. The tooltip text might depend on
the cursor position or, in the case of a pinboard-layout, on the pinboard
object under the cursor.

See the example in examples/capi/graphics/pinboard-help.lisp.

3.8.2 Tooltips for collections, elements and menu items

Supply the :help-callback initarg in an interface, along with a suitable
:help-key initarg for each of its collections, elements and menu-items that
should have a tooltip. help-callback should return a suitable string (which will
be the tooltip text) when passed type : tooltip and the help-key.

See the manual page for interface in the LispWorks CAPI Reference Manual
for an example of a tooltip on a text-input-pane

3.8.3 Tooltips for toolbar buttons

You can implement tooltips for a toolbar-button exactly as for collections
and so on as described in “Tooltips for collections, elements and menu items”
on page 24. Supply help-key for the toolbar-button and a help-callback for the
interface. For an example of this see examples/capi/elements/tool-
bar.lisp.

However, if your toolbar-buttons are grouped in a toolbar-component it
is simpler to supply the : tooltips initarg. tooltips should be a list containing
a string giving the tooltip text of each button in the component. For an exam-
ple of this see examples/capi/applications/simple-symbol-
browser.lisp.

A

General Considerations

This chapter describes general issues relating to the use of CAPI. Subsequent
chapters address issues specific to the host window system, and then the use
of particular CAPI elements

4.1 The correct thread for CAPI operations

All operations on displayed CAPI elements need to be in the thread (that is,
the mp: process) that runs their interface. On some platforms, display and
contain make a new thread. On Cocoa, all interfaces run in a single thread.

In most cases this issue does not arise, because CAPI callbacks are run in the
correct thread. However, if your code needs to communicate with a CAPI win-
dow from a random thread, it should use execute-with-interface, exe-
cute-with-interface-if-alive, apply-in-pane-process Ol apply-in-
pane-process-if-alive to send the function to the correct thread.

This is why the brief interactive examples in this manual generally use exe-
cute-with-interface Or apply-in-pane-process When modifying a dis-
played CAPI element. In contrast, the demo example in “Connecting an
interface to an application” on page 100 is modified only by callbacks which
run in the demo interface’s own process, and so there is no need to use exe-
cute-with-interface Of apply-in-pane-process.

25

4 General Considerations

26

4.2 Support for multiple monitors

CAPI supports positioning (and querying the position of) windows on multi-
ple monitors.

The function screen-monitor-geometries supports the notion of monitor
geometry. The monitor geometry includes "system" areas such as the Mac OS
X menu bar and the Microsoft Windows task bar.

The functions screen-internal-geometries and pane-screen-internal-
geometry support the notion of internal geometry. The internal geometry
excludes the system areas.

There is a "primary monitor" which displays any system areas. The origin of
the coordinate system (as returned by top-level-interface-geometry and
screen-internal-geometry) iS the topmost/leftmost visible pixel of the pri-
mary monitor. Thus the origin may be in a system area such as the Mac OS X
menu bar.

The function virtual-screen-geometry returns a rectangle just covering the
full area of all the monitors associated with a screen.

Note that code which relies on the position of a window should not assume
that a window is located where it has just been programmatically displayed,
but should query the current position. This is because the geometry includes
system areas where CAPI windows cannot be displayed. For more informa-
tion about this see “Resizing and positioning” on page 70

Note also that CAPI does not currently support multiple desktops, which are
called workspaces in Linux distros, and called Spaces on Mac OS X.

5

Host Window System
Configuration

This chapter describes how the host window system affects the appearance of
CAPI windows, and how to configure it.

5.1 Properties of the host window system

This section describes properties of the host window system that affect the
appearance and behavior of CAPI windows.

5.1.1 Using Windows themes

On Microsoft Windows XP, Vista and Windows 7 LispWorks is themed. That is,
it uses the current theme of the desktop.

It is possible to switch this off by calling the function
win32:set-application-themed With argument nil.

win32:set-application-themed affects only windows that are created after
it was called. Normally, it should be called before any window is created, so
that all LispWorks windows will have a consistent appearance.

27

5 Host Window System Configuration

28

5.1.2 Matching resources

You can configure the LispWorks IDE and your application to use resources
on GTK+ and Motif. The applicable resources determine the default fonts, col-
ors and certain other properties used in CAPI elements.

The element initarg widget-name is used to match resources. CAPI gives a
name for the main widget that it creates for each element that has a represen-
tation in the library. This name is then included in the "path" that GTK+ and
Motif use to match resources for each widget.

5.1.2.1 Matching resources on GTK+

By default, the name of the widget is the name of the class of the element,
downcased (except top level interfaces, see next paragraph). You can override
the name by either passing widget-name when making the element, or by call-
iNng (setf element-widget-name) before displaying the element.

To make it easier to define resources specific to the application, the CAPI
GTK+ library, when using the default name, prepends the application-class (see
convert-to-screen) followed by a dot. So for an interface of class
my-interface Which is displayed in a screen with application-class
"my-application", the default widget-name is:

my-application.my-interface

Example GTK+ resource files are in examples/gtk/.

5.1.2.2 Matching resources on X11/Motif

widget-name is used as described for GTK+ in “Matching resources on GTK+”
on page 28, except that the default widget-name for a top level interface does
include the prepended application-class.

The file app-defaults/Lispworks, supplied in the LispWorks library for rel-
evant platforms, contains the application fallback resources for LispWorks 6.1
and illustrates resources you may wish to change.

The files app-defaults/*-classic contain the fallback resources that were
supplied with LispWorks 4.4.

5.2 Using Motif

For further information about X resources, consult documentation for the X
Window system.

5.1.2.3 Resources for LispWorks CAPI applications

Delivered applications which need fallback resources should pass the
:application-class and : fallback-resources keys described in the Lisp-
Works CAPI Reference Manual under convert-to-screen.

There is an example showing how to make a CAPI GUI configurable by GTK+
resources in examples/capi/elements/gtk-resources.lisp. To construct
custom resources for your CAPI/GTK+ application, see the example resource
files in examples/gtk/.

To construct custom X resources for your CAP1/Motif application, consult
app-defaults/Lispworks Which illustrates resources you may wish to
change in your application.

5.1.2.4 Xresources for in-place completion windows

The special window described in “In-place completion” on page 123 has inter-
face with name "non- focus-1list-prompter". This name can be used to
define resources specific to the in-place completion window. The completion
listis a 1ist-panel and the filter is a text-input-pane.

5.1.3 The break gesture

If a CAPI window is busy and unresponsive you can use the break gesture
Meta+Ctrl+C to regain control.

Note that this break gesture is specific to the window system your CAPI pro-
gram is running in.

On GTK+ and Motif you can configure the break gesture by calling the
function set-interactive-break-gestures.

5.2 Using Motif

This section describes how to use the Motif window system on supported
platforms.

29

5 Host Window System Configuration

30

5.2.1 Using Motif on Linux, FreeBSD and x86/x64 Solaris

Use of Motif with LispWorks is deprecated on these platforms, but you can
still use it.

LispWorks uses GTK+ as the default window system for CAPI and the Lisp-
Works IDE on Linux, FreeBSD and x86/x64 Solaris.

To use Motif instead you need to load it explicitly, by:
(require "capi-motif")

Requiring the "capi-motif" module makes CAPI use Motif as its default
library.

You can override the default library by specifying the appropriate CAPI
screen. For more information about this, see the screen argument to display
and convert-to-screen.

5.2.2 Using Motif on Macintosh

Use of Motif with LispWorks is deprecated on the Macintosh, but you can still
use it.

LispWorks is supplied as two images. One uses Cocoa as the default window
system for CAPI and the LispWorks IDE, the other uses GTK+ as its default
window system. Only this latter image can use the alternative Motif window
system.

To use Motif you need to load it into the GTK+ LispWorks image, by:
(require "capi-motif")

Requiring the "capi-motif" module makes CAPI use Motif as its default
library.

You can override the default library by specifying the appropriate CAPI
screen. For more information about this, see the screen argument to display
and convert-to-screen.

Note: you cannot load Motif into the Cocoa image.

5.2 Using Motif

Note: the GTK+ LispWorks image is installed on Macintosh when you select
the X11 GUI option at install time. See the LispWorks Release Notes and Installa-
tion Guide for further information on installing this option.

5.2.3 Using Motif on SPARC Solaris and HP-UX

LispWorks on SPARC Solaris and HP-UX does not support GTK+, and Motif
is the only supported window system. You do not need to load it or specify
the screen explicitly on these platforms.

31

5 Host Window System Configuration

32

6

Choices

Some elements of a window interface contain collections of items, for example
rows of buttons, lists of filenames, and groups of menu items. Such elements
are known in the CAPI as collections.

In most collections, items may be selected by the user — for example, a row of
buttons. Collections whose items can be selected are known as choices. Each
button in a row of buttons is either checked or unchecked, showing something
about the application’s state — perhaps that color graphics are switched on
and sound is switched off. This selection state came about as the result of a
choice the user made when running the application, or default choices made
by the application itself.

The CAPI provides a convenient way of producing groups of items from
which collections and choices can be made. The abstract class collection
provides a means of specifying a group of items. The subclass choice
provides groups of selectable items, where you may specify what initial state
they are in, and what happens when the selection is changed. Subclasses of
collection and choice used for producing particular kinds of grouped
elements are described in the sections that follow.

All the choices described in this chapter can be given a print function via the
:print-function keyword. This allows you to control the way in which
items in the element are displayed. For example, passing the argument

33

6 Choices

34

'string-capitalize tO :print-function would capitalize the initial let-
ters of all the words of text that an instance of a choice displays.

Some of the examples in this chapter require the functions test-callback
and hello which were introduced in Chapter 3, “Creating Common Win-
dows”.

6.1 Button classes

This section discusses the immediate subclasses of choice Which can be used
to build button panels. If you have a group of several buttons, you can use the
appropriate button-panel element to specify them all as a group, rather than
using push-button Or check-button to specify each one separately. There are
three such elements altogether: push-button-panel, check-button-panel
and radio-button-panel. The specifics of each are discussed below.

6.1.1 Push button panels

The arrangement of a number of push buttons into one group can be done
with a push-button-panel. Since this provides a panel of buttons which do
not maintain a selection when you click on them, push-button-panel isa
choice that does not allow a selection. When a button is activated it causes a
:selection-callback, but the button does not maintain the selected state.

Here is an example of a push button panel:

(make-instance 'push-button-panel
:items ' (one two three four five)
:selection-callback 'test-callback
:print-function 'string-capitalize)

(contain *)

Figure 6.1 A push button panel

One || Two || Three || Four || Five

6.1 Button classes

The layout of a button panel (for instance, whether items are listed vertically
or horizontally) can be specified using the : layout-class keyword. This can
take two values: 'column-1layout if you wish buttons to be listed vertically,
and 'row-layout if you wish them to be listed horizontally. The default value
is 'row-layout. If you define your own layout classes, you can also use these
as values to : layout-class. Layouts, which apply to many other CAPI
objects, are discussed in detail in Chapter 7, “Laying Out CAPI Panes”.

6.1.2 Radio button panels

A group of radio buttons (a group of buttons of which only one at a time can
be selected) is created with the radio-button-panel class. Here is an exam-
ple of a radio button panel:

(setqg radio (make-instance 'radio-button-panel
:items (list 1 2 3 4 5)
:selection-callback 'test-callback))

(contain radio)

Figure 6.2 A radio button panel

Container

6.1.3 Check button panels

A group of check buttons can be created with the check-button-panel class.
Any number of check buttons can be selected.

Here is an example of a check button panel.

35

6 Choices

(contain

(make-instance
'check-button-panel
:items ' ("Red" "Green" "Blue")))

Figure 6.3 A check button panel

Container

6.1.4 Mnemonics in button panels

On Windows and GTK+ you can specify the mnemonics (underlined letters)
in a button panel with the :mnemonics initarg, for example:

(contain
(make-instance 'push-button-panel
:items ' (one two three many)
:mnemonics ' (#\0 #\T #\E :none)
:print-function 'string-capitalize))

Notice that the value :none removes the mnemonic.

6.2 List panels

Lists of selectable items can be created with the 1ist-panel class. Here is a
simple example of a list panel:

(setq list
(make-instance 'list-panel
:items ' (one two three four)
:visible-min-height ' (character 2)
:print-function 'string-capitalize))

36

6.2 List panels

(contain list)

Figure 6.4 A list panel

Container i [m]

One
Two
Three

Four

Notice how the items in the list panel are passed as symbols, and a print-func-
tion is specified which controls how those items are displayed on the screen.

Any item on the list can be selected by clicking on it with the mouse.

By default, list panels are single selection — that is, only one item in the list
may be selected at once. You can use the : interaction keyword to change
this:

(make-instance 'list-panel
:items (list "One" "Two" "Three" "Four")
:interaction :multiple-selection)

(contain *)

You can add callbacks to any items in the list using the : selection-callback
keyword.

(make-instance 'list-panel
:items (list "One" "Two" "Three" "Four")
:selection-callback 'test-callback)

(contain *)

37

6 Choices

38

6.2.1 List interaction

If you select different items in the list, only the last item you select remains
highlighted. The way in which the items in a list panel interact upon selection
can be controlled with the : interaction keyword.

The list produced in the example above is known as a single-selection list
because only one item at a time may be selected. List panels are : single-
selection by default.

There are also multiple-selection and extended-selection lists available. The
possible interactions for list panels are:

e :single-selection — only one item may be selected
e :multiple-selection — more than one item may be selected
e :extended-selection — See Section 6.2.2

To get a particular interaction, supply one of the values above to the :inter-
action keyword, like this:

(contain
(make-instance
'list-panel
:items ' ("Red" "Green" "Blue")
:interaction :multiple-selection))

Note that :no-selection is not a supported choice for list panels. To display
a list of items with no selection possible you should use a display-pane.

6.2.2 Extended selection

Application users often want to make single and multiple selections from a
list. Some of the time they want a new selection to deselect the previous one,
so that only one selection remains — just like a : single-selection panel.
On other occasions, they want new selections to be added to the previous ones
— just like @ :multiple-selection panel.

The :extended-selection interaction combines these two interactions. Here
is an extended-selection list panel:

6.2

(contain
(make-instance
'list-panel
:items ' ("Item" "Thing" "Object")
:interaction :extended-selection))

Before continuing, here are the definitions of a few terms. The action you per-
form to select a single item is called the selection gesture. The action performed
to select additional items is called the extension gesture. There are two exten-
sion gestures. To add a single item to the selection, the extension gesture is a
click of the left button while holding down the control key. For selecting a
range of items, it is a click of the left button whilst holding down the shift
key.

6.2.3 Deselection, retraction, and actions

As well as selecting items, users often want to deselect them. Items in
multiple-selection and extended-selection lists may be deselected.

In a multiple-selection list, deselection is done by clicking on the selected item
again with either of the selection or extension gestures.

In an extended-selection list, deselection is done by performing the extension
gesture upon the selected item. (If this was done using the selection gesture,
the list would behave as a single-selection list and all other selections would
be lost.)

Just like a selection, a deselection — or retraction — can have a callback associ-
ated with it.

For a multiple-selection list panel, there may be the following callbacks:
e :selection-callback — called when a selection is made
e :retract-callback — called when a selection is retracted

Consider the following example. The function set-title changes the title of
the interface to the value of the argument passed to it. By using this as the call-
back to the check-button-panel, the title of the interface is set to the current
selection. The retract-callback function displays a message dialog with the
name of the button retracted.

1. Display the example window:

List panels

39

6 Choices

(defun set-title (data interface)
(setf (interface-title interface)
(format nil "~A" (string-capitalize data))))

(make-instance 'check-button-panel
:items ' (one two three four five)
:print-function 'string-capitalize
:selection-callback 'set-title
:retract-callback 'test-callback)

(contain *)

Figure 6.5 The example check button panel before the callback.

Container

2. Try selecting one of the check buttons. The window title will change:

Figure 6.6 The example check button panel after the callback.

Works
[] One [] Two Tﬂree] Four [] Five

3. Now de-select the button. Notice that the retract-callback is called.
For an extended-selection list pane, there may be the following callbacks:

e :selection-callback — called when a selection is made

e :retract-callback — called when a selection is retracted

e :extend-callback — called when a selection is extended

Also available in extended-selection and single-selection lists is the action call-
back. This is called when you double-click on an item.

e :action-callback — called when a double-click occurs

40

6.3

6.2.4 Selections

List panels — all choices, in fact — can have selections, and you can set them
from within Lisp. This is useful for providing default settings in a choice, or
when a user selection has an effect on other settings than just the one they
made.

The selection is represented as a vector of offsets into the list of the choice’s
items, unless it is a single-selection choice, in which case it is just represented
as an offset.

The initial selection is controlled with the initarg : selection. The accessor
choice-selection is provided.

6.2.5 Images and appearance

A list panel can include images displayed on the left of each item. To include
images supply the initarg : image-function. You can use images from an
image-list viathe initarg :image-lists.

Additionally, state images are supported on Microsoft Windows, GTK+ and
Motif, via the initarg :state-image-function and, if required, :image-
lists.

A list panel can have an alternating background color on Cocoa and GTK+,
when specified by the initarg alternating-background.

6.2.6 Filters
You can add afilter to a 1ist-panel by passing the : filter initarg.

List panel filters are used in the LispWorks IDE, for example in the Inspector
tool.

6.3 Trees

tree-view IS apanethat displays ahierarchical list of items. Each item may
optionally have an image and a checkbox.

Trees

41

6 Choices

42

Callbacks can be specified as for other choice classes. Additionally you can
control how the nodes of the tree are expanded, and there is delete-item-callback
available for use when the user presses the Delete key.

Tree views are used in the LispWorks IDE, for example in the Output Data view
of the Tracer tool and the Backtrace area of the Debugger and Stepper tools.

6.3.1 Tree interaction

tree-view supports only the :single-selection interaction but you can
have :extended-selection functionality by using the subclass extended-

selection-tree-view.

6.3.2 Images and appearance

tree-view can include images displayed on the left of each item. To include
images supply the initarg : image-function. You can use images from an
image-list Viatheinitarg :image-lists.

Additionally, state images are supported on Microsoft Windows, GTK+ and
Motif, via the initarg :state-image-function and, if required, :image-
lists.

A tree view can have an alternating background color on Cocoa and GTK+,
when specified by the initarg alternating-background.

6.4 Graph panes

Another kind of choice is the graph-pane. This is a special pane that can draw
graphs, whose nodes and edges can be selected, and for which callbacks can
be specified, as usual.

Here is a simple example of a graph pane. It draws a small rooted tree:

6.4 Graph panes

(contain
(make-instance
'graph-pane
:roots '(1)
:children-function
#' (lambda (x)
(when (< x 8)
(list (* 2 x) (1+ (* 2 x)))))))

Figure 6.7 A graph pane

Container
Works
8
4@
L {g
10
ce
le {11
6o
Je 13
14
7e
<15

The graph pane is supplied with a : children-function Which it uses to cal-
culate the children of the root node, and from those children it continues to
calculate more children until the termination condition is reached. For more
details of this, see the LispWorks CAPI Reference Manual.

graph-pane provides a gesture which expands or collapses a node, depend-
ing on it current state. Click on the circle alongside the node to expand or col-
lapse it.

You can associate selection, retraction, extension, and action callbacks with
any or all elements of a graph. Here is a simple graph pane that has an action
callback on its nodes.

43

6 Choices

First we need a pane which will display the callback messages. Executing the
following form to create this pane:

(defvar *the-collector*
(contain (make-instance 'collector-pane)))

Then, define the following four callback functions:

(defun test-action-callback (&rest args)
(format (collector-pane-stream
the-collector) "Action"))

(defun test-selection-callback (&rest args)
(format (collector-pane-stream *the-collector*)
"Selection"))

(defun test-extend-callback (&rest args)
(format (collector-pane-stream *the-collector*)
"Extend"))

(defun test-retract-callback (&rest args)
(format (collector-pane-stream *the-collector*)
"Retract"))

Now create an extended selection graph pane which uses each of these call-
backs, the callback used depending on the action taken:

(contain

(make-instance
'graph-pane
:interaction :extended-selection
:roots ' (1)
:children-function
#' (lambda (x)

(when (< x 8)

(list (* 2 x) (1+ (* 2 x)))))
raction-callback 'test-action-callback
:selection-callback 'test-selection-callback
:extend-callback 'test-extend-callback
:retract-callback 'test-retract-callback))

The selection callback function is called whenever any node in the graph is
selected.

The extension callback function is called when the selection is extended by
middle clicking on another node (thus selecting it too).

44

6.5

The retract callback function is called whenever an already selected node is
deselected.

The action callback function is called whenever an action is performed on a
node (that is, whenever it gets a double-click, or Return is pressed while the
node is selected).

6.5 Option panes

Option panes, created with the option-pane class, display the current selec-
tion from a single-selection list. When you click on the option pane, the list
appears and you can make another selection from it. Once the selection is
made, it is displayed in the option pane.

The appearance of the option-pane list varies between platforms. a drop-
down list box on Microsoft Windows; a combo box on GTK+ or Motif, and a
popup list on Cocoa.

Here is an example option pane, which shows the choice of one of five num-
bers. The initial selection is controlled with :selected-item.

(contain
(make-instance
'option-pane
:items '(1 2 3 4 5)
:selected-item 3
:title "One of Five:"))

Figure 6.8 An option pane

Container

Works

Dne of Five: | 3 hd

6.5.1 Option panes with images

You can add images to option pane items. Supply the :image-function ini-
targ when creating the option-pane, as illustrated in

Option panes

45

6 Choices

46

examples/capi/choice/option-pane-with-images.lisp

6.6 Text input choice

A text-input-choice class is provided which allows arbitrary text input
augmented with a choice like an option-pane.

See examples/capi/choice/text-input-choice.lisp.

6.7 Menu components

Menus (covered in Chapter 9) can have components that are also choices.
These components are groups of items that have an interaction upon selection
just like other choices. The :interaction keyword is used to associate radio
or check buttons with the group — with the values : single-selection and
:multiple-selection respectively. By default, a menu component has an
interaction of :no-selection.

See “Grouping menu items together” on page 78 for more details.

6.8 General properties of choices

The behaviors you have seen so far are mostly general properties of choices
rather than being specific to a particular choice. These general properties are
summarized below.

6.8.1 Interaction

All choices have an interaction style, controlled by the :interaction initarg.
The radio-button-panel and check-button-panel are Simply button-
panels With their interactions set appropriately. The possibile values for inter-
action are listed below.

:single-selection

Only one item may be selected at a time: selecting an
item deselects any other selected item.

:multiple-selection

6.8 General properties of choices

A multiple selection choice allows the user to select as
many items as she wants. A selected item may be dese-
lected by clicking on it again.

:extended-selection

An extended selection choice is a combination of the
previous two: only one item may be selected, but the
selection may be extended to more than one item.

:no-selection
Forces no interaction. Note that this option is not avail-
able for list panels. To display a list of items with no
selection you should use a display pane instead.

Specifying an interaction style that is invalid for a particular choice causes a
compilation error.

The accessor choice-interaction is provided for accessing the interaction of
ad choice.

6.8.2 Selections

All choices have a selection. This is a state representing the items currently
selected. The selection is represented as a vector of offsets into the list of the
choice’s items, unless it is a single-selection choice, in which case it is just rep-
resented as an offset.

The initial selection is controlled with the initarg : selection. The accessor
choice-selection is provided.

Generally, it is easier to refer to the selection in terms of the items selected,
rather than by offsets, so the CAPI provides the notion of a selected item and
the selected items. The first of these is the selected item in a single-selection
choice. The second is a list of the selected items in any choice.

The accessors choice-selected-item and choice-selected-items Pro-
vide access to these conceptual slots, and you can also supply the values at
make-instance time viatheinitargs : selected-itemand : selected-items

47

6 Choices

48

6.8.3 Callbacks

All choices can have callbacks associated with them. Callbacks are invoked
both by mouse button presses and keyboard gestures that change the selection
or are "Action Gestures" such as rReturn. Different sorts of gesture can have
different sorts of callback associated with them.

The following callbacks are available: : selection-callback, :retract-
callback (called when a deselection is made), : extend-callback, :action-
callback (called when a double-click occurs) and :alternative-action-
callback (called when a modified double-click occurs). What makes one
choice different from another is that they permit different combinations of
these callbacks. This is a consequence of the differing interactions. For exam-
ple, you cannot have an :extend-callback in a radio button panel, because
you cannot extend selection in one.

Callbacks pass data to the function they call. There are default arguments for
each type of callback. Using the :callback-type keyword allows you to
change these defaults. Example values of callback-type are :interface (Which
causes the interface to be passed as an argument to the callback function),
:data (the value of the selected data is passed), : element (the element
containing the callback is passed) and :none (N0 arguments are passed). Also
there is a variety of composite :callback-type Values, such as :data-
interface (Which causes two arguments, the data and the interface, to be
passed). See the callbacks entry in the LispWorks CAPI Reference Manual for a
complete description of :callback-type values.

The following example uses a push button and a callback function to display
the arguments it receives.

(defun show-callback-args (argl arg2)
(display-message "The arguments were ~S and ~S" argl arg2))

(setqg example-button
(make-instance 'push-button
:text "Push Me"
:callback 'show-callback-args
:data "Here is some data"
:callback-type :data-interface))

(contain example-button)

Try changing the : callback-type to other values.

6.8 General properties of choices

If you do not use the :callback-type argument and you do not know what
the default is, you can define your callback function with lambda list (s&rest
args) to account for all the arguments that might be passed.

Specifying a callback that is invalid for a particular choice causes a compile-
time error.

49

6 Choices

50

v

Laying Out CAPI Panes

So far, you have seen how you can create a variety of different window ele-
ments using the CAPI. Up to now, though, you have only created interfaces
which contain one of these elements. The CAPI provides a series of layout ele-
ments which allow you to combine several elements in a single window. This
chapter provides an introduction to the different types of layout available and
the ways in which each can be used.

Layouts are created just like any other CAPI element, by using make-
instance. Each layout must contain a description of the CAPI elements it
contains, given as a list to the :description keyword.

A layout is used to group any instances of simple-pane and its subclasses (for
instance all the elements you met in the last chapter), and pinboard object and
its subclasses (discussed in Chapter 12, “Creating Your Own Panes”). Once
again, you should make sure you have defined the test-callback function
before attempting any of the examples in this chapter. Its definition is repeated
here for convenience.

(defun test-callback (data interface)
(display-message "Data ~S in interface ~S"
data interface))

51

7 Laying Out CAPI Panes

7.1 Organizing panes in columns and rows

You will frequently need to organize a number of different elements in rows
and columns. The column-layout and row-layout elements are provided to
make this easy.

The following is a simple example showing the use of column-layout.

(contain (make-instance 'column-layout
:description (list
(make-instance 'text-input-pane)
(make-instance 'list-panel
:items '(1 2 3 4 5)))))

Figure 7.1 An example of using column-layout

Container ! El

|

2
3
4
5

Works

1. Define the following elements:

(setq buttonl (make-instance 'push-button
:data "Button 1"
:callback 'test-callback))

(setq button2 (make-instance 'push-button
:data "Button 2"
:callback 'test-callback))

7.1 Organizing panes in columns and rows

(setqg editor (make-instance 'editor-pane
:text "An editor pane"))

(setq message (make-instance 'display-pane
:text "A display pane"))

(setqg text (make-instance 'text-input-pane
ctitle "Text: "
:title-position :left
:callback 'test-callback))

These will be used in the examples throughout the rest of this chapter.

To arrange any number of elements in a column, create a layout using col-
umn-layout, listing the elements you wish to use. For instance, to display
title, followed by text and buttoni, enter the following into a Listener:

(contain (make-instance 'column-layout
:description
(list text buttonl)))

Figure 7.2 A number of elements displayed in a column

Container

Works

Text:

Button 1

To arrange the same elements in a row, simply replace column-layout in the
example above with row-layout. If you run this example, close the column
layout window first: each CAPI element can only be on the screen once at any
time.

Layouts can be given horizontal and vertical scroll bars, if desired; the key-
words :horizontal-scroll and :vertical-scroll can be setto t ornil,
as necessary.

When creating panes which can be resized (for instance, list panels, editor
panes and so on) you can specify the size of each pane relative to the others by

53

7 Laying Out CAPI Panes

listing the proportions of each. This can be done via either the :y-ratios key-
word (for column layouts) or the :x-ratios keyword (for row layouts).

(contain (make-instance 'column-layout
:description (list
(make-instance 'display-pane)
(make-instance 'editor-pane)
(make-instance 'listener-pane))
:y-ratios '(1 5 3)))

You may need to resize this window in order to see the size of each pane.

Note that the heights of the three panes are in the proportions specified. The
:x-ratios initarg will adjust the width of panes in a row layout in a similar
way.

It is also possible to specify that some panes are fixed at their minimum size
whilst others in the same row or column adjust proportionately when the
interface is resized:

(contain
(make-instance
'column-layout
:description
(list
(make-instance 'editor-pane
:text "Resizable"
:visible-min-height ' (:character 1))
(make-instance 'editor-pane
:text "Fixed"
:visible-min-height ' (:character 1))
(make-instance 'editor-pane
ttext
(format nil "Resizable~%Resizable~%Resizable")
:visible-min-height ' (:character 3)))
:y-ratios ' (1l nil 3)
))

To arrange panes in your row or column layout with constant gaps between
them, use the :gap initarg:

54

7.2 Other types of layout

(contain
(make-instance
'column-layout
:description (list
(make-instance 'output-pane
:background :red)

(make-instance 'output-pane
:background :white)

(make-instance 'output-pane
:background :blue))

:gap 20
:title "Try resizing this window vertically"

:background :grey))

To create resizable spaces between panes in your row or column layout, use
the special value nil in the layout description:

(contain (make-instance 'column-layout
:description (list

(make-instance 'output-pane
:background :red)

nil

(make-instance 'output-pane
:background :white)

nil

(make-instance 'output-pane
:background :blue))

:y-ratios '(1 1 4 1 1)
:title "Try resizing this window vertically"

:background :grey))

7.2 Other types of layout

Row and column layouts are the most basic type of layout class available in
the CAPI, and will be sufficient for many things you want to do. A variety of
other layouts are available as well, as described in this section.

7.2.1 Grid layouts

Whereas row and column layouts only allow you to position a pane horizon-
tally or vertically (depending on which class you use), grid layouts let you
specify both, thus allowing you to create a complete grid of different CAPI

panes.

55

7 Laying Out CAPI Panes

56

grid-layout supports a title column, as illustrated in
examples/capi/layouts/titles-in-grid.lisp
and it supports cells spanning multiple columns or rows, as illustrated in

examples/capi/layouts/extend.lisp

7.2.2 Simple layouts

Simple layouts control the layout of only one pane. Where possible, the pane
is resized to fit the layout. Simple layouts are sometimes useful when you
need to encapsulate a pane.

7.2.3 Pinboard layouts

Pinboard layouts allow you to position a pane anywhere within a window, by
specifying the x and y integer coordinates of the pane precisely. They are a
means of letting you achieve any effect which you cannot create using the
other available layouts, although their use can be correspondingly more com-
plex. They are discussed in more detail in Chapter 12, “Creating Your Own
Panes”.

7.3 Combining different layouts

You will not always want to arrange all your elements in a single row or col-
umn. You can include other layouts in the list of elements used in any layout,
thus enabling you to specify precisely how panes in a window should be
arranged.

For instance, suppose you want to arrange the elements in your window as
shown in Figure 7.3. The two buttons are shown on the right, with the text

7.3 Combining different layouts

input pane and a message on the left. Immediately below this is the editor
pane.

Figure 7.3 A sample layout

Message Buttonl

Text Button2

Editor

The layout in Figure 7.3 can be achieved by creating two row layouts: one con-
taining the display pane and a button, and one containing the text input pane
and the other button, and then creating a column layout which uses these two
row layouts and the editor.

(setq rowl (make-instance 'row-layout
:description (list message buttonl)))

(setq row2 (make-instance 'row-layout
:description (list text button2)))

57

7 Laying Out CAPI Panes

58

(contain (make-instance 'column-layout
:description
(list rowl row2 editor)))

Figure 7.4 An instantiation of the sample layout

Container

Works
A display pane||'gytton 1

T ext: Button 2

Bn editor pane

As you can see, creating a variety of different layouts is simple. This means
that it is easy to experiment with different layouts, allowing you to concen-
trate on the interface design, rather than its code.

However, remember than each instance of a CAPI element must not be used
in more than one place at the same time.

7.4 Constraining the size of layouts

The size of a layout (often referred to as its geometry) is calculated automati-
cally on the basis of the size of each of its children. The algorithm used takes
account of hints provided by the children, and from the description of the lay-
out itself. Hints are specified via the panes’ initargs when they are created.
The various pane classes have useful default values for these initargs.

7.4 Constraining the size of layouts

7.4.1 Default Constraints

If you do not specify any hints, the CAPI calculates the on-screen geometry
based on its default constraints. With this geometry the various elements are
displayed with adequate space in the window.

This is designed to work regardless of variable factors such as the user's
configuration, for example specifying large font sizes. It is often wrong to
constrain CAPI elements to fixed pixel sizes, as these constraints may lead to
poorer layouts in some configurations.

7.4.2 Width and Height Constraints

In the CAPI, there are three kinds of constraint; external, visible and internal.
The following hints are recognized by all layouts:

External constraints control the size that the pane takes up in its parent:
:external -min-width — the minimum width of the child in its parent
:external-max-width — the maximum width of the child in its parent

:external-min-height — the minimum height of the child in its par-
ent

:external-max-height — the maximum height of the child in its par-
ent

Visible constraints control the size of the part of the pane that you can see:
:visible-min-width — the minimum visible width of the child.
:visible-max-width — the maximum visible width of the child.
:visible-min-height — the minimum visible height of the child.
:visible-max-height — the maximum visible height of the child.

Internal constraints control the size of region used to display the contents of
the pane:

:internal-min-width — the minimum width of the display region.
:internal-max-width — the maximum width of the display region.

:internal-min-height — the minimum height of the display region.

59

7 Laying Out CAPI Panes

60

:internal-max-height — the maximum height of the display region.

Initargs :min-width, :max-width, :min-height and :max-height are depre-
cated. They are synonyms for the visible constraints :visible-min-width
and so on.

Each external size is the same as the visible size plus the borders.

For a non-scrolling pane, the internal constraints are the same as the visible
constraints.

For a scrolling pane, the internal constraints control the size of region over
which you can scroll and the visible constraints control the size of the view-
port. Usually the internal constraints are computed by the widget. Here is an
illustration of the external, internal and visible sizes in a scrolling pane. ABCD
is the external size, abcd is the visible size, and ABCD is the internal size:

Figure 7.5 External, visible and internal sizes:

7.4.3 Constraint Formats

Hints can take arguments in a number of formats, which are described in full
in the LispWorks CAPI Reference Manual. When given a number, this should be

7.4 Constraining the size of layouts

an integer and the layout is constrained to that number of pixels. A constraint
can also be specified in terms of character widths or heights, as shown in the
next section.

7.4.3.1 Character constraints

In “Combining different layouts” on page 56, you created a window with five
panes, by combining row and column layouts. Now consider changing the
definition of the editor pane so that it is required to have a minimum size. This
would be a sensible change to make, because editor panes need to be large
enough to work with comfortably.

(setq editor2
(make-instance 'editor-pane
:text "An editor pane with minimum size"
:visible-min-width ' (:character 30)
:visible-min-height ' (:character 10)))

Now display a window similar to the last example, but with the editor2 edi-
tor pane. Note that it is only the decription of the top-level column layout
which differs. Before entering the following into the listener, you should close
all the windows created in this chapter in order to free up the instances of
buttonl, button2 and so forth.

(contain (make-instance 'column-layout
:description
(list rowl row2 editor2)))

61

7 Laying Out CAPI Panes

62

You will not be able to resize the window any smaller than this:

Figure 7.6 The result of resizing the sample layout

0 : - X
Works

display pane Button 1

Text: Button 2

Bn editor pane with minimum size

7.4.3.2 String constraints

To make a pane that is wide enough to accomodate a given string, use the
:visible-min-width hintwith a (:string string) constraint.

In this example we also supply :visible-max-width t, which fixes the max-
imum visible width to be the same as the minimum visible width. Hence the
pane is wide enough, but no wider:

7.4 Constraining the size of layouts

(defvar *text* "Exactly this wide")

(capi:contain
(make-instance 'capi:text-input-pane
ttext *text*
:visible-min-width ~(:string ,*text¥*)
:visible-max-width t
:font (gp:make-font-description
:size (+ 6 (random 30)))))

Note that the width constraint works regardless of the font used.

7.4.4 Changing the constraints

If you need to alter the constraints on an existing element, use the function
set-hint-table. See how the interface in “Character constraints” on page 61
resizes after this call:

(apply-in-pane-process editor2
'set-hint-table editor2 '(:visible-min-width (:character 100)))

If you define your own pinboard-object class, ensure that its hint table
matches the visible geometry and is kept synchronised after any movement of
the object, otherwise redrawing may be incorrect.

Similarly if you draw pinboard objects under a transform, call set-hint-
table With the transformed geometry to ensure correct redrawing.

7.4.4.1 Initial constraints

You can use the initarg :initial-constraints to specify constraints that
apply during creation of the element’s interface, but not after the interface is
displayed.

For example, this creates a window that starts at least 600 pixels high, but can
be made shorter by the user, because that initial constraint is transient.
However, the permanent constraints on the heights of the two output panes
remain in effect:

63

7 Laying Out CAPI Panes

64

(contain
(make-instance 'column-layout

:description

(list (make-instance 'output-pane
:visible-min-height 100
:background :red)

(make-instance 'output-pane

:visible-min-height 200
:background :blue))

:initial-constraints '(:visible-min-height 600)))

7.5 Advanced pane layouts

Until now you have used layouts for CAPI elements in which the constituents
were displayed in fixed positions set out by the CAPI. In this chapter we will
be looking at a number of ways in which users can select the layout and dis-
play of CAPI elements in an interface once an instance of the interface has
been displayed.

The portable techniques are the use of dividers, switchable layouts and tab
layouts. On Microsoft Windows, there is also Multiple-Document Interface
(MDI).

Throughout this section we will be using three predefined panes, which you
should define before proceeding.

(setq red-pane (make-instance 'output-pane
:background :red))

(setq green-pane (make-instance 'output-pane
:background :green))

(setqg blue-pane (make-instance 'output-pane
:background :blue))

7.5.1 Switchable layouts

A switchable layout allows you to place CAPI objects on top of one another
and determine which object is displayed on top through Lisp code, possibly
linked to a button or menu option through a callback. Switchable layouts are
set up using a switchable-layout element in amake-instance. As with the
other layouts, such as column-1layout and row-layout, the elements to be

7.5 Advanced pane layouts

organized are given as a list to the :description keyword. Here is an exam-
ple:

(setq switching-panes (make-instance
'switchable-layout
:description (list red-pane green-pane)))

(contain switching-panes)

Note that the default pane to be displayed is the red pane, which was the first
pane in the description list. The two panes can now be switched between
using switchable-layout-visible-child:

(apply-in-pane-process
switching-panes #' (setf switchable-layout-visible-child)
green-pane switching-panes)

(apply-in-pane-process
switching-panes #' (setf switchable-layout-visible-child)
red-pane switching-panes)

7.5.2 Tab layouts

In its simplest mode, a tab layout is similar to a switchable layout, except that
each pane is provided with a labelled tab, like the tabs on filing cabinet folders
or address books. If the tab is clicked on by the user, the pane it is attached to
is pulled to the front. Don’t forget to close the switchable layout window
created in the last example before displaying this:

(make-instance 'tab-layout
:items (list (list "one" red-pane)
(list "two" green-pane)
(list "three" blue-pane))
:print-function 'car
:visible-child-function 'second)

65

7 Laying Out CAPI Panes

66

(contain *)

Figure 7.7 A tab layout

Container

The example needs the :print-function to be car, or else the tabs will be
labelled with the object numbers of the panes as well as the title provided in
the list.

However, a tab layout can also be used in a non-switchable manner, with each
tab responding with a callback to alter the appearance of only one pane. In
this mode the :description keyword is used to describe the main layout of
the tab pane. In the following example the tabs alter the choice of starting
node for one graph pane, by using a callback to the graph-pane-roots acces-
sor:

7.5 Advanced pane layouts

(defun tab-graph (items)
(let* ((gp (make-instance 'graph-pane))
(tl (make-instance 'tab-layout
:description (list gp)
:items items
:visible-child-function nil
:key-function nil
:print-function (lambda (x) (format nil "~R" x))
:callback-type :data
:selection-callback #' (lambda (data)
(setf (graph-pane-roots gp)
(list data))))))
(contain tl1)))

(tab-graph '(1 2 4 5 7))

7.5.3 Dividers and separators

If you need adjacent panes in a row or column to have a narrow user-movable
divider between them, supply the special value :divider in the description.
The divider allows the user to resize one pane into the space of the other. To
see this in the column layout below, grab the divider between the two panes
and then drag it vertically to resize both panes:

(contain (make-instance 'column-layout
:description (list green-pane
:divider red-pane)))

The arrow keys can also be used to move the divider.

To include a narrow non-movable visible element between adjacent panes,
supply the special value : separator in the description.

If you also specify ratios, the ratio for each occurrence of either of these special
values should be nil to specify that the narrow element is fixed at its
minimum size:

67

7 Laying Out CAPI Panes

68

(contain (make-instance 'column-layout
:description (list
(make-instance 'output-pane
:background :red)
:divider
(make-instance 'output-pane
:background :white)
:separator
(make-instance 'output-pane
:background :blue))
:y-ratios '(1 nil 4 nil 1)
:title "You can drag the divider, but not the separator"
:background :grey))

Dividers and separators can also be placed between panes in a row-layout or
even combinations of row and column layouts.

7.5.4 Multiple-Document Interface (MDI)

In LispWorks for Windows, the CAPI supports MDI through the class docu-
ment - frame. See the entry for document - frame in the LispWorks CAPI Refer-
ence Manual.

MDI is not supported on other platforms.

8

Modifying CAPI Windows

An interface or its children can be altered in many ways. This chapter
describes APIs for the most common of these.

Note: By default, each CAPI interface runs in its process. It is important to
understand that an on-screen interface and its elements must be accessed only
in the process of that interface. In most circumstances the user alters the inter-
face by a callback inside the interface, which will automatically happen in the
correct process. However, calls from other processes (including other CAPI
interfaces) should use execute-with-interface, execute-with-inter-
face-if-alive, apply-in-pane-process Of apply-in-pane-process-if-
alive. See the LispWorks CAPI Reference Manual for details of these functions.

8.1 Initialization

If necessary you can run code just before or just after your interface’s win-
dows are displayed on screen.

You can do this by defining a :before 0Or :after method on the generic func-
tion interface-display. Your method will run just before or just after your
interface is displayed on screen. For example:

69

8 Modifying CAPI Windows

(defun make-text (self createdp)
(multiple-value-bind (s m h dd mm yy)
(decode-universal-time (get-universal-time))
(format nil "Window ~S ~:[displayed~;created~] at
~2,'0D:~2,'0D:~2, '0OD"
self createdp h m s)))

(capi:define-interface dd () () (:panes (dp capi:display-pane)))

(defmethod capi:interface-display :before ((self dd))
(with-slots (dp) self
(setf (capi:display-pane-text dp)
(make-text self t))))

(capi:contain (make-instance 'dd))

Sometimes initialization code can be put in the create-callback of your inter-
face, though adding it in suitable methods for initialize-instance Or
interface-display is usually better.

8.2 Resizing and positioning

Programmatic resizing can be done using the function
set-top-level-interface-geometry. FOr example, to double the width of
an interface about its center:

(setf interface (contain (make-instance 'interface)))

Use the mouse or window manager-specific gesture to resize the interface,
then evaluate:

(multiple-value-bind (x y w h)
(top-level-interface-geometry interface)
(execute-with-interface interface
'set-top-level-interface-geometry

interface

:X (round (- x (* 0.5 w)))
Y VY

:width (* 2 w)

:height h))

All resize operations are subject to the constraints. The constraints can be
altered programmatically as described in “Changing the constraints” on page
63.

70

8.3 Scrolling

Resize operations are also subject to automatic modification by the system in
cases where the new window geometry coincides with a system area such as
the Mac OS X menu bar or the Microsoft Windows taskbar, as described in
“Positioning CAPI windows” on page 71.

8.2.1 Positioning CAPI windows

You should not assume that a window is located where it has just been pro-
grammatically positioned. Instead you should query the current position by
top-level-interface-geometry.

So if you wish to display CAPI interface windows W1 and W2 relative to each
other. You should:

1. Display W1 (by display), then
2. Query position of W1, then

3. Arrange for W2 to have the desired relative position, for example in its
make-instance Or later by set-hint-table, then

4. Display W2.

The reason for this is that the window system may disallow certain positions
(for example on the Mac OS X menu bar) therefore you cannot be certain of
the position of W1.

8.3 Scrolling

Programmatic scrolling is implemented with the generic function scroll.
This example shows vertical scrolling in a 1ist-panel:

(setf list-panel
(contain
(make-instance 'list-panel
:items (loop for i below 100 collect i)
:vertical-scroll t)))

(apply-in-pane-process
list-panel 'scroll list-panel :vertical :move 50)

Elsewhere this manual shows how an editor-pane can be scrolled using
editor commands.

71

8 Modifying CAPI Windows

8.3.1 Automatic scrolling

Automatic scrolling of the parent to show the focus pane can be specified by
using scroll-if-not-visible-p.

8.4 Swapping panes and layouts

The class switchable-layout is useful when your interface has several panes
of which exactly one should be visible at any time. The class tab-layout pro-
vides similar functionality in a Window-system specific way. See “Advanced
pane layouts” on page 64

To change to another layout, use (setf pane-layout):

(setf layout
(capi:contain
(make-instance 'row-layout
:description
(list (make-instance 'title-pane :text "One")
(make-instance 'title-pane :text "Two"))
:visible-min-height 100)))

(apply-in-pane-process
layout #' (setf pane-layout)
(make-instance 'column-layout
:description
(list (make-instance 'title-pane :text "Three")
(make-instance 'title-pane :text "Four")))
(element-interface layout))

To change the panes within a layout, use (setf layout-description):

(setf layout
(capi:contain
(make-instance 'row-layout
:description
(list (make-instance 'title-pane :text "One")
(make-instance 'title-pane :text "Two"))
:visible-min-height 100)))

(apply-in-pane-process

layout #' (setf layout-description)

(list (make-instance 'title-pane :text "Three")
(make-instance 'title-pane :text "Four")
(make-instance 'title-pane :text "Five"))

layout)

72

8.5 Specifying panes and layouts dynamically

Note: you must not reuse already-displayed panes in a CAPI layout.

8.5 Specifying panes and layouts dynamically

If you create a row-1layout Of column-layout With an empty description then
you can populate these layouts dynamically

To do this, use make-instance to create the panes, and pass a list of pane
objectsto (setf layout-description) inthe layout’s process. This can be done
inan initialize-instance :after method.

8.6 Updating pane contents

Use only the documented functions such as the accessors (setf editor-
pane-text) and (setf collection-items) and so on to set the datain a
pane. For details, see the LispWorks CAPI Reference Manual entry for the partic-
ular pane class and its superclasses.

8.6.1 Updating windows in real time

If your code needs to cause visible updates whilst continuing to do further
computation, then you should run your computation in a separate thread
which is not directly associated with the CAPI window.

Consider the following example where real work is represented by calls to
sleep.

1. Evaluate this code:

73

8 Modifying CAPI Windows

74

(defun change-text (win text)
(setf (title-pane-text win)
text))

(defun my-callback (win)
(change-text win "Go")
(loop
for i from 0 to 20 do
(change-text win (format nil "~D" i))
(sleep 0.1)))

(defun test ()
(let* ((pl (make-instance 'title-pane
ctext "init"))
(p2 (make-instance
'button :text "Go"
:callback-type :none
:callback #'(lambda ()

(my-callback pl)))))
(contain

(make-instance 'row-layout :description (list pl nil p2))
:width 200 :height 200)))

Run (test) and note that the updates do not appear until my-callback
returns. This is because it uses only one thread.

Now try this modified callback which uses a worker thread to perform
the calculations:

4,

8.7 Iconifying and restoring windows

(defun my-work-function ()
(let ((mbox (mp:ensure-process-mailbox)))
;7 This should really have an error handler.
(loop (let ((event (mp:process-read-event mbox
"Waiting for events")))
(cond ((consp event)
(apply (car event) (cdr event)))
((functionp event)
(funcall event)))))))

(setf *worker*
(mp:process-run-function "Worker process" ()
'my-work-function))

(defun change-text (win text)
(apply-in-pane-process win
#' (setf title-pane-text)
text win))

(defun my-callback (win)
(mp:process-send
worker
#' (lambda ()
(change-text win "Go")
(loop
for i from 0 to 20 do
(change-text win (format nil "~D" i))
(sleep 0.1)))))

Run (test) again: you should see the updates appear immediately.

A real application might also display an Abort button during the computation,
with a callback that aborts the worker process.

8.7 Iconifying and restoring windows

You can iconify an interface window as follows:

(setf (top-level-interface-display-state interface) :iconic)

You can also make it be hidden, maximized or restore it to normal, and you
have the option to create it in one of these states initally. For details see the
documentation for top-level-interface-display-state in the LispWorks
CAPI Reference Manual.

75

8 Modifying CAPI Windows

76

8.8 Closing windows

To close a CAPI interface window unconditionally, call the generic function
destroy.

To close a CAPI interface window such that its confirm-destroy-function is
called first to allow the user to confirm, call quit-interface. You must call it
in the window’s process, for example in the callback of a menu item.

8.9 Quitting applications

To make an application quit when one of its CAPI windows is closed, make
that window’s destroy-function call quit.

To arrange for a delivered CAPI application to quit automatically when all of
its CAPI windows are closed, call deliver with :quit-when-no-windows t.

9

Creating Menus

You can create menus for an application using the menu class.

You should make sure you have defined the test-callback and hello func-
tions before attempting any of the examples in this chapter. Their definitions
are repeated here for convenience.

(defun test-callback (data interface)
(display-message "Data ~S in interface ~S"
data interface))

(defun hello (data interface)
(declare (ignore data interface))
(display-message "Hello World"))

9.1 Creating a menu

A menu can be created in much the same way as any of the CAPI classes you
have already met.

1. Enter the following into a Listener:

(make-instance 'menu
:title "Foo"
:items ' ("One" "Two" "Three" "Four")
:callback 'test-callback)

77

9 Creating Menus

78

(make-instance 'interface
:menu-bar-items (list *))

(display *)

This creates a CAPI interface with a menu, Foo, which contains four items.
Choosing any of these items displays its arguments. Each item has the call-
back specified by the : callback keyword.

A submenu can be created simply by specifying a menu as one of the items of
the top-level menu.

2. Enter the following into a Listener:

(make-instance 'menu
:title "Bar"
:items ' ("One" "Two" "Three" "Four")
:callback 'test-callback)

(make-instance 'menu
:title "Baz"
:items (list 1 2 * 4 5)
:callback 'test-callback)

(contain *)

This creates an interface which has a menu, called Baz, which itself contains
five items. The third item is another menu, Bar, which contains four items.
Once again, selecting any item returns its arguments.

Menus can be nested as deeply as required using this method.

9.2 Grouping menu items together

The menu-component class lets you group related items together in a menu.
This allows similar menu items to share properties, such as callbacks, and to
be visually separated from other items in the menus. Menu components are
actually choices.

Here is a simple example of a menu component. This creates a menu called
Items, which has four items. Menu 1 and Menu 2 are ordinary menu items, but
Item 1 and Item 2 are created from a menu component, and are therefore
grouped together in the menu.

9.2 Grouping menu items together

(setqg component (make-instance 'menu-component
titems '("item 1" "item2")
:print-function 'string-capitalize
:callback 'test-callback))

(contain (make-instance 'menu

:title "Items"
:items
(list "menu 1" component "menu 2")
:print-function 'string-capitalize
:callback 'hello)

:width 150

:height 0)

Figure 9.1 A menu

W Container ==

Works Bt

Menu 1

en 1

ltem?2

Menu 2

Menu components allow you to specify, via the : interaction keyword,
selectable menu items — either as multiple-selection or single-selection items.
This is like having radio buttons or check boxes as items in a menu, and is a
popular technique among many GUI-based applications.

The following example shows you how to include a panel of radio buttons in a
menu.

79

9 Creating Menus

(setq radio (make-instance 'menu-component
:interaction :single-selection
:items ' ("This" "That")
:callback 'hello))

(setq commands (make-instance 'menu
:title "Commands"
:items
(list "Command 1" radio "Command 2")
:callback 'test-callback))

(contain commands)

Figure 9.2 Radio buttons included in a menu

Container

o [

Command 1

.

®* That

Command 2

The menu items This and That are radio buttons, only one of which may be
selected at a time. The other menu items are just ordinary commands, as you
saw in the previous examples. Note that the CAPI automatically groups the
items which are parts of a menu component so that they are separated from
other items in the menu.

This example also illustrates the use of more than one callback in a menu,
which of course is the usual case when you are developing real applications.
Choosing either of the radio buttons displays one message on the screen, and

80

9.3 Creating individual menu items

choosing either Command1 or Command2 returns the arguments of the call-
back.

Checked menu items can be created by specifying :multiple-selection to
the :interaction keyword, as illustrated below.

(setqg letters (make-instance 'menu-component
:interaction :multiple-selection
:items (list "Alpha" "Beta")))

(contain (make-instance 'menu
:title "Greek"
:items (list letters)
:callback 'test-callback))

Figure 9.3 An example of checked menu items

Container

Works -
s

+ Beta

Note how the items in the menu component inherit the callback given to the
parent, eliminating the need to specify a separate callback for each item or
component in the menu.

Within a menu or component, you can specify alternatives for a main menu
item that are invoked by modifer keys. See “Alternative menu items” on page
85 for more information.

9.3 Creating individual menu items

The menu-item class lets you create individual menu items. These items can
be passed to menu-components or menus via the : items keyword. Using this
class, you can assign different callbacks to different menu items.

81

9 Creating Menus

Remember that each instance of a menu item must not be used in more than

(setqg test (make-instance 'menu-item
:title "Test"
:callback 'test-callback))

(setq hello (make-instance 'menu-item
:title "Hello"
:callback 'hello))

(setq group (make-instance 'menu-component
:items (list test hello)))

(contain group)

Figure 9.4 Individual menu items

Container [|m| b4

Hello

one place at a time.

9.4 The CAPI menu hierarchy

The combination of menu items, menu components and menus can create a
hierarchical structure as shown schematically in Figure 9.5 and graphically in
Figure 9.6. This menu has five elements, one of which is itself a menu (with
three menu items) and the remainder are menu components and menu items.
Items in a menu inherit values from their parent, allowing similar elements to

share relevant properties whenever possible.

82

94

(defun menu-item-name (data)

(format nil "Menu Item ~D" data))
(defun submenu-item-name (data)

(format nil "Submenu Item ~D" data))
(contain
(make-instance

'menu

:items

(list

(make-instance 'menu-component

citems ' (1 2)
:print-£function
)

'menu-component

'menu-item-name

(make-instance

:items

(list 3
(make-instance
'menu
:title "Submenu"
citems '(1 2 3)

:print-function
'submenu-item-name))
:print-function 'menu-item-name)
'menu-item
:data 42))
'menu-item-name))

(make-instance

:print-function

Figure 9.5 A schematic example of a menu hierarchy

///menu item

menu component
\\\menu item

menu

™ menu component —— menu item

menu item submenu

The CAPI menu hierarchy

menu item

//////menu item

\\\\\\menu item

83

9 Creating Menus

Figure 9.6 An example of a menu hierarchy

Container

s [0

Menu ltem 1

Menu ltem 2

Menu ltem 3

iuhmerm ¥ &uhmenu ltem 1

Submenu |tem 2

Menu ltem 42

Submenu ltem 3

9.5 Mnemonics in menus

On Microsoft Windows and GTK+ you can control the mnemonics in menu
titles and menu items using the initargs :mnemonic, :mnemonic-title (and
if necessary :mnemonic-escape).

This example illustrates the various ways you can specify the mnemonics in a
menu:

84

9.6 Alternative menu items

(contain
(make-instance
'menu
:mnemonic-title "M&nemonics"
:items
(list
(make-instance 'menu-item
:data "Menu Item 1"
:mnemonic #\1)
(make-instance 'menu-item
:data "Menu Item 2"
:mnemonic 10)
(make-instance 'menu-item
:mnemonic-title "Menu Item &3")
(make-instance 'menu-item
:mnemonic-title "Menu Item !4"
:mnemonic-escape #\!)
(make-instance 'menu-item
:data "Menu Item 5"
:mnemonic :default)
(make-instance 'menu-item
:data "Menu Item 6"
:mnemonic :none))))

9.6 Alternative menu items

Menus can include "alternative" items, which are invoked if some modifiers
are held while selecting the "main™ item. The modifiers are defined by the
:accelerator initarg of the item, which also allows the item to be invoked by
a keyboard accelerator key if specified. On Cocoa, the title and accelerator of
the alternative item appear when the appropriate modifier(s) are pressed.

A menu item becomes an alternative to an immediately previous item when it
is made with initarg :alternative t. Each alternative item must have the
same parent as its previous item. That is, they are within the same menu and
menu component, as described in “Grouping menu items together” on page
78. More than one alternative item can be supplied for a given main item by
putting them consecutively in the menu. The main item is the item preceding
the first alternative item.

The main item and its alternative items forms a group of items. The
accelerators of all items in the group must consist of the same key, but with
different modifiers. If there is no need for an accelerator key, the main item

85

9 Creating Menus

86

should not have no accelerator and the alternative items should have
accelerators with Nul1 as the key, for example "shift-Null®".

When the menu is displayed, only one item from the group will be shown. On
Windows, GTK+ and Motif the main item is always displayed. Cocoa displays
the item with the least number of modifiers initially, so to get a consistent
cross-platform behavior, the main item should have the least number of modi-
fiers. On Cocoa, pressing modifier keys that match alternative items changes
the title and accelerators displayed for the item.

When the user selects an item with the modifiers pressed, the appropriate
alternative item is selected.

To make amenu-item an alternative item, pass the initarg :alternative t
and a suitable value for the initarg :accelerator.

There is an example illustrating alternative menu items in
examples/capi/elements/accelerators.lisp

Note: Accelerators of alternative items do not work on Motif.

9.7 Disabling menu items

A function can be specified via the : enabled-function initarg, that deter-
mines whether or not the menu, menu item, or menu component is enabled.
By default, a menu object is always enabled.

Consider the following example:

9.8 Menus with images

(defvar *on* nil)

(contain

(make-instance 'menu
:items
(list

(make-instance
'menu-item

:title "Foo"
:enabled-function

#' (lambda (menu) *on*))
(make-instance
'menu-item

:title "Bar"))))

Figure 9.7 A menu with a disabled menu item

Changing the value of *on* between t and nil in the Listener, using setgq,
results in the menu item changing between the enabled and disabled states.

9.7.1 Dialogs and disabled menu items

By default, items in the menu bar menus and sub-menus are disabled while a
dialog is on the screen on top of the active window. You can override this by
passing a suitable value for the menu-item initarg : enabled-function-for-
dialog.

9.8 Menus with images

You can add images to menu items. Supply the : image-function initarg
when creating the menu, as illustrated in

87

9 Creating Menus

88

examples/capi/elements/menu-with-images.lisp

Note: on some platforms support for images in menus is limited to menu
items without text and/or images without transparency. If pane-supports-
menus-with-images returns true, then images are fully supported in menus.

9.9 Popup menus for panes

The CAPI tries to display a popup menu for a pane when the :post-menu
gesture is entered by the user (mouse-right-click or shift+F10 on Microsoft
Windows, GTK+ or Motif, control-click on Cocoa). See below for the special
case of output-pane.

It first tries to get a menu for the pane. There are two mechanisms by which it
can get a menu: which is tried depends on the value of pane-menu.

1. If the pane’s initarg pane-menu is not :default in the call t0 make-
instance, then its value is used. If the value is a function or a fbound
symbol, it is called with four arguments: the pane, data (this is the
selected object if there is a selection), x, y. It should return a menu. If it is
not a function or a fbound symbol, it should be a menu, which is used
directly. The :pane-menu mechanism is useful when the menu needs to
be dependent on the location of the mouse inside the pane, or when each
pane requires a unigue menu. In other cases, the other mechanism is
more useful.

2. If pane-menu is :default (this the default value), CAPI calls the generic
function make-pane-popup-menu With two arguments: the pane and its
interface. The result should be a menu.

If the chosen mechanism does not produce a menu, the CAPI does not do
anything in response to :post-menu.

The system definition of make-pane-popup-menu calls
pane-popup-menu-items With the pane and the interface, and if this returns
non-nil list, it calls make-menu- for-pane to make the menu. You can define
make-pane-popup-menu Methods that specialize on your pane or interface
classes, but in most cases it is more useful to add methods to
pane-popup-menu-items. make-menu-for-pane is used to generate the
menu, and it makes the menu such that by default all setup callbacks are done
on the pane itself, rather than on the interface. make-pane-popup-menu is use-

9.9 Popup menus for panes

ful when the application needs a menu with the same items as the items on the
popup menu, typically to add it to the menu bar.

INn output-pane, you control the input behavior using the input-model. By
default, the system assigns :post-menu and :keyboard-post-menu
(shift+F10) to a callback that raises a menu as described above, but your
code can override this in the input-model.

89

9 Creating Menus

90

10

Defining Interface Classes

So far we have looked at various components for building interfaces. The
CAPI provides all these and more, but instead of continuing with our explora-
tion of the various classes provided, let us see how what we have learned so
far can be combined into a single, non-trivial interface class.

10.1 The define-interface macro

The macro define-interface is used to define subclasses of interface, the
superclass of all CAPI interface classes.

It is an extension to defclass, which provides the functionality of that macro
as well as the specification of the panes, layouts, and menus from which an
interface is composed. It takes the same arguments as defclass, and supports
the additional options :panes, :layouts, :menus, and :menu-bar.

If you specify :panes but no : layouts, then on creating your interface the
CAPI will create a column-layout and arrange the panes in it in the order
they are defined. For real applications you will need some control over how
the panes are laid out, and this is supplied via the : layouts option.

Each component of the interface is named in the code, and a slot of that name
is added to the class created. When an instance of the class is made, each com-
ponent is created automatically and placed in its slot.

91

10 Defining Interface Classes

To access a pane, layout or menu in an instance of your interface class you can
define an accessor, like viewer-pane in the example below, or simply use
with-slots.

When defining a component, you can use other components within the
definition simply by giving its name. You can refer to the interface itself by the
special name capi:interface.

10.2 An example interface

Here is a simple example of interface definition done with define-inter-
face:

(define-interface demo ()
Q)
(:panes
(page-up push-button
:text "Page Up")
(page-down push-button
:text "Page Down")
(open-file push-button
:text "Open File"))
(:layouts
(row-of-buttons row-layout
' (page-up page-down open-file)))
(:default-initargs :title "Demo"))

An instance of this interface can be displayed as follows:
(make-instance 'demo)
(display *)

At the moment the buttons do nothing, but they will eventually do the follow-
ing:

= Open File will bring up a file prompter and allow you to select a file-
name from a directory. Later on, we will add an editor pane to display
the chosen file’s contents.

= Page Down will scroll downwards so that you can view the lower parts
of the file that cannot be seen initially.

92

10.2 An example interface

= Page Up will scroll upwards so that you can return to parts of the file
seen before.

Figure 10.1 A demonstration of a CAPI interface

‘Page Up:|| Page Down || Open File

Later on, we will specify callbacks for these buttons to provide this functional-
ity.
The (:default-initargs :title "Demo") part at the end is necessary to

give the interface a title. If no title is given, the default name is “Untitled CAPI
Interface”.

Note: the define-interface form could be generated by the Interface
Builder tool in the LispWorks IDE. See the LispWorks IDE User Guide for
details. As the interface becomes more complex, you will find it more conve-
nient to edit the definition by hand.

10.2.1 How the example works

Examine the define-interface call to see how this interface was built. The
first part of the call to define interface is shown below:

(define-interface demo ()

0
This part of the macro is identical to defclass — you provide;
= The name of the interface class being defined
= The superclasses of the interface (defaulting to interface)
= The slot descriptions

The interesting part of the define-interface call occurs after these de£-
class-like preliminaries. The remainder of a define-interface call lists all

93

10 Defining Interface Classes

94

elements that define the interface’s appearance. Here is the :panes part of the
definition:

(:panes
(page-up push-button
:text "Page Up")
(page-down push-button
:text "Page Down")
(open-file push-button
:text "Open File"))

Two arguments — the name and the class — are required to produce a pane.
You can supply slot values as you would for any pane.

Here is the :1ayouts part of the definition:

(:layouts
(row-of-buttons row-layout
' (page-up page-down open-file)))

Three arguments — the name, the class, and any child layouts — are required
to produce a layout. Notice how the children of the layout are specified by
using their component names.

The interface information given so far is a series of specifications for panes
and layouts. It could also specify menus and a menu bar. In this case, three
buttons are defined. The layout chosen is a row layout, which displays the
three buttons side by side at the top of the pane.

10.3 Adapting the example

The :panes and :layouts keywords can take a number of panes and layouts,
each specified one after the other. By listing several panes, menus, and so on,
complicated interfaces can be constructed quickly.

To see how simply this is done, let us add an editor pane to our interface. We
need this to display the text contained in the file chosen with the Open File but-
ton.

The editor pane needs a layout. It could be added to the row-1layout already
built, or another layout could be made for it. Then, the two layouts would
have to be put inside a third to contain them (see Chapter 7, Laying Out CAPI
Panes).

10.3 Adapting the example

The first thing to do is add the editor pane to the panes description. The old
panes description read:

(:panes
(page-up push-button
:text "Page Up")
(page-down push-button
:text "Page Down")
(open-file push-button
:text "Open File"))

The new one includes an editor pane named viewer.

(:panes
(page-up push-button
:text "Page Up")
(page-down push-button
:text "Page Down")
(open-file push-button
:text "Open File")
(viewer editor-pane
:title "File:"
:text "No file selected.™"
:visible-min-height ' (:character 8)
:reader viewer-pane))

This specifies the editor pane, with a stipulation that it must be at least 8 char-
acters high. This allows you to see a worthwhile amount of the file being
viewed in the pane.

Note the use of : reader, which defines a reader method for the interface
which returns the editor pane. Similarly, you can also specify writers or acces-
sors. If you omit accessor methods, it is still possible to access panes and other
elements in an interface instance using with-slots.

The interface also needs a layout for the editor pane in the layouts section. The
old layouts description read:
(:layouts
(row-of-buttons row-layout

' (page-up page-down open-file)))

The new one reads:

95

10 Defining Interface Classes

(:layouts
(main-layout column-layout
' (row-of-buttons row-with-editor-pane))
(row-of-buttons row-layout
' (page-up page-down open-file))
(row-with-editor-pane row-layout
' (viewer)))

This creates another row-1layout for the new pane and then encapsulates the
two row layouts into a third column-1layout called main-1layout. This is used
as the default layout, specified by setting the : 1ayout initarg to main-layout
in the :default-initargs section. If there is no default layout specified,
define-interface USes the first one listed.

By putting the layout of buttons and the layout with the editor pane in a col-

umn layout, their relative position has been controlled: the buttons appear in a
row above the editor pane.

The code for the new interface is now as follows:

(define-interface demo ()
()
(:panes
(page-up push-button
:text "Page Up")
(page-down push-button
:text "Page Down")
(open-file push-button
:text "Open File")
(viewer editor-pane
:title "File:"
:text "No file selected."
:visible-min-height ' (:character 8)
:reader viewer-pane))
(:layouts
(main-layout column-layout
' (row-of-buttons row-with-editor-pane))
(row-of-buttons row-layout
' (page-up page-down open-file))
(row-with-editor-pane row-layout
' (viewer)))
(:default-initargs :title "Demo"))

Displaying an instance of the interface by entering the line of code below pro-
duces the window in Figure 10.2:

96

10.3 Adapting the example

(display (make-instance 'demo))

Figure 10.2 A CAPI interface with editor pane

Page Up|| Page Down || Open File

File:
Mo file selected.

10.3.1 Adding menus

To add menus to your interface you must first specify the menus themselves,
and then a menu bar of which they will be a part.

Let us add some menus that duplicate the proposed functionality for the but-
tons. We will add:

= A File menu with a Open option, to do the same thing as Open File

< A Page menu with Page Up and Page Down options, to do the same
things as the buttons with those names

The extra code needed in the define-interface call is this;

97

10 Defining Interface Classes

98

(:menus
(file-menu "File"
(IIOpenll))
(page-menu "Page"
("Page Up" "Page Down")))
(:menu-bar file-menu page-menu)

Menu definitions give a slot name for the menu, followed by the title of the

menu, a list of menu item descriptions, and then, optionally, a list of keyword
arguments for the menu.

In this instance the menu item descriptions are just strings naming each item,
but you may wish to supply initialization arguments for an item — in which
case you would enclose the name and those arguments in a list.

The menu bar definition simply names all the menus that will be on the bar, in
the order that they will appear. By default, of course, the environment may
add menus of its own to an interface — for example the Works menu in the
LispWorks IDE.

The code for the new interface is:

10.3 Adapting the example

(define-interface demo ()
()
(:panes
(page-up push-button
:text "Page Up")
(page-down push-button
:text "Page Down")
(open-file push-button
:text "Open File")
(viewer editor-pane
:title "File:"
:text "No file selected.™"
:visible-min-height ' (:character 8)
:reader viewer-pane))
(:layouts
(main-layout column-layout
' (row-of-buttons row-with-editor-pane))
(row-of-buttons row-layout
' (page-up page-down open-file))
(row-with-editor-pane row-layout
' (viewer)))
(:menus
(file-menu "File"
("Open"))
(page-menu "Page"
("Page Up" "Page Down")))
(:menu-bar file-menu page-menu)
(:default-initargs :title "Demo"))

99

10 Defining Interface Classes

100

Figure 10.3 A CAPI interface with menu items

emao _DK

Works File -

Page Up || Pag [[ZF0SI S0 File

File: Page Down
Mo file selected.

The menus contain the items specified — try it out to be sure.

10.4 Connecting an interface to an application

Having defined an interface in this way, you can connect it up to your pro-
gram using callbacks, as described in earlier chapters. Here we define some
functions to perform the operations we required for the buttons and menus,
and then hook them up to the buttons and menus as callbacks.

The functions to perform the page scrolling operations are given below:

(defun scroll-up (data interface)
(call-editor (viewer-pane interface)
"Scroll Window Up"))

(defun scroll-down (data interface)
(call-editor (viewer-pane interface)
"Scroll Window Down"))

10.4 Connecting an interface to an application

The functions use the generic function call-editor which calls an editor
command (given as a string) on an instance of an editor-pane. The editor
commands Scroll Window Up and Scroll Window Down perform the necessary
operations for Page Up and Page Down respectively.

The function to perform the file-opening operation is given below:

(defun file-choice (data interface)
(let ((file (prompt-for-file "Select A File:")))
(when file
(setf (titled-object-title (viewer-pane interface))
(format nil "File: ~S" file))
(setf (editor-pane-text (viewer-pane interface))
(with-open-file (stream file)
(let ((buffer
(make-array 1024
:element-type
(stream-element-type stream)
:adjustable t
:fill-pointer 0)))
(do ((char (read-char stream nil nil)
(read-char stream nil nil)))
((null char))
(vector-push-extend char buffer))
(subseq buffer 0)))))))

This function prompts for a filename and then displays the file in the editor
pane.

The function first produces a file prompter through which a file may be
selected. Then, the selected file name is shown in the title of the editor pane
(using titled-object-title). Finally, the file name is used to get the con-
tents of the file and display them in the editor pane (using editor-pane-
text).

The correct callback information for the buttons is specified as shown below:

101

10 Defining Interface Classes

(:panes
(page-up push-button
:text "Page Up"
:selection-callback 'scroll-up)
(page-down push-button
:text "Page Down"
:selection-callback 'scroll-down)
(open-file push-button
:text "Open File"
:selection-callback 'file-choice)
(viewer editor-pane
:title "File:"
:text "No file selected."
:visible-min-height ' (:character 8)
:reader viewer-pane))

All the buttons and menu items operate on the editor pane viewer. A reader is
set up to allow access to it.

The correct callback information for the menus is specified as shown below:

(:menus
(file-menu "File"
(("Open"))
:selection-callback 'file-choice)
(page-menu "Page"
(("Page Up"
:selection-callback 'scroll-up)
("Page Down"
:selection-callback 'scroll-down)))

In this case, each item in the menu has a different callback. The complete code
for the interface is listed below — try it out.

102

105

(define-interface demo ()
Q)
(:panes
(page-up push-button
:text "Page Up"
:selection-callback
(page-down push-button
:text "Page Down"
:selection-callback
(open-file push-button
:text "Open File"
:selection-callback
(viewer editor-pane
:title "File:"
:text "No file selected."
:visible-min-height ' (:character 8)
:reader viewer-pane))

'scroll-up)

'scroll-down)

'file-choice)

(:layouts
(main-layout column-layout

Controlling the interface title

' (row-of-buttons row-with-editor-pane))

(row-of-buttons row-layout
' (page-up page-down open-file))
(row-with-editor-pane row-layout
' (viewer)))
(:menus
(file-menu "File"
(("Open"))
:selection-callback
(page-menu "Page"
(("Page Up"
:selection-callback
("Page Down"
:selection-callback
(:menu-bar file-menu page-menu)
(:default-initargs :title "Demo"))

'file-choice)

'scroll-up)

10.5 Controlling the interface title

'scroll-down))))

You can add dynamic control of window titles using the functions illustrated

in the section.

Firstly we add a counter to the title of new demo windows:

103

10 Defining Interface Classes

104

(defvar *demo-title-counter* 0)

(defmethod capi:interface-extend-title ((self demo) title)
(let ((counter
(or (capi:capi-object-property self 'my-title-counter)
(setf
(capi:capi-object-property self 'my-title-counter)
(incf *demo-title-counter*)))))
(format nil "~A - ~D"
(call-next-method)
counter)))

(capi:display (make-instance 'demo))

Then we specify a common prefix for all interface window titles. Note that
this will affect all interfaces in the current session:

(capi:set-default-interface-prefix-suffix
:prefix "My " :suffix nil)

(capi:display (make-instance 'demo))

10.6 Querying and modifying interface geometry

The functions screen-monitor-geometries, screen-internal -geome-
tries and pane-screen-internal-geometry Support the notions of moni-
tor geometry (which includes "system" areas such as the Mac OS X menu bar
and the Microsoft Windows task bar) and internal geometry (which excludes
the system areas).

Note that code which relies on the position of a window should not assume
that a window is located where it has just been programmatically displayed,
but should query the current position by top-level-interface-geometry.
This is because the geometry includes system areas where CAPIl windows
cannot be displayed.

10.6.1 Support for multiple monitors

CAPI supports multiple monitors by providing APIs (such as screen-inter-
nal-geometries) to query "screen rectangles” representing the area of each
monitor. The function virtual-screen-geometry returns a rectangle just
enclosing all the screen rectangles.

10.6 Querying and modifying interface geometry

There is a "primary monitor" which displays any system areas. The origin of
the coordinate system (as returned by top-level-interface-geometry and
screen-internal-geometry) iS the topmost/leftmost visible pixel of the pri-

mary monitor. Thus (0,0) may be in a system area such as the Mac OS X menu
bar.

Note also that CAPI does not currently support multiple desktops, which are
called workspaces in Linux distros, and called Spaces on Mac OS X.

105

10 Defining Interface Classes

106

11

Prompting for Input

A dialog is a window that receives some input from the user and returns it to
the application. For instance, if the application wants to know where to save a
file, it could prompt the user with a file dialog. Dialogs can also be cancelled,
meaning that the application should cancel the current operation.

In order to let you know whether or not the dialog was cancelled, CAPI dialog
functions always return two values. The first value is the return value itself,
and the second value is t if the dialog returned normally and nil if the dialog
was cancelled.

On Cocoa you can control whether a CAPI dialog is application-modal or win-
dow-modal. In the latter case the user can work with the application’s other
windows while the dialog is on screen.

The CAPI provides both a large set of predefined dialogs and the means to
create your own. This chapter takes you through some example uses of the
predefined dialogs, and then shows you how to create custom built dialogs.

The last section briefly describes a way to get input for completions via a spe-
cial non-modal window.

107

11 Prompting for Input

11.1 Some simple dialogs

The simplest form of dialog is a message dialog. The function display-
message behaves very much like format.

(display-message "Hello world")

Figure 11.1 A message dialog

Information

@ Hello world

(display-message
"This function is ~S"
'display-message)

Figure 11.2 A second message dialog

Information

108

11.2 Prompting for values

Another simple dialog asks the user a question and returns t or nil depend-
ing on whether the user has chosen yes or no. This function is confirm-yes-

or-no.

(confirm-yes-or-no
"Do you own a pet?")

Figure 11.3 A message dialog prompting for confirmation

Question

@ Do you own a pet?

K No o Yes

.......................................

For more control over such a dialiog, use the function prompt-£for-confir-
mation. See the LispWorks CAPI Reference Manual for details.

11.2 Prompting for values

The CAPI provides a number of different dialogs for accepting values from
the user, ranging from accepting strings to accepting whole Lisp forms to be
evaluated.

11.2.1 Prompting for strings

The simplest of the CAPI prompting dialogs is prompt - for-string which
returns the string you enter into the dialog.

109

11 Prompting for Input

110

(prompt-for-string
"Enter a string:")

Figure 11.4 A dialog prompting for a string

“w Editor 1 - dial [jm] b4

Enter a string:

#® Cancel o OK

An initial value can be placed in the dialog by specifying the keyword argu-
ment :initial-value.

11.2.2 Prompting for numbers

The CAPI also provides a number of more specific dialogs that allow you to
enter other types of data. For example, to enter an integer, use the function
prompt-for-integer. Only integers are accepted as valid input for this func-
tion.

(prompt-for-integer
"Enter an integer:")

There are a number of extra options which allow you to specify more strictly
which integers are acceptable. Firstly, there are two arguments :min and :max
which specify the minimum and maximum acceptable integers.

(prompt-for-integer
"Enter an integer in the inclusive range [10,20]:"
:min 10 :max 20)

If this does not provide enough flexibility you can specify a function that
validates the result with the keyword argument :ok-check. This function is
passed the current value and must return non-nil if it is a valid result.

11.2 Prompting for values

(prompt-for-integer
"Enter an odd integer:"
:ok-check 'oddp)

Try also the function prompt - for -number.

11.2.3 Prompting for an item in a list

If you would like the user to select an item from a list of items, the function
prompt-with-1list should handle the majority of cases. The simplest form
just passes a list to the function and expects a single item to be returned.

111

11 Prompting for Input

(prompt-with-1list
'(:red :yellow :blue)
"Select a color:")

Figure 11.5 A dialog prompting for a selection from a list

Y Editor 1 - di: 1 =] 3

Select a color:

YELLOW

BELUE

#® Cancel o OK

You can also specify the interaction style that you would like for your dialog,
which can be any of the interactions accepted by a choice. The specification of
the interaction style to this choice is made using the keyword argument

:interaction:

112

11.2 Prompting for values

(prompt-with-1list

'(:red :yellow :blue)

"Select a color:"

:interaction :multiple-selection)

By default, the dialog is created using a list-panel to display the items, but the

keyword argument : choice-class can be specified with any choice pane.
Thus, for instance, you can present a list of buttons.

(prompt-with-1list
'(:red :yellow :blue)
"Select a color:"
:interaction :multiple-selection
:choice-class 'button-panel)

Figure 11.6 Selection from a button panel

Editor 1 - dialogs.lisp

Select a color:

None All #® Cancel o QK

Finally, as with any of the prompting functions, you can specify additional
arguments to the pane that has been created in the dialog. Thus to create a col-
umn of buttons instead of the default row, use:

113

11 Prompting for Input

(prompt-with-1list

'(:red :yellow :blue)

"Select a color:"

:interaction :multiple-selection
:choice-class 'button-panel

:pane-args

' (:layout-class column-layout))

Figure 11.7 Selection from a column of buttons

Editor 1 - dialogs.lisp

Select a color:

RED

] YELLOW
1 BLUE

Mone

All

#® Cancel

There is a more complex example in

examples/capi/choice/prompt-with-buttons.lisp

11.2.4 Prompting for files

To prompt for a file, use the function prompt-for-£file:

(prompt-for-£file
"Enter a file:")

You can also specify a starting pathname:

114

11.2 Prompting for values

(prompt-for-£file
"Enter a filename:"
:pathname "/tmp/")

Figure 11.8 Selection of afile

Enter a filename:

m Home oy tmp
& Desktop : _ =
- Eil Name: ~ | Modified |—
ilesystem 5
= Floppy Drive Da 29/03/05 |L_|
~ CD-RW/DVD<R Drive D arje7007 22/08/07
- Dbadamd 23/07/08
; J build-area 21/04/06
2 build-install 21/04/06
D cdfiles 14/03/07
Dcl-http 21/05/07 [
o Add = Hemove Lisp Source Files (*lisp;*.Isp) | *
% Cancel () Open

Try also the function prompt-for-directory.

11.2.5 Prompting for fonts

To obtain a gp: font object from the user call prompt- for- font.

11.2.6 Prompting for colors

To obtain a color specification from the user call prompt-for-color.

115

11 Prompting for Input

116

11.2.7 Prompting for Lisp objects

The CAPI provides a number of dialogs specifically designed for creating Lisp
aware applications. The simplest is the function prompt - for - form which
accepts an arbitrary Lisp form and optionally evaluates it.

(prompt-for-£form
"Enter a form to evaluate:"
:evaluate t)

(prompt-for-£form
"Enter a form (not evaluated):"
:evaluate nil)

Another useful function is prompt - for-symbol Which prompts the user for
an existing symbol. The simplest usage accepts any symbol, as follows:

(prompt-for-symbol
"Enter a symbol:")

If you have a list of symbols from which to choose, then you can pass prompt-
for-symbol this list with the keyword argument : symbols.

Finally, using :ok-check you can accept only certain symbols. For example,
to only accept a symbol which names a class, use:

(prompt-for-symbol

"Enter a class-name symbol:"

:ok-check #'(lambda (symbol)
(find-class symbol nil)))

Cocoa programmers will notice that the dialog sheet displayed by this form,
like all those in this chapter so far, prevents input to other LispWorks win-
dows while it is displayed. For information about creating dialog sheets
which are not application-modal, see “Window-modal Cocoa dialogs” on
page 116.

11.3 Window-modal Cocoa dialogs

By default, CAPI dialogs on Cocoa use sheets which are application-modal.
This means that the application waits until the sheet is dismissed and does not
allow the user to work with its other windows until then.

11.3 Window-modal Cocoa dialogs

This section describes how to create CAPI dialogs which are window-modal
on Cocoa. This is done with portable code, so Windows, GTK+ and Motif pro-
grammers may wish to code their CAPI dialogs as described in this section,
which would ease a future port to the Cocoa GUI.

11.3.1 The :continuation argument

All CAPI dialog functions take a keyword argument continuation. This is a
function which is called with the results of the dialog.

You do not need to construct the continuation argument yourself, but rather
call the dialog function inside with-dialog-results.

11.3.2 A dialog which is window-modal on Cocoa

To create a dialog which is window-modal on Cocoa, call the dialog function
inside the macro with-dialog-results as in this example:

(with-dialog-results (symbol okp)
(prompt-£for-symbol
"Enter a class-name symbol:"
:ok-check #'(lambda (symbol)
(find-class symbol nil)))
(when okp
(display-message "symbol is ~S" symbol)))

On Microsoft Windows, GTK+ and Motif this displays the dialog, calls dis-
play-message When the user clicks OK, and then returns. The effect is no dif-
ferent to what you saw in “Prompting for Lisp objects” on page 116.

On Cocoa, this creates a sheet and returns. display-message is called when
the user clicks OK. The sheet is window-modal, unlike the sheet you saw in
“Prompting for Lisp objects” on page 116.

For more details, see the page for with-dialog-results in the LispWorks
CAPI Reference Manual.

117

11 Prompting for Input

118

11.4 Dialog Owners

When a dialog appears, it should be "owned" by some window. The main
effect of this "ownership" is that the dialog is always in front of the owner win-
dow. When either the dialog or the owner is raised, the other follows.

All CAPI functions which display a dialog allow you to specify the owner.

11.4.1 The default owner

When a dialog is displayed and the owner is not supplied or is given as nil,
the CAPI tries to identify the appropriate owner. In particular, in the case
where a dialog pops up in a process in which a CAPI interface is displayed, by
default the CAPI uses this interface as the owner window. This case covers
most situations.

11.4.2 Specifying the owner

If the default is not appropriate, then the programmer needs to supply the
owner. This owner argument can be any CAPI pane that is currently displayed,
and the top level interface of the pane is used as the actual owner. A CAPI
pane owner must be running in the current process (see the process argument
to display). Creating cross-process ownership can lead to deadlocks.

The owner can also be a screen object, which tells the system on which screen
to put the dialog, but none of the windows will be the dialog's owner.

The owner can be supplied by the keyword argument : owner in functions
such as display-dialog and print-dialog. Other functions such as
prompt-for-string and prompt-for-£file can be supplied an owner in the
:popup-args list as a pair : owner owner.

11.5 Creating your own dialogs

The CAPI provides a number of built-in dialogs which should cover the

majority of most peoples needs. However, there is always the occasional need
to create custom built dialogs, and the CAPI makes this very simple, using the
function display-dialog Which displays any CAPI interface as a dialog, and

11.5 Creating your own dialogs

the functions exit-dialog and abort-dialog as the means to return from
such a dialog.

11.5.1 Using display-dialog

Here is a very simple example that displays a Cancel button in a dialog, and
when that button is pressed the dialog is cancelled. Note that display-dia-
log must receive an interface, so an interface is created for the button by using
the function make-container.

(display-dialog
(make-container
(make-instance
'push-button
:text "Press this button to cancel"
:callback 'abort-dialog)
:title "My Dialog"))

Figure 11.9 A cancel button

My Dialog !

Press this button to cancel

The function abort-dialog cancels the dialog returning the values nil and
nil, which represent a return result of nil and the fact that the dialog was
cancelled, respectively. Note also that abort-dialog accepts any values and
just ignores them.

The next problem is to create a dialog that can return a result. Use the function
exit-dialog Which returns the value passed to it from the dialog. The exam-
ple below shows a simple string prompter.

(display-dialog
(make-container
(make-instance
'text-input-pane
:callback-type :data
:callback 'exit-dialog)
:title "Enter a string:"))

119

11 Prompting for Input

Both of these examples are very simple, so here is a slightly more complicated
one which creates a column containing both a text-input-pane and a Cancel
button.

(display-dialog
(make-container
(list
(make-instance
'text-input-pane
:callback-type :data
:callback 'exit-dialog)
(make-instance
'push-button
:text "Cancel"
:callback 'abort-dialog))
:title "Enter a string:"))

Note that this looks very similar to the dialog created by prompt-for-string
except for the fact that it does not provide the standard OK button.

It would be simple to add an OK button in the code above, but since almost
every dialog needs these standard buttons, the CAPI provides a higher level
function called popup-confirmer that adds the standard buttons for you.
Also it arranges for the OK and Cancel buttons to respond to the Return and
Escape keys respectively. popup-confirmer is discussed in the next section.

11.5.2 Using popup-confirmer

The function popup-confirmer is a higher level function provided to add the
standard buttons to user dialogs, and it is nearly always used in preference to
display-dialog. In order to create a dialog using popup-confirmer, all you
need to do is to supply a pane to be placed inside the dialog along with the
buttons and the title. The function also expects a title, like all of the prompter
functions described earlier.

(popup-confirmer
(make-instance
'text-input-pane
:callback-type :data
:callback 'exit-dialog)
"Enter a string")

120

11.5 Creating your own dialogs

A common thing to want to do with a dialog is to get the return value from
some state in the pane specified. For instance, in order to create a dialog that
prompts for an integer the string entered into the text-input-pane would need
to be converted into an integer. It is possible to do this once the dialog has
returned, but popup-confirmer has a more convenient mechanism. The func-
tion provides a keyword argument, :value-function, Which gets passed the
pane, and this function should return the value to return from the dialog. It
can also indicate that the dialog cannot return by returning a second value
which is non-nil.

In order to do this conversion, popup-confirmer provides an alternative exit
function to the usual exit-dialog. This is called exit-confirmer, and it
does all of the necessary work on exiting.

You now have enough information to write a primitive version of prompt -
for-integer.

(defun text-input-pane-integer (pane)
(let* ((text
(text-input-pane-text pane))
(integer
(parse-integer
text
:junk-allowed t)))
(or (and (integerp integer) integer)
(values nil t))))

121

11 Prompting for Input

(popup-confirmer
(make-instance
'text-input-pane
:callback 'exit-confirmer)
"Enter an integer:"
:value-function 'text-input-pane-integer)

Figure 11.10 A example using popup-confirmer

- Editor 1 - diz =5 [m] p.4
Enter an integer:

® Cancel o OK

Note that the dialog’s OK button never becomes activated, yet pressing
Return once you have entered a valid integer will return the correct value.
This is because the OK button is not being dynamically updated on each key-
stroke in the text-input-pane so that it activates when the text-input-pane con-
tains a valid integer. The activation of the OK button is recalculated by the
function redisplay-interface, and the CAPI provides a standard callback,
:redisplay-interface, Which calls this as appropriate.

Thus, to have an OK button that becomes activated and deactivated dynami-
cally, you need to specify the change-callback for the text-input-pane to be

:redisplay-interface.

(popup-confirmer
(make-instance
'text-input-pane
:change-callback :redisplay-interface
:callback 'exit-confirmer)
"Enter an integer:"
:value-function 'text-input-pane-integer)

Note that the OK button now changes dynamically so that it is only ever active
when the text in the text-input-pane is a valid integer.

122

11.6 In-place completion

Note that the Escape key activates the Cancel button - this too was set up by
popup-confirmer.

The next thing that you might want to do with your integer prompter is to
make it accept only certain values. For instance, you may only want to accept
negative numbers. This can be specified to popup-confirmer by providing a
validation function with the keyword argument : ok-check. This function
receives the potential return value (the value returned by the value function)
and it must return non-nil if that value is valid. Thus to accept only negative
numbers we could pass minusp as the : ok-check.

(popup-confirmer
(make-instance
'text-input-pane
:change-callback :redisplay-interface
:callback 'exit-confirmer)
"Enter an integer:"
:value-function 'text-input-pane-integer
:ok-check 'minusp)

11.5.3 Modal and non-modal dialogs

By default popup-confirmer and display-dialog create modal dialog win-
dows which prevent input to other application windows until they are dis-
missed by the user clicking on a button or another appropriate gesture. You
can change this behavior by passing the modal keyword argument.

11.6 In-place completion

‘In-place completion® allows the user to select from a list of possible
completions displayed in a special non-modal window which appears in front
of an input pane (such as an editor-pane Or a text-input-pane) but does
not grab the input focus. Certain gestures including up, Down and Return
operate on the special window and allow selection of an item. The user can
also continue typing her input in which case the list of possible completions is
updated to reflect the text in the input pane.

11.6.1 In-place completion user interface

This section describes the user interface of in-place completion.

123

11 Prompting for Input

In-place completion is available in the LispWorks IDE, in the Editor tool and
also in tools that ask for a named object such as the Class Browser and the
Generic Function Browser. Set the Preferences... Environment > General > Use in-
place completion option to use in-place completion in the LispWorks IDE, and
see LispWorks IDE User Guide for further details.

In-place completion is also available to you to use in your CAPI applications.
You may wish to adapt the remainder of this section for your end-user docu-

mentation. See “Programmatic control of in-place completion” on page 127 for
information on how to implement it.

11.6.1.1 Invoking in-place completion in text-input-pane and editor-pane

In a text-input-pane that supports in-place completion, any of the gestures
Up, Down, PageUp, and PageDown invokes the in-place completion unless it is
already displayed.

In an editor-pane, completion commands invoke in-place completion by
default, though you can make them use dialogs instead by setting edi -
tor:*use-in-place-completion* tOnil.

There are several Editor commands that invoke in-place completion uncondi-
tionally:
Abbreviated in-place Complete Symbol
Completes the symbol before the point, taking the
string as abbreviation.
In-Place Complete Symbol
Completes the symbol before the point

In-Place Complete Input

Echo Area: Complete the input in the echo area. For file
input, does file completion.

In-Place Expand File Name
Expand the file name at the current point.
In-Place Expand File Name with space

Expand the file name at the current point, allowing
spaces.

124

11.6 In-place completion

See the LispWorks Editor User Guide for information on binding these com-
mands to keyboard gestures. See call-editor in the LispWorks CAPI Refer-
ence Manual for information on calling them from CAPI.

11.6.1.2 Keyboard input handling while the in-place window is displayed

Keyboard input while the in-place window is displayed goes to the input
pane, but some of the input gestures are redirected to the in-place window. By
default, the following gestures are redirected:

Up, Down, PageUp, PageDown

Change the selection in the list of completions in the
obvious way.

Return Perform the completion using the current selected item
in the list. In non-file-completion, or in file-completion
when the item is not a directory, the in-place window
disappears. In file-completion when the selected item is
a directory, the in-place window changes to display the
list of files in the completed directory.

Escape Causes the in-place window to disappear, without
doing anything else. Note that if the text in the input
pane was edited while the in-place window was dis-
played, these edits are not undone.

Control+Return
Toggles the filter.
Control+Shift+Return

Toggles redirection of characters to the filter. A filter is
text-input-pane Which filters the list of completions
based on its contents. While the filter is on, the list of
completions shows only the completions that match the
filter.

125

11 Prompting for Input

126

While the filter is visible and enabled, all character
input plus Backspace are redirected to the filter. The fil-
ter can be disabled by control+shift+Return, Which
means it still filters, but characters go to the the input
pane.

The functionality of the in-place completion filter is the
same as the standard filter for 1ist-panel. For a full
description of the pattern matching see "Regular
expression searching" in the LispWorks Editor User
Guide.

Control+Shift+R, Control+Shift+E, Control+Shift+C

Change the setting in the filter.
Other keyboard input goes to the input pane.

While the filter is off (the default), or when the filter is on and disabled, plain
characters go to the input pane, and hence change the text init.

When the filter is on and is enabled, plain characters go to the filter.

11.6.1.3 Performing a Completion

In a text-input-pane, performing a completion means replacing part of the
text in the pane by the selected completion. In a file-completion, only the last
part of the text (from the last directory separator) is replaced.

If a text-input-pane Was made with complete-do-action true, once the com-
pletion was performed, if it is not file-completion and the completion is a
directory, the callback of the pane is invoked.

In an editor-pane, While the in-place window is displayed, the editor high-
lights the part of the text that will be replaced. In non-file-completion it is the
beginning of the "symbol", as seen by the editor, and the end of the "symbol".
In a file-completion it is the part of the filename after the last directory separa-
tor.

Performing the completion in an editor-pane means replacing the high-
lighted text by the selected completion. The replacement is done as a single
separate operation (for example vndo will undo the replacement separately
from any previous changes).

11.6 In-place completion

11.6.1.4 Interaction while the in-place window is displayed

Any operation that affects the text between the start of the relevant text (this is
the start in a text-input-pane, and the highlighted area in an editor-pane)
and the current cursor causes the in-place window to recompute the possible
completions and display the new list. These operations include not only actual
changes to the text, but also cursor movement.

In an editor-pane, if the insertion point moves out of the highlighted area
then the in-place window goes away.

If the input pane loses the focus, the in-place window goes away, except on
Motif.

11.6.2 Programmatic control of in-place completion

You can add in-place completion to your application as described in this sec-
tion.

11.6.2.1 Text input panes

A text-input-pane Will do in-place completion if you pass either of these
initargs:
:file-completion With value t or a pathname designator, or

:in-place-completion-function With value a suitable function designator

You can add a filter to the in-place window by passing the initarg : in-place-
filter. Additionally you can control the functionality for file completion by
passing :directories-only and :ignore-file-suffices. The keyword
arguments :complete-do-action and :gesture-callbacks also interact
with in-place completion.

The in-place completion can be invoked explicitly for a text-input-pane by
calling text-input-pane-in-place-complete.

See the LispWorks CAPI Reference Manual for details.

127

11 Prompting for Input

11.6.2.2 Editor panes

An editor-pane does in-place completion when your code calls the function
editor:complete-in-place.

11.6.2.3 Other CAPI panes

You can also implement in-place completion on arbitrary CAPI panes by call-
iNg prompt-with-list-non-£focus.

128

12

Creating Your Own Panes

The CAPI provides a wide range of built-in panes, but it is still fairly common
to need to create panes of your own. In order to do this, you need to specify
both the input behavior of the pane (how it reacts to keyboard and mouse
events) and its output behavior (how it displays itself). The class output-
pane is provided for this purpose.

An output-pane is a fully functional graphics port. This allows it to use all of
the graphics ports functionality to create graphics, and it also has a powerful
input model which allows it to receive mouse and keyboard input.

12.1 Displaying graphics

The following is a simple example demonstrating how to create an output-
pane and then how to draw a circle on it.

129

12 Creating Your Own Panes

(setqg output-pane
(contain
(make-instance 'output-pane)
:best-width 300
:best-height 300))

Figure 12.1 An empty output pane

Container

Works

Now you can draw a circle in the empty output pane by using the graphics
ports function draw-circle. Note that the drawing function must be called in
the process of the interface containing the output pane:

130

12.1 Displaying graphics

(capi:apply-in-pane-process
output-pane 'gp:draw-circle output-pane 100 100 50)

Figure 12.2 An output pane containing a circle

Container

Works

Notice that this circle is not permanently drawn on the output-pane, and
when the window is next redisplayed it vanishes. To prove this to yourself,
force the window to be redisplayed (for example by iconifying or resizing it).
At this point, you can draw the circle again yourself but it will not happen
automat