
LispWorks® for the Windows® Operating System

KnowledgeWorks® and
Prolog User Guide
Version 6.0

Copyright and Trademarks
KnowledgeWorks and Prolog User Guide (Windows version)

Version 6.0

November 2009

Copyright © 2009 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be construed as a
commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or inaccuracies that may appear in this
publication. The software described in this book is furnished under license and may only be used or copied in accordance with the terms of
that license.

LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the registered trade-
marks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986, 1987, 1988 Xerox
Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, pro-
vided that this copyright and permission notice appear in all copies and supporting documentation, and that the name of M.I.T. not be used
in advertising or publicity pertaining to distribution of the software without specific, written prior permission. M.I.T. makes no representa-
tion about the suitability of this software for any purpose. It is provided “as is” without express or implied warranty. M.I.T. disclaims all war-
ranties with regard to this software, including all implied warranties of merchantability and fitness. In no event shall M.I.T. be liable for any
special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of con-
tract, negligence or other tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of ICU software obtained from http://source.icu-project.org and which bears the following copyright and permis-
sion notice:
ICU License - ICU 1.8.1 and later
COPYRIGHT AND PERMISSION NOTICE
Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Soft-
ware"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright
notice(s) and this permission notice appear in all copies of the Software and that both the above copyright notice(s) and this permission
notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIM-
ITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF
THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or
other dealings in this Software without prior written authorization of the copyright holder. All trademarks and registered trademarks men-
tioned herein are the property of their respective owners.

US Government Restricted Rights
The LispWorks Software is a commercial computer software program developed at private expense and is provided with restricted rights.
The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth in the accompanying End User
License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR 12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14
Alt III, as applicable. Rights reserved under the copyright laws of the United States.

Address

LispWorks Ltd
St. John’s Innovation Centre
Cowley Road
Cambridge
CB4 0WS
England

Telephone

From North America: 877 759 8839
(toll-free)

From elsewhere: +44 1223 421860

Fax
From North America: 617 812 8283
From elsewhere: +44 870 2206189

www.lispworks.com

http://www.lispworks.com

Contents
1 Introduction 1

KnowledgeWorks 1
Background 1
Technical Overview 2
Notation Conventions 4

2 Tutorial 7

Getting Started 7
Loading the Tutorial 8
Running the Tutorial 9
Browsers 10
KnowledgeWorks Listener 17
Debugging 18
Lisp Integration 21
Systems 22
Exiting KnowledgeWorks 23

3 Rules 25

Forward chaining 25
Backward Chaining 33
Common Lisp Interface 36

4 Objects 37

CLOS objects 37

iii

iv
 Relational Database Objects 39
 KnowledgeWorks Structures 48

5 The Programming Environment 49

The KnowledgeWorks Listener 50
The Editor 51
Clearing KnowledgeWorks 51
The System Browser 52
The Class Browser 53
The Objects Browser 56
The Rule Browser 58
Debugging with the Environment 59
Monitor Windows 60

6 Advanced Topics 65

Control Flow 65
Optimization 74
Use of Meta-Classes 78
Logical Dependencies and Truth Maintenance 79
Inferencing States 80

7 Reference Guide 83

Appendix A Common Prolog 127

A.1 Introduction 127
A.2 Syntax 128
A.3 Defining Relations 129
A.4 Using The Logic Interpreter 130
A.5 Accessing Lisp From Common Prolog 132
A.6 Calling Prolog From Lisp 134
A.7 Debugging 139
A.8 Common Prolog Macros 145
A.9 Defining Definite Clause Grammars 145
A.10 Edinburgh Syntax 148
A.11 Graphic Development Environment 149
A.12 Built-in Predicates 150
A.13 Adding Built-in Predicates 153

A.14 Edinburgh Compatibility Predicates 154

Appendix B Examples 157

B.1 The Tutorial 157
B.2 Explanation Facility 160
B.3 Uncertain Reasoning Facility 165
B.4 Other Examples 170

Appendix C Implementation Notes 173

C.1 Forward Chainer 173
C.2 Backward Chainer 174

Appendix D For More Information 177

D.1 General References 177
D.2 The LispWorks manuals 178

Appendix E Converting Other Systems 181

E.1 OPS5 181
E.2 Prolog 184

Glossary 185

 Index 189

 v

vi

1

1 Introduction
1.1 KnowledgeWorks
KnowledgeWorks® is a LispWorks® toolkit for building knowledge based
systems. It is a multi-paradigm programming environment which allows
developers to express problems in terms of objects, rules, and procedures. The
following sections provide an historical perspective and an overview of the
system.

1.2 Background
Broadly speaking, there have been two generations of commercial knowledge
based system (KBS) shells. The first generation of KBS shells were built on top
of symbolic programming languages such as Lisp. These shells exhibited a
high degree of flexibility and functionality as a result, but suffered because of
their lack of standardization, poor performance, and inability to communicate
with other applications. The second generation of KBS shells were generally
written in C to attack the latter two weaknesses of Lisp-based shells. However
these C-based shells are inevitably less flexible, and exacerbate the standard-
ization issue. Although written in a C (a standard language), each C-based
shell must re-invent a range of features already provided as standard in every
Common Lisp implementation, including the object-system and even elemen-
tary structures like lists.
1

1 Introduction

2

KnowledgeWorks addresses all of these issues by providing a high perfor-
mance rule-based system for LispWorks. The latter is a full and efficient
Common Lisp implementation including the Common Lisp Object System
(CLOS), and foreign function interfaces to languages such as C, C++, and
FORTRAN. Hence KnowledgeWorks constitutes a tightly integrated multi-
paradigm programming environment, allowing all the most powerful features
of rule-based, object-oriented and procedural approaches to be combined
without abandoning accepted standards.

1.3 Technical Overview
KnowledgeWorks includes:

• High performance inferencing mechanisms:

 forward chaining (OPS compatible)

 backward chaining (Prolog compatible)

• A powerful standard object system (CLOS)

• A flexible standard procedural language (Common Lisp)

• Metaprotocols for extending the object and rule systems (MOP & MRP
— see below)

• Support for multiple independent inferencing operations using infer-
encing state objects.

• A full set of graphical tools for developing and debugging knowledge
bases

• Built using the CAPI and integrated with the LispWorks IDE.

• Integration within larger applications, possibly following a completely
different paradigm

1.3 Technical Overview
KnowledgeWorks rules perform pattern-matching directly over the object base
(KnowledgeWorks CLOS objects and KnowledgeWorks structures). Forward
chaining rules use this pattern-matching to perform actions, while backward
chaining rules use it to deduce goals. The actions of forward chaining rules
can call backward chaining rules, and the backward chaining inference engine
may also invoke the forward chainer. Forward chaining rules may be grouped
to increase the modularity of the rulebase and to introduce a mechanism for
procedural control by explicit invocation of rule groups.

Rule Base

Backward Chaining
Forward Chaining

LispWorks

KnowledgeWorks

Object Base

Structures

CLOS instances

M
R

P
M

O
P

Database Interface
(Dynamic SQL)

Foreign Function

C FortranC++

Interface
 3

1 Introduction

4

KnowledgeWorks CLOS objects are conventional CLOS objects with the
simple addition of a mixin class providing KnowledgeWorks functionality,
and they can be used outside the rulebase as ordinary CLOS objects. Any
existing CLOS code may simply be reused and augmented with rules by
adding the mixin to chosen classes.

LispWorks CLOS includes an implementation of the Meta Object Protocol
(MOP) which allows the object system to be extended and customized in a
standard way. In the same spirit of self-reflection, KnowledgeWorks rule-
based system can be extended and customized using a Meta Rule Protocol
(MRP) which allows meta-interpreters to be defined for rules. Together these
protocols mean that KnowledgeWorks defines a region rather than a point in
space of KBS shells, and ensure that developers are not constrained by the
default behavior of the system.

KnowledgeWorks has a comprehensive programming environment that
enables rapid development and debugging of rulebases. Tools are provided
that enable the interactive examination of classes and objects. Graphical
debugging windows allow forward and backward chaining rules to be single-
stepped and monitored. The full LispWorks programming environment and
tools are also available, for example, the editor which allows rules to be
defined and redefined incrementally and dynamically (see the LispWorks
Editor User Guide).

1.3.1 Appearance of the graphical tools

The screenshots in this manual show toolbars that may have been customized
(using the context menu) so you might see some differences from your setup.

1.4 Notation Conventions
Syntax will be presented in BNF. Any other non-standard notation will be
explained as used.

::= introduces a definition

<..> token, or non-terminal symbol

[..] delimits optional items

* 0 or more repetitions of the previous token

1.4 Notation Conventions
+ 1 or more repetitions of the previous token

| separates alternatives
 5

1 Introduction

6

2

2 Tutorial
The tutorial is a simple example based on an animal guessing game. In this
game the user thinks of an animal and the program asks yes/no questions.
Eventually the program mentions an explicit animal and asks whether it is
correct. If so, the game ends. If it is not correct it will ask what the animal was
and ask for a question to distinguish it from its last guess. This is a trivial
example of a learning program. The tutorial assumes a certain familiarity with
Lisp, LispWorks and the Common Lisp Object System (CLOS).

All examples in this chapter assume that you are typing in expressions in a
package that uses the KW package, for instance, KW-USER.

2.1 Getting Started
To run the tutorial, put this form in your LispWorks initialization file (usually
called .lispworks):

(require "kw")
7

2 Tutorial

8

Start LispWorks. The KnowledgeWorks Podium window will appear. Note the
position of the KnowledgeWorks menu, which you will use to access the tools
described in this manual.

Figure 2.1 KnowledgeWorks Podium

On Microsoft Windows you may see a different Podium, depending on which
of the Window Options has been selected. See the section "Windows Multiple
Document Interface" in the LispWorks IDE User Guide for details. This manual,
the KnowledgeWorks and Prolog User Guide, will usually show single windows
in figures in order to show more detail for the specific KnowledgeWorks tool
under discussion.

2.2 Loading the Tutorial
Figure 2.2 KnowledgeWorks Listener

2.3 Running the Tutorial
First bring up a KnowledgeWorks Listener by choosing KnowledgeWorks > Lis-
tener from the KnowledgeWorks Podium. The KnowledgeWorks Listener
accepts Lisp input as well as KnowledgeWorks input. Enter

(in-package "KW-USER")

into the KnowledgeWorks Listener, and then change the current directory to
that of the animals demo by entering

(cd (system:lispworks-dir "examples/kw/animal/"))

If this fails, check the value of the Lisp variable *lispworks-directory*.

Load the tutorial by typing

(load "defsystem")

to load the tutorial system definition, and

(compile-system "ANIMAL" :load t)

to compile and load the rules and object base (CLOS objects). In interpreting
these two commands, the KnowledgeWorks Listener has behaved just like a
Lisp Listener. In general, whenever input has no specific KnowledgeWorks
interpretation, the KnowledgeWorks Listener just accepts it as Lisp.

2.3 Running the Tutorial
First run the tutorial example a few times. Think of an animal and type
(infer) into the listener. infer is a function which starts the forward chaining
engine. Popup question windows will appear, which require clicking on either
Yes or No. If your animal is guessed correctly, execution will terminate and the
listener prompt will reappear. If the final guess is incorrect then:

1. Another popup will ask what the animal was. Type in the name of an
animal and press Return (or click on OK). If the animal is already known
to the system this constitutes an error. A confirmer popup will inform
you of this; click on Confirm and execution will terminate.

2. You will be asked for a question to distinguish your animal from the sys-
tem’s last guess. Type in a question (again without quotes or double-
quotes) and press Return. Execution will terminate.
 9

2 Tutorial

10
3. The tutorial may be restarted by typing (infer) again in the listener.
This time the system will know about your new animal and the question
that distinguishes it. Every time the rule interpreter finishes, it will
return and display in the listener the number of rules the forward chain-
ing engine fired.

2.4 Browsers
There are a number of browsers for examining the state of KnowledgeWorks.
They will be introduced here, and again when the Programming Environment
is discussed in Chapter 5, “The Programming Environment”.

2.4.1 Rule Browser
Figure 2.3 KnowledgeWorks Rule Browser

This may be obtained by choosing KnowledgeWorks > Rules. The defined for-
ward chaining contexts (or rule groups) are displayed in a drop-down list at
the top. There is also a special pseudo-context for all the backward chaining
rules, which is shown initially. In this case, the only other context is named
DEFAULT-CONTEXT. Below that are listed the rules for the selected context.
Choose DEFAULT-CONTEXT from the drop-down list and click on one of the

2.4 Browsers
rules, for example PLAY, and edit it by choosing Works > Rule > Find Source
from the menu bar. An editor window will appear showing this rule defini-
tion.

What this rule says is:

(root ?r node ?node)
(not (current-node ? node ?))
-->
((capi:display-message " ANIMAL GUESSING GAME - ~
 think of an animal to continue"))
(assert (current-node ? node ?node))

which means:

If the node ?node is the root node of the tree of questions, and there is no
current node indicating the question about to be asked, then tell the user to
think of an animal and make the root node ?node the current node (so that the
top question of the tree will be asked next). This is the rule that starts the game
by instructing: “if you haven’t got a question you’re about to ask, ask the top-
most question in the tree of questions”. The detailed syntax of forward chain-
ing rule definitions will be explained in Chapter 3, “Forward chaining”.

Select "-- All backward rules --" from the drop-down list and bring up a
backward chaining rule definition by clicking on its name in the Rule Browser
and choosing Works > Rule > Find Source again. The detailed syntax of
backward chaining rules is in Chapter 3, “Backward Chaining”.
 11

2 Tutorial

12
2.4.2 Objects Browser
Figure 2.4 KnowledgeWorks Objects Browser

The Objects Browser is for exploring the contents of the KnowledgeWorks
object base. Start it by choosing KnowledgeWorks > Objects. The system knows
about the CLOS objects that make up the object base. One class of CLOS
objects in this example is the node class so choose NODE from the Preset

2.4 Browsers
query/pattern drop-down. All the node objects in the object base will be dis-
played in the pane below. Click on one of these objects and the bottom pane
will display the slots and slot values of the object.

To make the display clearer and allow input without explicit package
qualifiers, change the package of the Objects Browser. Do this via Tools > Pref-
erences... > Objects Browser > Package. Edit the Package pane so that it says
KW-USER and press OK.

Now change the Query field to read (node ?object animal ?a) and press
Return. The animals associated with each node are displayed. In this game
there is a tree of questions with each node object representing a question.
Some nodes have a nil value for the animal slot; these are the non-terminal
nodes in the question tree. The program learns your new animals by adding
new nodes to the tree.

Now type ?a into the Pattern field (and press Return). This displays only the
animals. The values displayed in the topmost of the two panes is the Pattern
field instantiated with every possible object that matches the Query field.
However, if the Pattern field is empty then the value of the Query field is taken
to be the pattern.
 13

2 Tutorial

14
Change the Query field to read (and (node ?n animal ?a) (test ?a)) and
press Return.

Figure 2.5 Objects Browser matching animals

Only the non-nil animals are displayed.

2.4 Browsers
2.4.3 Class Browser
Figure 2.6 KnowledgeWorks Class Browser

The Class Browser is obtained by choosing KnowledgeWorks > Classes. This
brings up the LispWorks Class Browser with an initial focus on the class stan-
dard-kb-object. Select the Subclasses tab to display the subclasses of stan-
dard-kb-object. Double click on NODE in the subclasses pane to examine the
node class used in this tutorial. Select the Slots tab to display its slots and click
on one of the slots in the middle pane, for example the ANIMAL slot. This dis-
plays more information about the slot in the Description pane.

Other useful features of the Class Browser include the Superclasses tab which
display a graph of the superclasses; the Hierarchy tab which displays direct
superclasses and subclasses; and the Functions tab which displays the generic
 15

2 Tutorial

16
functions or methods defined on a class either directly or through inheritance.
For more information about the Class Browser, see the LispWorks IDE User
Guide.

2.4.4 Forward Chaining History
Figure 2.7 KnowledgeWorks Forward Chaining History

This is obtained by choosing KnowledgeWorks > FC History. If you have just
run the tutorial a window will appear of which the left column contains the
entry DEFAULT-CONTEXT. These are all the contexts (rule groups) the forward
chaining engine has executed (in this case only one). On the right is a detailed
breakdown of what happened in each cycle within this context. You will see
the rule names listed down the left, and the cycle numbers along the top. The
boxes indicate which rules fired. In the last cycle, you will see a black box indi-
cating that the rule GAME-FINISHED fired, and a outlined box for the rule PLAY.
This means that the rule PLAY could have fired, but that GAME-FINISHED was
preferred.

Note: you can remove the package prefixes from displayed symbols by setting
the current package of the FC History tool to KW-USER, in the same way as you
did for the Objects Browser tool (see “Objects Browser” on page 12).

2.5 KnowledgeWorks Listener
Look at the definition for GAME-FINISHED (find the source using the Rule
Browser) and notice that it contains :priority 15. This means that the GAME-
FINISHED rule has higher priority than the PLAY rule (which has the default
value of 10), and so was preferred. Other methods of conflict resolution are
also available.

2.5 KnowledgeWorks Listener
The KnowledgeWorks Listener has already been shown to function as a Lisp
Listener. However it extends this with the ability of the Objects Browser to
match objects. When using the Objects Browser the Query pane contained pat-
terns which could be matched against the Object Base. These same patterns
can be entered into the KnowledgeWorks Listener. Enter (node ?object) into
the Listener. This asks “Are there any node objects?”. A NODE object will be
returned. To ask for more solutions press the Next button. If there are more
you will be shown another, otherwise the listener displays the word NO and
the listener prompt reappears. If you do not want to see any more, just press
the Return key.

Try entering some of the other expressions from the Objects Browser, for
example (and (node ?n animal ?a) (test ?a)). If the input is not recog-
nized it is treated as Lisp.
 17

2 Tutorial

18
2.6 Debugging

2.6.1 Monitoring Forward Chaining Rules
Figure 2.8 KnowledgeWorks Rule Monitor

One of the problems with forward chaining rules is determining why they are
(or are not) being matched. To deal with this KnowledgeWorks has Monitor
Windows for forward chaining rules. To bring up a Monitor Window, select
the DEFAULT-CONTEXT in the Rule Browser, click on PLAY and choose Works >
Rule > Monitor. Alternatively you can use the context menu to raise the Rule
Monitor window. A Rule Monitor window appears displaying in its upper
pane the conditions of the rule. Both are highlighted meaning they are
matched (as single conditions without reference to any variable bindings
across conditions) in the object base. If you select one or more of these condi-
tions, the message will change from "Number of instantiations matching
selected conditions: <n>" to "No instantiations matching selected conditions"
depending on whether objects can be found in the object base to match all the
selected conditions at once (this takes account of variables bound across con-
ditions).

2.6 Debugging
By selecting the All Unfired Instantiations button, you can list any unfired
instantiations of the rule. In this case there is one unfired instantiation. Select-
ing this in the lower pane and then choosing Works > Instantiations > Inspect
raises an Inspector tool displaying the variable bindings in the instantiation.

You can have any number of monitor windows (though at most one per rule).
At times (during rule execution, for example) the object base may change.
Monitor windows can be updated by choosing Tools > Refresh from the Rule
Monitor menu bar, or KnowledgeWorks > Memory > Update Monitor Windows
from the KnowledgeWorks Listener. When you are single-stepping through
rules (see below) Monitor windows are updated automatically.

2.6.2 Single-Stepping Rules
Figure 2.9 KnowledgeWorks Gspy Window

Select a rule, say, Y-N-QUESTION, in the Rule Browser and choose Works > Rule
> GSpy from the menu bar. This brings up a Spy Window for the rule. In it you
will see the actions of the rule.

Now enter (infer) in the Listener to run the demo again. Execution will stop
when this rule fires. A message in the listener will say that the rule Y-N-QUES-
TION has been called. Click on the Creep button at the bottom of the Listener to
single step through the rule. Watch the highlight move through the Spy
Window as you go. If you still have a Monitor Window for the PLAY rule it will
be updated automatically as you go.
 19

2 Tutorial

20
Click on Leap at the bottom of the listener and it will “leap” to the end of the
rule. When you have finished, close the Spy Window (for example by pressing
Alt+F4) and press Leap in the Listener window to remove the break point and
continue normally.

At any point when rule execution is suspended by this mechanism, the other
KnowledgeWorks tools may be used, for example to examine the object base
(with the Objects Browser) or see which rules have fired (with the forward
chaining history). Spy Windows are available for backward chaining rules as
well, and they work in exactly the same way (they are set by selecting the rule
in the Rule Browser and choosing Works > Rule > Gspy).

2.6.3 Editing Rule Definitions
Figure 2.10 KnowledgeWorks Editor

Let us suppose that when the demo finishes we would like it to ask if we want
to play again. Find the definition for GAME-FINISHED (using the Rule Browser).
One line in the definition is commented out with a ; (semi-colon) at the start.
Remove the semi-colon and compile the new definition by choosing Works
>Definitions > Compile from the editor menu bar. Press Space to return to the
editor view. This rule will now ask if the user wants to play again and execu-
tion will only stop (the (return) instruction ends execution) if requested. Run
the demo to see this happen.

2.7 Lisp Integration
The rule FETCH-NEW-ANIMAL also has a commented-out line (repeat) which will
make it repeat its prompt until given an animal it does not already know.
Remove the semi-colon at the start of the line in and compile the new
definition of the rule. Run the demo again and try giving the system an animal
it recognizes. It will prompt again. Give it an animal it does not recognize to
finish.

2.7 Lisp Integration
You can save your object base of animals by entering

(save-animals "my-animal-objs.lisp")

into the Listener. In the file of rules "animal-rules.lisp" look at the function
save-animals which does this. Note how the Lisp code directly uses the same
objects as the rules. If we used the Lisp code to modify the slots of the objects
the KnowledgeWorks rule interpreter would keep track.

Note: KnowledgeWorks CLOS objects are ordinary CLOS objects and can be
used outside KnowledgeWorks rules.

2.7.1 The LispWorks IDE

The entire programming environment of the LispWorks IDE is available from
the menus on the KnowledgeWorks Podium window. See the LispWorks IDE
User Guide for more details.
 21

2 Tutorial

22
2.8 Systems
Figure 2.11 KnowledgeWorks System Browser

If you are familiar with LispWorks system definitions, look at the system defi-
nition for the animal demo in the Editor tool by choosing File > Open... and
navigating to the file examples/kw/animal/defsystem.lisp. It contains a
KB-SYSTEM and a KB-INIT-SYSTEM. Examine the components of each system
(which can be source files or subsystems) using the System Browser which is
available from the Editor via Alt+X Describe System or File > Browse Parent
System.

KB-SYSTEMs are reloaded when the rules are cleared. KB-INIT-SYSTEMs are
reloaded when the object base is cleared.

2.9 Exiting KnowledgeWorks
Try this out by finding the KnowledgeWorks Listener and choosing Memory >
Clear Objects and Rules. Then enter (load-system "ANIMAL") into the Knowl-
edgeWorks Listener to reload the system animal. Both the files animal-rules
and animal-objs are reloaded. Now choose KnowledgeWorks > Memory > Clear
Objects and reload the animal system again and note how only the file
animal-objs is reloaded.

2.9 Exiting KnowledgeWorks
KnowledgeWorks is integrated with LispWorks so you cannot exit from
KnowledgeWorks independently. You can close individual KnowledgeWorks
windows. You can exit LispWorks by choosing File > Exit from the Podium. If
you have any unsaved edited files you will be asked whether you wish to save
them. There will be a final confirmation before KnowledgeWorks quits.
 23

2 Tutorial

24

3

3 Rules
KnowledgeWorks rules are defined as follows:

<rule> ::=
 (defrule <rule-name> <direction> [<doc-string>] <body>)

<direction> ::= {:forward | :backward}

Every rule must have a unique name which must also be distinct from any
KnowledgeWorks object class name and from any context (rule-group) name.
The expressions which form the body of a rule have the same syntax and
meaning regardless of whether they occur on the left or right hand side of a
forward or backward chaining rule. If doc-string is given, then it should be a
string. The value can be retrieved by calling the function documentation with
doc-type rule.

3.1 Forward chaining

3.1.1 Overview

Forward chaining rules consist of a condition part and an action part. The con-
dition part contains conditions which are matched against the object base. If
and only if all the conditions are matched, the rule may fire. If the rule is
selected to fire, the actions it performs are given in the action part of the rule.
25

3 Rules

26
The process of selecting and firing a rule is known as the Forward Chaining
Cycle, and the forward chaining engine cycles repeatedly until it runs out of
rules or a rule instructs it to stop. KnowledgeWorks forward chaining rules
reside in a group of rules, or context, and may have a priority number associ-
ated with them for conflict resolution (choosing which of a set of eligible rules
may fire).

3.1.2 Forward Chaining Syntax

Forward chaining rule bodies are defined by:

<body> ::=
 [:context <context-name>]
 [:priority <priority-number>]
 <forward-condition>* --> <expression>*)

where <context-name> is the name of a context which has already been
defined (see Section 3.1.5, “Control Flow”) defaulting to default-context,
and <priority-number> is a number (see Section 3.1.5, “Control Flow”)
defaulting to 10.

The syntax for forward-conditions is:

<forward-condition> ::=
 <object-condition>
 | (test <lisp-expr>)
 | (not <forward-condition>+)
 | (logical <forward-condition>+)

<object-condition> ::=
 (<class-name> <variable> [<object-slot-condition>]*)

<object-slot-condition> ::=
 <slot-name> <term>

<object-condition> is an object-base match where the variables (introduced
by "?") in <term> are bound (via destructuring) to the corresponding data in
the slot named by <slot-name>. <variable> is a single variable bound to the
object matched.

Note: "?" on its own denotes an anonymous variable which always matches.

3.1 Forward chaining
(test <lisp-expr>) is a Lisp test where <lisp-expr> is any Lisp expression
using the variables bound by other conditions, and which must succeed
(return non-nil) for the condition to match. Computationally cheap Lisp tests
can frequently be used to reduce the search space created by the object base
conditions. Lisp tests, and any functions invoked by them, should not depend
on any dynamic global data structures, as changing such structures (and
hence the instantiations of the rule) will be invisible to the inference engine.
Lisp tests can depend on the values of slots in objects matched by preceding
object-base conditions only if the values are bound to variables in the rule
using the <object-slot-condition> syntax. They cannot depend on values
obtained by calling slot-value or a reader function.

(not <forward-condition>+) is simply a negated condition. A negated con-
dition never binds any variables outside its scope. Variables not bound before
the negation will remain unbound after it.

(logical <forward-condition>+) is used to indicate clauses that describe
the logical dependencies amongst objects. See Section 6.4, “Logical Dependen-
cies and Truth Maintenance”for more details.

Note that if a forward chaining rule contains any conditions at all then it must
contain at least one object base reference of the form

(<class-name> <variable> ...)

The syntax for expressions is:

<expression> ::=
 <forward-condition>
 |(erase <variable>)
 |(assert (<class-name> <variable>
 [<slot-name> <term>]*))
 |(context <context-list>)
 |(return)
 |(<lisp-expr> <term>*)
 |<goal>

<forward-condition> is a forward condition which must succeed for execu-
tion of the action part of the rule to continue.

(erase <variable>) removes the instance bound to <variable> from the
knowledge base. It is an error if <variable> is bound to anything but a
KnowledgeWorks instance.
 27

3 Rules

28
(assert (<class-name> <variable> [<slot-name> <term>]*)) is an asser-
tion which modifies the contents of the object base, where if <variable> is
unbound a new object of the given class with the given slot-values is created,
and if it is bound, the object to which it is bound has its slots modified to the
given values.

(context <context-list>) adds the given list of contexts to the top of
agenda (see Section 3.1.5, “Control Flow”).

(return) passes control to the top context on the agenda and removes it from
the agenda (see Section 3.1.5, “Control Flow”).

(<lisp-expr> <term>*) binds the result or results of calling <lisp-expr> to
the <term>s with execution of the rule terminating if any bindings fail (if no
<term>s are given execution will always continue).

<goal> may be any backward chaining goal expression (see Section 3.2, “Back-
ward Chaining”).

Note that in the action part of a rule, only backward chaining goals and object
base matches invoke the backward chainer.

3.1.2.1 Example

(defrule move-train :forward
 :context train
 (train ?train position ?train-pos)
 (signal ?signal position ?signal-pos
 colour green)
 (test (= ?signal-pos (1+ ?train-pos)))
-->
 ((format t "~%Train moving to position ~s"
 ?signal-pos))
 (assert (signal ?signal colour red))
 (assert (train ?train position ?signal-pos)))

specifies that if there is a train with a green signal directly in front then the
train may move on and the signal changes to red.

3.1 Forward chaining
3.1.3 Defining Forward Chaining Rules

Forward chaining rules may be defined and redefined incrementally. When
redefined all the instantiations of the rule are recreated. This means that
during execution of a rulebase the redefinition capability should be used with
care as previously fired instantiations will reappear and may fire again.

When a rule is redefined it inherits its order (with respect to the order conflict
resolution tactic) from its initial definition. If this is not required, the rule
should be explicitly undefined before being redefined.

A forward chaining rule may be undefined by entering

(undefrule <rule-name>)

A warning will be given if the rule does not exist.

3.1.3.1 Example

(undefrule move-train)

3.1.4 The Forward Chaining Interpreter

The forward chaining rule interpreter may be invoked by the Lisp function

(infer [:contexts <context-list>])

where <context-list> is a list of contexts where control is passed immedi-
ately to the first in the list, and the rest are placed at the top of the agenda. The
object base may or may not be empty when the forward chainer is started. The
infer function returns the final cycle number. When not specified,
<context-list> defaults to (default-context).

3.1.5 Control Flow

3.1.5.1 The Agenda

The agenda is essentially a stack of rule groups (called contexts) which are still
awaiting execution. The initial invocation of the forward chainer and any sub-
sequent rule can cause contexts to be added to the top of the agenda. During
normal execution the forward chainer simply proceeds down the agenda con-
 29

3 Rules

30
text by context. When the agenda is empty, passing control on will terminate
the execution of the rule interpreter. This is a proper way to exit the forward
chainer.

3.1.5.2 Contexts

Contexts are the groups into which rules are partitioned. The context
default-context always exists. Contexts are defined by:

<context> ::=
 (defcontext <context-name>
 [:strategy <CRS>]
 [:auto-return t | nil]
 [:meta <meta-actions>])
 [:documentation <doc-string>])

where <context-name> is a symbol, <CRS> is a conflict resolution strategy
defaulting to (priority recency order) (see below). If :auto-return is set
to t (the default) then when the context has no more rules to fire, control
passes to the next context on the agenda, but if it is nil an error occurs (a rule
in the context should have issued a (return) instruction explicitly). The :meta
option is necessary only if the default behavior of the context is to be modified
and is explained in Section 6.1.1, “Meta Rule Protocol”. If :documentation is
given, then doc-string should be a string and the value can be retrieved by call-
ing the function documentation with doc-type context.

3.1.5.3 Conflict Resolution

Every context has its own conflict resolution strategy, specified in the
defcontext form. A conflict resolution strategy is an ordered list of conflict
resolution tactics. A conflict resolution tactic may be any of the following:

• priority — instantiations of rules with the highest priority are pre-
ferred

• -priority — instantiations of rules with the lowest priority are pre-
ferred

• recency — the most recently created instantiations are preferred

• -recency — the least recently created instantiations are preferred

3.1 Forward chaining
• order — instantiations of rules defined/loaded earliest are preferred.
This favours the topmost rules in a file.

• -order — instantiations of rules defined/loaded latest are preferred

• specificity — the most specific rules are preferred (specificity is a
score where a point is awarded for every occurrence of a variable after
the first, every Lisp test, and every destructuring expression; the highest
score wins)

• -specificity — the least specific rules are preferred

• mea — (stands for Means End Analysis) instantiations are preferred
where the object corresponding to the topmost object-matching condi-
tion is more recently modified

• -mea — instantiations are preferred where the object corresponding to
the topmost object-matching condition is less recently modified

• lex — (stands for LEXicographic) each instantiation is represented by
the (in descending order) sorted list of the most recently modified cycle
numbers of the objects in the instantiation; these lists are compared
place by place with an instantiation being preferred if it first has a larger
number in a particular position, or if it runs out first (hence the analogy
with lexicographic ordering)

• -lex — the converse of the above.

The tactics are applied successively starting with the left-most until only one
instantiation is left or until all tactics have been applied when it is unspecified
which of the resulting set is chosen. For example, using the strategy (prior-
ity recency) first all the instantiations which are not of the highest priority
rule or rules (as given by the rule’s priority number) are discarded and then all
instantiations which were not created in the same forward chaining cycle as
the most recently created instantiation will be discarded. If more than one
instantiation is left it is unspecified which will be selected to fire.

Note that the strategy (lex specificity) is equivalent to the OPS5 strategy
LEX and (mea lex specificity) is equivalent to the OPS5 strategy MEA,
hence the borrowing of these terms. For further information on LEX and MEA
in OPS5 the reader is referred to Programming Expert Systems in OPS5, by
 31

3 Rules

32
Brownston, Farrel, Kant and Martin (published by Addison-Wesley). How-
ever, KnowledgeWorks is not heavily optimized to use the tactics mea, -mea,
lex or -lex.

3.1.6 Examples

(defcontext trains
 :strategy (priority recency order)
 :auto-return t)
(defcontext trains)

These two definitions are in fact equivalent.

3.1.6.1 Defining Contexts

A context may be defined and redefined. Redefining a context will clear all the
rules in the context.

A context may be undefined and removed by entering

(undefcontext <context-name>)

3.1.7 Forward Chaining Debugging

Forward chaining debugging may be turned on by typing

(all-debug)

and off by typing

(no-debug)

When KnowledgeWorks is started, debugging is on. Debugging allows the
actions of forward chaining rules to be single-stepped like backward chaining
rules (see Section 3.2.7, “Backward Chaining Debugging”), and also records
information on which objects are modified by which rules. For information on
how to use the debugging tools, refer to Chapter 5, “The Programming Envi-
ronment”.

3.2 Backward Chaining
3.2 Backward Chaining

3.2.1 Overview

Backward chaining involves trying to prove a given goal by using rules to
generate sub-goals and recursively trying to satisfy those. The Knowledge-
Works backward chaining engine is an extension of the LispWorks Common
Prolog system which can match directly over KnowledgeWorks CLOS objects
(the object base). All the standard Common Prolog facilities and built in pred-
icates are available. For more detailed information the reader is referred to the
Appendix A, “Common Prolog”. Note that all the different ways of proving a
particular goal are defined together in the same form.

3.2.2 Backward Chaining Syntax

Backward chaining rule bodies are defined as:

<body> ::= <clause>+
<clause> ::= (<goal> <-- <expression>*)
<goal> ::= (<rule-name> <term>*)

In each sub-clause of the rule, the goal must have the same arity (number of
arguments). Within each <term> destructuring is allowed and variables are
introduced by ? (and ? on its own denotes the anonymous variable which
always matches). <expression> is as defined in Section 3.1.2, “Forward
Chaining Syntax”.

3.2.2.1 Example

(defrule link-exists :backward
 ((link-exists ?town1 ?town2)
 <--
 (or (link ?link town1 ?town1 town2 ?town2)
 (link ?link town2 ?town1 town1 ?town2))
 (cut))((link-exists ?town1 ?town2)
 <--
 (route-exists ?town1 ?town2)))
 33

3 Rules

34
which says that a link exists between two towns either if there is a link object
between them in the object base or if there is a route between the towns. The
route-exists predicate would be defined by another backward chaining rule,
or might be in the Prolog database.

3.2.3 Objects

Backward chaining rules may refer to the object base using the standard
(<class-name> <variable> [<slot-name> <term>]*) syntax, and these
expressions are instantiated directly without creating any sub-goals. The
<class-name> of any CLOS class or KnowledgeWorks structure may not coin-
cide with any backward chaining <rule-name>. The Common Prolog database
may be used to record factual information but it is distinct from the object base
in that it may contain variables, and anything in it is inaccessible to the for-
ward chaining rule preconditions.

3.2.4 Defining Backward Chaining Rules

Backward chaining rules may be defined and redefined incrementally.

3.2.5 The Backward Chaining Interpreter

The backward chaining interpreter can be invoked from Lisp by the following
functions

(any <expr-to-instantiate> <expr-to-prove>)

which finds any solution to <expr-to-prove> and instantiates <expr-to-
instantiate>, and

(findall <expr-to-instantiate> <expr-to-prove>)

finds all the solutions to <expr-to-prove>, instantiates <expr-to-instanti-
ate> for each and returns these in a list.

For other interface functions to be called from Lisp the reader is referred to
Appendix A, “Common Prolog”.

3.2 Backward Chaining
From the action part of a forward chaining rule the backward chainer is called
implicitly when a CLOS match or goal expression is used. The action part of
forward chaining rules and the antecedents of backward chaining rules are
syntactically and semantically identical.

3.2.5.1 Examples

(any '(?x is in (1 2 3)) '(member ?x (1 2 3)))

returns

(1 is in (1 2 3))

The following expression:

(findall '(?x is in (1 2 3)) '(member ?x (1 2 3)))

returns

((1 is in (1 2 3))(2 is in (1 2 3))(3 is in (1 2 3)))

3.2.6 Edinburgh Prolog Translator

Edinburgh syntax Prolog files may be compiled and loaded if they are given
.pl as a file extension. These are completely compatible with the Knowledge-
Works backward chaining rules. For more details refer to Section A.10, “Edin-
burgh Syntax”.

3.2.7 Backward Chaining Debugging

Backward chaining debugging follows the Prolog four port model. Backward
chaining rules may be “spied” (this is a Prolog term which corresponds to
tracing and single-stepping) which puts a break-point on them and means
they can be single-stepped when they are invoked. When forward chaining
debugging is on, the action part of forward chaining rules can be spied and
single-stepped in the same way when they are fired. Chapter 5, “The Pro-
gramming Environment”, explains this in detail. The leashing of the ports can
be adjusted, details are to be found in Section A.7, “Debugging”.
 35

3 Rules

36
3.3 Common Lisp Interface
Arbitrary Lisp expressions may be called from rules. See Section 3.1.2, “For-
ward Chaining Syntax”.

4

4 Objects
The object base contains KnowledgeWorks CLOS objects (including relational
database objects) and KnowledgeWorks structures. KnowledgeWorks CLOS
objects can be treated as ordinary CLOS objects and may be manipulated
directly from Lisp. KnowledgeWorks relational database objects may trans-
parently retrieve their slot values from a relational database using the Lisp-
Works object-oriented relational database interface.

KnowledgeWorks structures are more efficient but reduced functionality
CLOS objects similar in spirit to Lisp structures. Values in the slots of these
objects should not be destructively modified unless these values are them-
selves KnowledgeWorks objects. This is because the rule interpreter keeps
track of the changes to the slots, and a destructive operation is likely to bypass
this process.

4.1 CLOS objects
A KnowledgeWorks CLOS class may not have a class name which coincides
with any rule, context or KnowledgeWorks structure (See Section 4.3, “Knowl-
edgeWorks Structures”). KnowledgeWorks CLOS classes fall into one of two
categories, either unnamed or named. Named objects can be given a name (or
they use a default name) and can be referred to by name. Otherwise, named
37

4 Objects

38
and unnamed objects have equivalent functionality. CLOS objects may be
made by the Common Lisp function make-instance, taking the same argu-
ments. An unbound slot will return :unbound until set.

Name clashes are arbitrated by *signal-kb-name-clash* and signal an error
by default. See the reference manual page.

4.1.1 Unnamed Classes

Unnamed classes may be defined by the macro def-kb-class which takes the
same arguments as the defclass macro. It is identical to using defclass and
supplying the KnowledgeWorks mixin standard-kb-object if none of the
superclasses already contains it. The function make-instance may be used to
create instances of the class.

4.1.2 Named Classes

A named KnowledgeWorks CLOS class is defined by the macro def-named-
kb-class which is syntactically identical to the Common Lisp defclass
macro, and semantically identical with the exception that it adds a
KnowledgeWorks mixin class named-kb-object if none of the superclasses
already contains it, and makes the default name for the objects be a symbol
generated from the class name. Classes defined by def-named-kb-class con-
tain a name slot which those defined by def-kb-class do not.

The function make-instance can be given the initialization argument
:kb-name to specify a name. If not specified, a default name is generated from
the name of the class. All names must be distinct as regarded by eq. The func-
tion

(get-kb-object <name>)

retrieves the instance from its name. The function

(kb-name <object>)

returns the name of the given object.

4.2 Relational Database Objects
4.1.2.1 Examples

(def-named-kb-class truck ()
 ((location :initarg :location)
 (destination :initarg :destination)))
(make-instance ’truck
 :kb-name ’ford1
 :location ’cambridge)

creates the instance #<KB-OBJECT FORD1>.

(make-instance ’truck :location ’london)

creates the instance #<KB-OBJECT TRUCK123>, and

(get-kb-object ’ford1)

returns #<KB-OBJECT FORD1> and

(kb-name (get-kb-object ’ford1))

returns FORD1. The class definition

(defclass truck (named-kb-object) ...)

would have been identical except that the second truck would have been
given a name such as OBJECT345 rather than TRUCK123 (as def-named-kb-
class overrides the inherited initform for the kb-name slot
(gentemp "OBJECT") with a more specific one (gentemp <class-name>)).

4.2 Relational Database Objects
A CLOS/SQL class may also be given the KnowledgeWorks mixin class,
enabling rules to refer to these objects as if there were no database present.
However, their database functionality carries over transparently. For example,
consider the case where a slot in the database class is designated for deferred
retrieval from the database. When the rulebase queries the contents of the slot,
a database query will automatically be generated to retrieve and fill in the
value of the slot, and the rulebase will continue as if the value had been there
in the first place.

Details of the LispWorks Common SQL interface can be found in the Lisp-
Works User Guide and Reference Manual.
 39

4 Objects

40
4.2.1 Example

(sql:def-view-class vehicle
 (standard-db-object standard-kb-object)
 ((vehicle_no :db-kind :key)
 (keeper)
 (owner :db-kind :join
 :db-info (:home-key :keeper
 :foreign-key person_id
 :retrieval :deferred
 :join-class person))))

defines a database class vehicle where the person object in the keeper slot is
retrieved from the person table in the database using the value of the keeper
slot as key, only when queried. In the list of superclasses, standard-kb-object
should appear after sql:standard-db-object.

4.2.2 Extended Example

The following example is a complete segment of code which allocates person
objects to vehicle objects. Note how once the class definitions have been made,
the rules do not in any way reflect the fact that there is an underlying data-
base. The example output assumes a database initialized by the following SQL
statements:

drop table VEHICLE ;
create table VEHICLE
 (PLATE CHAR(8) NOT NULL, MAKE CHAR(20),
 PRICE INTEGER, OWNER CHAR(20));
grant all on VEHICLE to public ;
insert into VEHICLE values
 (’E265 FOO’, ’VAUXHALL’, 5000, ’’);
insert into VEHICLE values
 (’XDG 792S’, ’ROLLS’, 50000, ’’);
insert into VEHICLE values
 (’F360 OOL’, ’FORD’, 4000, ’PERSEPHONE’);
insert into VEHICLE values
 (’H151 EEE’, ’JAGUAR’, 15000, ’’);
insert into VEHICLE values
 (’G722 HAD’, ’SKODA’, 500, ’’);

4.2 Relational Database Objects
drop table PERSON ;
create table PERSON
 (NAME CHAR(20) NOT NULL, SALARY INTEGER, VEHICLE CHAR(8),
 EMPLOYER CHAR(20)) ;
insert into PERSON values (’FRED’, 10000, ’’, ’IBM’);
insert into PERSON values (’HARRY’, 20000, ’’, ’FORD’);
insert into PERSON values (’PHOEBE’, 5000, ’’, ’’);
insert into PERSON values (’TOM’, 50000, ’’, ’ACME’);
insert into PERSON values
 (’PERSEPHONE’, 15000, ’F360 OOL’, ’ICL’);

drop table COMPANY ;
create table COMPANY
 (NAME CHAR (20), PRODUCT CHAR(10));
insert into COMPANY values (’IBM’, ’COMPUTERS’);
insert into COMPANY values (’FORD’, ’CARS’);
insert into COMPANY values (’ICL’, ’COMPUTERS’);
insert into COMPANY values (’ACME’, ’TEAPOTS’);

Below is an example rulebase that analyses the database and outputs a sug-
gestion as to which vehicle should be allocated to which person. The full code
and the SQL statements to set up the database are included in the examples
distributed with KnowledgeWorks.

(in-package "KW-USER")

;;; the vehicle class maps onto the car table in the
;;; database owner is a join slot which looks up the
;;; owner person object
 41

4 Objects

42
(sql:def-view-class vehicle
 (sql:standard-db-object standard-kb-object)
 ((number-plate :accessor vehicle-number-plate
 :type (string 8)
 :db-kind :key
 :column plate)
 (make :accessor vehicle-make
 :type (string 20)
 :db-kind :base
 :column make)
 (price :accessor vehicle-price
 :type integer
 :db-kind :base
 :column price)
 (owner-name :type (string 20)
 :db-kind :base
 :column owner)
 (owner :accessor vehicle-owner
 :db-kind :join
 :db-info (:home-key owner-name
 :foreign-key name
 :join-class person
 :set nil
 :retrieval :deferred))))

;;; the person class maps onto the person table in the
;;; database
;;; vehicle is a join slot which looks up the owned
;;; vehicle object
;;; company is a join slot which looks up the company
;;; object

4.2 Relational Database Objects
(sql:def-view-class person
 (sql:standard-db-object standard-kb-object)
 ((name :accessor person-name
 :type (string 20)
 :db-kind :key
 :column name)
 (salary :accessor person-salary
 :type integer
 :db-kind :base
 :column salary)
 (vehicle-number-plate :type (string 8)
 :db-kind :base
 :column vehicle)
 (vehicle :accessor person-vehicle
 :db-kind :join
 :db-info (:home-key vehicle-number-plate
 :foreign-key number-plate
 :join-class vehicle
 :set nil
 :retrieval :deferred))
 (employer :type (string 20)
 :db-kind :base
 :column employer)
 (company :accessor person-company
 :db-kind :join
 :db-info (:home-key employer
 :foreign-key name
 :join-class company
 :set nil
 :retrieval :deferred))))

;;; the company class maps onto the company table in
;;; the database

(sql:def-view-class company
 (sql:standard-db-object standard-kb-object)
 ((name :accessor company-name
 :type (string 20)
 :db-kind :key
 :column name)
 (product :accessor company-product
 :type (string 10)
 :db-kind :base
 :column product)))
 43

4 Objects

44
;;; here we assume we have a database connected with
;;; the correct data in it - if we do we retrieve all
;;; the person and vehicle objects but company objects
;;; will be retrieved only when needed by querying
;;; the company slot of the person objects

(if sql:*default-database*
 (progn (sql:select ’vehicle)
 (sql:select ’person))
 (format t
 "~%Please connect to a database with
 contents ~ created by file data.sql"))
;;; to store which vehicles a person can drive
(def-kb-struct vehicles-for-person person vehicles)
(defcontext database-example :strategy (priority))

;;; for every person initialise the list of vehicles they
;;; can drive

(defrule init-vehicles-for-person :forward
 :context database-example
 (person ?person vehicle nil)
 -->
 (assert (vehicles-for-person ? person ?person vehicles nil)))

;;; for every vehicle a person can drive which hasn’t yet
;;; been included in the list, add it to the list

(defrule vehicle-for-person :forward
 :context database-example
 (person ?person vehicle nil)
 (vehicle ?vehicle owner nil)
 (vehicles-for-person ?c-f-p
 person ?person
 vehicles ?vehicles)
 (test (not (member ?vehicle ?vehicles)))
 ; has it been included?
 -->
 (vehicle-ok-for-person ?vehicle ?person)
 ; check if ok to drive vehicle
 (assert (vehicles-for-person ?c-f-p vehicles
 (?vehicle . ?vehicles))))

;;; rules expressing what vehicles a person can drive:
;;; if they have no employer they can only drive a
;;; skoda otherwise they will refuse to drive a skoda.
;;; anyone will drive a rolls or a jag.
;;; they’ll only drive a ford or vauxhall if salary is
;;; less than 40k.

4.2 Relational Database Objects
(defrule vehicle-ok-for-person :backward
 ((vehicle-ok-for-person ?vehicle ?person)
 <--
 (person ?person company nil)
 (cut)
 (vehicle ?vehicle make "SKODA"))
 ((vehicle-ok-for-person ?vehicle ?person)
 <--
 (vehicle ?vehicle make "SKODA")
 (cut)
 (fail))
 ((vehicle-ok-for-person ?vehicle ?person)
 <--
 (or (vehicle ?vehicle make "ROLLS")
 (vehicle ?vehicle make "JAGUAR"))
 (cut))
 ((vehicle-ok-for-person ?vehicle ?person)
 <--
 (or (vehicle ?vehicle make "VAUXHALL")
 (vehicle ?vehicle make "FORD"))
 (person ?person salary ?salary)
 (test (< ?salary 40000))))
 45

4 Objects

46
;;; next to rules are just simple allocation rules,
;;; trying out each possibility until one fits

(defrule alloc-vehicles-to-persons :backward
 ((alloc-vehicles-to-persons ?allocs)
 <--
 (alloc-internal nil nil nil ?allocs)))

(defrule alloc-internal :backward
 ((alloc-internal ?done-persons ?done-vehicles
 ?allocs ?allocs)
 <--
 (not (and (vehicles-for-person ? person ?person)
 (not (member ?person ?done-persons))))
 (cut))
 ((alloc-internal ?done-persons ?done-vehicles
 ?allocs-so-far ?allocs)
 <--
 (vehicles-for-person ? person ?person
 vehicles ?vehicles)
 (not (member ?person ?done-persons))
 (member ?vehicle ?vehicles)
 (not (member ?vehicle ?done-vehicles))
 (alloc-internal (?person . ?done-persons)
 (?vehicle . ?done-vehicles)
 ((?person . ?vehicle) . ?allocs-so-far)
 ?allocs)))

;;; find a solution and print it out

(defrule find-solution :forward
 :context database-example
 :priority 5
 (not (not (vehicles-for-person ?)))
 -->
 (alloc-vehicles-to-persons ?solution)
 ((dolist (pair ?solution)
 (format t "~%~A drives ~A"
 (person-name (car pair))
 (vehicle-number-plate (cdr pair))))))

Below is sample output from the rulebase with SQL recording turned on to
demonstrate the SQL statements that are automatically passed to the database
by manipulating the objects:

4.2 Relational Database Objects
KW-USER 53 > (infer :contexts ’(database-example))
(SELECT VEHICLE.PLATE,VEHICLE.MAKE,VEHICLE.PRICE,VEHICLE.OWNER
FROM VEHICLE
 WHERE (VEHICLE.PLATE = ’F360 OOL’))
(SELECT VEHICLE.PLATE,VEHICLE.MAKE,VEHICLE.PRICE,VEHICLE.OWNER
FROM VEHICLE
 WHERE (VEHICLE.PLATE = ’’))
(SELECT VEHICLE.PLATE,VEHICLE.MAKE,VEHICLE.PRICE,VEHICLE.OWNER
FROM VEHICLE
 WHERE (VEHICLE.PLATE = ’’))
(SELECT
 PERSON.NAME,PERSON.SALARY,PERSON.VEHICLE,PERSON.EMPLOYER
 FROM PERSON WHERE (PERSON.NAME = ’’))
(SELECT VEHICLE.PLATE,VEHICLE.MAKE,VEHICLE.PRICE,VEHICLE.OWNER
FROM VEHICLE
 WHERE (VEHICLE.PLATE = ’’))
(SELECT
 PERSON.NAME,PERSON.SALARY,PERSON.VEHICLE,PERSON.EMPLOYER
 FROM PERSON WHERE (PERSON.NAME = ’’))
(SELECT VEHICLE.PLATE,VEHICLE.MAKE,VEHICLE.PRICE,VEHICLE.OWNER
FROM VEHICLE
 WHERE (VEHICLE.PLATE = ’’))
(SELECT
 PERSON.NAME,PERSON.SALARY,PERSON.VEHICLE,PERSON.EMPLOYER
 FROM PERSON WHERE (PERSON.NAME = ’’))
(SELECT
 PERSON.NAME,PERSON.SALARY,PERSON.VEHICLE,PERSON.EMPLOYER
 FROM PERSON WHERE (PERSON.NAME = ’’))
(SELECT
 PERSON.NAME,PERSON.SALARY,PERSON.VEHICLE,PERSON.EMPLOYER
 FROM PERSON WHERE (PERSON.NAME = ’PERSEPHONE’))
(SELECT COMPANY.NAME,COMPANY.PRODUCT FROM COMPANY
 WHERE (COMPANY.NAME = ’FORD’))
(SELECT COMPANY.NAME,COMPANY.PRODUCT FROM COMPANY
 WHERE (COMPANY.NAME = ’ACME’))
(SELECT COMPANY.NAME,COMPANY.PRODUCT FROM COMPANY
 WHERE (COMPANY.NAME = ’IBM’))
(SELECT COMPANY.NAME,COMPANY.PRODUCT FROM COMPANY
 WHERE (COMPANY.NAME = ’’))

HARRY drives E265 FOO
TOM drives XDG 792S
FRED drives H151 EEE
PHOEBE drives G722 HAD
26
 47

4 Objects

48
4.3 KnowledgeWorks Structures
An optimization for improved performance is to replace CLOS objects by
KnowledgeWorks structures when the objects are not needed outside the
rules, or the full power of object-oriented programming is not required.
Within rules they behave the same, although they are not proper CLOS
objects. This is discussed in detail in Section 6.2, “Optimization”.

5

5 The Programming Environ-
ment
The KnowledgeWorks programming environment is designed for the devel-
opment of rules. KnowledgeWorks applications will typically contain a mix-
ture of programming styles and so the LispWorks programming environment
is available from the menus on the KnowledgeWorks Podium. This chapter
deals with KnowledgeWorks specific tools but see the LispWorks IDE User
Guide for more details on the LispWorks tools.

Figure 5.1 KnowledgeWorks Podium

All KnowledgeWorks windows except the Podium can be closed indepen-
dently of the others. You can switch between windows by choosing Works >
Windows > window-name.
49

5 The Programming Environment

50
5.1 The KnowledgeWorks Listener
Figure 5.2 KnowledgeWorks Listener

The KnowledgeWorks Listener is obtained by choosing KnowledgeWorks > Lis-
tener. This tool is based on the LispWorks Common Prolog Logic Listener (see
Appendix A, “Common Prolog” for further details). Input is taken as being a
goal expression to be satisfied unless no predicate of that name and arity
(number of arguments) exists in which case it is taken as a Lisp expression.
That is, the input may be either

<expression>

as defined in Section 3.1, “Forward chaining”, or

<lisp-expr>

with the former interpretation taking priority when ambiguous. Interaction is
Prolog-style, so when the bindings which satisfy a goal are printed, pressing
Return terminates execution, and entering ; (semi-colon) and Return (or just
clicking on the Next button at the bottom) looks for the next solution to the
goal.

The File, Leashing and Spy menus behave as for the Common Prolog Logic Lis-
tener (see Appendix A, “Common Prolog”) and the Values, Debug and History
menus behave as for the Lisp Listener (see the LispWorks IDE User Guide).

5.2 The Editor
5.2 The Editor
Figure 5.3 KnowledgeWorks Editor

The KnowledgeWorks Editor is created by choosing KnowledgeWorks > Editor.
It is the same as the LispWorks Editor tool. Please see the LispWorks IDE User
Guide for more information on the editor tool and the LispWorks Editor User
Guide for information on the various editing commands.

5.3 Clearing KnowledgeWorks
The KnowledgeWorks object base (all the KnowledgeWorks CLOS objects and
any optimized structures) may be cleared by choosing Memory > Clear Objects
from the KnowledgeWorks Listener, or by calling the function reset.

KnowledgeWorks rules may be cleared by choosing Memory > Clear Rules from
the KnowledgeWorks Listener, or by calling the function clear-rules. Clear-
ing the rules does not remove the default context default-context but all the
rules in it are removed.

KnowledgeWorks object base and rules may be cleared by choosing Knowl-
edgeWorks > Memory > Clear Objects and Rules from the KnowledgeWorks Lis-
tener, or by calling the function clear-all. CLOS class definitions remain in
effect.
 51

5 The Programming Environment

52
5.4 The System Browser
Figure 5.4 KnowledgeWorks System Browser

The KnowledgeWorks system browser is obtained by choosing Knowledge-
Works > Systems. It is the same as the LispWorks System Browser, but includes
new types of system:

• :kb-system, which are reloaded when the KnowledgeWorks rules are
cleared (see Section 5.3 on page 51).

• :kb-init-system, which are reloaded when the KnowledgeWorks
object base is cleared (see Section 5.3 on page 51).

5.5 The Class Browser
For more information on LispWorks systems, see the Common Defsystem
chapter in the LispWorks User Guide and Reference Manual. For more informa-
tion about the System Browser tool, see the LispWorks IDE User Guide.

5.5 The Class Browser
Figure 5.5 KnowledgeWorks Class Browser

The Class Browser is obtained by choosing KnowledgeWorks > Classes. It is the
same as the LispWorks Class Browser except that

• it appears with an initial focus on standard-kb-object
 53

5 The Programming Environment

54
• when looking at a KnowledgeWorks class the Works > Classes menu
and context menu contain an Inspect Instances command which allows
you to look at the instances of the class.

Figure 5.6 Inspecting instances from the Class Browser

5.5 The Class Browser
This raises an Inspector tool with a list of all the instances.

Figure 5.7 KnowledgeWorks Instances Inspector

Any of the instances displayed in the lower pane may itself be inspected by
double-clicking on it.

Other options available in the Class Browser include:

• Superclasses and Subclasses tabs to draw a graphs of the superclasses
or subclasses of the class being looked at

• Slots and Initargs tabs to show how the instances can be accessed and
initialized.

• Functions tab to show the generic functions or methods defined on this
class, either directly or by inheritance
 55

5 The Programming Environment

56
Additionally the Works > Classes menu contains a Browse Metaclass command
which browses the class of this class.

Further details can be found in the LispWorks IDE User Guide.

5.6 The Objects Browser
Figure 5.8 KnowledgeWorks Objects Browser

5.6 The Objects Browser
The Objects Browser is obtained by choosing KnowledgeWorks > Objects. Any
<expression> (See Section 3.1, “Forward chaining”) may be entered into the
Query pane. This expression may be a query about the object base or any
expression for the backward chainer to prove. The Pattern pane contains the
pattern to be instantiated for each solution of the query. If left blank, the pat-
tern used is the query itself.

The Show Inferencing State dropdown allows you to choose which named
inferencing state is used to supply the object base for the query.

The Preset query/pattern pane offers a convenient way to examine instances on
a per-class basis. All the instances of a class class-name known to Knowledge-
Works (either a CLOS class or a KnowledgeWorks structure class) may be
examined by selecting class-name, and all the instances in the object base may
be viewed by selecting All classes.

The package used to read and print symbols may be modified by choosing
Tools > Preferences... > Objects Browser > Package and entering a package name
into the Package pane. Clicking OK will update the tool.

The pane below the query displays all the instantiations of the query, and if
the entries refer to an object (so are of the form (<class-name> <object>
...) or just <object>) double-clicking on them will display the slot names
and values, and information on when the object was created or modified (if
debugging is turned on) in the bottom pane. The selected query item may be
inspected by choosing Works > Instantiations > Inspect.

The Objects Browser may be updated by positioning the mouse in either the
Query or the Pattern pane and pressing Return or by choosing Tools > Refresh.
 57

5 The Programming Environment

58
5.7 The Rule Browser
Figure 5.9 KnowledgeWorks Rule Browser

The Rule Browser may be obtained by choosing KnowledgeWorks > Rules. It
displays contexts and their rules. The Contexts pane at the top allows you to
select from a drop-down list either a forward chaining context or the special
pseudo-context containing all the backward chaining rules. The Rules pane
lists the rules for the selected context.

The Works > Context menu acts on the selected context. Choosing Works > Con-
text > Find Source will bring up the definition of the context in the file where it
was defined, and choosing Works > Context > Gspy will bring up a Spy
Window (see Section 5.8, “Debugging with the Environment”) for the context,
displaying the meta-interpreter (see Section 6.1.1, “Meta Rule Protocol”) for
the context if one is defined. If debugging is turned on a meta-interpreter is
always defined. Choosing Works > Context > NoGspy will remove the Spy
Window (see Section 5.8, “Debugging with the Environment”).

The Works > Rule menu acts on the rule selected in the lower pane. All rules
may be edited by choosing Works > Rule > Find Source. Spy Windows can be
brought up or removed by choosing Works > Rule > Gspy. Forward chaining
rules may have Monitor Windows (see Section 5.8 on page 59) brought up or

5.8 Debugging with the Environment
removed by choosing Works > Rule > Monitor (this command is disabled when
a backward chaining rule has been selected). These are explained in
Section 5.8, “Debugging with the Environment”.

The package used for displaying symbols may be modified by choosing Tools
> Preferences... > Rule Browser > Package and entering a package name into the
Package area. Clicking OK will update the tool.

5.8 Debugging with the Environment

5.8.1 Spy Windows
Figure 5.10 KnowledgeWorks Gspy Window

Spy Windows display graphically the actions or subgoals a rule (either for-
ward or backward chaining) will invoke when it fires. A Spy Window may be
obtained by selecting a rule in the Rule Browser and choosing Works > Rule >
Gspy or choosing Gspy from the context menu.or by choosing Knowledge-
Works > Spy > Gspy in the KnowledgeWorks Listener. Spying can be cancelled
by closing the Spy Window or by choosing KnowledgeWorks > Spy > NoSpy or
KnowledgeWorks > Spy > NoSpy All from the KnowledgeWorks Listener.

Selecting one of the graph nodes in the top pane of the Spy Window displays
the full text of the box in the pane below. Choosing Gspy from the context
menu brings up a Spy Window for the goal in the box.

When the rule being displayed fires, execution stops and the buttons at the
bottom of the KnowledgeWorks Listener allow the rule to be single-stepped.
Clicking on the Creep button steps through the rule, and Leap advances to the
 59

5 The Programming Environment

60
end of the rule (unless any of the intervening goals invoke another rule which
has been spied). When single-stepping, a highlight marks the action or goal
being performed. When execution is suspended in this manner, any of the
KnowledgeWorks tools or browsers may be used.

More details on single stepping through rules are in Appendix A, “Common
Prolog”.

5.9 Monitor Windows
Figure 5.11 KnowledgeWorks Rule Monitor

Monitor Windows allow the preconditions of forward chaining rules to be
monitored. They may be obtained by choosing Works > Rule > Monitor or by
choosing KnowledgeWorks > Spy > Monitor Rule from the KnowledgeWorks Lis-
tener.

The top part of the window is the Select instantiations pane, as described
below. The lower part displays a list of either fired or unfired instantiations.
This list is not kept up to date if the rulebase is executing with debugging
turned off. To examine a binding in a displayed instantiation, select the corre-
sponding line and choose Works > Instantiations > Inspect. This shows the
objects themselves in a LispWorks Inspector tool, so double-clicking on one of
the entries will cause that entry to be inspected. See the LispWorks IDE User
Guide for more details.

5.9 Monitor Windows
The Show Inferencing State dropdown allows you to choose which named
inferencing state is used to find the instantiations.

When the All Unfired Instantiations button is selected, the unfired instantiations
are displayed.

When the Matching Selected Conditions button is selected, the instantiations
that match all of the selected preconditions are displayed. The topmost shows
the preconditions of the rule. Any conditions that are matched by the object
base are highlighted. This highlighting means the condition is matched with-
out reference to any of the other conditions. A message indicates the number
of instantiations matching the highlighted preconditions. A group of precon-
ditions matched individually (hence highlighted) may not be matched
together if, for instance, variables were bound across them.

If a rule has the conditions, say,

(person ?person1 father ?person)
(person ?person2 son ?person)
(test (not (eq ?person nil)))

these would be displayed in the top pane of the Rule Monitor Window. The
first two would be highlighted if the object base contained a person object. But
instantiations would only be displayed if there was a person object with the
same father value as some (other) person object has son.

The selection of conditions may be toggled by left-clicking. So in the above
example the last condition could be selected also by clicking on it, and there
would be no instantiations displayed if the only consistent value of ?person
was nil.
 61

5 The Programming Environment

62
5.9.1 Forward Chaining History
Figure 5.12 KnowledgeWorks Forward Chaining History

The Forward Chaining History may be viewed by choosing KnowledgeWorks >
FC History. This displays the rules which the forward chaining engine has
fired. The left pane lists sequentially the contexts which have been executed,
with the cycle number in which they were entered. These can be clicked on to
show in the right pane, the history for that context. The rules in it are listed
down the left, and the cycle numbers along the top, forming a two dimen-
sional grid.

Each position in the grid indicates the status of the rule in that cycle. A colored
box indicates that the rule fired. A half-colored box indicates that the rule
fired, but that the invocation of the backward chainer on the right-hand side
failed at some point. There can only be one colored or half-colored box per
cycle. An outlined box indicates that the rule was in the conflict set but was
not chosen to fire. Absence of any icon indicates that the rule was not even in
the conflict set.

If the forward chaining history is displayed while a rule is executing (for
example, while the rule is being single stepped) a half-colored box is dis-
played as execution is not complete.

5.9 Monitor Windows
The Works > Rule menu can be used in the same way as in the Rule Browser,
described in Section 5.7, “The Rule Browser”. It applies to the selected rule in
the FC Cycles pane.

The Show Inferencing State dropdown allows you to choose which named
inferencing state is examined.

This tool is not available when debugging is turned off.
 63

5 The Programming Environment

64

6

6 Advanced Topics
6.1 Control Flow

6.1.1 Meta Rule Protocol

The meta rule protocol (MRP) reifies the internal actions of the forward
chainer in terms of backward chaining goals. This allows the user to debug,
modify, or even replace the default behavior of the forward chainer. The basic
hooks into the Forward Chaining Cycle provided by the MRP include conflict
resolution and rule firing. Each context may have a meta-rule defined for it
which behaves as a meta-interpreter for that context. For example, if no meta-
rule is defined for a context it behaves as if it were using the following meta-
rule:

(defrule ordinary-context :backward
 ((ordinary-context)
 <--
 (start-cycle)
 (instantiation ?instantiation)
 (fire-rule ?instantiation)
 (cut)
 (ordinary-context)))
65

6 Advanced Topics

66
This rule describes the actions of the forward chaining cycle for this context.
Firstly start-cycle performs some internal initializations and updates the
conflict set. It is essential that this is called at the start of every cycle. Next the
preferred instantiation is selected from the conflict set by the call to instan-
tiation and is stored in the variable ?instantiation. The rule corresponding
to this is fired (by fire-rule) and the recursive call to ordinary-context
means that the cycle is repeated. The cut is also essential as it prevents back-
tracking upon failure. Failure occurs when there are no more instantiations to
fire (the instantiation predicate fails) and this causes control to be passed on
as normal.

A meta-rule may be assigned to a context with the :meta keyword of the def-
context form. The argument of the :meta keyword is the list of actions to be
performed by the context. For example, a context using the above ordinary
meta-interpreter can be defined by

(defcontext my-context :meta ((ordinary-context)))

This implicitly defines the rule

(defrule my-context :backward
 ((my-context)
 <--
 (ordinary-context)))

and whenever this context is invoked, the rule of the same name is called. The
context could equally well have been defined as

(defcontext my-context :meta
 ((start-cycle)
 (instantiation ?instantiation)
 (fire-rule ?instantiation)
 (cut)
 (my-context)))

Sometimes it is useful to manipulate the entire conflict set. For this purpose
the action (conflict-set ?conflict-set) will return the entire conflict set in
the given variable, in the order specified by the context’s conflict resolution
strategy. The actions

(conflict-set ?conflict-set)
(member ?instantiation ?conflict-set)

are equivalent to

6.1 Control Flow
(instantiation ?instantiation)

although the latter is more efficient.

Now that the user has access to the instantiations of rules, functions are pro-
vided to examine them.

6.1.1.1 Functions defined on Instantiations

The following functions may be called on instantiations:

inst-rulename (instantiation)

which returns the name of the rule of which this is an instantiation.

inst-token (instantiation)

which returns the list of objects (the token) which match the rule. These appear
in reverse order to the conditions they match.

inst-bindings (instantiation)

which returns an a-list of the variables matched in the rule and their values.

6.1.1.2 A Simple Example

This meta-rule displays the conflict set in a menu to the user and asks for one
to be selected by hand on each cycle. Note that we have to check both that
there were some instantiations available, and that the user selected one (rather
than clicking on the Abort button).

(defrule manual-context :backward
 ((manual-context)
 <--
 (start-cycle)
 (conflict-set ?conflict-set)
 (test ?conflict-set)
 ; are there any instantiations?
 ((select-instantiation ?conflict-set)
 ?instantiation)
 (test ?instantiation)
 ; did the user pick one?
 (fire-rule ?instantiation)
 (cut)
 (manual-context)))
 67

6 Advanced Topics

68
where the function select-instantiation could be defined as

(defun select-instantiation (conflict-set)
 (tk:scrollable-menu conflict-set
 :title "Select an Instantiation:"
 :name-function #'(lambda (inst)
 (format nil "~S: ~S"
 (inst-rulename inst)
 (inst-bindings inst))))

Now a context could be defined by

(defcontext a-context :strategy ()
 :meta ((manual-context)))

6.1.1.3 A Simple Explanation Facility

Meta-rules can also be used to provide an explanation facility. A full imple-
mentation of the explanation facility described here is included among the
examples distributed with KnowledgeWorks, and is given also in
Appendix B.2, “Explanation Facility”

Suppose we have a rule about truck scheduling of the form

(defrule allocate-truck-to-load :forward
 (load ?l size ?s truck nil destination
 ?d location ?loc)
 (test (not (eq ?d ?loc)))
 (truck ?t capacity ?c load nil location ?loc)
 (test (> ?c ?s))
 -->
 (assert (truck ?t load ?l))
 (assert (load ?l truck ?t)))

and we wish to add an explanation by entering a form like

6.1 Control Flow
(defexplain allocate-truck-to-load
 :why ("~S has not reached its destination
 ~S and ~ does not have a truck
 allocated, ~ ~S does not have a load
 allocated, and ~ with capacity ~S is
 able to carry the load, ~ and both
 are at the same place ~S"
 ?l ?d ?t ?c ?loc)
 :what ("~S is scheduled to carry ~S to ~S"
 ?t ?l ?d)
 :because ("A customer requires ~S to be
 moved to ~S" ?l ?d))

where the :why form explains why the rule is allowed to fire, the :what form
explains what the rule does and the :because gives the ultimate reason for
firing the rule.

The stages in the implementation are as follows:

• Define a macro called defexplain to store the explanation information
in, say, a hash-table keyed against the rule name

• Define a function add-explanation takes an instantiation, fetches the
explanation information from the hash-table and the variable bindings
in the instantiation, and adds the generated explanations to another
global data structure, something like:

(defun add-instantiation (inst)
 (let ((explain-info
 (gethash (inst-rulename inst)
 explain-table)))
 (when explain-info
 (do-the-rest explain-info
 (inst-bindings inst))))))

• Implement graphical tools to browse the resulting explanations

• Define a meta-interpreter for which will produce explanations, for
example:
 69

6 Advanced Topics

70
(defrule explain-context :backward
 ((explain-context)
 <--
 (start-cycle)
 (instantiation ?inst)
 ((add-explanation ?inst))
 (fire-rule ?inst)
 (cut)
 (explain-context)))

6.1.1.4 Reasoning with Certainty Factors

Another application of meta-rules is in the manipulation of uncertainty. A full
implementation of the uncertain reasoning facility described below is
included among the examples distributed with KnowledgeWorks, and also in
Appendix B.3, “Uncertain Reasoning Facility”.

In this example, we wish to associate a certainty factor with objects in a manner
similar to the MYCIN system (see Rule-Based Expert Systems, B. G. Buchanan
and E. H. Shortliffe, Addison-Wesley 1984). When we assert an “uncertain”
object we wish it to acquire the certainty factor of the instantiation which is fir-
ing. We define the certainty factor of an instantiation to be the certainty factor
of all the objects making up the instantiation multiplied together. Addition-
ally, we wish rules to have an implication strength associated with them which
is a multiplicative modifier to the certainty factor obtained by newly asserted
uncertain objects. The general approach is as follows:

• Define global variables *c-factor* to hold the certainty factor of the
current instantiation and *implic-strength* to hold the implication
strength of the rule, and a class of “uncertain” KnowledgeWorks
objects:

(def-kb-class uncertain-kb-object ()
 ((c-factor :initform (* *c-factor* *implic-strength*)
 :accessor object-c-factor)))

The uncertain objects should contain this class as a mixin.

• Define a function to obtain the certainty factor of instantiations:

(defun inst-c-factor (inst)
 (reduce '* (inst-token inst) :key 'object-c-factor))

6.1 Control Flow
• Define a conflict resolution tactic to prefer either more or less certain
instantiations (See Section 6.1.2, “User-definable Conflict Resolution”
for details).

• Define a meta-rule to set the global certainty factor to the certainty
factor of the instantiation about to fire:

(defrule uncertain-context :backward
 ((uncertain-context)
 <--
 (start-cycle)
 (instantiation ?inst)
 ((setq *c-factor* (inst-c-factor ?inst)))
 (fire-rule ?inst)
 (cut)
 (uncertain-context)))

• Define a function implication-strength which sets the variable *implic-
strength* so that rules may set their implication strength by calling the
action:

 ((implication-strength <number>))

A rule could be defined similarly to:

(defrule my-rule :forward
 (my-class ?obj1)
 (my-class ?obj2)
 -->
 ((implication-strength 0.6))
 (assert (my-class ?obj3)))

where the certainty factor of the new object ?obj3 will automatically
become:

(* (object-c-factor ?obj1) (object-c-factor ?obj2) 0.6)

While this is an extremely simplistic version of uncertain reasoning, it sug-
gests how a more elaborate treatment might be approached.
 71

6 Advanced Topics

72
6.1.2 User-definable Conflict Resolution

A conflict resolution strategy is a list of conflict resolution tactics. A conflict
resolution tactic is a function which takes as arguments two rule instantia-
tions, and returns t if and only if the first is preferred to the second, otherwise
NIL. A conflict resolution tactic may be defined by

(deftactic <tactic-name> {<type>} <lambda-list> [<doc-string]
<body>)

where <tactic-name> is the name of the tactic and of the function being
defined which implements it, and <lambda-list> is a two argument lambda-
list. <type> may be either :static or :dynamic, defaulting to :dynamic. A
dynamic tactic is one which looks into the objects which match the rule to
make up the instantiation; a static one does not. For example, a tactic which
prefers instantiations which match, say, truck objects to instantiations which
do not could be defined as static. However, if it looks into the slot values of the
truck object it should be defined as dynamic. Static tactics are treated more
efficiently but wrongly declaring a tactic as static will lead to incorrect conflict
resolution. If doc-string is given, then it should be a string. The value can be
retrieved by calling the function documentation with doc-type function.

It is an absolute requirement that there exist no instantiations for which

(<tactic-name> <instantiation1> <instantiation2>)

and

(<tactic-name> <instantiation2> <instantiation1>)

both return t. Consequently, for any single given instantiation

(<tactic-name> <instantiation> <instantiation>)

must return nil.

The function which defines a conflict resolution tactic should be computation-
ally cheap as it is used repeatedly and frequently to compare many different
pairs of instantiations.

6.1.2.1 Examples

The following tactic prefers instantiations with truck objects to ones without

6.1 Control Flow
(deftactic prefer-trucks :static (inst1 inst2)
 (flet ((truck-p (obj) (typep obj 'truck)))
 (and (some #'truck-p (inst-token inst1))
 (notany #'truck-p (inst-token inst2)))))

Note that this tactic would be incorrect if we did not check that the second
instantiation does not refer to any trucks (otherwise it would always return t
if both instantiations contain trucks). It can safely be declared as static as it
does not look into the slots of the objects which make up the instantiation.

This tactic implements alphabetical ordering on rule names:

(deftactic alphabetical-rulename :static (inst1 inst2)
 (string< (symbol-name (inst-rulename inst1))
 (symbol-name (inst-rulename inst2))))

This tactic prefers instantiations which bind the variable ?x to zero:

(deftactic prefer-?x=0 :dynamic (inst1 inst2)
 (flet ((fetch-?x (inst)
 (cdr (assoc '?x (inst-bindings inst)))))
 (and (eql 0 (fetch-?x inst1))
 (not (eql 0 (fetch-?x inst2))))))

Note that again we must not forget to check that ?x is not zero in the second
instantiation. This tactic must be declared dynamic as ?x must have been
instantiated from the slots of one of the matched objects.

The final tactic is for the example of uncertain reasoning and implements a
method of preferring “more certain” instantiations:

(deftactic certainty :dynamic (inst1 inst2)
 (> (inst-c-factor inst1) (inst-c-factor inst2)))

This tactic must be dynamic if the certainty factors of objects can be modified
after creation. If this is forbidden the tactic could be defined as static. Then the
context defined by

(defcontext my-context :strategy (priority certainty))

will prefer instantiations of rules with higher priority or, if this does not dis-
criminate sufficiently, instantiations which are "more certain".
 73

6 Advanced Topics

74
6.2 Optimization

6.2.1 Forward Chaining

6.2.1.1 KnowledgeWorks Structures

A CLOS class may be replaced by a structure for increased speed when all the
power of CLOS is not needed. Within the rule interpreter the structure
behaves like a CLOS class which:

• Has an initform of nil for each slot

• Has the keyword version of the slot name as initarg for each slot

• Has only single inheritance

• Has no methods defined on it

• Should not be modified from Lisp after its creation.

A KnowledgeWorks structure is defined by the macro

(def-kb-struct <class-spec> <slot-spec>*)

where the arguments are the same as for defstruct except that in <class-
spec> only the options :include and :print-function are allowed. A struc-
ture may only be included in a KnowledgeWorks structure if it too is a Knowl-
edgeWorks structure defined by def-kb-struct. All the functions normally
provided by defstruct (accessors, a predicate etc.) are generated. An instance
of the structure class may be created by the generic function

(make-instance <class-name>
 {<slot-specifier> <value>}*)

where <slot-specifier> is the keyword version of the slot name, as with any
structures, and <value> is the value the slot is to take, otherwise defaulting to
the value specified in the def-kb-struct form. If created from Lisp by any
means other than make-instance (for example, by the automatically defined
make-<structure-name> constructor), the inference engine will not know
about the structure.

Once created, structures must not be modified directly from Lisp as this will
corrupt the state of the forward chaining inference engine. For example:

6.2 Optimization
(def-kb-struct train position speed)
(def-kb-struct signal position colour)
(make-instance 'train :position 0 :speed 80)
(make-instance 'signal :position 10 :colour 'red)

defines KnowledgeWorks structures for trains and signals and makes an
instance of each. Note that they are not fully-fledged CLOS objects but are
analogous to working memory elements in OPS5.

6.2.1.2 Efficient Forward Chaining Rule Preconditions

Forward chaining rules are more efficient if the more restrictive preconditions
(that is, the ones which will have fewer matches) are written first. Computa-
tionally cheap Lisp tests should be used wherever possible as they reduce the
search space of the rule interpreter. The Lisp tests should where possible be
broken into sufficiently small pieces that they can be applied as early on as
possible.

For example, the precondition fragment

(train ?t position ?p1)
(test (> ?p1 5))
(signal ?s position ?p2)
(test (> ?p2 6))

is better than

(train ?t position ?p1)
(signal ?s position ?p2)
(test (and (> ?p1 5) (> ?p2 5)))

because in the first example the Lisp tests can be applied directly to the trains
and signals respectively before looking at combinations of trains and signals,
whereas in the second case all the combinations must be produced before the
Lisp test can be applied. Simply separating the tests is enough for the rule
compiler to apply them to the right object base matches — the precise order of
the tests is unimportant.
 75

6 Advanced Topics

76
6.2.2 Conflict Resolution

6.2.2.1 Use of Contexts

The single most significant way to improve conflict resolution time is to
divide the rulebase up into contexts. The time taken by conflict resolution is
dependent on the total number of instantiations of all the rules in the context
so the fewer rules in each context, the more efficient conflict resolution will be.

6.2.2.2 Optimization of the Strategy

A conflict resolution strategy may be optimized by combining the constituent
tactics in a more effective manner. There are three different types of conflict
resolution tactic:

• Rule-defined (meaning the tactic relies only on the rule of the instantia-
tion and on nothing else), including priority, -priority, order, -order,
specificity and -specificity

• Static (meaning the tactic does not look into the slots of the matched
objects which make up the instantiation), including recency and -
recency, and

• Dynamic (meaning the tactic may look into the objects making up the
instantiation), including mea, -mea, lex and -lex.

KnowledgeWorks is best able to optimize rule-defined tactics and least able to
optimize dynamic tactics. The optimizations for a particular type of tactic can
only be applied if it is preceded only by tactics which can be optimized to the
same degree (or better). For example, in the strategy (recency priority), the
tactic priority would only be optimized as a static tactic. In the strategy
(priority mea recency), priority can be optimized as a rule-defined tactic
but recency will be treated as a dynamic tactic.

Some final points to bear in mind:

• Tactics which tend to prefer existing instantiations over newer ones (for
example -mea, -lex and -recency) will degrade performance

• recency and lex have similar functionality but recency is more effi-
cient.

6.2 Optimization
6.2.3 Backward Chaining

6.2.3.1 Pattern Matching

The KnowledgeWorks Backward Chainer indexes clauses for a backward rule
based on the first argument. If the first arguments to backward rule clauses
are distinct non-variables, the backward chainer can pre-select possible
matching clauses for a call.

For example, in the following rule:

(defrule age-of :backward
 ((age-of charlie 30) <--)
 ((age-of william 25) <--)
 ((age-of james 28) <--))

The call: (age-of james ?x) would jump directly to the third clause and bind
?x to 28 without trying the other two.

The call: (age-of tom ?x) would fail immediately without doing any pattern
matching.

Clauses are distinguished first by the types and then the values of their first
arguments.

6.2.3.2 Tail Recursion

The KnowledgeWorks Backward Chainer supports the transformation of
“tail-recursive” calls into jumps. Thus, stack overflow can be avoided without
resorting to “repeat, fail” loops in most cases. For example, given the defini-
tion:

(defrule run-forever :backward
 ((run-forever)
 <--
 (run-forever)))

the call: (run-forever) will run forever without generating a stack over-
flow. Note that this optimization is not limited to recursive calls to the same
rule. The last call of any rule will be compiled as a jump, drastically reducing
stack usage.
 77

6 Advanced Topics

78
6.2.3.3 Cut

The use of “cut” is a well known performance enhancement for Prolog-style
rules. In KnowledgeWorks it does more than reduce the time spent in search.
When a “cut” is invoked, all the stack space between the initial call to the con-
taining rule and the current stack location is reclaimed immediately, and can
have a significant impact on the total space requirements of a program.

6.3 Use of Meta-Classes
Objects of meta-classes other than standard-class may be made available to
KnowledgeWorks by including the KnowledgeWorks mixin standard-kb-
object. This requires

• The existence of a validate-superclass method allowing standard-
kb-object (meta-class standard-class) to be a superclass of the class
being defined with a different meta-class

• That the meta-class in question does not implement any particularly
strange behavior on slot access, for example, if querying a slot value
results in setting it.

6.3.1 Example

A meta-class standard-kb-class could be defined as a KnowledgeWorks
class. New KnowledgeWorks classes (or even ordinary non-KnowledgeWorks
classes) could be defined with this meta-class. KnowledgeWorks could then
reason about the instances of the classes and about the class objects them-
selves. The code below implements this:

(def-kb-class standard-kb-class (standard-class) ())
(defmethod validate-superclass
 ((class standard-kb-class)
 (superclass standard-class))
 t)
(def-kb-class foo () ((slot))
 (:metaclass standard-kb-class))

Then when the following rule fires:

6.4 Logical Dependencies and Truth Maintenance
(defrule find-kb-class :forward
 (standard-kb-class ? clos::name ?n)
 -->
 ((format t "~%I can reason about class ~s" ?n)))

it will output:

I can reason about class FOO

6.4 Logical Dependencies and Truth Maintenance
When a rule creates an object that depends on a specific set of preconditions, it
is sometimes necessary to erase that object when those preconditions no
longer hold. This is an example of truth maintainence.

KnowledgeWorks provides a mechanism to track logical dependencies
between objects and preconditions which cause any dependent objects to be
erased automatically. This is achieved using a logical clause in a forward
chaining rule, with a precondition of the form

(logical <forward-condition>+)

The enclosed forward conditions in this clause are matched as normal, but if
the rule fires and creates new objects (by assert or make-instance) then these
objects are associated with the enclosed conditions. If the conditions are found
to be false in the future, then the created objects are erased automatically (see
erase, page 96).

NB: There can be at most one logical clause in a rule (though it can contain
multiple subclauses) and it must be the first clause in the rule. Other clauses
can follow the logical clause, but they are not part of the logical dependency.
 79

6 Advanced Topics

80
6.4.1 Example

Given the following classes and rules

(def-kb-class number-object ()
 ((value :initarg :value)))

(def-kb-class have-some-large-numbers ()
 ())

(defrule notice-a-large-number :forward
 (logical (number-object ? value ?value)
 (test (> ?value 100)))
 -->
 (assert (have-some-large-numbers ?)))

then a have-some-large-numbers object will be created when a number larger
than 100 exists:

(setq n1 (make-instance 'number-object :value 10))
(infer)
(any '?x '(have-some-large-numbers ?x)) ==> false
(setf (slot-value n1 'value) 200) ; this is large
(infer)
(any '?x '(have-some-large-numbers ?x)) ==> true

In addition, when the large number becomes smaller, the have-some-large-
numbers object will be erased again:

(setf (slot-value n1 'value) 55)
(infer)
(any '?x '(have-some-large-numbers ?x)) ==> false

because a logical dependency was tracked between the preconditions

(number-object ? value ?value)
(test (> ?value 100)

and the have-some-large-numbers object.

6.5 Inferencing States
An inferencing state represents all the state needed to run the forward chaining
interpreter, including the object base, the current cycle number and the set of
unfired instantiations. It does not include rule or context definitions or any
backward chaining state information.

6.5 Inferencing States
6.5.1 Creating and Maintaining Inferencing States

Inferencing states are first-class objects that can be created and destroyed as
required. Each inferencing state must have a unique name (as compared with
eql) and initially there is a single inferencing state named :default.

The function make-inferencing-state makes a new empty inferencing state.
Inferencing states must be destroyed with destroy-inferencing-state when
no longer needed, to release the memory that they use.

Inferencing states can be found using the function find-inferencing-state
and the function list-all-inferencing-states can be used to make a list of
all known inferencing states.

6.5.2 The Current Inferencing State

The value of the variable *inferencing-state* is known as the current infer-
encing state. Its value can be changed before calling KnowledgeWorks func-
tions, but should not be changed within the body of a rule.

Some operations, such as object creation, slot modification, reset and infer
only affect the current inferencing state. Backward chaining operations that
match the object base only find objects from the current inferencing state.

Operations that change rules or contexts, such as defrule and clear-all,
affect all inferencing states.

6.5.3 Uses of Inferencing States

In many cases, a single inferencing state is sufficient and the initial inferencing
state named :default can be used without any special effort.

To allow several independent inferencing operations to be performed simulta-
neously, multiple inferencing states must be managed explicitly. Some typical
situations are described below.

6.5.3.1 Multiple threads

By binding *inferencing-state* around all KnowledgeWorks operations in
a thread’s main function as in the example below, its value can be unique to
each thread.
 81

6 Advanced Topics

82
(defun test-1-counter (name)
 (let* ((*inferencing-state* nil)
 (step (1+ (random 10)))
 (limit (* step (+ 2000 (random 100)))))
 (unwind-protect
 (progn
 (setq *inferencing-state*
 (make-inferencing-state name))
 (make-instance 'counter
 :value limit
 :step step)
 (infer))
 (destroy-inferencing-state *inferencing-state*))))

(mp:process-run-function (format nil "Test ~D" index)
 '()
 'test-1-counter
 (gensym)

6.5.3.2 Interleaved in a Single Thread

By binding *inferencing-state* around specific KnowledgeWorks opera-
tions in a function as in the example below, multiple inferencing states can be
maintained within a single thread.

(defun test-stepping-single-context ()
 (let ((state1 (make-inferencing-state 'state1))
 (state2 (make-inferencing-state 'state2)))
 (unwind-protect
 (progn
 (let ((*inferencing-state* state1))
 (make-instance 'step-controller
 :kb-name 'stepper-one-a))
 (let ((*inferencing-state* state2))
 (make-instance 'step-controller
 :kb-name 'stepper-one-b))
 (loop repeat 10
 do
 (let ((*inferencing-state* state1))
 (infer))
 (let ((*inferencing-state* state2))
 (infer))))
 (destroy-inferencing-state state1)
 (destroy-inferencing-state state2))))

7

7 Reference Guide
The symbols documented in the following pages are all external in the KW
package unless stated otherwise. They are listed in alphabetical order.

all-debug Function

Summary Turns debugging facilities on.

Signature all-debug

Description Turns on all KnowledgeWorks debugging facilities. This
means that rules and contexts can be single stepped and
monitored, and a record is kept of whenever objects are cre-
ated or modified.

This should be called before compiling any rules or contexts
that are to be debugged.

Examples (all-debug)

See also no-debug
83

7 Reference Guide

84
any Function

Summary Return the first match of a backward chaining goal.

Signature any pattern-to-instantiate goal-to-prove => result, successp

Arguments pattern-to-instantiate

A list or symbol.

goal-to-prove Any backward chaining goal.

Values result nil or a value matching pattern-to-instantiate

successp A boolean.

Description The backward chaining inference engine is started to look for
any set of bindings which satisfy goal-to-prove. Using those
bindings, pattern-to-instantiate is instantiated and returned.

Two values are returned. The second value indicates with t
that a proof was found, or with nil that no proof exists. In
the former case, the first value is the instantiated version of
pattern-to-instantiate, in the latter case, the first value is nil.

Any subgoals that match the object base will only find objects
from the current inferencing state.

Examples (any '(?x is in (1 2 3)) '(member ?x (1 2 3)))

returns (1 IS IN (1 2 3)), T

(any '(?truck is a truck) '(truck ?truck))

returns (#<TRUCK TRUCK5> IS A TRUCK), T

See also findall

assert Backward Chaining Goal

Summary Creates or modifies objects in the object base.

Signature assert (class-name variable {slot-name term}*)

Arguments class-name The name of a class.

variable A variable beginning with ?.

slot-name The name of a slot in the class-name.

term An expression.

Description The class-name must be the name of a class of objects known
to KnowledgeWorks. Each term is an expression composed of
Lisp data structures and KnowledgeWorks variables.

If variable is unbound a new instance of class-name is created
with each named slot-name initialized to the value of the cor-
responding term.

If variable is bound, that bound instance has its named slots
modified to contain the values of the term corresponding to
each slot-name. It is an error if the bound object is not of the
named class.

It is an error to put an unbound variable into a slot of an
object in the object base.

Only objects in the current inferencing state will be affected.

Examples (assert (truck ?truck driver ?driver))
(assert (possible-trucks ? trucks (?truck . ?trucks))

See also erase

clear-all Function

Summary Clears all contexts, rules and objects.

Signature clear-all
 85

7 Reference Guide

86
Description The function clear-all clears all contexts, rules and objects.
The list of KnowledgeWorks classes remains unaffected. The
default context default-context is not removed, but all
rules in it are.

The function affects all inferencing states.

Examples (clear-all)

See also clear-rules

reset

clear-rules Function

Summary Clears all contexts and rules.

Signature clear-rules

Description The function clear-rules clears contexts and rules. The list
of KnowledgeWorks classes and the object base remains
unaffected. The default context default-context is not
removed, but all rules in it are.

This function affects all inferencing states.

Examples (clear-rules)

See also clear-all

reset

conflict-set Backward Chaining Goal

Summary Finds the current meta-interpreter rule instantiations.

Signature conflict-set variable

Arguments variable An unbound KnowledgeWorks variable
introduced by ?.

Description This backward chaining goal is only relevant when writing a
meta-interpreter for a context. It binds variable to the list of all
existing rule instantiations in the currently executing context.
This list is in the order preferred by the conflict resolution
strategy for the context.

Examples (conflict-set ?conflict-set)

See also instantiation

fire-rule

context Backward Chaining Goal

Summary Adds new contexts to the agenda.

Signature context context-list

Arguments context-list A list of context names.

Description The given list of contexts in context-list is placed on top of the
agenda (the context stack). The current context is not
changed. It is an error if the named contexts do not exist.

If context-list contains variables, then they must be already
bound.

Examples (context (my-context))
(context (?x ?y)) ; if ?x ?y bound to context names

See also return
 87

7 Reference Guide

88
current-cycle Function

Summary Returns the current forward chaining cycle number.

Signature current-cycle => cycle-number

Values cycle-number An integer.

Description Returns the current cycle number of the forward chaining
rule interpreter in the current inferencing state. If the forward
chaining rule interpreter is not running, then it returns the
total number of cycles executed by the forward chaining rule
interpreter the last time it ran. If the forward chaining rule
interpreter has not run at all, then it return zero.

See also *inferencing-state*

cut Backward Chaining Goal

Summary The standard prolog predicate that stops backtracking.

Signature cut

Description cut is a standard prolog predicate. When first called it
succeeds and freezes certain choices made by the backward
chainer up to this point. It may no longer attempt to resatisfy
any of the goals between the start of clause and the cut, and
it may not attempt to use any other clauses to satisfy the
same goal.

Examples (defrule nice :backward
 ((nice ?x)
 <--
 (rottweiler ?x)
 (cut)
 (fail))
 ((nice ?x) <--))

implements “everything is nice unless it is a rottweiler”. First
the backward chainer will attempt to prove (nice fido)
with the first clause. If fido is a rottweiler the cut then pre-
vents the backward chainer from using the second clause
which says “everything is nice”. The fail ensures that (nice
fido) fails.

See also fail

cycle Symbol Macro

Summary Deprecated.

Description Deprecated. New code should use current-cycle.

Prior to LispWorks 5.0, *cycle* was a variable.

See also current-cycle

def-kb-class Macro

Summary Defines a class for use in the object base.

Signature def-kb-class class-name superclass-list slot-descriptions &rest
options => class

Arguments The arguments are identical to those for defclass.

Values class The named class object.

Description Defines a new CLOS class as defclass does. However, if
none of the given superclasses is a subclass of standard-kb-
object, then standard-kb-object is added to the list of
superclasses.
 89

7 Reference Guide

90
Examples (def-kb-class vehicle () ((driver :initarg :driver)))
(def-kb-class truck (vehicle)
 ((load :accessor truck-load)))

See also def-named-kb-class

def-kb-struct

def-kb-struct Macro

Summary Defines a structure class for use in the object base.

Signature def-kb-struct name-and-options {slot-description}* => name

Arguments The arguments are as for defstruct, except that in name-and-
options the only valid options are :include and :print-
function.

Values name The name of the structure class.

Description Defines a KnowledgeWorks structure class. Objects of these
classes are analogous to Lisp structures except that they may
be used in rules similarly to CLOS objects.

Examples (def-kb-struct start)
(def-kb-struct (named-kb-struct
 (:print-function print-named-kb-struct))
 (name (gensym 'named-kb-struct)))

(def-kb-struct (possible-trucks-for-load
 (:include named-kb-struct))
 load trucks)

See also def-kb-class

def-named-kb-class Macro

Summary Defines a class of named objects for use in the object base.

Signature def-named-kb-class class-name superclass-list slot-descriptions
&rest options => class

Arguments The arguments are identical to those for defclass.

Values class the named class object

Description Defines a new CLOS class as defclass does. However, if
none of the given superclasses is a subclass of named-kb-
object, then named-kb-object is added to the list of super-
classes. The class inherits a name slot kb-name of which the
initialization form (:initform) generates a symbol from the
class name using (gentemp class-name).

Examples (def-named-kb-class vehicle ()
 ((driver :initarg :driver)))
(def-named-kb-class truck (vehicle)
 ((load :accessor truck-load)))

See also def-kb-class

def-kb-struct

get-kb-object

kb-name

named-kb-object

defcontext Macro

Summary Defines a context.

Signature defcontext context-name &key (refractoriness t) (auto-return t)
strategy meta documentation

Arguments context-name The name of the context being defined.

refractoriness A boolean.

auto-return A boolean.

strategy A list of symbols.
 91

7 Reference Guide

92
meta A list of actions.

documentation A string.

Description Defines a context named context-name. If a context of that
name already exists then it, and all the rules in it, are first
removed.

If refractoriness is nil then a rule instantiation remains eligible
to fire again after firing once. If refractoriness is t (the default)
then each rule instantiation will only fire once.

The auto-return indicates, when there are no more rules to be
fired in the context, whether to signal an error or simply to
pass control to the next context on the agenda. The default
value t passes control on without an error.

The strategy is the conflict resolution strategy for the context,
consisting of a list of tactic names.

The meta is a list of actions which make up the optional meta-
interpreter for the context.

If documentation is given, then it should be a string. The value
can be retrieved by calling the function documentation with
doc-type context.

Examples (defcontext my-context :strategy (priority recency))
(defcontext another-context :strategy (order)
 :meta ((start-cycle)
 (instantiation ?inst)
 (fire-rule)
 (cut)
 (another-context)))

See also standard-context

-lex

lex

-mea

mea

-order

order

-priority

priority

-recency

recency

-specificity

specificity

defrule Macro

Summary Defines a rule.

Signature defrule rule-name direction [doc-string] &rest body => rule-name

Arguments rule-name A symbol.

direction Either :forward or :backward.

doc-string An optional string.

body Forms as described in Chapter 3, Rules.

Values rule-name A symbol.

Description Defines a rule named rule-name (which must be distinct from
any other rule name, context name or KnowledgeWorks class
name). If direction is :forward a forward chaining rule is
defined, if :backward a backward chaining rule is defined. If
doc-string is given, then it should be a string. The value can be
retrieved by calling the function documentation with doc-
type rule.

A full description is given in Chapter 3, Rules.
 93

7 Reference Guide

94
Examples (defrule move-train :forward :context trains
 (train ?train position ?train-pos)
 (signal ?signal position ?signal-pos colour green)
 (test (= ?signal-pos (1+ ?train-pos)))
 -->
 ((format t "~%Train moving to ~S" ?signal-pos))
 (assert (signal ?signal colour red))
 (assert (train ?train position ?signal-pos)))
(defrule link-exists :backward
 ((link-exists ?town1 ?town2)
 <--
 (or (link ?link town1 ?town1 town2 ?town2)
 (link ?link town2 ?town1 town1 ?town2))
 (cut))
 ((link-exists ?town1 ?town2)
 <--
 (route-exists ?town1 ?town2)))

deftactic Macro

Summary Defines a tactic function for use in context strategies.

Signature deftactic tactic-name type lambda-list &body body => tactic-
name

Arguments tactic-name A symbol.

type Either :static or :dynamic.

lambda-list A two argument lambda list.

body A function body.

Values tactic-name A symbol.

Description Defines a new conflict resolution tactic named tactic-name.
The type of the tactic may be :static if the body does not
look into the slots of the objects making up the instantiation,
otherwise :dynamic. The lambda-list binds to two instantia-
tion objects and the function body body should return non-nil

if and only if the first instantiation object is preferred to the
second. deftactic also defines a function of the same and
body can be preceded by a documentation string.

The newly defined tactic may be used as any in-built tactic.

Examples (deftactic prefer-trucks :static (inst1 inst2)
 (flet ((truck-p (obj) (typep obj 'truck)))
 (and (some #'truck-p (inst-token inst1))
 (notany #'truck-p (inst-token inst2)))))

The new tactic may be used in a defcontext form:

(defcontext my-context :strategy (prefer-trucks))

See also inst-bindings

inst-token

inst-rulename

defcontext

destroy-inferencing-state Function

Summary Destroys an inferencing state.

Signature destroy-inferencing-state name-or-state

Arguments name-or-state Any object.

Description Destroys an inferencing state named by name-or-state.

If name-or-state is and inferencing state, then it is destroyed.
Otherwise, any inferencing state with that name (as com-
pared using eql) is destroyed.

It is an error to destroy the current inferencing state.

Examples (destroy-inferencing-state ’my-state)
 95

7 Reference Guide

96
See also find-inferencing-state

inferencing-state

inferencing-state-name

list-all-inferencing-states

make-inferencing-state

erase Backward Chaining Goal

Summary Erases an object from the object base.

Signature erase variable

Arguments variable A a KnowledgeWorks object.

Description The variable must be bound to a KnowledgeWorks CLOS
object or a KnowledgeWorks structure.

The given object is removed from the object base of the cur-
rent inferencing state.

Examples (erase ?x) ; ?x bound to an object

See also assert

fail Backward Chaining Goal

Summary The standard prolog predicate that always fails.

Signature fail

Description This goal always fails. It is sometimes used with cut.

Examples (defrule nice :backward
 ((nice ?x)
 <--
 (rottweiler ?x)
 (cut)
 (fail))
 ((nice ?x) <--))

implements “everything is nice unless it is a rottweiler”.

See also cut

find-inferencing-state Function

Summary Finds a known inferencing state.

Signature find-inferencing-state name &key if-does-not-exist => state

Arguments name Any object.

if-does-not-exist Either :error or :create.

Values state An inferencing state.

Description Finds and returns an inferencing state named by name.

If an inferencing state with the same name already exists (as
compared using eql), it is returned.

Otherwise, the value of if-does-not-exist determines what hap-
pens:

:error A continuable error is signaled. Invoking the
continue restart creates and returns a new
inferencing state.

:create A new inferencing state is created and
returned.

Examples (find-inferencing-state ’my-state)
 97

7 Reference Guide

98
See also destroy-inferencing-state

inferencing-state

inferencing-state-name

list-all-inferencing-states

make-inferencing-state

findall Function

Summary Return all matches of a backward chaining goal.

Signature findall pattern-to-instantiate goal-to-prove => list

Arguments pattern-to-instantiate

A list or symbol.

goal-to-prove Any backward chaining goal.

Values list A list

Description The backward chaining inference engine is started to look for
all sets of bindings which satisfy goal-to-prove. For each of
those bindings, pattern-to-instantiate is instantiated and col-
lected to return a list. The value is nil if nothing goal-to-prove
cannot be satisfied.

Any subgoals that match the object base will only find objects
from the current inferencing state.

Examples (findall '(?x is in (1 2 3)) '(member ?x (1 2 3)))

returns

((1 IS IN (1 2 3))
 (2 IS IN (1 2 3))
 (3 IS IN (1 2 3)))

(findall '(?truck is a truck) '(truck ?truck))

returns

((#<TRUCK TRUCK1> IS A TRUCK)
 (#<TRUCK TRUCK2> IS A TRUCK))

See also any

fire-rule Backward Chaining Goal

Summary .Fires the given meta-interpreter rule instantiation.

Signature fire-rule instantiation

Arguments instantiation An instantiation object.

Description This backward chaining goal is only relevant when writing a
meta-interpreter for a context. It fires the given rule instantia-
tion. It is an error if the passed object is not an instantiation
object.

Examples (fire-rule ?instantiation)

See also start-cycle

instantiation

defcontext

standard-context

get-kb-object Function

Summary Finds a named object in the object base.

Signature get-kb-object object-name => object

Arguments object-name A symbol.

Values object A KnowledgeWorks CLOS object.
 99

7 Reference Guide

100
Description Returns the KnowledgeWorks object named object-name in
the object base of the current inferencing state. If there is no
such object an error results.

Classes of named objects can be defined using the macro
def-named-kb-class.

Examples (get-kb-object 'fred)

See also def-named-kb-class

kb-name

in-interpreter Variable

Summary Allows code to detect when it is running in a rule.

Description The variable is bound to t if the code executing has been
called (directly or indirectly) from the forward chaining rule
interpreter. Otherwise it bound to nil. The value should not
be changed.

Initial Value nil

infer Function

Summary Runs the forward chaining inferencing engine.

Signature infer &key (contexts '(default-context)) => cycle-count

Arguments contexts A list of context names.

Values cycle-count An integer.

Description Runs the forward chaining inference engine in the current
inferencing state, with contexts as the initial agenda. The first
rules to fire will be from the first context listed in contexts
until control is passed on.

The value returned as cycle-count is the total number of cycles
executed (given in current-cycle).

Examples (infer :contexts '(my-context another-context))

See also current-cycle

inferencing-state Variable

Summary The current inferencing state.

Description The value of *inferencing-state* is the current inferencing
state for many KnowledgeWorks functions.

This variable can be bound to a particular inferencing state
before calling other KnowledgeWorks functions, but should
not be changed within the body of a rule.

Initial Value An empty inferencing state named :default.

See also current-cycle

destroy-inferencing-state

find-inferencing-state

inferencing-state-name

list-all-inferencing-states

make-inferencing-state

inferencing-state-name Function

Summary Returns the name of an inferencing state.
 101

7 Reference Guide

102
Signature inferencing-state-name state => name

Arguments state An inferencing state.

Values name Any object.

Description Returns the name of the given inferencing state.

Examples (inferencing-state-name *inferencing-state*)

See also find-inferencing-state

inferencing-state

list-all-inferencing-states

make-inferencing-state

inst-bindings Function

Summary Returns the bindings in a rule instantiation.

Signature inst-bindings instantiation => bindings

Arguments instantiation An instantiation object.

Values bindings An association list.

Description Returns an association list of the variables and their bindings
in the instantiation. The variables are those produced by the
condition part of the forward chaining rule.

Example For an instantiation of a rule with the precondition

(object ? color ?color-value size ?size)

the value returned by

(inst-bindings inst)

might be

((?color-value . :red) (?size . 20))

See also conflict-set

deftactic

inst-rulename

inst-token

instantiation

inst-rulename Function

Summary Returns the rule name of a rule instantiation.

Signature inst-rulename instantiation => rulename

Arguments instantiation An instantiation object.

Values rulename A symbol which is the name of a rule.

Description Returns the rule name of the instantiation (the name of the
rule of which this is an instantiation).

See also conflict-set

inst-bindings

deftactic

inst-token

instantiation

inst-token Function

Summary Returns the token of a rule instantiation.

Signature inst-token instantiation => token

Arguments instantiation An instantiation object.
 103

7 Reference Guide

104
Values token A list of objects.

Description Returns the token of the instantiation. The token is the list of
objects that match the condition part of the forward chaining
rule. This list of objects is in reverse order to the order in
which the conditions appear in the rule. For example, if the
forward chaining conditions are

(train ?train)
(signal ?signal)

then the token will have the form (signal-object train-object).

See also conflict-set

deftactic

inst-rulename

inst-bindings

instantiation

instantiation Backward Chaining Goal

Summary Find the next meta-interpreter rule instantiation that will fire.

Signature instantiation variable

Arguments variable An unbound variable introduced by ?.

Description This backward chaining goal is only relevant when writing a
meta-interpreter for a context. It binds variable to the next pre-
ferred instantiation from the conflict set of the currently exe-
cuting context.

This goal may be satisfied repeatedly each time returning the
next instantiation. When no instantiations are left, it fails.

Examples (instantiation ?instantiation)

See also conflict-set

inst-bindings

inst-rulename

inst-token

start-cycle

fire-rule

defcontext

standard-context

list-all-inferencing-states Function

Summary Returns a list of all the known inferencing states.

Signature list-all-inferencing-state => states

Values states A list of inferencing states.

Description Returns a list of all the known inferencing states. Inferencing
states become known when they are make and are known
until they are destroyed.

Examples (list-all-inferencing-states)

See also destroy-inferencing-state

find-inferencing-state

inferencing-state

inferencing-state-name

make-inferencing-state

kb-name Generic Function

Summary Returns the name of an object.

Signature kb-name object => name
 105

7 Reference Guide

106
Arguments object A KnowledgeWorks named CLOS object

Values name A symbol.

Description Returns the name of object. It is an error if the object is not a
named object. Classes of named objects can be defined using
the macro def-named-kb-class.

Examples (kb-name (get-kb-object 'fred)) ; returns FRED

See also def-named-kb-class

get-kb-object

named-kb-object

kw-class Backward Chaining Goal

Summary Matches all KnowledgeWorks class names.

Signature kw-class term

Arguments term Any backward chaining term.

Description This goal can act as a generator and is resatisfiable. It suc-
ceeds when term is a symbol which is the name of a Knowl-
edgeWorks class. If term is an unbound variable it generates
the names of the KnowledgeWorks classes.

Examples (kw-class truck) ; succeeds if truck is a KW class

(kw-class ?class)
 ; ?class is bound to the name of a KW class

See also def-kb-class

def-kb-struct

def-named-kb-class

-lex Conflict Resolution Tactic / Function

Summary Implements the -lex tactic.

Signature -lex instantiation1 instantiation2 => result

Arguments instantiation1 An instantiation object.

instantiation2 An instantiation object.

Values result A boolean.

Description The function returns true if and only if instantiation1 is pre-
ferred to instantiation2 by the conflict resolution tactic -lex,
otherwise false. The function is intended to be used primarily
by including it in the conflict resolution strategy for a context.

Examples (defcontext my-context1 :strategy (-lex))
(defcontext my-context2 :strategy (priority -lex))

See also defcontext

deftactic

lex

instantiation

conflict-set

fire-rule

lex Conflict Resolution Tactic / Function

Summary Implements the lex tactic.

Signature lex instantiation1 instantiation2 => result

Arguments instantiation1 An instantiation object.

instantiation2 An instantiation object.

Values result A boolean.
 107

7 Reference Guide

108
Description The function returns true if and only if instantiation1 is pre-
ferred to instantiation2 by the conflict resolution tactic lex,
otherwise false. The function is intended to be used primarily
by including it in the conflict resolution strategy for a context.

Examples (defcontext my-context1 :strategy (lex))
(defcontext my-context2 :strategy (priority lex))

See also defcontext

deftactic

-lex

instantiation

conflict-set

fire-rule

make-inferencing-state Function

Summary Makes a new inferencing state.

Signature make-inferencing-state name &key set-current-p if-exists =>
state

Arguments name Any object.

set-current-p A boolean

if-exists Either :error, :supersede or :overwrite.

Values state An inferencing state.

Description Returns an inferencing state named by name.

If an inferencing state with the same name already exists (as
compared using eql), then the value of if-exists determines
what happens:

:error A continuable error is signaled. Invoking the
continue restart causes the existing infer-
encing state to be returned.

:supersede The existing inferencing state is destroyed
and a new one is returned.

:overwrite The existing inferencing state is returned.

If set-current-p is non-nil, then *inferencing-state* is set to
new inferencing state.

Examples (make-inferencing-state ’my-state)

See also destroy-inferencing-state

find-inferencing-state

inferencing-state

inferencing-state-name

list-all-inferencing-states

make-instance Generic Function

Summary Makes a CLOS or KnowledgeWorks structure object.

Signature make-instance class &rest initargs => object

Arguments class A class object or a symbol.

initargs Initialization arguments for the object.

Arguments object A new instance of class.

Description A new instance of the class class is made. The class may be
either a CLOS class or a KnowledgeWorks structure class, in
which case the initargs are the same as those for the automati-
cally defined constructor function of the structure.

The object is added to the object base of the current inferenc-
ing state.

Examples (make-instance 'start)
(make-instance 'driver :location 'london
 :kb-name 'fred)
 109

7 Reference Guide

110
See also def-kb-class

def-kb-struct

def-named-kb-class

-mea Conflict Resolution Tactic / Function

Summary Implements the -mea tactic.

Signature -mea instantiation1 instantiation2 => result

Arguments instantiation1 An instantiation object.

instantiation2 An instantiation object.

Values result A boolean.

Description The function returns true if and only if instantiation1 is pre-
ferred to instantiation2 by the conflict resolution tactic -mea,
otherwise false. The function is intended to be used primarily
by including it in the conflict resolution strategy for a context.

Examples (defcontext my-context1 :strategy (-mea))
(defcontext my-context2 :strategy (priority -mea))

See also defcontext

deftactic

mea

instantiation

conflict-set

fire-rule

mea Conflict Resolution Tactic / Function

Summary Implements the mea tactic.

Signature mea instantiation1 instantiation2 => result

Arguments instantiation1 An instantiation object.

instantiation2 An instantiation object.

Values result A boolean.

Description The function returns true if and only if instantiation1 is pre-
ferred to instantiation2 by the conflict resolution tactic mea,
otherwise false. The function is intended to be used primarily
by including it in the conflict resolution strategy for a context.

Examples (defcontext my-context1 :strategy (mea))
(defcontext my-context2 :strategy (priority mea))

See also defcontext

deftactic

-mea

instantiation

conflict-set

fire-rule

named-kb-object Class

Summary A class that provides named objects.

Superclasses standard-kb-object

Initargs :kb-name The name of the object. The default is com-
puted by calling gentemp with the name of
the class.

Description This class is the mixin class for named KnowledgeWorks
CLOS objects.

Subclasses of named-kb-class are typically defined using the
macro def-named-kb-class.
 111

7 Reference Guide

112
Examples (defclass driver (named-kb-object)
 ((location) (allocated-truck)))

See also get-kb-object

kb-name

def-named-kb-class

standard-kb-object

no-debug Function

Summary Turns debugging facilities off.

Signature no-debug

Description Turns off all KnowledgeWorks debugging facilities. This
means that rules and contexts cannot be single stepped or
monitored, and no record is kept of when objects are created
or modified. Execution speed of the rulebase is improved,
and memory requirements reduced.

This should be called before compiling any rules or contexts
that are to be optimized.

Examples (no-debug)

See also all-debug

not Backward Chaining Goal

Summary A goal that is satisfied when another goal fails.

Signature not {condition}*

Arguments condition Any backward chaining goal.

Description If not is used in a backward chaining goal, it succeeds if the
condition contained within it fails. In this usage, only one con-
dition is allowed.

If not is used in a forward chaining pre-condition, it succeeds
if any of the condition contained within it fail. In this usage,
the conditions may only contain expressions normally
allowed in forward chaining pre-conditions (object base ref-
erences and lisp tests).

Examples (not (truck ?truck driver ?driver) (test ?driver))

See also test

-order Conflict Resolution Tactic / Function

Summary Implements the -order tactic.

Signature -order instantiation1 instantiation2 => result

Arguments instantiation1 An instantiation object.

instantiation2 An instantiation object.

Values result A boolean.

Description The function returns true if and only if instantiation1 is pre-
ferred to instantiation2 by the conflict resolution tactic -order,
otherwise false. The function is intended to be used primarily
by including it in the conflict resolution strategy for a context.

Examples (defcontext my-context1 :strategy (-order))
(defcontext my-context2 :strategy (priority -order))

See also defcontext

deftactic

order
 113

7 Reference Guide

114
instantiation

conflict-set

fire-rule

order Conflict Resolution Tactic / Function

Summary Implements the order tactic.

Signature order instantiation1 instantiation2 => result

Arguments instantiation1 An instantiation object.

instantiation2 An instantiation object.

Values result A boolean.

Description The function returns true if and only if instantiation1 is pre-
ferred to instantiation2 by the conflict resolution tactic order,
otherwise false. The function is intended to be used primarily
by including it in the conflict resolution strategy for a context.

Examples (defcontext my-context1 :strategy (order))
(defcontext my-context2 :strategy (priority order))

See also defcontext

deftactic

-order

instantiation

conflict-set

fire-rule

print-verbose Variable

Summary Controls how much information is printed for an object.

Description Normally objects in KnowledgeWorks are printed out in a
brief form similar to ordinary CLOS objects. If this variable is
set to t then all the slots and slot values are shown in its
printed representation. Note that circularities cannot be
detected.

Initial Value nil

-priority Conflict Resolution Tactic / Function

Summary Implements the -priority tactic.

Signature -priority instantiation1 instantiation2 => result

Arguments instantiation1 An instantiation object.

instantiation2 An instantiation object.

Values result A boolean.

Description The function returns true if and only if instantiation1 is pre-
ferred to instantiation2 by the conflict resolution tactic -
-priority, otherwise false. The function is intended to be
used primarily by including it in the conflict resolution strat-
egy for a context.

Examples (defcontext my-context1 :strategy (-priority))
(defcontext my-context2 :strategy (recency -priority))

See also defcontext

deftactic

priority

instantiation

conflict-set

fire-rule
 115

7 Reference Guide

116
priority Conflict Resolution Tactic / Function

Summary Implements the priority tactic.

Signature priority instantiation1 instantiation2 => result

Arguments instantiation1 An instantiation object.

instantiation2 An instantiation object.

Values result A boolean.

Description The function returns true if and only if instantiation1 is pre-
ferred to instantiation2 by the conflict resolution tactic prior-
ity, otherwise nil. The function is intended to be used
primarily by including it in the conflict resolution strategy for
a context.

Examples (defcontext my-context1 :strategy (priority))
(defcontext my-context2 :strategy (recency priority))

See also defcontext

deftactic

-priority

instantiation

conflict-set

fire-rule

-recency Conflict Resolution Tactic / Function

Summary Implements the -recency tactic.

Signature recency instantiation1 instantiation2 => result

Arguments instantiation1 An instantiation object.

instantiation2 An instantiation object.

Values result A boolean.

Description The function returns true if and only if instantiation1 is pre-
ferred to instantiation2 by the conflict resolution tactic
-recency, otherwise false. The function is intended to be used
primarily by including it in the conflict resolution strategy for
a context.

Examples (defcontext my-context1 :strategy (recency))
(defcontext my-context2 :strategy (priority recency))

See also defcontext

deftactic

recency

instantiation

conflict-set

fire-rule

recency Conflict Resolution Tactic / Function

Summary Implements the recency tactic.

Signature recency instantiation1 instantiation2 => result

Arguments instantiation1 An instantiation object.

instantiation2 An instantiation object.

Values result A boolean.

Description The function returns truel if and only if instantiation1 is pre-
ferred to instantiation2 by the conflict resolution tactic
recency, otherwise false. The function is intended to be used
primarily by including it in the conflict resolution strategy for
a context.
 117

7 Reference Guide

118
Examples (defcontext my-context1 :strategy (recency))
(defcontext my-context2 :strategy (priority recency))

See also defcontext

deftactic

-recency

instantiation

conflict-set

fire-rule

reset Function

Summary Clears all objects from the object base.

Signature reset

Description Clears all KnowledgeWorks objects (both KnowledgeWorks
CLOS objects and KnowledgeWorks structures) from the
object base of the current inferencing state.

The list of KnowledgeWorks classes remains unaffected.

Examples (reset)

See also clear-all

clear-rules

return Backward Chaining Goal

Summary Removes the top-most context from the agenda.

Signature return

Description Takes the topmost context on the agenda and makes it the
current context, discarding the previous current context.
When called from within a rule, rule execution continues to
the end and the next rule to fire will be from the new current
context.

Examples (return)

See also context

signal-kb-name-clash Variable

Summary Controls the behavior if name clashes occur in object creation.

Description Determines behavior when creating a new named KB object
with the same name as an existing KB object.

The possible values are:

:error Signals a error Continuing will replace the
old object with the new object.

:warn Signals a warning and replaces the old
object with the new object.

:quiet Replaces the old object with the new object.

Initial Value :error.

-specificity Conflict Resolution Tactic / Function

Summary Implements the -specificity tactic.

Signature -specificity instantiation1 instantiation2 => result

Arguments instantiation1 An instantiation object.

instantiation2 An instantiation object.
 119

7 Reference Guide

120
Values result A boolean.

Description The function returns truel if and only if instantiation1 is pre-
ferred to instantiation2 by the conflict resolution tactic -spec-
ificity, otherwise false. The function is intended to be used
primarily by including it in the conflict resolution strategy for
a context.

Examples (defcontext my-context1 :strategy (-specificity))
(defcontext my-context2
 :strategy (priority -specificity))

See also defcontext

deftactic

specificity

instantiation

conflict-set

fire-rule

specificity Conflict Resolution Tactic / Function

Summary Implements the specificity tactic.

Signature specificity instantiation1 instantiation2 => result

Arguments instantiation1 An instantiation object.

instantiation2 An instantiation object.

Values result A boolean.

Description The function returns true if and only if instantiation1 is pre-
ferred to instantiation2 by the conflict resolution tactic speci-
ficity, otherwise false. The function is intended to be used
primarily by including it in the conflict resolution strategy for
a context.

Examples (defcontext my-context1 :strategy (specificity))
(defcontext my-context2
 :strategy (priority specificity))

See also defcontext

deftactic

-specificity

instantiation

conflict-set

fire-rule

standard-context Backward Chaining Goal

Summary The standard meta-interpreter context.

Signature standard-context

Description A built-in backward chaining goal which implements a meta-
interpreter for the default (normal) behavior of a context. It is
as if defined by the rule

(defrule standard-context :backward
 ((standard-context)
 <--
 (start-cycle)
 (instantiation ?instantiation)
 (fire-rule ?instantiation)
 (cut)
 (standard-context)))

Examples (defcontext my-context1
 :meta (((format t "~%Entering context MY-CONTEXT1"))
 (standard-context)))

See also defcontext

start-cycle

instantiation

fire-rule
 121

7 Reference Guide

122
standard-kb-object Class

Summary A class of objects for use in the object base.

Superclasses standard-object

Description This class is the mixin class for (unnamed) KnowledgeWorks
CLOS objects.

Subclasses of standard-kb-class are typically defined using
the macro def-kb-class.

Examples (defclass driver (standard-kb-object)
 ((location) (allocated-truck)))

See also def-kb-class

named-kb-object

start-cycle Backward Chaining Goal

Summary Used in the meta-interpreter to start the cycle.

Signature start-cycle

Description This backward chaining goal is only relevant when writing a
meta-interpreter for a context. This goal must be called at the
start of every forward chaining cycle as it performs some
essential housekeeping.

Example (start-cycle)

See also fire-rule

instantiation

defcontext

standard-context

start-kw Function

Summary Starts the KnowledgeWorks programming environment.

Signature start-kw

Description Starts the KnowledgeWorks programming environment from
the initial prompt when the KnowledgeWorks image is
started. If the LispWorks IDE is already running, start-kw
adds the KnowledgeWorks menu so that the podium
becomes the KnowledgeWorks Podium.

Example (start-kw)

test Backward Chaining Goal

Signature test lisp-form

Arguments lisp-form A single lisp form.

Description Succeeds if and only if the lisp-form returns a non-nil value.
Any currently bound variables may be used in the lisp form.

Examples (test (> ?c 10))
(test (not (and (eq ?a ?b) (member ?b ?c))))

undefcontext Macro

Summary Removes a named context and its rules.

Signature undefcontext context-name &rest ignore

Arguments context-name A symbol which names a context.

ignore Ignored arguments.
 123

7 Reference Guide

124
Description Removes the context named context-name and all the rules in
it.

The ignore arguments are provided so that "un" may be
prepended to a context definition in an editor buffer and
evaluated to remove the context.

Examples (undefcontext my-context)

See also defcontext

undefrule Macro

Summary Removes a rule.

Signature undefrule rule-name &rest ignore

Arguments rule-name A symbol which names a rule.

ignore Ignored arguments.

Description Removes the rule named rule-name and any unfired instantia-
tions of that rule.

The ignore arguments are provided so that "un" may be
prepended to a rule definition in an editor buffer and evalu-
ated to remove the rule.

Examples (undefrule my-rule1)

See also defrule

with-rule-actions Macro

Summary Allows rule syntax to be embedded in Lisp code.

Signature with-rule-actions bound-variables &body body => successp

Arguments bound-variables A list of variables (each starting with ?)

body A rule body.

Values successp A boolean.

Description This macro enables rule syntax to be embedded within Lisp.
The body is executed just as if it were the right hand side of a
forward or backward chaining rule. All variables in the body
(each starting with ?) are taken to be unbound unless found
in the list bound-variables, in which case its value is taken from
the Lisp variable of the same name. It is similar to the func-
tion any but can be compiled for efficiency.

The value successp is t if the body succeeds (that is, all clauses
are successfully executed) or nil if any of the clauses fail.

Any subgoals that match the object base will only find objects
from the current inferencing state.

Example (defun my-fn (?x)
 "prints all the lists which append to give ?x and
 then returns NIL"
 (with-rule-actions (?x)
 (append ?a ?b ?x)
 ((format t "~%~S and ~S append to give ~S"
 ?a ?b ?x))
 (fail)))

See also any
 125

7 Reference Guide

126

Appendix A

A Common Prolog
A.1 Introduction

A.1.1 Overview

Common Prolog is a logic programming system within Common Lisp. It con-
forms closely to Edinburgh Prolog and at the same time integrates well with
Lisp. The basic syntax of Common Prolog is Lisp-like, but an Edinburgh
syntax translator is included that provides the ability to use pre-existing code.
The implementation of Common Prolog was motivated by the desire to use
the logic programming paradigm without having to give up the advantages of
a Lisp development environment. Common Prolog is tightly integrated with
Lisp and can be easily used in a mixed fashion with Lisp definitions even
within the same source file. Common Prolog predicates are compiled into Lisp
functions which may then be compiled by a standard Lisp compiler. Substan-
tial effort has gone into providing a powerful debugging environment for
Common Prolog, so that it can be used when building serious applications.
The implementation of Common Prolog is based loosely on the Warren
Abstract Machine (WAM) modified to take advantage of a Lisp environment’s
built in support for control flow and memory allocation. (For more details of
the WAM, see An Abstract Prolog Instruction Set, by David H D Warren, Techni-
cal Note 309, SRI International, October 1983.)
127

128
A.1.1.1 Starting Common Prolog

Common Prolog may be loaded into an image with the function call:

(require "prolog")

This will load the Common Prolog system. If Common Prolog will be used
extensively, it may be worthwhile to save an image with it pre-loaded. Alter-
natively, you may simply insert the call above into your LispWorks initializa-
tion file (usually .lispworks).

For information about saving an image and the LispWorks initialization file,
see the LispWorks Release Notes and Installation Guide.

Note: If you load KnowledgeWorks, then Common Prolog is loaded as part of
this.

A.2 Syntax
Common Prolog uses a Lisp-like syntax in which variables are prefixed with
“?” and normal Lisp prefix notation is used. Goals are represented as either
lists or simple vectors e.g. (reverse (1 2 3) ?x) or #(member ?x (1 2 3)).
A symbol beginning with ? may be escaped by prefixing another ?.i.e. ?foo is
the variable named foo; ??foo is the symbol ?foo.

The definition of append/3 from Prolog:

 append([], X, X).
 append([U|X], Y, [U|Z]) :-
 append(X, Y, Z)

translates to:

 (defrel append
 ((append () ?x ?x))
 ((append (?u . ?x) ?y (?u . ?z))
 (append ?x ?y ?z)))

Unlike many Lisp-based logic systems, Common Prolog uses simple vectors
to represent Prolog structured terms. Thus, functor, arg, and =.. all behave in
a standard fashion:

(arg 2 (foo 3 4) (3 4))
(arg 2 #(foo 3 4) 4)
(functor (foo 3 4) \. 2)
(functor #(foo 3 4) foo 2)
(=.. #(foo 3 4) (foo 3 4))
(=.. (foo 3 4) (\. foo (3 4)))

A.3 Defining Relations
The normal method of defining relations in Common Prolog is to use the
defrel macro:

(defrel <relation name>
 [(declare declaration*)]
 <clause1>
 .
 .
 <clauseN>)

where each <clause> is of the form:

(<clause head>
 <subgoal1>
 .
 .
 <subgoalN>)

and declarations may include: (mode arg-mode*) and any of the normal Lisp
optimization declarations. Mode declarations determine how much clause
indexing will be done on the predicate and can also streamline generated code
for a predicate that will only be used in certain ways. A mode declaration con-
sists of the word “MODE” followed by a mode spec for each argument posi-
tion of the predicate. The possible argument mode specs are:

? Generate completely general code for this arg and don’t
index on it.

?* Generate completely general code and index.

+ Generate code assuming this argument will be bound
on entry and index.
 129

130
- Generate code assuming this argument will be
unbound on entry and don’t index.

The default mode specs are ?* for the first argument and ? for all the rest.

A.4 Using The Logic Interpreter
The Common Prolog system comes with a built-in read-query-print loop
similar to a Prolog interpreter loop. To run it, make sure the common-prolog
package is accessible and type: (rqp). You will be presented with the prompt:
==>. At this point you may type in goal expressions, for example:

|==> (append ?x ?y (1 2))
|
|?X = NIL
|?Y = (1 2)

Now Common Prolog is waiting for you to indicate whether or not you wish
more solutions. If you press Return, you will get the message OK and return to
the top level:

|?X = NIL
|?Y = (1 2)<RETURN>
|
|OK.
|
|==>

A.4.1 Multiple Solutions

If you hit ; (semicolon) following the retrieval of a solution, the system will
attempt to resatisfy your goal:

|?X = NIL
|?Y = (1 2);
|
|?X = (1)
|?Y = (2);
|
|?X = (1 2)
|?Y = NIL;
|
|NO.
|
|==>

When no more solutions remain, NO. is displayed and you are back at the top
level.

A.4.2 Multiple Goals

To request the solution of multiple goals, use: (and <goal1> ... <goalN>)

For example:

|==> (and (member ?x (2 3)) (append (?x) (foo) ?y))
|
|X = 2
|Y = (2 FOO)
|
|OK.
|
|==>

A.4.3 Definitions

It is possible to type logic definitions directly into the interpreter. The result-
ing Lisp code will be compiled in memory and you may use the definition
immediately, for example.:
 131

132
|==> (defrel color
| ((color red))
| ((color blue))
| ((color green)))
|
|<... various compilation messages ...>
|
|YES.
|OK.
|
|==> (color ?x)
|
|?X = RED

A.4.4 Exiting the Interpreter

The Common Prolog interpreter may be exited by typing:

|==> (halt)

A.5 Accessing Lisp From Common Prolog
It is apparent from the Common Prolog syntax that the first element of any
valid goal expression must be a symbol. Common Prolog takes advantage of
this fact and gives a special interpretation to a goal with a list in the first posi-
tion. A list in the car of a goal is treated as a Lisp expression with normal Lisp
evaluation rules. Any logic variables in the expression are instantiated with
their values. (They must be bound). The rest of the goal expression should be a
list of expressions to be unified with the values returned by the Lisp evalua-
tion. Any extra values returned are ignored, and any extra expressions in the
tail of a goal are unified with new unbound variables.

A.5.1 Examples

|==> ((print "foo"))
|
|"foo"
|YES.
|
|==> (and (= ?x 3) ((* ?x ?x) ?y))
 ; Note that "?y" is unified with 9

|?X = 3
|?Y = 9
|
|==> ((* 3 3) 10)

|NO.
|
|==> ((floor 3 4) ?x ?y)
|
|?X = 0
|?Y = 3

|==> ((floor 3 4) ?x)
|
|?X = 0
|
|==> ((* 3 4) ?x ?y)
|
|?X = 12
|?Y = ?0
 ; note that system generated variables look like:
 ; ?<integer>
 133

134
|==> ((typep 3 'integer) ?x)
|
|?X = T
|
|==> ((typep 3 'integer) t)
|
|YES.
|
|==> (and ((floor 5 3) ?x) ((floor 4 3) ?x))
|
|?X = 1
|
|==> ((cons 3 4) (?x . ?y))
|
|?X = 3
|?Y = 4
|
|==> (and (= ?op *) ((list ?op 3 4) ?y) (call (?y ?z)))
|
|?OP = *
|?Y = (* 3 4)
|?Z = 12
|
|==> (and (defrel fact
| ((fact 0 1))
| ((fact ?x ?y)
| ((- ?x 1) ?w)
| (fact ?w ?z)
| ((* ?z ?x) ?y)))
| (fact 10 ?result))
|
|?X = ?0
|?Y = ?1
|?W = ?2
|?Z = ?3
|?RESULT = 3628800

A.6 Calling Prolog From Lisp
There are several entry points provided for calling Prolog from Lisp. The main
interface function is called logic and has numerous options. The basic form
is:

(logic <goal>
 :return-type <return-type>
 :all <all-type>
 :bag-exp <bag-exp>)

The keyword arguments are interpreted as follows:

:return-type describes what to do with a solution when one is found. Possi-
ble values of :return-type are:

:display Display variable bindings and prompt user (the option
used by the read-query-print loop).

:fill Instantiate the goal expression and return it.

:bag Instantiate <bag-exp> and return it.

:alist Return an alist of variables and bindings.

The default is :fill.

:all tells what to do with multiple solutions. Possible values of :all are:

nil Return the first solution.

:values Return multiple solutions as multiple values.

:list Return a list of the solutions.

:bag-exp is an expression that should be instantiated with the bindings from a
solution. This is only meaningful if :return-type is :bag.

A.6.1 Examples

(logic '(color ?x) :return-type :display)

writes:

?X = RED<wait for input>

(logic '(color ?x) :return-type :fill)

returns:
 135

136
(COLOR RED)
T

(logic '(color ?x) :return-type :alist)

returns:

((?X . RED))
T

(logic '(color ?x) :all :list)

returns:

((COLOR RED) (COLOR BLUE) (COLOR GREEN))
T

(logic '(color ?x)
 :return-type :bag
 :bag-exp '(?x is a color)
 :all :values)

returns:

(RED IS A COLOR)
(BLUE IS A COLOR)
(GREEN IS A COLOR)

A.6.2 Interface Functions

There are three additional ways to call logic, which are described in this sec-
tion.

A.6.2.1 any, findall and findallset

Three simple interface functions call logic. They are any, findall, and find-
allset. Each takes two arguments: a result expression to instantiate and a
goal expression. any returns the first solution found. findall returns all solu-
tions. findallset returns all solutions deleting duplicates.

Assuming the definitions for fact and color from the previous examples.

|(any '(?x is the factorial of 5) '(fact 5 ?x))

 returns:

|
|(120 IS THE FACTORIAL OF 5)
|

|(findall '(?x is a color) '(color ?x))

returns:

|
|((RED IS A COLOR) (BLUE IS A COLOR)
 (GREEN IS A COLOR))
|

|(findall '?y '(or (= ?y 5) (= ?y 5)))

returns:

|
|(5 5)
|
|(findallset '?y '(or (= ?y 5) (= ?y 5)))

returns:

|
|(5)

findall and findallset will hang if a goal expression generates an infinite
solution set.

More powerful all solution predicates (bagof and setof) are available from
within Common Prolog.

A.6.2.2 deflogfun

A different interface is available for predicates which will be called often from
Lisp. The macro deflogfun may be used to generate normal Lisp functions
that run with precompiled goals.

(deflogfun break-up (y) (append ?a ?b y) (?a ?b))

then:

(break-up '(foo bar baz))

returns:
 137

138
(NIL (FOO BAR BAZ))
T

(break-up '(foo bar baz) :all :values)

returns:

(NIL (FOO BAR BAZ))
((FOO) (BAR BAZ))
((FOO BAR) (BAZ))
((FOO BAR BAZ) NIL)

(break-up '(foo bar baz) :all :list)

returns:

((NIL (FOO BAR BAZ))
 ((FOO) (BAR BAZ))
 ((FOO BAR) (BAZ))
 ((FOO BAR BAZ) NIL))
T

The generated function works like the Lisp functions any and findall, return-
ing solutions to a prolog expression.

The form

(deflogfun name args sample-expr return-expr)

defines a Lisp function called name, whose lambda list is the list args. The
function will also take a keyword argument :all. If the function is called with
:all nil (the default), then it returns the first solution, like any. If the func-
tion is called with :all t, then it returns a list of all the solutions, like find-
all. If the function is called with :all :values, then it returns multiple
values, with one value per solution.

The sample-expr is like the second argument to any, that is, it is the prolog
query expression. The return-expr is like the first argument to clog:any, that
is, it defines how the result will be formed from the results of the query. If any
of the symbols mention in args appears in sample-expr or return-expr, then its
value is subsituted. All other symbols in sample-expr and return-expr remain
unchanged.

A.6.2.3 with-prolog

A final interface mechanism is with-prolog. with-prolog allows one to
embed prolog into an arbitrary lisp function. Lisp variables are referenced in
Prolog using “?.<name>”.

(defun palindromep (x)
 (with-prolog
 (append ?a (?b . ?c) ?.x) ; note "?.x" reference
 (or (reverse ?a ?c)
 (reverse ?a (?b . ?c)))))

(palindromep '(yes no maybe))

returns:

NIL

(palindromep '(yes no maybe no yes))

returns:

T

The body of a with-prolog returns t if it succeeds and a non-local exit is not
executed. It returns nil on failure.

A.7 Debugging
Common Prolog provides a standard 4-port debugging model (call exit
redo fail).

Tracing, Spy Points, Leashing, and Interactive Debugging are each discussed
separately in this section.

A.7.1 Tracing

Exhaustive tracing is available with Common Prolog through the use of:
(trace). After executing (trace), all goals will be displayed until control is
returned to the top level loop, nodebug is executed or notrace is executed.
 139

140
A.7.2 Spy Points

Spy points are the most important debugging facility in Common Prolog.
They are used in the same way trace is used in Lisp. After executing (spy
foo), all events associated with satisfying foo goals will be traced and the user
will enter a debugging command loop at every port (see Interactive Debug-
ging below). A user can also specify (spy (foo 3)), (spy (foo bar)), or
(spy ((foo 3) bar)) to place spy points on foo goals with arity 3, on all
predicates for foo and bar, or on foo with arity 3 and all predicates for bar
respectively. Spy points are turned off with (nospy <spypoints>). If no spy
points are mentioned, nospy will turn off all spy points.

A.7.3 Leashing

Leashing allows the user to control execution while tracing for goals that are
not spied. Spied goals cause execution to enter a debugging command loop
whenever they are reached. Leashing provides the same functionality for
unspied goals. A user may choose to enter a debugging command loop at any
subset of ports by using (leash <events>) where events may be: call, redo, exit,
fail. Leashing may be turned off using (unleash).

A.7.4 Interactive Debugging

When Common Prolog execution enters a debugging command loop, the user
has many options, which may be listed with ?, for example:

|==> (spy member)
|
|((MEMBER 2))
|YES.
|OK.
|
|==> (member 3 ?x)
|
|[1] CALL: (MEMBER 3 ?0)? ? <- user types ?
|
|(c)reep - turn on exhaustive tracing
|(s)kip - skip until another port is
| reached for this goal
|(l)eap - turn off tracing until a spy
| point or this goal is reached
|(b)reak - enter a recursive
| read/query/print loop
|(d)isplay - display a listing for the
| current goal
|(q)uit - quit to top level
|(r)etry - try to satisfy this goal again
|(f)ail - cause the current goal to fail
|(a)bort - exit Common Prolog
|? - display this information
|
|?
|
|In a little more detail...
|
|creep - causes exhaustive tracing of the
| next goal
|skip - ignores spy points and executes
| without displaying anything until
| this goal is reached again
| either at an exit, fail,
| or redo port
|leap - turns off exhaustive tracing until
| a spy point or this goal is
| reached
|break - enters a recursive interpreter loop
| so that the user may query
| values, redefine a predicate, etc.
|display - uses "listing" to display the
| listing of the current goal
|quit - returns to the top level interpreter
| loop
|retry - causes execution to return to the
 141

142
| call port of this goal as if
| this goal had just been reached for
| the first time.
|fail - causes execution to jump to the fail
| port of this goal
|abort - completely exit Common Prolog

Continuing the example:

|d <- user selects display
|
|Compiled procedure:
|
|(DEFREL MEMBER
| ((MEMBER ?X (?X . ?)))
| ((MEMBER ?X (? . ?Y)) (MEMBER ?X ?Y))) ? c
| ...user selects creep

|[1] EXIT: (MEMBER 3 (3 . ?0))? r
| ...user selects retry
|
|[1] CALL: (MEMBER 3 ?0)? f <-user selects fail
|
|[1] FAIL: (MEMBER 3 ?0)? r <- one more time
|
|[1] CALL: (MEMBER 3 ?0)? s <- skip
|
|[1] EXIT: (MEMBER 3 (3 . ?0))? l <- leap

|?X = (3 . ?0); <- more solutions
|
|[1] REDO: (MEMBER 3 (3 . ?0))? c <- creep
|
|[2] CALL: (MEMBER 3 ?0)? b <- break
|
|
|==> (nospy)
|
|NIL <- current spylist
|YES.
|OK.
|
|==> (halt) <- return to original execution
|? l <- leap
|
|?X = (?0 3 . ?1)<cr>
|
|OK.

Another example:

|==> (defrel reverse
| ((reverse () ()))
| ((reverse (?x . ?y) ?z)
| (reverse ?y ?w)
| (append ?w (?x) ?z)))
|<noise..>
|
|?X = ?0
|?Y = ?1
|?Z = ?2
|?W = ?3
|
|OK.

|==> (defrel append
| ((append () ?x ?x))
| ((append (?u . ?x) ?y (?u . ?z))
| (append ?x ?y ?z)))
|<noise..>

|?X = ?0
|?U = ?1
|?Y = ?2
|?Z = ?3
|
|OK.

|==> (unleash)
|
|YES.
|OK.
|
|==> (trace)
|
|YES.
|OK.
 143

144
|==> (reverse (1 2 3) ?x)
|
|[1] CALL: (REVERSE (1 2 3) ?0)
|[2] CALL: (REVERSE (2 3) ?0)
|[3] CALL: (REVERSE (3) ?0)
|[4] CALL: (REVERSE NIL ?0)
|[4] EXIT: (REVERSE NIL NIL)
|[5] CALL: (APPEND NIL (3) ?0)
|[5] EXIT: (APPEND NIL (3) (3))
|[3] EXIT: (REVERSE (3) (3))
|[6] CALL: (APPEND (3) (2) ?0)
|[7] CALL: (APPEND NIL (2) ?0)
|[7] EXIT: (APPEND NIL (2) (2))
|[6] EXIT: (APPEND (3) (2) (3 2))
|[2] EXIT: (REVERSE (2 3) (3 2))
|[8] CALL: (APPEND (3 2) (1) ?0)
|[9] CALL: (APPEND (2) (1) ?0)
|[10] CALL: (APPEND NIL (1) ?0)
|[10] EXIT: (APPEND NIL (1) (1))
|[9] EXIT: (APPEND (2) (1) (2 1))
|[8] EXIT: (APPEND (3 2) (1) (3 2 1))
|[1] EXIT: (REVERSE (1 2 3) (3 2 1))
|?X = (3 2 1);

|[1] REDO: (REVERSE (1 2 3) (3 2 1))
|[8] REDO: (APPEND (3 2) (1) (3 2 1))
|[9] REDO: (APPEND (2) (1) (2 1))
|[10] REDO: (APPEND NIL (1) (1))
|[10] FAIL: (APPEND NIL (1) ?0)
|[9] FAIL: (APPEND (2) (1) ?0)
|[8] FAIL: (APPEND (3 2) (1) ?0)
|[2] REDO: (REVERSE (2 3) (3 2))
|[6] REDO: (APPEND (3) (2) (3 2))
|[7] REDO: (APPEND NIL (2) (2))
|[7] FAIL: (APPEND NIL (2) ?0)
|[6] FAIL: (APPEND (3) (2) ?0)
|[3] REDO: (REVERSE (3) (3))
|[5] REDO: (APPEND NIL (3) (3))
|[5] FAIL: (APPEND NIL (3) ?0)
|[4] REDO: (REVERSE NIL NIL)
|[4] FAIL: (REVERSE NIL ?0)
|[3] FAIL: (REVERSE (3) ?0)
|[2] FAIL: (REVERSE (2 3) ?0)
|[1] FAIL: (REVERSE (1 2 3) ?0)
|NO.

A.8 Common Prolog Macros
Macros may be defined within the logic system using the form:

(defrelmacro <name> <arg-list> <body>)

which is effectively the same as a Common Lisp defmacro. Logic macros are
expanded before variable translation so that logic variables may be treated as
atoms. defrelmacro forms must have a fixed number of arguments. This
allows different predicates with the same name but different aritys to be
defined. If you want to define a special form with an arbitrary number of
arguments, use defrel-special-form-macro.

A.8.1 Example

(defrelmacro append3 (x y z w)
 (let ((iv (make-internal-var)))
 ‘(and (append ,x ,y ,iv)
 (append ,iv ,z ,w))))

==> (append3 (1) (2) (3) ?y)

?Y = (1 2 3)

A.9 Defining Definite Clause Grammars
The defgrammar macro can be used to define a definite clause grammar
(DCG), which is a relation that determines whether the start of a list of tokens
(a sentence) matches a particular grammar. The remaining tokens in the list
become the sentence tail.

The relation has the form

(<grammar name> <sentence> <sentence tail> <extra argument>*)

where the <extra argument> items are terms defined below.

The syntax of the defgrammar macro is

(defgrammar <grammar name>
 <rule>*)

<rule> ::= (<lhs> <rhs>*)
 145

146
<lhs> ::= <grammar name>
 | (<grammar name> <term>*)

<rhs> ::= <atom>
 | <var>
 | (<other grammar name> <term>*)
 | <lisp clause>
 | (call <term>)
 | (cut)

<lisp clause> ::= (<non-atomic lisp form> <term>*)

<non-atomic lisp form> ::= (<lisp function name> <lisp arg>*)

<grammar name> is the same symbol as the one naming the defgrammar

<other grammar name> is a symbol naming another defgrammar

<atom> is an atom, which forms the words of the sentence to be matched

<var> is a variable reference

<term> is any Common Prolog logic expression, including a variable

<lisp function name> is a symbol naming a Lisp function

<lisp arg> is any Lisp form, which is evaluated and passed to the function

Within the <lhs>, extra arguments can be added by specifying <term>s. Every
<rule> must specify the same <grammar name> as the defgrammar form and
have the same number of extra arguments.

The meaning of the various <rhs> items is as follows:

• <atom> matches that atom in the sentence

• <var> is unified with the next item in the sentence

• (<other grammar name> <term>*) calls the grammar relation
<other grammar name> on the rest of the sentence. The optional <term>
arguments are passed to the relation as its extra arguments.

• <lisp clause> evaluates the <non-atomic lisp form> as a Lisp form
and unifies the values that it returns with the <term>s that follow it.

• (call <term>) calls <term> as a normal Prolog relation.

• (cut) calls the normal Prolog cut relation.

A.9.1 Examples

Here are some examples of using defgrammar.

A.9.1.1 Example 1: A simple definition.

This example shows the Common Prolog translation of the grammar shown at
the top of http://cs.union.edu/~striegnk/learn-prolog-
now/html/node59.html

(defgrammar gram-det
 (gram-det the)
 (gram-det a))

(defgrammar gram-n
 (gram-n woman)
 (gram-n man))

(defgrammar gram-v
 (gram-v shoots))

(defgrammar gram-np
 (gram-np (gram-det) (gram-n)))

(defgrammar gram-vp
 (gram-vp (gram-v) (gram-np))
 (gram-vp (gram-v)))

(defgrammar gram-s
 (gram-s (gram-np) (gram-vp)))

Note the use of symbols for terminals and lists for non-terminals. They all use
the first form of the <lhs> and have no extra terms on the <rhs>, so all of the
relations are binary.

The following will both succeed and bind ?x to the list (foo bar):

(clog:any '?x '(gram-s (a woman shoots foo bar) ?x))
(clog:any '?x '(gram-s (a woman shoots the man foo bar) ?x))
 147

148
A.9.1.2 Example 2: Using extra arguments.

(defgrammar one-of
 ((one-of ?word) ?word))

(defgrammar two-of
 ((two-of ?word) (one-of ?word) (one-of ?word)))

Each of these defines a 3-ary relation, whose extra argument is the word to
match. When the relations are called, the word will typically be bound to a
symbol from the sentence to match.

The following will succeed and bind ?x to the list (foo bar):

(clog:any '?x '(two-of (start start foo bar) ?x start))

The following will both fail because the sentences do not begin with two
start symbols:

(clog:any '?x '(two-of (not-start start foo bar) ?x start))
(clog:any '?x '(two-of (start not-start foo bar) ?x start))

A.10 Edinburgh Syntax
Common Prolog provides a translator from Edinburgh syntax to allow users
to port pre-existing code.

The consult predicate operates only on .pl files:

• consult('xxx.pl') means consult file xxx.pl.

• consult('xxx'). means find a file named xxx.pl and consult it.

The reconsult predicate can operate on a Lisp source file, since
compile_and_reconsult('xxx.pl') produces a Lisp binary file xxx.?fasl.
That is, reconsult will load fasl and lisp files as well as .pl files:

• reconsult('xxx.pl') means reconsult file xxx.pl.

• reconsult('xxx') means look for a file named xxx.?fasl and load it,
or if none found, look for xxx.pl and reconsult it, or if none found look
for xxx.lisp and load it, or load xxx.

Loading a compiled file is equivalent to reconsult.

compile_and_reconsult compiles a file and reconsults the result.

Edinburgh syntax may also be used to interact with Common Prolog through
the use of a different read-query-print loop. To use Edinburgh syntax, use
(erqp) instead of (rqp) to start your command loop.

A.11 Graphic Development Environment
Common Prolog includes a graphic environment for users with bitmap dis-
plays. The environment consists of a specialized listener and graphic debug-
ging tools. With the debugging tools it is possible to step through a program at
the source level and control the 4-port debugger using the mouse. Call trees
for predicates may also be displayed and manipulated.

The specialized listener provides mouse control over:

• File editing, compiling, consulting and reconsulting

• Debugging control flow (creep, leap, skip, etc.)

• Leashing of debugging ports

• The addition and deletion of spy points.

The Logic Listener interaction is similar to a normal Lisp Listener and will
accept normal Lisp expressions except that:

1. Any expression that can be interpreted as Common Prolog will be han-
dled by the Logic subsystem.

2. If a line consisting of just ‘?-’ is entered, the Logic Listener will go into an
Edinburgh (erqp) loop.
 149

150
A.12 Built-in Predicates

/== (?x ?y) same as Prolog \==

= (?x ?y) standard Prolog

=.. (?x ?y) standard Prolog

== (?x ?y) standard Prolog

@< (?x ?y) same as Prolog except all variables
sort as identical

@=< (?x ?y) ditto

@> (?x ?y ditto

@>= (?x ?y) ditto

append (?x ?y ?z) standard Prolog

arg (+index +term ?value) standard Prolog

asserta (+exp) standard Prolog

assertz (+exp) standard Prolog

atomic (?x) standard Prolog

bagof (?exp
 (+goal . +ex-vars)
 ?bag)

standard Prolog (unusual syntax)*

call (+exp) standard Prolog

clause (+head ?tail) standard Prolog

debug () cause debugging information to be
saved for each call whether it is
spied or not

debugging () display a list of all spied goals

defdetrel
 (+name &rest +clauses)

define a relation and declare it to be
deterministic

defgrammar
 (+name &rest +rules)

define a grammar rule

defrel
 (+name &rest +clauses)

define a relation

defrelmacro
 (+name +args &rest
+body)

 define a logic macro

defrel-special-form-macro
 (+name +args &rest
+body)

like defrelmacro but can have
&rest in +args. Use of this form
will shadow all predicates named
+name regardless of arity.

deterministic (+name) declare the relation called ?name to
be deterministic

erase (+ref) delete the predicate with database
reference ?ref from the database

fail () standard Prolog

findall
 (?exp +goal ?result)

generate all solutions to ?goal and
instantiate ?exp with the values.
Return a list in ?result.

findallset
 (?exp +goal ?result)

same as findall/3 but removes dupli-
cates

functor
 (?term ?functor ?arity)

standard Prolog

halt () exit Common Prolog

integer (?x) standard Prolog

is (?result +exp) standard Prolog

keysort (+in ?out) standard Prolog except uses alist
style cons pairs

leash (+event-spec) cause the interpreter to pause and
ask for input when one of the
leashed events is traced. An event-
spec is one of: (call exit redo fail),
or a list of ports.

listing
 (+name &optional
+arity)

display a listing of the named predi-
cate or listings for each arity if no
arity is specified

member (?x ?y) standard Prolog

nodebug () leave debug mode (cease saving
debug info for non-spied goals)

nonvar (?x) standard Prolog

nospy (+args) remove +args from the list of spied
goals. +args may be a predicate
name or a list of predicate names.
Unspy all goals if +args is nil

not (+x) standard Prolog
 151

152
notrace () turn off exhaustive tracing for
debugged goals

once (+exp) satisfy +exp as a goal once, then
fail on retrying even if +exp has
more solutions: this can be used to
make a call deterministic so that the
compiler can perform last call optimi-
zation

output-defrels
 (+name ?defrels)

return a list of defrel expressions
derived from the dynamic clauses
associated with ?name

read-term (?term) read in a term

recorda (+exp ?val ?ref) standard Prolog

recorded (+term ?val
?ref)

standard Prolog

recordz (+exp ?val ?ref) standard Prolog

repeat () standard Prolog

retract (+clause) standard Prolog

setof (?exp
 (+goal . +ex-vars)
 ?bag)

standard Prolog (unusual syntax)*

sort (+in ?out) standard Prolog

spy (+args) spy +args. +args may be a pred-
icate name or a list of predicate
names. If arity is not mentioned for a
predicate name, predicates of all
aritys with that name are spied.

trace () turn on tracing for debugged goals,
also turn on debugging for the next
top level goal

translate-vars
 (?intern ?extern)

translate back and forth between
internal and external variable repre-
sentations. Can be used to pretty up
the writing of terms containing vari-
ables

* setof and bagof in standard Prolog use a special syntax for existentially
quantified variables, for example:

?- setof(X, Y^foo(X,Y), Z).

In Common Prolog, this would look like:

==> (setof ?x ((foo ?x ?y) ?y) ?z)

So, a goal with no existentially quantified variables is nested in an extra set of
parentheses:

==> (bagof ?x ((bar ?x)) ?z)

A.13 Adding Built-in Predicates
Common Prolog provides several special forms for adding new predicates
written in Lisp. Each one is described below, with an example.

A.13.1 The defdetpred form

The syntax of this form is

(defdetpred <name> <num args> <body>)

which defines a simple predicate that just runs lisp code and doesn’t have to
unify any variables. Arguments are referenced with:
(special-arg <argnum>). The body succeeds by default, but if a failure case
arises, use: (detpred-fail <name> <num args>).

For example

true () standard Prolog

unleash (+event-spec) Undo leashing for +event-spec.
+event-spec may be a port or a list
of ports. If +event-spec is nil, all
ports are unleashed.

var (?x) standard Prolog
 153

154
(defdetpred my-integer 1
 (unless (integerp (special-arg 0))
 (detpred-fail my-integer 1)))

A.13.2 The defdetunipred form

The syntax of this form is

(defdetunipred <name> <num args> <unifier1 unifier2>
 <aux-vars> <body>)

defdetunipred is used when the defined predicate needs to unify values with
arguments (or unify in general). The body is executed and, if successful, (that
is, detpred-fail has not been called) unification is performed on the two uni-
fiers. (If more than two items need to be unified, cons up lists of items to
unify).

For example

(defdetunipred my-arg 3 (temp1 temp2)
 (temp1 temp2 index term value)
 (setf index (special-arg 0)
 term (special-arg 1)
 value (special-arg 2))
 (unless (and (numberp index)
 (plusp index)
 (or (and (term-p term)
 (< index (length term)))
 (and (consp term)
 (< index 3))))
 (detpred-fail my-arg 3))
 (if (consp term)
 (setf temp1 (if (= index 1)
 (car term)
 (cdr term)))
 (setf temp1 (term-ref term index)))
 (setf temp2 value))

A.14 Edinburgh Compatibility Predicates
The following predicates all have their standard Edinburgh definitions:

-->
->
/
//
<<
=
=
=<
>>
?-
@<
@>
@>=
\,
\.
\:-
\:=
\;
\\
\\
\\+
\\/
\\=
\\==
^
current-op
display
get
get0
is
name
nl
put
see
seeing
seen
skip
tell
telling
told
ttynl
ttyput
write
writeq
|is|
 155

156

Appendix B

B Examples
B.1 The Tutorial
The code for the tutorial (Chapter 2, “Tutorial”) is reproduced for easy refer-
ence.

; -*-mode : lisp ; package : kw-user -*-

(in-package kw-user)

;;; ---------------- OBJECT DEFINITIONS ------------

(def-kb-class node ()
 ((animal :initform nil :accessor node-animal
 :initarg :animal)
 (question :initform nil :accessor node-question
 :initarg :question)
 (yes-node :initform nil :accessor node-yes-node
 :initarg :yes-node)
 (no-node :initform nil :accessor node-no-node
 :initarg :no-node)))

(def-kb-class root ()
 ((node :initform nil :accessor root-node
 :initarg :node)))

(def-kb-struct current-node node)
(def-kb-struct game-over node animal answer)

;;; -------------- FORWARD CHAINING RULES -------------
157

158
;;; if there is no question we are about to ask then
;;; ask the question which is the root question of the
;;; question tree

(defrule play :forward
 (root ?r node ?node)
 (not (current-node ? node ?))
 -->
 ((tk:send-a-message
 (format nil " ANIMAL GUESSING GAME - ~
 think of an animal to continue")))
 (assert (current-node ? node ?node)))
;;; ask a yes/no question - these are non-leaf questions

(defrule y-n-question :forward
 (current-node ?current node ?node)
 (node ?node animal nil question ?q yes-node ?y-n
 no-node ?n-n)
 -->
 ((tk:confirm-yes-or-no ?q) ?answer)
 (erase ?current)
 ((find-new-node ?answer ?y-n ?n-n) ?new-current)
 (assert (current-node ? node ?new-current)))

(defun find-new-node (answer yes-node no-node)
 (if answer yes-node no-node))

;;; ask an animal question - these a leaf questions

(defrule animal-question :forward
 (current-node ?current node ?node)
 (node ?node animal ?animal question nil)
 -->
 ((tk:confirm-yes-or-no
 (format nil "Is it a ~a?" ?animal)) ?answer)
 (erase ?current)
 (assert (game-over ? node ?node animal ?animal
 answer ?answer)))

;;; add new nodes to the tree for the new animal and
;;; the question that distinguishes it

(defrule new-question :forward
 :priority 20
 (game-over ? node ?node animal ?animal answer nil)
 -->
 (fetch-new-animal ?new-animal)
 ((tk:popup-prompt-for-string
 (format nil "Tell me a question for which the ~
 answer is yes for a ~a and no for a ~a"
 ?new-animal ?animal)) ?question)
 (assert (node ?yes-node question nil
 animal ?new-animal))
 (assert (node ?no-node question nil animal ?animal))
 (assert (node ?node animal nil yes-node ?yes-node
 no-node ?no-node question ?question)))

;;; game is over

(defrule game-finished :forward
 :priority 15
 (game-over ?g)
 -->
 (erase ?g)
; (test (not (tk:confirm-yes-or-no "Play again?")))
 (return))

;;; --------------- BACKWARD CHAINING ----------------

;;; prompt user for new animal

(defrule fetch-new-animal :backward
 ((fetch-new-animal ?new-animal)
 <--
; (repeat)
 ((string-upcase
 (tk:popup-prompt-for-string
 "What was your animal?"))
 ?new-animal)
 (not (= ?new-animal "NIL"))
 ; check if abort was pressed
 (or
 (doesnt-exist-already ?new-animal)
 (and ((tk:send-a-message "Animal exists already"))
 (fail)))))

;;; check if a node already refers to this animal
 159

160
(defrule doesnt-exist-already :backward
 ((doesnt-exist-already ?animal)
 <--
 (node ? animal ?animal)
 (cut)
 (fail))
 ((doesnt-exist-already ?animal)
 <--))

;;; --------------- SAVING THE ANIMAL BASE ------------

;;; writes out code which when loaded reconstructs the
;;; tree of questions

(defun save-animals (filename)
 (let* ((start-node (any ‘?node ‘(root ? node ?node)))
 (code ‘(make-instance ‘root
 :node ,(node-code start-node)))
 (*print-pretty* t))
 (with-open-file
 (stream filename :direction :output
 :if-exists :supersede)
 (write ‘(in-package kw-user) :stream stream)
 (write-char #\Newline stream)
 (write code :stream stream))
 nil))

(defun node-code (node)
 (when node
 ‘(make-instance ‘node
 :question ,(node-question node)
 :animal ‘,(node-animal node)
 :yes-node ,(node-code (node-yes-node node))
 :no-node ,(node-code (node-no-node node)))))

B.2 Explanation Facility
Below is the complete code implementing the simple explanation facility of
Chapter 6, “A Simple Explanation Facility”. The implementation principle is
exactly as described.

 ;;; ---------- A SIMPLE EXPLANATION FACILITY ---------

(in-package kw-user)

; connects rule to explanation definitions
(defvar *explanation-table*
 (make-hash-table :test #'eq))

; explanation generated at runtime
(defvar *explanation* nil)

;;; the next four definitions make up the defexplain
;;; macro for each of the why, what and because
;;; definitions we create a function which we can call
;;; at runtime on the bindings of the instantiation to
;;; generate the explanation text - this will be
;;; reasonably efficient

(defun is-var (expr)
 "is this a variable (i.e. starts with ?)"
 (and (symbolp expr)
 (eql (char (symbol-name expr) 0) #\?)))

(defun find-vars (expr)
 "returns a list of all the variables in expr"
 (if (consp expr)
 (append (find-vars (car expr))
 (find-vars (cdr expr)))
 (if (is-var expr) (list expr) nil)))

(defun make-explain-func (explain-stuff)
 "generates a function to generate explanation text at
 runtime"
 (let* ((explain-string (car explain-stuff))
 (explain-args (cdr explain-stuff))
 (vars (remove-duplicates
 (find-vars explain-args))))
 ‘#'(lambda (bindings)
 (let ,(mapcar
 #'(lambda (v)
 ‘(,v (cdr (assoc ‘,v bindings))))
 vars)
 (format nil ,explain-string ,
 @explain-args)))))

(defmacro defexplain (rulename &key why what because)
 "puts an entry for the rule in the explanation table"
 ‘(setf (gethash ‘,rulename *explanation-table*)
 (list ,(make-explain-func why)
 ,(make-explain-func what)
 ,(make-explain-func because))))
 161

162
;;; next two definitions generate an explanation for
;;; each instantiation that fires and stores it away in
;;; *explanation*

(defun add-explanation (inst)
 "generate an explanation for firing this
 instantiation"
 (let ((explain-info
 (gethash (inst-rulename inst)
 explanation-table)))
 (when explain-info
 (do-the-rest explain-info (inst-bindings inst)))))

(defun do-the-rest (explain-info bindings)
 "creates explanation text derived from explain
 functions and bindings"
 (let ((why-func (first explain-info))
 (what-func (second explain-info))
 (because-func (third explain-info)))
 (push ‘(,*cycle* ,(inst-rulename inst)
 ,(funcall why-func bindings)
 ,(funcall what-func bindings)
 ,(funcall because-func bindings))
 explanation)))))

;;; meta-interpreter for explanation contexts
;;; before firing the rule generate explanation for
;;; this cycle

(defrule explain-context :backward
 ((explain-context)
 <--
 (start-cycle)
 (instantiation ?inst)
 ((add-explanation ?inst))
 (fire-rule ?inst)
 (cut)
 (explain-context)))

;;; simple text output of the explanation

(defun explain (&optional cycle)
 "print out either the whole explanation or just for
 one cycle"
 (if cycle (explain-cycle (assoc cycle *explanation*))
 (dolist (cycle-entry (reverse *explanation*))
 (explain-cycle cycle-entry))))

(defun explain-cycle (entry)
 "print this explanation entry"
 (if entry
 (let ((cycle (first entry))
 (rulename (second entry))
 (why (third entry))
 (what (fourth entry))
 (because (fifth entry)))
 (format t "~2%~a: ~a~%~a~%~a~%~a"
 cycle rulename why what because))
 (format t "~2%No explanation for this cycle")))

;;; we could make a really smart tool here, but to give
;;; the general idea...

(defun explain-an-action ()
 (let ((item
 (tk:scrollable-menu
 (reverse *explanation*)
 :title "Which action do you want
 explained?"
 :name-function #'(lambda (x) (fourth x)))))
 (if item (tk:send-a-message (fifth item)))))

;;; starting the rule interpreter should clear any old
;;; explanation

(defadvice (infer rest-explanation :before)
 (&rest args)
 (unless *in-interpreter* (setq *explanation* nil)))

Below are some example rules using the explanation facility. They are taken
from the Monkey and Banana Example distributed with KnowledgeWorks.
The classes used in the example are monkey, object and goal.

(defrule mb7 :forward
 :context mab
 (goal ?g status active type holds object ?w)
 (object ?o1 kb-name ?w at ?p on floor)
 (monkey ?m at ?p holds nil)
 -->
 ((format t "~%Grab ~s" ?w))
 (assert (monkey ?m holds ?w))
 (assert (goal ?g status satisfied)))
 163

164
(defexplain mb7
 :why ("Monkey is at the ~s which is on the floor" ?w)
 :what ("Monkey grabs the ~s" ?w)
 :because ("Monkey needs the ~s somewhere else" ?w))

(defrule mb12 :forward
 :context mab
 :context mab
 (goal ?g status active type walk-to object ?p)
 (monkey ?m on floor at ?c holds nil)
 (test (not (eq ?c ?p)))
 -->
 ((format t "~%Walk to ~s" ?p))
 (assert (monkey ?m at ?p))
 (assert (goal ?g status satisfied)))

(defexplain mb12
 :why ("Monkey is on the floor holding nothing")
 :what ("Monkey walks to ~s" ?p)
 :because ("Monkey needs to do something with an
 object at ~s" ?p))

(defrule mb13 :forward
 :context mab
 (goal ?g status active type walk-to object ?p)
 (monkey ?m on floor at ?c holds ?w)
 (test (and ?w (not (eq ?c ?p))))
 (object ?o1 kb-name ?w)
 -->
 ((format t "~%Walk to ~s" ?p))
 (assert (monkey ?m at ?p))
 (assert (object ?o1 at ?p))
 (assert (goal ?g status satisfied)))

(defexplain mb13
 :why ("Monkey is on the floor and is holding the ~s"
 ?w)
 :what ("Monkey walks to ~s with the ~s" ?p ?w)
 :because ("Monkey wants the ~s to be at ~s" ?w ?p))

(defrule mb14 :forward
 :context mab
 (goal ?g status active type on object floor)
 (monkey ?m on ?x)
 (test (not (eq ?x ‘floor)))
 -->
 ((format t "~%Jump onto the floor"))
 (assert (monkey ?m on floor))
 (assert (goal ?g status satisfied)))

(defexplain mb14
 :why ("Monkey is on ~s" ?x)
 :what ("Monkey jumps onto the floor")
 :because ("Monkey needs to go somewhere"))

(defrule mb17 :forward
 :context mab
 (goal ?g status active type on object ?o)
 (object ?o1 kb-name ?o at ?p)
 (monkey ?m at ?p holds nil)
 -->
 ((format t "~%Climb onto ~s" ?o))
 (assert (monkey ?m on ?o))
 (assert (goal ?g status satisfied)))

(defexplain mb17
 :why ("Monkey is at the location of the ~s" ?o)
 :what ("Monkey climbs onto the ~s" ?o)
 :because ("Monkey wants to be on top of the ~s" ?o))

(defrule mb18 :forward
 :context mab
 (goal ?g status active type holds object nil)
 (monkey ?m holds ?x)
 (test ?x)
 -->
 ((format t "~%Drop ~s" ?x))
 (assert (monkey ?m holds nil))
 (assert (goal ?g status satisfied)))

(defexplain mb18
 :why ("Monkey is holding the ~s" ?x)
 :what ("Monkey drops the ~s" ?x)
 :because ("Monkey wants to do something for which he
 can’t hold anything"))

B.3 Uncertain Reasoning Facility
Below is the complete code which implements the uncertain reasoning facility
of Chapter 6, “Reasoning with Certainty Factors”. The implementation is
exactly as described with a few extra considerations to check the rule inter-
preter is running before returning an uncertain value, that the objects have a
certainty-factor slot and so on.

;;; -----SIMPLE REASONING WITH UNCERTAINTY FACTORS ----

(in-package kw-user)
 165

166
;;; default certainty factor
(defvar *c-factor* 1)

;;; implication strength of a rule
(defvar *implication-strength* 1)

(defun default-c-factor ()
 "if the forward chainer is not running, certainty
 factor is just 1"
 (if *in-interpreter*
 (* *implication-strength* *c-factor*)
 1))

;;; uncertain objects need a slot to store their
;;; ‘probability’ this slot defaults to the value
;;; returned by default-c-factor

(def-kb-class uncertain-kb-object ()
 ((c-factor :initform (default-c-factor)
 :initarg :c-factor)))

(defun object-c-factor (obj)
 "if an object has no uncertainty slot, return 1 (i.e.
 certain)"
 (if (slot-exists-p obj ‘c-factor)
 (slot-value obj ‘c-factor)
 1))

(defun inst-c-factor (inst)
 "the certainty factor of an instantiation"
 (token-c-factor (inst-token inst)))

(defun token-c-factor (token)
 "the certainty factor of an ANDed list of objects
 (just multiply them)"
 (reduce ‘* (mapcar ‘object-c-factor token)))

(defun implication-strength (val)
 "for a rule to set the implication strength"
 (setq *implication-strength* val))

;;; this function increases the certainty of the object
;;; which is the first argument by an amount dependent
;;; on the combined certainty of the remaining
;;; arguments

(defun add-evidence (obj &rest token)
 "increments the certainty of obj based on the
 certainty of token"
 (let ((c-f (slot-value obj ‘c-factor)))
 (setf (slot-value obj ‘c-factor)
 (+ c-f
 (* (- 1 c-f) *implication-strength*
 (token-c-factor token))))))

;;; this tactic is dynamic as the certainty factor slot
;;; gets changed by calling add-evidence

(deftactic certainty :dynamic (i1 i2)
 "a conflict resolution tactic to prefer more certain
 instantiations"
 (> (inst-c-factor i1) (inst-c-factor i2)))

;;; Before firing a rule this meta-interpreter just
;;; sets the value of *c-factor* to the certainty of
;;; the instantiation so that any new uncertain objects
;;; made get this (times *implication-strength*) as
;;; their certainty. Also sets *implication-strength*
;;; to 1 as a default in case the rule doesn’t set it.

(defrule uncertain-context :backward
 ((uncertain-context)
 <--
 (start-cycle)
 (instantiation ?inst)
 ((progn (setq *c-factor* (inst-c-factor ?inst))
 (setq *implication-strength* 1)))
 (fire-rule ?inst)
 (cut)
 (uncertain-context)))

Below are some example rules using this facility for a simple car maintenance
problem.

;;; ---------------- SOME EXAMPLE RULES ---------------
;;; to run: (run-diagnose)

(def-kb-struct start)
(def-kb-class symptom (uncertain-kb-object)
 ((type :initarg :type)))
(def-kb-class fault (uncertain-kb-object)
 ((type :initarg :type)))
(def-kb-class remedy (uncertain-kb-object)
 ((type :initarg :type)))
 167

168
;;; this context sets up the initial hypotheses and
;;; gathers evidence this doesn't need the meta
;;; -interpreter as that's only necesssary for
;;; transparent assignment of certainty factors to new
;;; objects

(defcontext diagnose :strategy ())

(defrule start-rule :forward
 :context diagnose
 (start ?s)
 -->
 (assert (symptom ? type over-heat c-factor 1))
 (assert (symptom ? type power-loss c-factor 1))
 (assert (fault ? type lack-of-oil c-factor 0.5))
 (assert (fault ? type lack-of-water c-factor 0))
 (assert (fault ? type battery c-factor 0))
 (assert (fault ? type unknown c-factor 0))
 (context (cure)))
 ; next context onto agenda

(defrule diagnose1 :forward
 :context diagnose
 (symptom ?s type over-heat)
 (fault ?f type lack-of-water)
 -->
 ((implication-strength 0.9))
 ((add-evidence ?f ?s)))

(defrule diagnose2 :forward
 :context diagnose
 (symptom ?s type overheat)
 (fault ?f type unknown)
 -->
 ((implication-strength 0.1))
 ((add-evidence ?f ?s)))

(defrule diagnose3 :forward
 :context diagnose
 (symptom ?s type wont-start)
 (fault ?f type battery)
 -->
 ((implication-strength 0.9))
 ((add-evidence ?f ?s)))

(defrule diagnose4 :forward
 :context diagnose
 (symptom ?s type wont-start)
 (fault ?f type unknown)
 -->
 ((implication-strength 0.1))
 ((add-evidence ?f ?s)))

(defrule diagnose5 :forward
 :context diagnose
 (symptom ?s type power-loss)
 (fault ?f type lack-of-oil)
 -->
 ((implication-strength 0.9))
 ((add-evidence ?f ?s)))

(defrule diagnose6 :forward
 :context diagnose
 (symptom ?s type power-loss)
 (fault ?f type unknown)
 -->
 ((implication-strength 0.1))
 ((add-evidence ?f ?s)))

;;; any two distinct symptoms strengthens the
;;; hypothesis that there's something more serious
;;; going wrong

(defrule diagnose7 :forward
 :context diagnose
 (symptom ?s1 type ?t1)
 (symptom ?s2 type ?t2)
 (test (not (eq ?t1 ?t2)))
 (fault ?f type unknown)
 -->
 ((add-evidence ?f ?s1 ?s2)))

;;; here we need the meta-interpreter to assign the
;;; right certainty factors to the remedy objects. Also
;;; use certainty as a conflict resolution tactic to
;;; print the suggested remedies out in order

(defcontext cure :strategy (priority certainty)
 :meta ((uncertain-context)))
 169

170
(defrule cure1 :forward
 :context cure
 (fault ?f type unknown)
 -->
 ((implication-strength 0.1))
 (assert (remedy ? type cross-fingers))
 ((implication-strength 0.9))
 (assert (remedy ? type go-to-garage)))

(defrule cure2 :forward
 :context cure
 (fault ?f type lack-of-oil)
 -->
 (assert (remedy ? type add-oil)))

(defrule cure3 :forward
 :context cure
 (fault ?f type lack-of-water)
 -->
 (assert (remedy ? type add-water)))

(defrule cure4 :forward
 :context cure
 (fault ?f type battery)
 -->
 (assert (remedy ? type new-battery)))

(defrule print-cures :forward
 :context cure
 :priority 5
 (remedy ?r type ?t)
 -->
 ((format t "~%Suggest remedy ~a with certainty-factor
 ~a" ?t (slot-value ?r ‘c-factor))))

(defun run-diagnose ()
 (reset)
 (make-instance ‘start)
 (infer :contexts ‘(diagnose)))

B.4 Other Examples
Other examples distributed with KnowledgeWorks include:

• Truck — a largely forward chaining truck scheduling example,

• Spill — an outline of a chemical spillage diagnosis system, and

• Whist — a windowing example which plays whist.
 171

172

Appendix C

C Implementation Notes
C.1 Forward Chainer

C.1.1 Forward Chaining Algorithm

The KnowledgeWorks forward chaining engine is based on the RETE algo-
rithm (see Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem by Forgy in Artificial Intelligence 19, September 1982). A data
flow network representing the conditions of the forward chaining rules (a
RETE network) is maintained and this keeps lists of the instantiations and par-
tial instantiations of rules. This structure is modified at runtime as objects
change. The RETE algorithm relies on the tacit assumption that during the for-
ward chaining cycle relatively few objects change (hence there are relatively
few changes to be made to the network each cycle), and in these cases gives a
huge increase in performance speed.

C.1.2 CLOS and the Forward Chainer

CLOS objects acquire KnowledgeWorks functionality from the standard-kb-
object mixin. Object creation and modification hooks defined on this mixin
enable the RETE network to track the objects. Objects are indexed into the
RETE network by class and modifications propagated only where any
changes to the slots of the object are relevant.
173

174
One potential problem is that as KnowledgeWorks CLOS objects are designed
for use in ordinary code, performance could deteriorate seriously as every
time an object is changed the RETE network must be amended. For this reason
changes to CLOS objects are merely remembered as they are made. The stored
set of changes is flushed at the start of every forward chaining cycle, so the
penalty for using KnowledgeWorks objects is really only paid when the for-
ward chainer is running.

C.1.3 Forward Chaining and the Backward Chainer

For more uniform semantics throughout KnowledgeWorks, the right hand
side of KnowledgeWorks forward chaining rules are executed directly by the
backward chainer, as is the default meta-interpreter for a context which has no
meta-interpreter specially defined. When compiled with debugging turned
off, in many cases the backward chainer can be optimized out leaving raw
Lisp code.

C.2 Backward Chainer

C.2.1 Backward Chaining Algorithm

The KnowledgeWorks backward chaining system is an extended Prolog writ-
ten entirely in Lisp and based loosely on the Warren Abstract Machine
(WAM). (see An Abstract Prolog Instruction Set by David H.D. Warren, Techni-
cal Note 309 SRI International October 1983). High performance is achieved
by compiling each Prolog clause into a Lisp function and handling the Prolog
control flow with continuation passing. This approach removes the need for
interpretation and provides easy integration with CLOS.

C.2.2 Term Structure

In order to provide compatibility with Edinburgh Prolog, the Knowledge-
Works backward chaining system treats Prolog structured terms differently
from lists. Structured terms whose functors are not ‘.’ are stored as simple vec-
tors with the functor as element 0 (for example, the term: foo(bar) is equiva-
lent to #(foo bar)).

C.2.3 The Binding Trail

The variable binding trail for the backward chainer is stored in a simple vector
but may overflow into list structure if the trail grows larger than the size of the
vector: (30000). The system will continue to function normally when this hap-
pens but may slow down slightly and do more consing. (Note: We have never
written a program that causes this to happen other than deliberately produced
testing programs).
 175

176

Appendix D

D For More Information
D.1 General References

D.1.1 Forward Chaining

• Programming Expert Systems in OPS5, An Introduction to Rule-Based Pro-
gramming by Lee Brownston, Robert Farrell, Elaine Kant and Nancy
Martin (Addison-Wesley). Whilst being specifically on OPS5 this text
covers most aspects of forward chaining in considerable detail.

D.1.2 Backward Chaining and Prolog

• The Art of Prolog, by Leon Sterling and Ehud Shapiro (MIT Press).

• The Craft of Prolog, by Richard A. O’Keefe (MIT Press). This is a more
advanced text.

D.1.3 Uncertain Reasoning

• Rule-Based Expert Systems, by B. G. Buchanan and E. H. Shortliffe (Addi-
son-Wesley). This text covers specifically the MYCIN system.
177

178
D.1.4 Expert Systems

• Building Expert Systems, by Frederick Hayes-Roth, Donald A. Waterman
and Douglas B. Lenat (Addison-Wesley). This text focuses more on the
issues involved in designing an expert system.

D.1.5 Lisp and CLOS

• Common LISPcraft, by Robert Wilensky (Norton). An introductory text
on Lisp.

• Common Lisp the Language, Second Edition, by Guy. L. Steele Jr. (Digital
Press). This is the complete reference book on Common Lisp.

• Object-Oriented Programming in Common Lisp, by Sonya E. Keene (Addi-
son-Wesley). An introductory text on CLOS for programmers.

• The Art of the Metaobject Protocol, by Gregor Kiczales, Jim des Rivieres
and Daniel G. Bobrow (MIT Press). This is the only proper guide to the
CLOS Metaobject Protocol.

D.2 The LispWorks manuals
In addtion to the KnowledgeWorks and Prolog User Guide, the LispWorks man-
ual set includes the following manuals which might be helpful whilst using
KnowledgeWorks:

• The LispWorks User Guide and Reference Manual describes the language-
level features and tools available in LispWorks, along with detailed
information on the functions, macros, variables and classes.

• The LispWorks IDE User Guide describes the LispWorks IDE, the user
interface for LispWorks. the LispWorks IDE is a set of windowing tools
that let you develop and test Common Lisp code more easily and
quickly.

• The LispWorks Editor User Guide describes the keyboard commands and
programming interface to the the LispWorks IDE editor tool.

These books are all available in HTML, PDF and Postscript formats.

• The LispWorks Release Notes and Installation Guide explains how to install
LispWorks, configure it and start it running. It also contains a set of
release notes that documents last minute issues that could not be
included in the main manual set.

This book is available in PDF and Postscript formats.

Commands in the Help menu of any of the the LispWorks IDE tools give
you direct access to the online documentation in HTML format. Details
of how to use these commands can be found in the LispWorks IDE User
Guide.

Please let us know at lisp-support@lispworks.com if you find any mistakes
in the LispWorks documentation, or if you have any suggestions for improve-
ments.
 179

180

Appendix E

E Converting Other Systems
E.1 OPS5
OPS5 rulebases may be readily converted into KnowledgeWorks rulebases.
The main OPS5 forms needing conversion are:

• literalize into def-kb-struct or def-kb-class. For example

(literalize employee name father-name mother-name)

could become

(def-kb-struct employee name father-name mother-name)

• strategy into a defcontext form with the right conflict resolution strat-
egy. For example

(strategy lex)

could become

(defcontext ops5 :strategy (lex specificity))

and

(strategy mea)

could become
181

182
(defcontext ops5 :strategy (mea lex specificity))

In OPS5 you cannot have different conflict resolution strategies for different
sets of rules. The KnowledgeWorks context mechanism for passing control is
much clearer and more powerful than, for instance, the use of the MEA strat-
egy as sole control mechanism in OPS5.

• p into defrule. For example, the OPS5 rule

(p recognize-pair
 (employee ^name <parent>)
 (employee ^name <child> ^mother-name <parent>)
 -->
 (make pair))

will become

(defrule recognize-pair :forward
 (employee ? name ?parent)
 (employee ? name ?child mother-name ?parent)
 -->
 (assert (pair ?)))

As an extended example below are given some OPS5 rules from the Monkey
and Banana problem (see Appendix B, “Examples”):

(strategy mea)
(literalize monkey
 name at on holds)
(literalize object
 name at weight on)
(literalize goal
 status type object to)
(literalize start)

(p mb1
 (goal ^status active ^type holds ^object <w>)
 (object ^name <w> ^at <p> ^on ceiling)
 -->
 (make goal ^status active ^type move ^object ladder
 ^to <p>))

(p mb4
 {(goal ^status active ^type holds ^object <w>) <goal>}
 (object ^name <w> ^at <p> ^on ceiling)
 (object ^name ladder ^at <p>)
 {(monkey ^on ladder ^holds nil) <monkey>}
 -->
 (write (crlf) Grab <w>)
 (modify <goal> ^status satisfied)
 (modify <monkey> ^holds <w>))

(p mb8
 (goal ^status active ^type move ^object <o> ^to <p>)
 (object ^name <o> ^weight light ^at <> <p>)
 -->
 (make goal ^status active ^type holds ^object <o>))

In KnowledgeWorks this could be:

(defcontext ops5 :strategy (mea lex specificity))

(def-named-kb-class monkey ()
 ((at :initform nil)
 (on :initform nil)
 (holds :initform nil)))

(def-named-kb-class object ()
 ((at :initform nil)
 (weight :initform nil)
 (on :initform nil)))

(def-kb-struct goal status type object to)
(def-kb-struct start)

(defrule mb1 :forward
 :context ops5
 (goal ? status active type holds object ?w)
 (object ? name ?w at ?p on ceiling)
 -->
 (assert (goal ? status active type move object ladder
 to ?p)))
 183

184
(defrule mb4 :forward
 :context ops5
 (goal ?g status active type holds object ?w)
 (object ? name ?w at ?p on ceiling)
 (object ? name ladder at ?p)
 (monkey ?m on ladder holds nil)
 -->
 ((format t "~%Grab ~S" ?w))
 (assert (goal ?g status satisfied))
 (assert (monkey ?m holds ?w)))

(defrule mb8 :forward
 :context ops5
 (goal ? status active type move object ?o to ?p)
 (object ? name ?o weight light at ?q)
 (test (not (eq ?q ?p)))
 -->
 (assert (goal ? status active type holds object ?o)))

E.2 Prolog
Please refer to Appendix A.10, “Edinburgh Syntax”.

Glossary
agenda

A stack of rule groups (or contexts). Control can be passed to the next
context on the agenda.

arity

The number of arguments (to a function, rule condition etc.)

backward chaining

The process of reasoning backward from postulated goals to determine
if their preconditions can be satisfied. If these preconditions are satisfied
the postulated goals are considered true.

browsers

Windows which allow the user to look freely through different parts of
the system.

class

In object-oriented programming, classes define classes with the same
attributes (slots) and behavior (methods). Instances of these classes are
created during the execution of a program which represent concrete
examples of the abstract class descriptions.
185

186
conflict resolution strategy

The method(s) used to decide which of a set of eligible rules will fire. A
conflict resolution strategy is a list of conflict resolution tactics which are
applied in sequence to the conflict set to determine which instantiation is
to fire.

conflict resolution tactic

A single predicate used to decide whether one instantiation is to be pre-
ferred to another. They may be combined into a conflict resolution strat-
egy.

conflict set

The set of instantiations of rules which at a given time are matched by
the object base.

contexts

Groups of rules in a knowledge base.

destructuring

The ability to match an expression against a piece of data where vari-
ables in the expression are bound to the corresponding parts of the data
if the structure of the expression and the data agree. For example, (?x .
?y) can match (1 2 3) with ?x binding to 1 and ?y to (2 3).

forward chaining

The process of reasoning forward from known facts to perform arbitrary
actions and to deduce new facts.

forward chaining cycle

The process of matching the conditions of rules against the object base to
produce a set of rules eligible to fire (the conflict set), selecting one of
those (conflict resolution) and firing it (performing its actions).

inference engine

The part of the system which is responsible for rule-firing, either in back-
ward or forward chaining mode.

inferencing state

A collection of information that the inferencing engine uses.

instantiation

An instantiation of a rule is the set of objects against which a rule
matches. A rule may have no instantiations (if it is not matched at all by
the object base) or many instantiations (each referring to a different set of
objects).

knowledge based systems

A system which encodes the knowledge for a problem domain in high-
level forms, usually facts and rules. The software architecture separates
the knowledge from the inference mechanism used to deduce new
knowledge.

LispWorks

An advanced Common Lisp programming environment, which serves
as the infrastructure for KnowledgeWorks.

meta object protocol (MOP)

Describes how the Common Lisp Object System is implemented in
terms of itself. Hence CLOS may be used to modify its own behavior.

meta rule protocol (MRP)

Allows the user to debug, modify or replace the default behavior of for-
ward chaining rules in the system in terms of backward chaining goals.

object base

The set of CLOS objects which KnowledgeWorks can reason over
(“knows about”).

object-oriented

Programming paradigm in which structures within the language are
organized as classes of objects which have attributes (slots) and behavior
(methods) associated with them.
 187

188
objects

The KnowledgeWorks® object base contains KnowledgeWorks CLOS
objects, which may for efficiency be replaced by KnowledgeWorks struc-
tures.

structures

A CLOS class can be replaced by a structure class in cases where speed is
important and the code must be optimized, and when the full power of
CLOS is not required. The structure is then analogous to the CLOS
object.

toolkit

A collection of complementary software or utilities (such as Knowledge-
Works®) with a common application focus.

Index
Symbols
* 4
+ 5
/== 150
::= 4
<..> 4
= 150
=.. 150
== 150
@< 150
@=< 150
@> 150
@>= 150
[..] 4
| 5

A
action 3, 25, 35
add-explanation 69
Advanced Topics

main chapter 65
agenda 29
all-debug 32, 83
any 34, 84
any Prolog interface function 136
append 150
arg 129, 150
arity 33, 50
assert 27, 28, 79, 84
asserta 150

assertion 28
assertz 150
atomic 150

B
backward chaining 2, 11, 25, 33, 77

debugging 35
definition of rules 34
implementation notes 174
interpreter 34
syntax 33

bagof 150
browsers 10

class 15, 53
object 12, 20, 56
rule 10, 18, 58
system 52

C
C 1
call 150
certainty factor 70
certainty factors 70, 73
c-factor 70
chaining 2
class browser 53
classes 15

named 38
relational database 39
unnamed 38

clause 150
clear 51
clear-all 51, 81, 85
clear-rules 51, 86
CLOS 2, 3, 7, 9, 12, 21, 25, 33, 51, 74

189

190
class categories in KnowledgeWorks 37
classes in KnowledgeWorks 37
objects in 4, 37

CLOS mixin class 4
CLOS/SQL class 39
Common Lisp Interface 36
Common Lisp Object System (CLOS) 2, 7
Common Prolog main chapter 127
condition 25

syntax 26
conflict resolution 17, 26, 30, 72
-lex 31, 76
lex 31
-mea 31, 76
mea 31
optimizing 76
-order 31
order 30, 31
-priority 30
priority 30
-recency 30, 76
recency 30
-specificity 31
specificity 31
tactics 30, 76
use of contexts 76
user definable 72
user-definable 72

conflict resolution strategy 72
conflict resolution tactic 30, 72
conflict-set 86
context 29, 65
context 27, 28, 87
context definition 32
contexts 10, 30
control

flow of 29, 65
creep 19, 59
current-cycle 88
cut 78
cut 88
cycle 89
cycle

of forward chaining 26

D
DCG 145
debug 150
debugger

in Prolog 139
debugging 2, 18, 32, 59

backward chaining 35
forward chaining 32
debugging 150
default-context 29, 51, 86
defclass 89, 91
defclass macro in LispWorks 38
defcontext 30, 32, 66, 91
defdetpred 153
defdetrel 150
defdetunipred 154
defexplain 69
defgrammar 145, 150
Defining Contexts 32
Definite Clause Grammars 145
def-kb-class 38, 70, 78, 80, 89
def-kb-struct 74, 75, 90
defmethod 78
def-named-kb-class 38, 90
defrel 128, 150
defrelmacro 145, 150
defrel-special-form-macro 151
defrule 25, 28, 33, 65, 66, 71, 77, 79, 80, 81,

93
defstruct 74, 90
deftactic 72, 94
def-view-class in LispWorks 40
destroy-inferencing-state 81, 95
deterministic 151
documentation strings 25, 30, 72, 92, 93, 95
dynamic conflict resolution 76

E
Edinburgh Prolog 35
Edinburgh Syntax 148

compatible predicates 154
editor 51
editor window 11
environment

graphic environment in Prolog 149
erase 27, 96, 151
explanations 68
expression

syntax 27

F
fail 96, 151
field

pattern 13, 57
query 57

findall 34, 98, 136, 151
findallset 136, 151
find-inferencing-state 81, 97

fire-rule 66, 99
forward chaining 2, 9, 25, 74, 75

cycle 26, 65, 66
debugging 32
history 16, 62
implementation notes 173
interpreter 29
rule definition 29
syntax 26

functor 129, 151

G
get-kb-object 38, 99
goals 3
graphical tools 2

H
halt 151
history 16

forward chaining 16, 62

I
Implementation Notes

appendix 173
implication strength 70
implic-strength 70, 71
infer 9, 19, 29, 81, 100
inference engine 3
inferencing states

creating and maintaining 81
current 81, 101
definition of 80
uses 81

inferencing-state 81, 101
inferencing-state-name 101
in-interpreter 100
inspector

instances 54
instantiation 66, 67, 104
instantiations 67
inst-bindings 67, 102
inst-rulename 67, 103
inst-token 67, 103
integer 151
interface functions in Prolog 136
interpreter

backward chaining 34
forward chaining 29

Introduction
main chapter 1

is 151

K
keysort 151
keyword
:backward 25
:forward 25
:meta 66
:name 38
:priority 17

Knowledge Based Systems (KBS) 1, 4
KnowledgeWorks 1, 9

backward chaining engine 33
clearing 51
CLOS objects 33, 37
Converting Other Systems Into, 181
generic functions 55
historical perspective 1
inspector 54
instances 54
listener 50
mixin class 39
object base 33
objects 34
podium 8
rule development 49
rule monitor 58, 60
rules in 25
running the tutorial 9
spy window 58
structures 48, 74
technical overview 2
tools 20
Use of Meta-Classes 78

kw-class 106

L
leap 20, 59
leash 151
leashing 139
-lex 31, 76, 107
lex 31, 107
Lisp 1, 7, 27, 36, 37

integration of 21
LispWorks 1, 7, 22, 33

accessing Lisp from Prolog 132
availability in KnowledgeWorks 49
Common Prolog Logic Listener 50
SQL interface 39

Lispworks
calling Prolog 134

LispWorks IDE 21
list-all-inferencing-state 81, 105

 191

192
listener 9, 50
listing 151
loading files 9
logic 134
logic interpreter 130
logic listener 149
logical 27, 79

M
macro

in Prolog 145
make-inferencing-state 81, 108
make-instance 38, 74, 79, 109
-mea 31, 76, 110
mea 31, 110
member 151
menu button

creep 19, 59
leap 20, 59

menu item
browse 15
class browser 15
Classes 15
clear 51
context 58
FC History 16
Inspect 57
Instantiations 57
KnowledgeWorks 9, 15, 16
Listener 9
Objects 12, 57
Rules 10, 58

:meta keyword 66
Meta Object Protocol (MOP) 4
Meta Rule Protocol (MRP) 4, 65
meta-interpreter 65
metaprotocols 2
meta-rule 65
mixin 4, 38
monitor window 18, 60
MYCIN 70

N
name 38, 105
named classes 38
named-kb-object 38, 91, 111
node 11
no-debug 32, 112
nodebug 151
nonvar 151
nospy 151
not 27, 112, 151
notrace 152

O
object 34

browser 20, 56
certainty factor 70
named 37

object base 19, 48
and inferencing states 80
clearing 51
main chapter 37
uncertainty 70

object browser 12
object system 2
once 152
OPS5 75, 181
optimization 74
optimization of KnowledgeWorks 48
-order 31, 113
order 30, 31, 114
output-defrels 152

P
pattern 13, 57

matching 77
popup 9
Preferences... command 13, 57, 59
print-verbose 114
-priority 30, 115
priority 30, 116
procedural language 2
programming environment

main chapter 49
Prolog 33, 35, 184

accessing Lisp 132
adding built in predicates 153
built in predicates 150
calling from LispWorks 134
cut 78
debugging 139
Edinburgh Syntax 148
exiting the interpreter 132
graphic environment 149
interface functions 136
leashing 139
logic interpreter 130
logic listener 149
macros 145
main chapter 127
overview 127

predicates compatible with Edinburgh
syntax 154

retrieving multiple solutions in 130
specifying multiple goals in 131
spy points 139
syntax 128
tracing 139

Q
query 57

R
read-query-print loop 130
read-term 152
-recency 30, 76, 116
recency 30, 117
recorda 152
recorded 152
recordz 152
relational database classes 39
repeat 152
reset 51, 81, 118
retract 152
return 27, 28, 30, 118
rule 25

action 25
backward chaining 34
browser 18
condition 25
definition of forward chaining 29
editing definitions 20
groups 16
implication strength 70
single-stepping 19

rule browser 58
rule monitor 58, 60
rule preconditions 75
rulebase 39
rule-defined conflict resolution 76
Rules

main chapter 25

S
setof 152
signal-kb-name-clash 119
sort 152
-specificity 31, 119
specificity 31, 120
spy 152
spy points 139
spy window 19, 58, 59

standard- kb-object 40, 78
standard-class 78
standard-context 121
standard-db-object 40
standard-kb- object 78
standard-kb-class 78
standard-kb-object 53, 89, 122
start-cycle 66, 122
start-kw 123
static conflict resolution 76
structures 48, 51, 74
subclasses 15
syntax

backward chaining 33
expression 27
forward-condition 26
of forward chaining 26

syntax of Prolog 128
system browser 52
systems 22

T
tactic 30, 72, 94
Tail Recursion 77
test 123
Tools menu

Preferences... 13, 57, 59
trace

in Prolog 139
trace 152
translate-vars 152
true 153
truth maintenance 27, 79
Tutorial

main chapter 7

U
undefcontext 32, 123
undefrule 29, 124
unleash 153
unnamed classes 38

V
var 153

W
window

browser 10
editor 11, 51
listener 9, 10, 50, 58
monitor 18, 60

 193

194
podium 8
popup 9
spy 19, 58, 59
subclasses 15

with-prolog 139
with-rule-actions 124

	LispWorks® for the Windows® Operating System KnowledgeWorks® and Prolog User Guide
	Copyright and Trademarks
	Contents
	1 Introduction
	1.1 KnowledgeWorks
	1.2 Background
	1.3 Technical Overview
	1.3.1 Appearance of the graphical tools

	1.4 Notation Conventions

	2 Tutorial
	2.1 Getting Started
	2.2 Loading the Tutorial
	2.3 Running the Tutorial
	2.4 Browsers
	2.4.1 Rule Browser
	2.4.2 Objects Browser
	2.4.3 Class Browser
	2.4.4 Forward Chaining History

	2.5 KnowledgeWorks Listener
	2.6 Debugging
	2.6.1 Monitoring Forward Chaining Rules
	2.6.2 Single-Stepping Rules
	2.6.3 Editing Rule Definitions

	2.7 Lisp Integration
	2.7.1 The LispWorks IDE

	2.8 Systems
	2.9 Exiting KnowledgeWorks

	3 Rules
	3.1 Forward chaining
	3.1.1 Overview
	3.1.2 Forward Chaining Syntax
	3.1.2.1 Example

	3.1.3 Defining Forward Chaining Rules
	3.1.3.1 Example

	3.1.4 The Forward Chaining Interpreter
	3.1.5 Control Flow
	3.1.5.1 The Agenda
	3.1.5.2 Contexts
	3.1.5.3 Conflict Resolution

	3.1.6 Examples
	3.1.6.1 Defining Contexts

	3.1.7 Forward Chaining Debugging

	3.2 Backward Chaining
	3.2.1 Overview
	3.2.2 Backward Chaining Syntax
	3.2.2.1 Example

	3.2.3 Objects
	3.2.4 Defining Backward Chaining Rules
	3.2.5 The Backward Chaining Interpreter
	3.2.5.1 Examples

	3.2.6 Edinburgh Prolog Translator
	3.2.7 Backward Chaining Debugging

	3.3 Common Lisp Interface

	4 Objects
	4.1 CLOS objects
	4.1.1 Unnamed Classes
	4.1.2 Named Classes
	4.1.2.1 Examples

	4.2 Relational Database Objects
	4.2.1 Example
	4.2.2 Extended Example

	4.3 KnowledgeWorks Structures

	5 The Programming Environment
	5.1 The KnowledgeWorks Listener
	5.2 The Editor
	5.3 Clearing KnowledgeWorks
	5.4 The System Browser
	5.5 The Class Browser
	5.6 The Objects Browser
	5.7 The Rule Browser
	5.8 Debugging with the Environment
	5.8.1 Spy Windows

	5.9 Monitor Windows
	5.9.1 Forward Chaining History

	6 Advanced Topics
	6.1 Control Flow
	6.1.1 Meta Rule Protocol
	6.1.1.1 Functions defined on Instantiations
	6.1.1.2 A Simple Example
	6.1.1.3 A Simple Explanation Facility
	6.1.1.4 Reasoning with Certainty Factors

	6.1.2 User-definable Conflict Resolution
	6.1.2.1 Examples

	6.2 Optimization
	6.2.1 Forward Chaining
	6.2.1.1 KnowledgeWorks Structures
	6.2.1.2 Efficient Forward Chaining Rule Preconditions

	6.2.2 Conflict Resolution
	6.2.2.1 Use of Contexts
	6.2.2.2 Optimization of the Strategy

	6.2.3 Backward Chaining
	6.2.3.1 Pattern Matching
	6.2.3.2 Tail Recursion
	6.2.3.3 Cut

	6.3 Use of Meta-Classes
	6.3.1 Example

	6.4 Logical Dependencies and Truth Maintenance
	6.4.1 Example

	6.5 Inferencing States
	6.5.1 Creating and Maintaining Inferencing States
	6.5.2 The Current Inferencing State
	6.5.3 Uses of Inferencing States
	6.5.3.1 Multiple threads
	6.5.3.2 Interleaved in a Single Thread

	7 Reference Guide
	all-debug
	any
	assert
	clear-all
	clear-rules
	conflict-set
	context
	current-cycle
	cut
	cycle
	def-kb-class
	def-kb-struct
	def-named-kb-class
	defcontext
	defrule
	deftactic
	destroy-inferencing-state
	erase
	fail
	find-inferencing-state
	findall
	fire-rule
	get-kb-object
	in-interpreter
	infer
	inferencing-state
	inferencing-state-name
	inst-bindings
	inst-rulename
	inst-token
	instantiation
	list-all-inferencing-states
	kb-name
	kw-class
	-lex
	lex
	make-inferencing-state
	make-instance
	-mea
	mea
	named-kb-object
	no-debug
	not
	-order
	order
	print-verbose
	-priority
	priority
	-recency
	recency
	reset
	return
	signal-kb-name-clash
	-specificity
	specificity
	standard-context
	standard-kb-object
	start-cycle
	start-kw
	test
	undefcontext
	undefrule
	with-rule-actions

	A Common Prolog
	A.1 Introduction
	A.1.1 Overview
	A.1.1.1 Starting Common Prolog

	A.2 Syntax
	A.3 Defining Relations
	A.4 Using The Logic Interpreter
	A.4.1 Multiple Solutions
	A.4.2 Multiple Goals
	A.4.3 Definitions
	A.4.4 Exiting the Interpreter

	A.5 Accessing Lisp From Common Prolog
	A.5.1 Examples

	A.6 Calling Prolog From Lisp
	A.6.1 Examples
	A.6.2 Interface Functions
	A.6.2.1 any, findall and findallset
	A.6.2.2 deflogfun
	A.6.2.3 with-prolog

	A.7 Debugging
	A.7.1 Tracing
	A.7.2 Spy Points
	A.7.3 Leashing
	A.7.4 Interactive Debugging

	A.8 Common Prolog Macros
	A.8.1 Example

	A.9 Defining Definite Clause Grammars
	A.9.1 Examples
	A.9.1.1 Example 1: A simple definition.
	A.9.1.2 Example 2: Using extra arguments.

	A.10 Edinburgh Syntax
	A.11 Graphic Development Environment
	A.12 Built-in Predicates
	A.13 Adding Built-in Predicates
	A.13.1 The defdetpred form
	A.13.2 The defdetunipred form

	A.14 Edinburgh Compatibility Predicates

	B Examples
	B.1 The Tutorial
	B.2 Explanation Facility
	B.3 Uncertain Reasoning Facility
	B.4 Other Examples

	C Implementation Notes
	C.1 Forward Chainer
	C.1.1 Forward Chaining Algorithm
	C.1.2 CLOS and the Forward Chainer
	C.1.3 Forward Chaining and the Backward Chainer

	C.2 Backward Chainer
	C.2.1 Backward Chaining Algorithm
	C.2.2 Term Structure
	C.2.3 The Binding Trail

	D For More Information
	D.1 General References
	D.1.1 Forward Chaining
	D.1.2 Backward Chaining and Prolog
	D.1.3 Uncertain Reasoning
	D.1.4 Expert Systems
	D.1.5 Lisp and CLOS

	D.2 The LispWorks manuals

	E Converting Other Systems
	E.1 OPS5
	E.2 Prolog

	Glossary
	agenda
	arity
	backward chaining
	browsers
	class
	conflict resolution strategy
	conflict resolution tactic
	conflict set
	contexts
	destructuring
	forward chaining
	forward chaining cycle
	inference engine
	inferencing state
	instantiation
	knowledge based systems
	LispWorks
	meta object protocol (MOP)
	meta rule protocol (MRP)
	object base
	object-oriented
	objects
	structures
	toolkit

	Index

