
Foreign Language
Interface User Guide
and Reference Manual
Version 6.0

Copyright and Trademarks

LispWorks Foreign Language Interface User Guide and Reference Manual

Version 6.0

December 2009

Copyright © 2009 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior written permission of LispWorks Ltd.

The information in this publication is provided for information only, is subject to change
without notice, and should not be construed as a commitment by LispWorks Ltd. Lisp-
Works Ltd assumes no responsibility or liability for any errors or inaccuracies that may
appear in this publication. The software described in this book is furnished under license
and may only be used or copied in accordance with the terms of that license.

LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other
brand or product names are the registered trademarks or trademarks of their respective
holders.

The code for walker.lisp and compute-combination-points is excerpted with permission
from PCL, Copyright © 1985, 1986, 1987, 1988 Xerox Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of
LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachu-
setts.
Permission to use, copy, modify, and distribute this software and its documentation for
any purpose and without fee is hereby granted, provided that this copyright and permis-
sion notice appear in all copies and supporting documentation, and that the name of
M.I.T. not be used in advertising or publicity pertaining to distribution of the software

without specific, written prior permission. M.I.T. makes no representation about the suit-
ability of this software for any purpose. It is provided “as is” without express or implied
warranty. M.I.T. disclaims all warranties with regard to this software, including all
implied warranties of merchantability and fitness. In no event shall M.I.T. be liable for
any special, indirect or consequential damages or any damages whatsoever resulting
from loss of use, data or profits, whether in an action of contract, negligence or other tor-
tious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of ICU software obtained from http://source.icu-project.org
and which bears the following copyright and permission notice:
ICU License - ICU 1.8.1 and later
COPYRIGHT AND PERMISSION NOTICE
Copyright © 1995-2006 International Business Machines Corporation and others. All
rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, and/or sell copies of the Software, and to permit persons to whom the Soft-
ware is furnished to do so, provided that the above copyright notice(s) and this permis-
sion notice appear in all copies of the Software and that both the above copyright
notice(s) and this permission notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM,
OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAM-
AGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFOR-
MANCE OF THIS SOFTWARE.
Except as contained in this notice, the name of a copyright holder shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software with-
out prior written authorization of the copyright holder. All trademarks and registered
trademarks mentioned herein are the property of their respective owners.

US Government Restricted Rights
The LispWorks Software is a commercial computer software program developed at pri-
vate expense and is provided with restricted rights. The LispWorks Software may not be
used, reproduced, or disclosed by the Government except as set forth in the accompany-
ing End User License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a)
 iii

(1995), FAR 12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14 Alt III, as applicable.
Rights reserved under the copyright laws of the United States.

Address

LispWorks Ltd
St. John’s Innovation Centre
Cowley Road
Cambridge
CB4 0WS
England

Telephone

From North America: 877
759 8839 (toll-free)

From elsewhere: +44 1223
421860

Fax
From North America: 617
812 8283
From elsewhere: +44 870
2206189

www.lispworks.com
 iv

http://www.lispworks.com

Contents
Preface xi

1 Introduction to the FLI 1

An example of interfacing to a foreign function 1
Using the FLI to get the cursor position 4
Using the FLI to set the cursor position 6
An example of dynamic memory allocation 7
Summary 8

2 FLI Types 9

Immediate types 10
Aggregate types 12
Parameterized types 14
Encapsulated types 14
The void type 16
Summary 16

3 FLI Pointers 19

Creating and copying pointers 19
Pointer testing functions 21
Pointer dereferencing and coercing 22
An example of dynamic pointer allocation 25
More examples of allocation and pointer allocation 25
Summary 26
v

Contents

vi
4 Advanced Uses of the FLI 27

Passing a string to a Windows function 27
Modifying, passing and returning strings 29
Lisp integers 43
Defining new types 44
Foreign callables and foreign functions 44
Using DLLs within the LispWorks FLI 48
Interfacing to graphics functions 50
Summary 50

5 Function and Macro Reference 51

align-of 51
alloca 52
allocate-dynamic-foreign-object 52
allocate-foreign-object 54
cast-integer 56
connected-module-pathname 56
convert-from-foreign-string 57
convert-integer-to-dynamic-foreign-object 58
convert-to-foreign-string 59
convert-to-dynamic-foreign-string 61
copy-pointer 62
decf-pointer 63
define-c-enum 64
define-c-struct 66
define-c-typedef 69
define-c-union 70
define-foreign-callable 71
define-foreign-converter 76
define-foreign-forward-reference-type 79
define-foreign-funcallable 80
define-foreign-function 81
define-foreign-pointer 87
define-foreign-type 88
define-foreign-variable 89
define-opaque-pointer 93
dereference 94
disconnect-module 97

Contents
enum-symbol-value 98
enum-value-symbol 98
enum-values 98
enum-symbols 98
enum-symbol-value-pairs 98
fill-foreign-object 100
foreign-aref 100
foreign-array-dimensions 102
foreign-array-element-type 103
foreign-array-pointer 104
foreign-slot-names 105
foreign-slot-offset 106
foreign-slot-pointer 107
foreign-slot-type 108
foreign-slot-value 110
foreign-type-equal-p 112
foreign-type-error 113
foreign-typed-aref 114
free 115
free-foreign-object 115
incf-pointer 116
locale-external-formats 117
make-integer-from-bytes 118
make-pointer 119
malloc 120
module-unresolved-symbols 121
null-pointer 122
null-pointer-p 122
pointer-address 123
pointer-element-size 124
pointer-element-type 125
pointer-element-type-p 126
pointer-eq 126
pointer-pointer-type 127
pointerp 128
print-collected-template-info 129
print-foreign-modules 130
register-module 130
replace-foreign-array 136
replace-foreign-object 139

 vii

Contents

viii
set-locale 140
set-locale-encodings 141
size-of 142
start-collecting-template-info 143
with-coerced-pointer 143
with-dynamic-foreign-objects 145
with-dynamic-lisp-array-pointer 148
with-foreign-slots 150
with-foreign-string 152
with-integer-bytes 154

6 Type Reference 155

:boolean 155
:byte 156
:c-array 156
:char 157
:const 158
:double 158
:ef-mb-string 159
:ef-wc-string 160
:enum 161
:enumeration 162
:fixnum 162
:float 162
:foreign-array 163
:function 163
:int 164
:int8 165
:int16 165
:int32 165
:int64 165
:intmax 165
:intptr 165
:lisp-array 166
:lisp-double-float 168
:lisp-float 168
:lisp-simple-1d-array 169
:lisp-single-float 169
:long 170

Contents
:long-long 170
:one-of 171
:pointer 172
:ptr 172
:ptrdiff-t 173
:reference 173
:reference-pass 175
:reference-return 175
:short 176
:signed 176
:size-t 177
:ssize-t 178
:struct 178
:time-t 180
:uint8 180
:uint16 180
:uint32 180
:uint64 180
:uintmax 180
:uintptr 180
:union 181
:unsigned 182
:void 183
:volatile 184
:wchar-t 184
:wrapper 185

7 The Foreign Parser 187

Introduction 187
Loading the Foreign Parser 188
Using the Foreign Parser 188
Using the LispWorks Editor 190
Foreign Parser Reference 191
preprocessor 191
preprocessor-format-string 191
preprocessor-include-path 192
preprocessor-options 192
process-foreign-code 192
process-foreign-file 194

 ix

Contents

x

Glossary 197

Index 201

Preface
This manual documents the Foreign Language Interface (FLI), which provides
a toolkit for the development of interfaces between Common Lisp and other
programming languages, and supersedes the Foreign Function Interface (FFI).

The manual is divided into three sections: a user guide to the FLI which
includes illustrative examples indicating how to use the FLI for a variety of
purposes, a reference section providing complete details of the functions, mac-
ros, variables and types that make up the FLI, and a guide to the Foreign
Parser.

The user guide section starts by describing the ideas behind the FLI, followed
by a few simple examples presenting some of the more commonly used fea-
tures of the FLI. The next chapter explains the existing type system, and
includes examples showing how to define new types. This is followed by a
chapter explaining the FLI implementation of pointers. The final chapter of
the section examines some of the more advanced topics within the FLI.

The reference section consists of a chapter documenting the functions and
macros that constitute the FLI, and a chapter documenting the FLI variables
and types.

The Foreign Parser section describes a helper tool for generating FLI defini-
tions from a C header file.
xi

xii

1

1 Introduction to the FLI
The Foreign Language Interface (FLI) is an extension to LispWorks which
allows you to call functions written in a foreign language from LispWorks,
and to call Lisp functions from a foreign language. The FLI currently supports
C (and therefore also the Win32 API for Windows users).

The main problem in interfacing different languages is that they usually have
different type systems, which makes it difficult to pass data from one to the
other. The FLI solves the problem of interfacing Lisp with C. It consists of FLI
types that have obvious parallels to the C types and structures, and FLI func-
tions that allow LispWorks to define new FLI types and set their values. The
FLI also contains functions for passing FLI objects to C, and functions for
receiving data from C.

1.1 An example of interfacing to a foreign function
The following example shows how to use the FLI to call a C function. The
function to interface with, FahrenheitToCelsius, takes one integer as its argu-
ment (the temperature in Fahrenheit) and returns the result as a single float
(the temperature in Celsius).

The example consists of three stages: defining a foreign language interface to
the C function, loading the foreign code into the Lisp image, and calling the C
function to obtain the results.
1

1 Introduction to the FLI

2

1.1.1 Defining the FLI function

The FLI provides the macro define-foreign-function for creating interfaces
to foreign functions. It takes the name of the function you wish to interface to,
the argument types the function accepts, and the result type the function
returns.

Given the following C declaration to FahrenheitToCelsius:

float FahrenheitToCelsius(int);

The FLI interface is as follows:

(fli:define-foreign-function
 (fahrenheit-to-celsius "FahrenheitToCelsius" :source)
 ((fahrenheit :int))
 :result-type :float
 :language :ansi-c
)

The first argument to define-foreign-function declares that fahren-
heit-to-celsius is the name of the Lisp function that is generated to inter-
face with the C function FahrenheitToCelsius. The :source keyword is a
directive to the define-foreign-function name mangler that Fahrenheit-
ToCelsius is the name of the C function as seen in the source files. On some
platforms the actual symbol name available in the foreign object file we are
inferfacing with could include character prefixes such as "." and "_", and so
the :source keyword encoding allows you to write cross-platform portable
foreign language interfaces.

The second argument to define-foreign-function, ((fahrenheit :int)), is
the argument list for the foreign function. In this case, only one argument is
required. The first part of each argument descriptor is the lambda argument
name. The rest of the argument describes the type of argument we are trying
to interface to and how the conversion from Lisp to C is performed. In this
case the foreign type :int specifies that we are interfacing between a Lisp
integer and a C type "int".

The :result-type keyword tells us that the conversion required between the
C function and Lisp uses the foreign type :float. This tells Lisp that C will
return a result of type "float", which needs to be converted to a Lisp single-
float.

1.1 An example of interfacing to a foreign function
The final keyword argument, :language, specifies which language the foreign
function was written in. In this case the example uses ANSI C. This keyword
determines how single-floating point values are passed to and returned from
C functions as described for define-foreign-function.

1.1.2 Loading foreign code

Once an interface has been created, the object code defining those functions
(and indeed any variables) must be made available to LispWorks.

LispWorks for Windows can load Windows Dynamic Link Libraries (.DLL
files).

LispWorks for Linux and LispWorks for FreeBSD can load shared libraries
(typically .so files).

LispWorks for Macintosh can load Mach-O dynamically-linked shared librar-
ies (typically .dylib files).

LispWorks for UNIX can either load object files (usually suffixed with ".o")
directly into the Lisp image, extract any required object files from the available
archive libraries (usually suffixed with ".a"), or load in shared libraries (usu-
ally suffixed with ".so").

Throughout this manual we shall refer to these dynamic libraries as DLLs.

On all platforms the function register-module is the LispWorks interface to
DLL files. It is used to specify which DLLs are looked up when searching for
foreign symbols. Here are example forms to register a connection to a DLL.

On Windows:

(fli:register-module "MYDLL.DLL")

On Linux:

(fli:register-module "mylib.so")

On Macintosh:

(fli:register-module "mylib.dylib")
 3

1 Introduction to the FLI

4

Note: LispWorks for UNIX 6.0 also provides the loader function link-
load:read-foreign-modules familiar to users of LispWorks 4.3 and earlier.
However, this is now deprecated in favor of register-module.

1.1.3 Calling foreign code

Calling the foreign code is the simplest part of using the FLI. The interface to
the C function, defined using define-foreign-function, is called like any
other Lisp function. In our example, the fahrenheit-to-celsius function
takes the temperature in Fahrenheit as its only argument, and returns the tem-
perature in Celsius.

1.2 Using the FLI to get the cursor position
Note: The rest of the examples in this chapter only work in LispWorks for
Windows.

The following example shows how to use the FLI to call a C function in a
Win32 library. The function we are going to call returns the screen position of
the mouse pointer, or cursor. The example consists of three stages: setting up
the correct data types to pass and receive the data, defining and calling a FLI
function to call the Win32 function, and collecting the values returned by the
Win32 function to find where the cursor is.

1.2.1 Defining FLI types

The example uses the FLI to find the position of the cursor using the Windows
function GetCursorPos, which has the following C prototype:

BOOL GetCursorPos(LPPOINT)

The LPPOINT argument is a pointer to the POINT structure, which has the fol-
lowing C definition:

typedef struct tagPOINT {
 LONG x;
 LONG y;
} POINT;

First we use the define-c-typedef macro to define a number of basic types
which are needed to pass data to and from the Windows function.

1.2 Using the FLI to get the cursor position
(fli:define-c-typedef bool (:boolean :int))

(fli:define-c-typedef long :long)

This defines two types, BOOL and LONG, which are used to associate a Lisp bool-
ean value (t or nil) with a C boolean of type int, and a Lisp bignum with a C
long. These are required because the Windows function GetCursorPos returns
a boolean to indicate if it has executed successfully, and the cursor’s x and y
positions are specified in a long format in the POINT structure.

Next, we need to define a structure for the FLI which is used to get the coordi-
nates of the cursor. These coordinates will consist of an x and a y position. We
use the define-c-typedef macro for this, and the resulting Lisp FLI code has
obvious parallels with the C tagPOINT structure.

(fli:define-c-struct tagpoint
 (x long)
 (y long))

The tagPOINT structure for the FLI, corresponding to the C structure of the
same name, has been defined. This now needs to be further defined as a type
for the FLI, using define-c-typedef.

(fli:define-c-typedef point (:struct tagpoint))

Finally, a pointer type to point to the structure is required. It is this FLI pointer
which will be passed to the Windows function GetCursorPos, so that GetCur-
sorPos can change the x and y values of the structure pointed to.

(fli:define-c-typedef lppoint (:pointer point))

All the required FLI types have now been defined. Although it may seem that
there is a level of duplicity in the definitions of the structures, pointers and
types in this section, this was necessary to match the data structures of the C
functions to which the FLI will interface. We can now move on to the defini-
tion of FLI functions to perform the interfacing.

1.2.2 Defining a FLI function

This next step uses the define-foreign-function macro to define a FLI func-
tion, or interface function, to be used to call the GetCursorPos function. An
interface function takes its arguments, converts them into a C format, calls the
 5

1 Introduction to the FLI

6

foreign function, receives the return values, and converts them into a suitable
Lisp format.

(fli:define-foreign-function (get-cursor-position "GetCursorPos")
 ((lp-point lppoint))
 :result-type bool)

In this example, the defined FLI function is get-cursor-position. It takes as
its argument a pointer of type lppoint, converts this to a C format, and calls
GetCursorPos. It takes the return value it receives from GetCursorPos and
converts it into the FLI bool type we defined earlier.

We have now defined all the types and functions required to get the cursor
position. The next step is to allocate memory for an instance of the tagPOINT
structure using allocate-foreign-object. The following line of code binds
location to a pointer that points to such an instance.

(setq location (fli:allocate-foreign-object :type 'point))

Finally, we can use our interface function get-cursor-position to get the cur-
sor position:

(get-cursor-position location)

1.2.3 Accessing the results

The position of the cursor is now stored in a POINT structure in memory, and
location is a pointer to that location. To find out what values are stored we
use the foreign-slot-value accessor, which returns the value stored in the
specified field of the structure.

(fli:foreign-slot-value location 'x)

(fli:foreign-slot-value location 'y)

1.3 Using the FLI to set the cursor position
A similar Windows function, SetCursorPos, can be used to set the cursor posi-
tion. The SetCursorPos function takes two LONGs. The following code defines
an interface function to call SetCursorPos.

1.4 An example of dynamic memory allocation
(fli:define-foreign-function (set-cursor-position "SetCursorPos")
 ((x :long)
 (y :long))
 :result-type :boolean)

For example, the cursor position can now be set to be near the top left corner
by simply using the following command:

(set-cursor-position 20 20)

For a more extravagant example, define and execute the following function:

(defun test-cursor ()
 (dotimes (x 10)
 (dotimes (d 300)
 (let ((r (/ (+ d (* 300 x)) 10.0)))
 (set-cursor-position
 (+ 300 (floor (* r (cos (/ (* d pi) 150.0)))))
 (+ 300 (floor (* r (sin (/ (* d pi) 150.0)))))
)))))

(test-cursor)

1.4 An example of dynamic memory allocation
In the previous example our defined interface function get-cursor-position
used the function allocate-foreign-object to allocate memory for an
instance of a POINT structure. This memory is now reserved, with a pointer to
its location bound to the variable location. More detailed information on
pointers is available in Chapter 3, “FLI Pointers”. To free the memory associ-
ated with the foreign object requires the use of the function free-foreign-
object.

(fli:free-foreign-object location)

There are other methods for dealing with the question of memory manage-
ment. The following example defines a Lisp function that returns the x and y
coordinates of the cursor without permanently tying up memory for struc-
tures that are only used once.
 7

1 Introduction to the FLI

8

(defun current-cursor-position ()
 (fli:with-dynamic-foreign-objects ()
 (let ((lppoint (fli:allocate-dynamic-foreign-object
 :pointer-type 'lppoint)))
 (if (get-cursor-position lppoint)
 (values t (fli:foreign-slot-value lppoint 'x)
 (fli:foreign-slot-value lppoint 'y))
 (values nil 0 0)))))

On calling current-cursor-position the following happens:

1. The macro with-dynamic-foreign-objects is called, which ensures that
the lifetime of any allocated objects is within the scope of the code speci-
fied in its body.

2. The function allocate-dynamic-foreign-object is called to create an
instance of the relevant data structure required to get the cursor position.
Refer to it using the lppoint pointer.

3. The previously defined foreign function get-cursor-position is called
with lppoint.

4. Provided the call to GetCursorPos was successful the function foreign-
slot-value is called twice, once to return the value in the x slot and
again to return the value in the y slot. If the call was unsuccessful then 0
0 nil is returned.

1.5 Summary
In this chapter an introduction to some of the FLI functions and types was pre-
sented. Some examples demonstrating how to interface LispWorks with Win-
dows and C functions were presented. The first example involved defining a
foreign function using define-foreign-function to call a C function that
converts between Fahrenheit and Celsius. The second involved setting up for-
eign types, using the FLI macros define-c-typedef and define-c-struct,
and defining a foreign function using the FLI macro define-foreign-func-
tion, with which to obtain data from the Windows function GetCursorPos.
The third example consisted of defining a foreign function to pass data to the
Windows function SetCursorPos. A further example illustrated how to man-
age the allocation of memory for creating instances of foreign objects more
carefully using the FLI macro with-dynamic-foreign-objects.

2

2 FLI Types
A central aspect of the FLI is implementation of foreign language types. FLI
variables, function arguments and temporary objects have predictable proper-
ties and structures which are analogous to the properties and structures of the
types found in C. The FLI can translate Lisp data objects into FLI data objects,
which are then passed to the foreign language, such as C. Similarly, data can
be passed from C or the Windows functions to the FLI, and then translated
into a suitable Lisp form. The FLI types can therefore best be seen as an inter-
mediate stage in the passing of data between Lisp and other languages.

Here are some of the features and sorts of foreign types:

• Consistency — Foreign types behave in a consistent and predictable
manner. There is only one definition for any given foreign type.

• Parameterized types — these can be created using a deftype-like syn-
tax. The macro define-foreign-type provides a simple mechanism for
creating parameterized types.

• Encapsulated types — the ability to define a new foreign type as an
extension to an existing type definition is provided. All types are con-
verters between Lisp and the foreign language. New types can be
defined to add an extra level of conversion around an existing type. The
macro define-foreign-converter and the foreign type :wrapper pro-
vide this functionality.
9

2 FLI Types

10
• Generalized accessors — the FLI does not create named accessors.
Instead, several generalized accessors use information stored within the
foreign type object in order to destructure the foreign object. These
accessors are foreign-slot-value, foreign-aref and dereference.
This makes it possible to handle type definitions corresponding to C
types defined using unnamed structures, as we do not rely on special-
ized accessors for the given type.

• Documentation for types — foreign type definitions can now include
documentation strings.

• Specialized type constructors — to make the definition of the Lisp to C
interfaces even easier several type constructor macros are provided to
mimic the C type constructors typedef, enum, struct, and union. The
new FLI constructors are define-c-typedef, define-c-enum, define-c-
struct and define-c-union. Note that the equivalent foreign types for
most standard C types are already available within the FLI.

There are two fundamental sorts of FLI types: immediate and aggregate. Imme-
diate types, which correspond to the C fundamental types, are so called
because they are basic data types such as integers, booleans and bytes which
have a direct representation in the computer memory. Aggregate types, which
correspond to the C derived types, consist of a combination of immediate
types, and possibly of smaller aggregate types. Examples of aggregate types
are arrays and structures. Any user-defined type is an aggregate type.

2.1 Immediate types
The immedate types are the basic types used by the FLI to convert between
Lisp and a foreign language.

The immediate types of the FLI are :boolean, :byte, :char, :const, :double,
:enum, :float, :int, :lisp-double-float, :lisp-float, :lisp-single-
float, :long, :pointer, :short, :signed and :unsigned. For details on each
immediate type, see the relevant reference entry.

2.1.1 Integral types

Integral types are the FLI types that represent integers. They consist of the
following: :int, :byte, :long, :short, :signed, :unsigned and :enum, along

2.1 Immediate types
with integer types converting to types with particular sizes defined by ISO
C99 such as :int8, :uint64 and :intmax.

Integral types can be combined in a list for readability and compatibility pur-
poses with the foreign language, although when translated to Lisp such com-
binations are usually returned as a Lisp integer, or a fixnum for byte sized
combinations. For example, a C unsigned long can be represented in the FLI
as an (:unsigned :long).

2.1.2 Floating point types

The FLI provides several different immediate types for the representation of
floating point numbers. They consist of the following: :float, :double,
:lisp-double-float, :lisp-float, and :lisp-single-float. The floating
types all associate equivalent Lisp and C types, except the :lisp-float,
which can take a modifier to cause an associations between different floating
types. A :lisp-float associates a Lisp float with a C float by default, but a
declaration of (:lisp-float :double) corresponds to a C double, for exam-
ple.

Note: be sure to use :language :ansi-c when passing float arguments to and
from C using define-foreign-function and so on.

2.1.3 Character types

The FLI provides the :char type to interface a Lisp character with a C char.

2.1.4 Boolean types

The FLI provides the :boolean type to interface a Lisp boolean value (t or
nil) with a C int (0 corresponding to nil, and any other value corresponding
to t). The :boolean type can be modified to make it correspond with other C
types. For example, (:boolean :byte) would associate a Lisp boolean with a
C byte, and (:boolean :long) would associate a Lisp boolean with a C long.

2.1.5 Pointer types

Pointers are discussed in detail in Chapter 3, “FLI Pointers”. Further details
can also be found in the reference entry for :pointer.
 11

2 FLI Types

12
2.2 Aggregate types
Aggregate types are types such as arrays, strings and structures. The internal
structure of an aggregate type is not transparent in the way that immediate
types are. For example, two structures may have the same size of 8 bytes, but
one might partition its bytes into two integers, whereas the other might be
partitioned into a byte, an integer, and another byte. The FLI provides a num-
ber of functions to manipulate aggregate types. A feature of aggregate types is
that they are usually accessed through the use of pointers, rather than directly.

2.2.1 Arrays

The FLI has two predefined array types: the :c-array type, which corre-
sponds to C arrays, and the :foreign-array type. The two types are the same
in all aspects but one: if you attempt to pass a :c-array by value through a
foreign function, the starting address of the array is what is actually passed,
whereas if you attempt to pass a :foreign-array in this manner, an error is
raised.

For examples on the use of FLI arrays refer to :c-array and :foreign-array
in Chapter 6.

2.2.2 Strings

The FLI provides two foreign types to interface Lisp and C strings, :ef-wc-
string and :ef-mb-string.

The :ef-mb-string converts between a Lisp string and an external format C
multi-byte string. A maximum number of bytes must be given as a limit for
the string size.

The :ef-wc-string converts between a Lisp string and an external format C
wide character string. A maximum number of characters must be given as a
limit for the string size.

For more information on converting Lisp strings to foreign language strings
see the string types :ef-mb-string, :ef-wc-string, and the string functions
convert-from-foreign-string, convert-to-foreign-string, and with-
foreign-string.

2.2 Aggregate types
2.2.3 Structures and unions

The FLI provides the :struct and :union types to interface Lisp objects with
the C struct and union types.

To define types to interface with C structures, the FLI macro define-c-struct
is provided. In the next example it is used to define a FLI structure, tagpoint:

(fli:define-c-struct tagpoint
 (x :long)
 (y :long)
 (visible (:boolean :byte))

This structure would interface with the following C structure:

typedef struct tagPOINT {
 LONG x;
 LONG y;
 BYTE visible;
} POINT;

The various elements of a structure are known as slots, and can be accessed
using the FLI foreign slot functions, foreign-slot-names, foreign-slot-
type, and foreign-slot-value. For example, the next commands set point
equal to an instance of tagPOINT, and set the Lisp variable names equal to a list
of the names of the slots of tagPOINT.

(setq point (fli:allocate-foreign-object :type 'tagpoint))

(setq names (fli:foreign-slot-names point))

The next command finds the type of the first element in the List names, and
sets the variable name-type equal to it.

(setq name-type (fli:foreign-slot-type point (car names)))

Finally, the following command sets point-to equal to a pointer to the first
element of point, with the correct type.

(setq point-to (fli:foreign-slot-pointer point (car names)
 :type name-type))

The above example demonstrates some of the functions used to manipulate
FLI structures. The FLI :union type is similar to the :struct type, in that the
FLI slot functions can be used to access instances of a union. The convenience
 13

2 FLI Types

14
FLI function define-c-union is also provided for the definition of specific
union types.

2.3 Parameterized types
The define-foreign-type and define-foreign-converter macros allow the
definition of parameterized types. For example, assume you want to create a
foreign type that matches the Lisp type unsigned-byte when supplied with
an argument of one of 8, 16, or 32. The following code achieves this:

(fli:define-foreign-type unsigned-byte (&optional (bitsize '*))
 (case bitsize
 (8 '(:unsigned :byte))
 (16 '(:unsigned :short))
 (32 '(:unsigned :int))
 (otherwise (error "Illegal foreign type (~s ~s)"
 'unsigned-byte bitsize))))

This defines the new foreign type unsigned-byte that can be used anywhere
within the FLI as one of

• (unsigned-byte 8)

• (unsigned-byte 16)

• (unsigned-byte 32)

Specifying anything else returns an error.

2.4 Encapsulated types
With earlier version of the foreign function interface it was not possible to cre-
ate new foreign types that encapsulated the functionality of existing types.
The only way in which types could be abstracted was to create “wrapper”
functions that filtered the uses of a given type. The FLI contains the ability to
encapsulate foreign types, along with the ability to create parameterized
types. This enables you to easily create more advanced and powerful type def-
initions.

2.4 Encapsulated types
2.4.1 Passing Lisp objects to C

There are occasions when it is necessary to pass Lisp object references through
to C and then back into Lisp again. An example of this is the need to specify
Lisp arguments for a GUI action callback.

Using either the foreign type :wrapper or the macro define-foreign-con-
verter a new foreign type can be created that wraps an extra level of conver-
sion around the Lisp to C or C to Lisp process.

2.4.2 An example

For example, let us assume that we want to pass Lisp object handles through
to C and then back to Lisp again. Passing C a pointer to the Lisp object is not
sufficient, as the Lisp object might be moved at any time, for example due to
garbage collection. Instead, we could assign each Lisp object to be passed to C
a unique int handle. Callbacks into Lisp could then convert the handle back
into the Lisp object. This example is implemented in two ways: using the
:wrapper type and using define-foreign-converter.

:wrapper Type

Allows the specification of automatic conversion functions between Lisp
and an instance of a FLI type.

:wrapper fli-type &key lisp-to-foreign foreign-to-lisp

Using :wrapper we can wrap Lisp to C and C to Lisp converters around the
converters of an existing type:

(fli:define-foreign-type lisp-object-wrapper ()
 "A mechanism for passing a Lisp object handle to C.
 Underlying C type is Lint"
 ‘(:wrapper :int
 :lisp-to-foreign find-index-for-object
 :foreign-to-lisp find-object-from-index))

If the :lisp-to-foreign and :foreign-to-lisp keyword arguments are not
specified, no extra conversion is applied to the underlying foreign type, caus-
ing it to behave like a standard :int type.

See the reference entry for :wrapper for more examples.
 15

2 FLI Types

16
A second method uses define-foreign-converter, which is specifically
designed for the creation of new converter types (that is, types which wrap
extra levels of conversion around existing types). A simple use of define-
foreign-converter is to only wrap extra levels of conversion around existing
Lisp to foreign and foreign to Lisp converters.

(fli:define-foreign-converter lisp-object-wrapper () object
 :foreign-type :int
 :lisp-to-foreign `(find-index-for-object ,object)
;; object will be the Lisp Object
 :foreign-to-lisp `(find-object-from-index ,object)
;; object will be the :int object
 :documentation "Foreign type for converting from lisp objects to
integers handles to lisp objects which can then be manipulated in
C. Underlying foreign type : 'C' int")

The definition of lisp-object-wrapper using define-foreign-converter is
very similar to the definition using :wrapper, and indeed the :wrapper type
could be defined using define-foreign-converter.

See the reference entry for define-foreign-converter for more information.

2.5 The void type
The FLI provides the :void type for interfacing with the C void type. In accor-
dance with ANSI C, it behaves like an unsigned char. In practice you will
probably want to interface with a C void *, for which you should use the FLI
construction (:pointer :void).

2.6 Summary
In this chapter the various FLI data types have been examined. FLI types per-
form a translation on data passed between Lisp objects and C objects, and
there are two main sorts of FLI types: immediate and aggregate. Immediate
types have a simple representation in computer memory, and represent
objects such as integers, floating point number and bytes. Aggregate types
have a more complicated structure in memory, and consist of structures,
arrays, strings, and unions. Parameterized and encapsulated types were also
discussed. Finally, a number of FLI types that perform specific functions, such
as the :void type and the :wrapper type, were examined.

2.6 Summary
 17

2 FLI Types

18

3

3 FLI Pointers
Pointers are a central part of the C type system, and because Lisp does not
provide them directly, one of the core features of the FLI is a special pointer
type that is used to represent C pointers in Lisp. This chapter discusses how to
use FLI pointers by examining some of the functions and macros which allow
you to create and manipulate them.

A FLI pointer is a FLI object containing a memory address and a type specifica-
tion. The implication is that the pointer points to an object of the type speci-
fied at the memory address, although a pointer can point to a memory
location not containing an allocated FLI object, or an object that was allocated
with a different type. Pointers can also point to other pointers, and even to
functions.

3.1 Creating and copying pointers
This section discusses how to create a FLI pointer, how to copy it, and where
the memory is actually allocated.

3.1.1 Creating pointers

Many FLI functions when called return a pointer to the object created. For
example, a form such as
19

3 FLI Pointers

20
(fli:allocate-foreign-object :type :int)

will return something similar to the following:

#<Pointer to type :INT = #x007608A0>

This is a FLI pointer object, pointing to an object at address #x007608A0 of
type :int. Note that the memory address is printed in hexadecimal format,
but when you use the FLI pointer functions and macros discussed in this
chapter, numeric values are interpreted as base 10 unless you use Lisp reader
syntax such as #x. .

To use the pointer in the future it needs to be bound to a Lisp variable. This
can be done by using setq.

(setq point1 (fli:allocate-foreign-object :type :int)

A pointer can be explicitly created, rather than being returned during the allo-
cation of memory for a FLI object, by using make-pointer. In the next example
a pointer is made pointing to an :int type at the address 100, and is bound to
the Lisp variable point2.

(setq point2 (fli:make-pointer :address 100 :type :int))

For convenience you may wish to define your own pointer types, for example:

(fli:define-foreign-pointer my-pointer-type :int)

(setq point3
 (fli:make-pointer :address 100
 :pointer-type 'my-pointer-type))

point3 contains the same type and address information as point2.

3.1.2 Copying pointers

Suppose the Lisp variable point3 is bound to a FLI pointer as in “Creating
pointers” on page 19. To make a copy of the pointer it is not sufficient to do the
following:

(setq point4 point3)

This simply sets point4 to contain the same pointer object as point3. Thus if
the pointer is changed using point3, a similar change is observed when look-
ing in point4. To create a distinct copy of the pointer object you should use

3.2 Pointer testing functions
copy-pointer, which returns a new pointer object with the same address and
type as the old one, as the following example shows.

(setq point5 (fli:copy-pointer point3))

3.1.3 Allocation of FLI memory

Foreign objects do take up memory. If a foreign object is no longer needed, it
should be deallocated using free-foreign-object. This should be done only
once for each foreign object, regardless of the number of pointer objects that
contain its address. After freeing a foreign object, any pointers or copies of
pointers containing its address will give unpredicable results if the memory is
accessed.

FLI memory is allocated using malloc() so it comes from the C heap.

The FLI pointer object itself is a Lisp object, but the memory it points to does
not show up in the output of room. Therefore you must use Operating System
tools to see the virtual address size of the program.

3.2 Pointer testing functions
A number of functions are provided for testing various properties of pointers.
The most basic, pointerp, tests whether an object is a pointer. In the following
examples the first expression returns nil, because 7 is a number, and not a
pointer. The second returns t because point4 is a pointer.

(fli:pointerp 7)

(fli:pointerp point4)

The address pointed to by a pointer is obtained using pointer-address. For
example, the following expression returns the address pointed to by point4,
which was defined to be 100.

(fli:pointer-address point4)

Pointers which point to address 0 are known as null pointers. Passing the Lisp
object nil instead of a pointer results in nil being treated as a null pointer.
The function null-pointer-p tests whether a pointer is a null pointer or not.
If the pointer is a null pointer the value t is returned. We know that point4
 21

3 FLI Pointers

22
points to address 100 and is therefore not a null pointer. As a result, the fol-
lowing expression returns nil.

(fli:null-pointer-p point4)

Another testing function is pointer-eq which returns t if two pointers point
to the same address, and nil if they do not. In the previous section we created
point3 by making a copy of point1, and so both point to the same address.
Therefore the following expression returns t.

(fli:pointer-eq point1 point3)

Two functions are provided to return information about the object pointed to
by a pointer, pointer-element-type and pointer-element-size. In practice,
it is the pointer which holds the information as to the type of the object at a
given memory location—the memory location itself only contains data in the
form of bytes. Recall that point1 was defined in the previous section as a
pointer to an :int. As a result the following two lines of code return 4 (the size
of an :int) and :int.

(fli:pointer-element-size point1)

(fli:pointer-element-type point1)

The question of pointer types is discussed further in the next section.

3.3 Pointer dereferencing and coercing
The dereference function returns the value stored at the location held by a
pointer, provided the type of the object is an immediate type and not a struc-
ture or an aggregate type. For now, you can consider immediate data types to
be the simple types such as :int, :byte, and :char, and aggregate types to
consist of structures defined using :struct. Full details about types are given
in Chapter 2, “FLI Types”, and the use of the dereference function with
aggregate types is discussed further in Chapter 4, “Advanced Uses of the
FLI”.

The dereference function supports the setf function which can therefore be
used to set values at the address pointed to by the pointer. In the following
example an integer is allocated and a pointer to the integer is returned. Then

3.3 Pointer dereferencing and coercing
dereference and setf are used to set the value of the integer to 12. Finally, the
value of the integer is returned using fli:dereference.

(setq point5 (fli:allocate-foreign object :type :int))

(setf (fli:dereference point5) 12)

(fli:dereference point5)

The function dereference has an optional :type keyword which can be used
to return the value pointed to by a pointer as a different type. This is known as
coercing a pointer. The default value for :type is the type the pointer is speci-
fied as pointing to. In the next example the value at point5 is returned as a
Lisp boolean even thought it was set as an :int. Because the value at point5 is
not 0, it is returned as t.

(fli:dereference point5 :type '(:boolean :int))

Recall that at the end of the previous section the function pointer-element-
type was demonstrated. What follows is an example which uses this function
to clarify the issue of pointers and types.

The first action consists of allocating an integer, and setting up a pointer to
this integer:

(setq pointer-a (fli:allocate-foreign-object :type :int))

Now we use fli:copy-pointer to make a copy of pointer-a, but with the
type of the new pointer changed to be a :byte. We call this pointer pointer-b.

(setq pointer-b (fli:copy-pointer pointer-a :type :byte))

We now have two pointers which point to the same memory location, but one
thinks it is pointing to an :int, and the other thinks it is pointing to a :byte.
Test this by using the following two commands:

(fli:pointer-element-type pointer-a)

(fli:pointer-element-type pointer-b)

Similar commands using pointer-element-size show that pointer-a is
pointing to an element of size 4, and pointer-b to an element of size 1.

So far we have seen the use of the :type keyword to specify how to set up or
dereference a pointer to obtain values in the format we want. There is, how-
 23

3 FLI Pointers

24
ever, a further level of abstraction in pointer typing which uses the :pointer-
type keyword instead of the :type keyword.

The following two commands produce identical pointers, but one uses the
:type keyword, and the other uses the :pointer-type keyword:

(fli:make-pointer :address 0 :type :int)

(fli:make-pointer :address 0 :pointer-type '(:pointer :int))

In the instance above there is no advantage in using the :pointer-type
option. However, :pointer-type can be very useful when used in combina-
tion with a defined type, as the next example shows.

Imagine you are writing a program with many statements creating pointers to
a certain type, for example :byte, and this is done using the :type keyword. If
half way through coding the type to be pointed to was changed to a :char,
every individual statement would need to be changed. However, if a general
pointer type had been defined at the start and all the statements had used the
:pointer-type keyword to refer to that particular type, only one statement
would need to be changed: the initial definition of the pointer type. The fol-
lowing code illustrates this:

(fli:define-c-typedef my-pointer-type (:pointer :byte))

(fli:make-pointer :address 0 :pointer-type 'my-pointer-type)
...
(fli:make-pointer :address 100 :pointer-type 'my-pointer-type)

The above code consists of a definition of a new pointer type, called my-
pointer-type, which points to a :byte. Following it are one hundred lines of
code using my-pointer-type. If you decide that all the pointers made should
actually point to a :char, only the first line needs to be changed, as shown
below:

(fli:define-c-typedef my-point-type (:pointer :char))

The program can now be re-compiled. The use of :pointer-type with point-
ers is thus analogous to the use of constants instead of absolute numbers in
programming.

3.4 An example of dynamic pointer allocation
3.4 An example of dynamic pointer allocation
When a pointer is created, using make-pointer, or due to the allocation of a
foreign object, memory is put aside to store the details of the pointer.
However, if a pointer is only needed within the scope of a particular section of
code, there is a FLI macro, with-coerced-pointer, which can be used to cre-
ate a temporary pointer which is automatically deallocated at the end of the
code. The next example illustrates the use of this macro.

To start with, we need an object to use the temporary pointer on. The follow-
ing code allocates ten consecutive integers, and sets their initial values.

(setf array-obj
 (fli:allocate-foreign-object :type :int
 :nelems 10
 :initial-contents
 '(0 1 2 3 4 5 6 7 8 9)))

When the ten integers are created, allocate-foreign-object returns a
pointer to the first one. The next piece of code uses with-coerced-pointer to
create a copy of the pointer, which is then used to print out the contents of the
ten integers. At the end of the printing, the temporary pointer is automatically
deallocated.

(fli:with-coerced-pointer (temp) array-obj
 (dotimes (x 10)
 (print (fli:dereference temp))
 (fli:incf-pointer temp)))

The above example also illustrates the use of the incf-pointer, which
increases the address stored in a pointer by the size of the object pointed to.
There is a similar function called decf-pointer, which decreases the address
held by a pointer in a similar fashion.

3.5 More examples of allocation and pointer allocation
The functions allocate-dynamic-foreign-object, allocate-foreign-
object, alloca, and malloc can take the keyword arguments :type and
:pointer-type. It is important to understand the difference between these
two arguments.
 25

3 FLI Pointers

26
The :type argument is used to specify the name of the FLI type to allocate.
Once such an object has been allocated a foreign pointer of type
(:pointer type) is returned, which points to the allocated type. Without this
pointer it would not be possible to refer to the object.

The :pointer-type argument is used to specify a FLI pointer type. If it is used
then the value pointer-type should be of the form (:pointer type) or be
defined as a FLI pointer type. The function then allocates an object of type
type, and a pointer to the object of type type is returned.

In this first example you can see how to allocate an integer in C, and in Lisp-
Works using the :type and the :pointer-type arguments.

C > (int *)malloc(sizeof(int))

FLI > (fli:allocate-foreign-object :type :int)
 => #<Pointer to type :INT = #x007E1A60>

FLI > (fli:allocate-foreign-object
 :pointer-type '(:pointer :int))
 => #<Pointer to type :INT = #x007E1A60>

3.6 Summary
In this chapter the use of FLI pointers was examined. A number of FLI func-
tions useful for copying, creating and testing the properties of a pointer were
presented. The use of the dereference function for obtaining the value
pointed to by a pointer was examined, as was the coercing of a pointer—
namely dereferencing a pointer to an object in a manner which returns the
value found there as a different type. Finally, an example of the use of the
with-coerced-pointer macro was given to illustrate the use of temporary
pointers for efficient memory management.

In the next chapter some advanced topics of the FLI are examined in greater
detail.

4

4 Advanced Uses of the FLI
Note: The some of the examples in this chapter only work for LispWorks for
the Windows.

This is the final chapter of the user guide section of this manual. It provides a
selection of examples which demonstrate some of the more advanced uses of
the FLI.

4.1 Passing a string to a Windows function
The following example shows how to define a Lisp function which calls a
Win32 API function to change the title of the active window. It demonstrates
the use of define-foreign-function and with-foreign-string to pass a
Lisp string to a Windows function.

The first step involves defining a FLI type to correspond to the Windows hwnd
type, which is the window handle type.

(fli:define-c-typedef fli-hwnd
 (:unsigned :long))

The next step consists of the foreign function definitions. The first foreign
function returns the window handle of the active window, by calling the Win-
dows function GetActiveWindow. It takes no arguments.
27

4 Advanced Uses of the FLI

28
(fli:define-foreign-function (get-act-window "GetActiveWindow")
 ()
 :result-type fli-hwnd
 :documentation "Returns the window handle of the active window
for the current thread. If no active window is associated with the
current thread then it returns 0.")

The next foreign function uses the Windows function SetWindowText to set the
text of the active window titlebar. It takes a window handle and a pointer to a
FLI string as its arguments.

(fli:define-foreign-function (set-win-text "SetWindowText" :dbcs)
 ((hwnd fli-hwnd)
 (lpstring :pointer))
 :result-type :boolean
 :documentation "Sets the text of the window titlebar.")

The foreign function set-win-text returns a boolean to indicate whether it
has successfully changed the title bar.

The required FLI data types and foreign functions have been defined. What is
now required is a Lisp function which uses them to change the titlebar of the
active window. The next function does this:

(defun set-active-window-text (new-text)
 (let ((active-window (get-act-window))
 (external-format (if (string= (software-type)
 "Windows NT")
 :unicode
 :ascii)))
 (unless (zerop active-window)
 (fli:with-foreign-string (new-ptr element-count byte-count
 :external-format external-format)
 new-text
 (declare (ignore element-count byte-count))
 (set-win-text active-window new-ptr)))))

The function set-active-window-text takes a Lisp string as its argument,
and does the following:

1. It calls the foreign function get-act-window to set the variable active-
window to be the handle of the active window. If no window is active,
this will be zero.

4.2 Modifying, passing and returning strings
2. The variable external-format is set to be :unicode if the operating sys-
tem is Windows NT (which expects strings to be passed to it in unicode
format), otherwise it is set to be :ascii.

3. If active-window is zero, then there is no active window, and the func-
tion terminates, returning nil.

4. If active-window is not zero, then it contains a window handle, and the
following happens:

The function uses with-foreign-string to convert the Lisp string argu-
ment of the function into a FLI string, and a pointer to the FLI string is
allocated, ready to be handed to the foreign function set-win-text that
we defined earlier. The encoding of the string is external-format,
which is the encoding suitable for the operating system running on the
computer. Once the window title has been set, with-foreign-string
automatically deallocates the memory that was allocated for the FLI
string and the pointer. The function then terminates, returning t.

You can test that this is what happens by entering the command:

(set-active-window-text "A new title for the active window")

See with-foreign-string, page 152, for more details on the use of foreign
strings.

4.2 Modifying, passing and returning strings

4.2.1 Use of Reference Arguments

LISP and C cannot in general share memory so the FLI needs to make a
temporary foreign object from the Lisp String, pass that to C, and then convert
the data in that foreign object back to a Lisp object when C returns.

4.2.2 Modifying a string in a C function

Here is the C code for the example. On return, the argument string has been
modified (the code assumes there is enough space after the string for the extra
characters).

Windows version:
 29

4 Advanced Uses of the FLI

30
#include <stdio.h>
#include <string.h>

__declspec(dllexport) void __cdecl modify(char *string) {
 char temp[256];
 sprintf(temp, "'%s' modified in a C function", string);
 strcpy(string, temp);
}

Linux/Unix/Macintosh version:

#include <stdio.h>
#include <string.h>

void modify(char *string) {
 char temp[256];
 sprintf(temp, "'%s' modified in a C function", string);
 strcpy(string, temp);
}

Here are three approaches to calling modify from Lisp:

1. Use a fixed size buffer in define-foreign-function. This uses the :refer-
ence type, which automatically allocates a temporary foreign object, fills it
with data converted from the Lisp object, passes a pointer to C and converts
the data in the foreign object back into a new Lisp object on return. Note that
the Lisp object passed to the function is not modified. This is the neatest way,
provided you can bound the size of the result string at compile-time.

(fli:define-foreign-function (dff-modify "modify" :source)
 ((string (:reference (:ef-mb-string :limit 256))))
 :calling-convention :cdecl)

(dff-modify "Lisp String")
=>
"'Lisp String' modified in a C function"

2. Use a fixed size buffer from with-dynamic-foreign-objects. In this case,
we do most of the conversion explicitly and define the foreign function as
taking a :pointer argument. This is a good approach if you don't know the
maximum length when the function is defined, but will know it at compile-
time for each call to the function.

(fli:define-foreign-function (wdfo-modify "modify" :source)
 ((string :pointer))
 :calling-convention :cdecl)

4.2 Modifying, passing and returning strings
(fli:with-dynamic-foreign-objects
 ((c-string (:ef-mb-string :limit 256)
 :initial-element "Lisp String"))
 (wdfo-modify c-string)
 (fli:convert-from-foreign-string c-string))
=>
"'Lisp String' modified in a C function"

3. With a variable size buffer from allocate-dynamic-foreign-object. In
this case, we do all of the conversion explicitly because we need to make an
array of the right size, which is only known after the foreign string has been
created (the extra 100 bytes are to allow for what the C function inserts into
the string). Note that, in order to support arbitrary external formats, the code
makes no assumptions about the length of the temporary array being the
same as the length of the Lisp string: it does the conversion first using with-
foreign-string, which works out the required number of bytes. The use of
with-dynamic-foreign-objects provides a dynamic scope for call to
allocate-dynamic-foreign-object - on exit, the foreign object will be freed
automatically.

(fli:with-foreign-string (temp element-count byte-count)
 "Lisp String"
 (fli:with-dynamic-foreign-objects ()
 (let ((c-string (fli:allocate-dynamic-foreign-object
 :type '(:unsigned :byte)
 :nelems (+ byte-count 100))))
 (fli:replace-foreign-object c-string temp :nelems byte-
count)
 (wdfo-modify c-string)
 (fli:convert-from-foreign-string c-string))))

4.2.3 Passing a constant string

Use of the :reference-pass type in this example converts the Lisp string to a
foreign string on calling, but does not convert the string back again on return.

Here is the C code for the example. It uses the argument string but returns an
integer.

Windows version:
 31

4 Advanced Uses of the FLI

32
#include <string.h>
#include <ctype.h>

__declspec(dllexport) int __cdecl count_upper(const char *string)
{
 int count;
 int len;
 int ii;
 count = 0;
 len = strlen(string);
 for (ii = 0; ii < len ; ii++)
 if (isupper(string[ii]))
 count++;
 return count;
}

Linux/Unix/Macintosh version:

#include <string.h>
#include <ctype.h>

int count_upper(const char *string)
{
 int count;
 int len;
 int ii;
 count = 0;
 len = strlen(string);
 for (ii = 0; ii < len ; ii++)
 if (isupper(string[ii]))
 count++;
 return count;
}

Here is the foreign function definition using :reference-pass:

(fli:define-foreign-function (count-upper "count_upper" :source)
 ((string (:reference-pass :ef-mb-
string)))
 :result-type :int
 :language :c
 :calling-convention :cdecl)

(count-upper "ABCdef")
=>
3

4.2 Modifying, passing and returning strings
4.2.4 Returning a string via a buffer

In this example no Lisp string is needed when calling. The :reference-
return type converts a foreign string of lowercase ASCII characters to a Lisp
string on return. Here is the C code for the example.

Windows version:

#include <string.h>
#include <stdlib.h>

__declspec(dllexport) void __cdecl random_string(int length, char
*string)
{
 int ii;
 for (ii = 0; ii < length ; ii++)
 string[ii] = 97 + rand() % 26;
 string[length] = 0;
}

Linux/Unix/Macintosh version:

#include <string.h>
#include <stdlib.h>

void random_string(int length, char *string)
{
 int ii;
 for (ii = 0; ii < length ; ii++)
 string[ii] = 97 + rand() % 26;
 string[length] = 0;
}

In this foreign function definition the :reference-return type must specify a
size, since memory is allocated for it before calling the C function. Note also
the use of :lambda-list so that the caller doesn't have to pass a dummy
argument for the return-string, and :result-type nil correponding to the
void declaration of the C function.
 33

4 Advanced Uses of the FLI

34
(fli:define-foreign-function (random-string
 "random_string"
 :source)
 ((length :int)
 (return-string (:reference-return
 (:ef-mb-string
 :limit 256))))
 :result-type nil
 :lambda-list (length &aux return-string)
 :calling-convention :cdecl)

(random-string 3)
=>
"uxw"

(random-string 6)
=>
"fnfozv"

4.2.5 Calling a C function that takes an array of strings

Suppose you have a C function declared like this:

extern "C" void foo(const char** StringArray);

To call this from Lisp you need to first allocate the foreign memory for each
piece of data, that is the array itself and each string. Assuming that foo does
not capture any of the pointers, you can give this memory dynamic extent as
follows:

4.2 Modifying, passing and returning strings
(defun convert-to-dynamic-foreign-array (strings)
 (let* ((count (length strings))
 (array
 (fli:allocate-foreign-object
 :nelems (1+ count) ; assume NULL terminated
 :type '(:pointer :char))))
 (dotimes (index count)
 (setf (fli:dereference array :index index)
 (fli:convert-to-dynamic-foreign-string
 (elt strings index))))
 (setf (fli:dereference array :index count) nil)
 array))

(fli:define-foreign-function (%foo foo)
 ((string-array (:pointer (:pointer :char)))))
(defun foo (strings)

 (fli:with-dynamic-foreign-objects () ; provide a dynamic scope
 (%foo (convert-to-dynamic-foreign-array strings))))

4.2.6 Foreign string encodings

The :ef-mb-string type is capable of converting between the internal
encoding of LispWorks strings (Unicode) and various encodings that may be
expected by the foreign code. The encoding on the foreign side is specified by
the :external-format argument, which takes an External Format specifica-
tion.. See the LispWorks User Guide and Reference Manual for a more detailed
description of external formats.

Conside a variant of the last example where the returned string contains char-
acters beyond the ASCII range.

Windows version:

#include <string.h>
#include <stdlib.h>

__declspec(dllexport) void __cdecl random_string2(int length,
char *string)
{
 int ii;
 for (ii = 0; ii < length ; ii++)
 string[ii] = 225 + rand() % 26;
 string[length] = 0;
}

 35

4 Advanced Uses of the FLI

36
Linux/Unix/Macintosh version:

#include <string.h>
#include <stdlib.h>

void random_string2(int length, char *string)
{
 int ii;
 for (ii = 0; ii < length ; ii++)
 string[ii] = 225 + rand() % 26;
 string[length] = 0;

}

A foreign function defined like random-string above is inadequate by itself
here because the default external format is that for the default C locale, ASCII.
This will signal error when it encounters a non-ASCII character code. There
are two approaches to handling non-ASCII characters.

1. Pass an appropriate external format, in this case it is Latin-1:

(fli:define-foreign-function (random-string2
 "random_string2"
 :source)
 ((length :int)
 (return-string (:reference-return
 (:ef-mb-string
 :limit 256
 :external-format :latin-1))))
 :result-type nil
 :lambda-list (length &aux return-string)
 :calling-convention :cdecl)

(random-string2 3)
=>
"òãö"

(random-string2 6)
=>
"óãøççâ"

2. Set the locale, using set-locale. This sets the C locale and switches the FLI
to use an appropriate default wherever an external-format argument is
accepted.

4.2 Modifying, passing and returning strings
(fli:define-foreign-function (random-string
 "random_string2"
 :source)
 ((length :int)
 (return-string (:reference-return
 (:ef-mb-string
 :limit 256))))
 :result-type nil
 :lambda-list (length &aux return-string)
 :calling-convention :cdecl)

On a Windows system with current Code Page for Western European
languages:

(fli:set-locale)
=>
(win32:code-page :id 1252)

On a Unix/Linux system with a Latin-1/ISO8859-1 default locale:

(fli:set-locale)
=>
:latin-1

After the default external-format has been switched:

(random-string 6)
=>
"ðèñçèõ"

If you do not actually wish to set the C locale, you can call set-locale-encod-
ings which merely switches the FLI to use the specified external formats
where an external-format argument is accepted.

4.2.7 Foreign string line terminators

You can specify the line terminator in foreign string conversions via the
:eol-style parameter in the external-format argument.

By default foreign strings are assumed to have lines terminated according to
platform conventions: Linefeed on Unix/Linux/MacOS, and Carriage-Return
followed by Linefeed on Windows. That is, eol-style defaults to :lf and :crlf
respectively. This means that unless you take care to specify the external for-
mat :eol-style parameter, you may get unexpected string length when
returning a Lisp string.
 37

4 Advanced Uses of the FLI

38
Consider the following C code example on Windows:

#include <string.h>
#include <stdlib.h>
#include <stdio.h>

__declspec(dllexport) int __cdecl crlf_string(int length, char
*string)
{
 int ii;
 int jj;
 for (ii = 0; ii < length ; ii++)
 if (ii % 3 == 1) {
 string[ii] = 10;
 printf(“%d\n”, ii);
 } else
 if ((ii > 0) && (ii % 3 == 0)) {
 string[ii] = 13;
 printf(“%d\n”, ii);
 } else
 if (ii % 3 == 2) {
 string[ii] = 97 + rand() % 26 ;
 printf(“%d\n”, ii);
 }
 string[length] = 0;
 return length;
}

Call this C function from Lisp:

4.2 Modifying, passing and returning strings
(fli:define-foreign-function (crlf-string
 “crlf_string”
 :source)
 ((length :int)
 (return-string (:reference-return
 (:ef-mb-string
 :limit 256
 :external-format :latin-1))))
 :lambda-list (length &aux return-string)
 :calling-convention :cdecl
 :result-type :int)

(multiple-value-bind (length string)
 (crlf-string 99)
 (format t “~&C length ~D, Lisp string length ~D~%”
length (length string)))
=>
C length 99, Lisp string length 67

Each two character CR LF sequence in the foreign string has been mapped to a
single LF character in the Lisp string. If you want to return a Lisp string and
not do line terminator conversion, then you must specify the eol-style as in this
example:
 39

4 Advanced Uses of the FLI

40
(fli:define-foreign-function (crlf-string
 “crlf_string”
 :source)
 ((length :int)
 (return-string (:reference-return
 (:ef-mb-string
 :limit 256
 :external-format (:latin-1 :eol-style :lf)))))
 :lambda-list (length &aux return-string)
 :calling-convention :cdecl
 :result-type :int)

(multiple-value-bind (length string)
 (crlf-string 99)
 (format t “~&C length ~D, Lisp string length ~D~%”
length (length string)))
=>
C length 99, Lisp string length 99

4.2.8 Win32 API functions that handle strings

Functions in the Win32 API that handle strings come in two flavors, one for
ANSI strings and one for Unicode strings. Windows ME only supports the
ANSI functions but Windows XP/Vista/7 support both. The functions are
named with a single letter suffix, an A for the ANSI functions and a W for the
Unicode functions. So for example both CreateFileA and CreateFileW exist.
In C, this is finessed by the use of #define in the header files.

There are two ways to handle this:

• Always use the A functions. This will allow your code to work on all
supported versions of Windows, but will prevent the use of Unicode on
Windows XP/Vista/7 (this is typically only a problem if you are
handling mixed language data), or

• Use encoding :dbcs in define-foreign-function. This will cause it to
switch between ANSI and Unicode versions depending on the
operating system.

In either case, as well as calling the correct function, you must encode/decode
any string arguments/results correctly, to match the A or W in the function
name. The foreign types win32:tstr, win32:lpctstr and win32:lptstr corre-
spond to the typical ones found in the Win32 API. For more information about

4.2 Modifying, passing and returning strings
these foreign types, see their manual pages in the LispWorks User Guide and
Reference Manual.

4.2.9 Mapping Nil to a Null Pointer

If you wish a string argument to accept nil and pass it as a null pointer, or to
return a null pointer as Lisp value nil, use the :allow-null argument to the
:reference types.

The C function strcap in the following example modifies a string, but also
accepts and returns a null pointer if passed.

Windows version:

#include <string.h>
#include <ctype.h>

__declspec(dllexport) char* __cdecl strcap(char *string)
{
 int len;
 int ii;
 if (string) {
 len = strlen(string);
 if (len > 0) {
 for (ii = len - 1; ii > 0; ii--)
 if (isupper(string[ii]))
 string[ii] = tolower(string[ii]);
 if (islower(string[0]))
 string[0] = toupper(string[0]);
 }
 }
 return string;
}

Linux/Unix/Macintosh version:
 41

4 Advanced Uses of the FLI

42
#include <string.h>
#include <ctype.h>

char* strcap(char *string)
{
 int len;
 int ii;
 if (string) {
 len = strlen(string);
 if (len > 0) {
 for (ii = len - 1; ii > 0; ii--)
 if (isupper(string[ii]))
 string[ii] = tolower(string[ii]);
 if (islower(string[0]))
 string[0] = toupper(string[0]);
 }
 }
 return string;
}

With this following foreign function definition:

(fli:define-foreign-function (strcap "strcap" :source)
 ((string (:reference :ef-mb-string)))
 :language
 :c
 :calling-convention
 :cdecl)

(strcap "abC")
=>
"Abc"

However (strcap nil) signals error because the :ef-mb-string type expects
a string.

Using :allow-null allows nil to be passed:

(fli:define-foreign-function (strcap "strcap" :source)
 ((string (:reference :ef-mb-string :allow-null t)))
 :language
 :c
 :calling-convention
 :cdecl)

(strcap nil)
=>
nil

4.3 Lisp integers
Note that with-foreign-string, convert-to-foreign-string and convert-
from-foreign-string also accept an :allow-null argument. So another way
to call strcap and allow the null pointer is:

(fli:define-foreign-function (strcap "strcap" :source)
 ((string :pointer))
 :language
 :c
 :calling-convention
 :cdecl)

(defun c-string-capitalize (string)
 (fli:with-foreign-string (ptr elts bytes :allow-null t)
 string
 (declare (ignore elts bytes))
 (strcap ptr)
 (fli:convert-from-foreign-string ptr :allow-null t)))

(c-string-capitalize "abC")
=>
"Abc"

(c-string-capitalize nil)
=>
nil

4.3 Lisp integers
Lisp integers cannot be used directly in the FLI unless they are known to be of
certain sizes that match foreign types such as :int.

However, the FLI provides a mechanism to convert any Lisp integer into a for-
eign array of bytes and to convert that array back to an equivalent Lisp inte-
ger. This would allow the integer to be stored in an database for example and
then retrieved later.

The macro with-integer-bytes and the function convert-integer-to-
dynamic-foreign-object generates the array of bytes and also to determine
its length. The function make-integer-from-bytes converts the foreign array
back to an integer. The layout of the bytes is unspecified, so these operations
must be used for all such conversions.
 43

4 Advanced Uses of the FLI

44
4.4 Defining new types
The FLI provides the define-foreign-type macro for defining new FLI types,
using the basic FLI types that you have seen in Chapter 2. The next example
shows you how to define a new array type that only takes an odd number of
dimensions.

(fli:define-foreign-type odd-array (element &rest dimensions)
 (unless (oddp (length dimensions))
 (error "Can't define an odd array with even dimensions - try
adding an extra dimension!"))
 `(:c-array ,element ,@dimensions))

The new array type is called odd-array, and takes a FLI type and a sequence
of numbers as its arguments. When trying to allocate an odd-array, if there are
an even number of items in the sequence then an error is raised. If there are an
odd number of items then an instance of the array is allocated. The next com-
mand raises an error, because a 2 by 3 array has an even dimension.

(fli:allocate-foreign-object :type '(odd-array :int 2 3))

However, adding an extra dimension and defining a 2 by 3 by 4 array works:

(fli:allocate-foreign-object :type '(odd-array :int 2 3 4))

For more information on defining types see define-foreign-type, page 88.

4.5 Foreign callables and foreign functions
The two main macros for interfacing LispWorks with a foreign language are
define-foreign-callable which defines Lisp functions that can be called
from the foreign language, and define-foreign-function which defines a
short linking function that can call functions in a foreign language.

In Chapter 1, “Introduction to the FLI” we defined a foreign function for call-
ing the Win32 function SetCursorPos. The code for this example is repeated
here.

(fli:define-foreign-function (set-cursor-position "SetCursorPos")
 ((x :long)
 (y :long))
 :result-type :boolean)

4.5 Foreign callables and foreign functions
Figure 4.1 is an illustration of set-cursor-position, represented by a square,
calling the C code which constitutes SetCursorPos.

Figure 4.1 A FLI foreign function calling some C code.

The next diagram, Figure 4.2, illustrates a callable function. Whereas a foreign
function consists of a Lisp function name calling some code in C, a callable
function consists of Lisp code, represented by an oval in the diagram, which
can be called from C.

Figure 4.2 C calling a callable function in Lisp.

Callable functions are defined using fli:define-foreign-callable, which
takes as its arguments, amongst other things, the name of the C function that
will call Lisp, the arguments for the callable function, and a body of code
which makes up the callable function.

To call a Lisp function from C or C++ you need to define it using fli:define-
foreign-callable. Then call fli:make-pointer with the :symbol-name
argument and pass the result to C or C++ as a function pointer.

For the purpose of creating a self-contained illustration in Lisp, the following
Lisp code defines a foreign callable function that takes the place of the Win-
dows function SetCursorPos.

Lisp C

Lisp C
 45

4 Advanced Uses of the FLI

46
(fli:define-foreign-callable ("SetCursorPos"
 :result-type :boolean)
 ((x :long) (y :long))
 (capi:display-message
 "The cursor position can no longer be set"))

Supposing you had the above foreign callable defined in a real application,
you would use

(make-pointer :symbol-name "SetCursorPos")

to create a foreign pointer which you pass to foreign code so that it can call the
Lisp definition of SetCursorPos.

Figure 4.3 illustrates what happens when set-cursor-position is called. The
foreign function set-cursor-position (represented by the square) calls what
it believes to be the Windows function SetCursorPos, but the callable function
(represented by the oval), also called SetCursorPos, is called instead. It pops
up a CAPI pane displaying the message “The cursor position can no longer be
set”.

Figure 4.3 A FLI foreign function calling a callable function.

For more information on calling foreign code and defining foreign callable
functions see “Strings and foreign callables” on page 46, define-foreign-
function, page 81, and define-foreign-callable, page 71.

4.5.1 Strings and foreign callables

To interface to a C function which takes a pointer to a string form and puts a
string in the memory pointed to by result, declared like this:

void evalx(const char *form, char *result);

you would define in Lisp:

Lisp C

4.5 Foreign callables and foreign functions
(fli:define-foreign-function evalx
 ((form (:reference-pass :ef-mb-string))
 (:ignore (:reference-return
 (:ef-mb-string :limit 1000)))))

and call

(evalx "(+ 2 3)")
=>
"5"

Now suppose instead that you want your C program to call a similar routine
in a LispWorks for Windows DLL named "evaluator", like this:

{
 typedef void (_stdcall *evalx_func_type)(const char *form, char
*result);
 HINSTANCE dll = LoadLibrary("evaluator");
 evalx_func_type evalx = (evalx_func_type) GetProcAddress(dll,
"evalx");
 char result[1000];
 evalx("(+ 2 3)", result);
 printf("%s\n", result);
}

You would put this foreign callable in your DLL built with LispWorks:

(fli:define-foreign-callable
 ("evalx" :calling-convention :stdcall)
 ((form (:reference :ef-mb-string
 :lisp-to-foreign-p nil
 :foreign-to-lisp-p t))
 (result (:reference (:ef-mb-string :limit 1000)
 :lisp-to-foreign-p t
 :foreign-to-lisp-p nil)))
 (multiple-value-bind (res err)
 (ignore-errors (read-from-string form))
 (setq result
 (if (not (fixnump err))
 (format nil "Error reading: ~a"
 err)
 (multiple-value-bind (res err)
 (ignore-errors (eval res))
 (if (and (not res) err)
 (format nil "Error evaluating: ~a"
 err)
 (princ-to-string res)))))))
 47

4 Advanced Uses of the FLI

48
Note: you could use :reference-return and :reference-pass in the foreign
callable definition, but we have shown :reference with explicit lisp-to-foreign-
p and foreign-to-lisp-p arguments to emphasise the direction of each conver-
sion.

For information on how to create a LispWorks DLL, see “Creating a dynamic
library” in the LispWorks User Guide and Reference Manual.

4.6 Using DLLs within the LispWorks FLI
In order to use functions defined in a dynamically linked library (DLL) within
the LispWorks FLI, the functions need to be exported from the DLL.

4.6.1 Using C DLLs

You can export C functions in three ways:

1. Use a __declspec(dllexport) declaration in the C file.

In this case you should also make the functions use the cdecl calling
convention, which removes another level of name mangling.

2. Use an /export directive in the link command.

3. Use a .def file.

An example of method 3 follows. Let us assume you have the following C
code in a file called example.c.

int _stdcall MultiplyMain(void *hinstDll,unsigned long
 dwReason,void *reserved)
 {
 return(1);
 }

int multiply (int i1, int i2)
 { int result;
 result = i1 * i2 * 500;
 return result;
 }

Then you can create a DLL by, for example, using a 32 bit C compiler such as
lcc.

4.6 Using DLLs within the LispWorks FLI
lcc -O -g2 example.c
lcclnk.exe -dll -entry MultiplyMain example.obj
example.def -subsystem
windows

You now need to create a multiply.def file that contains the following line

exports multiply=multiply

to export the function multiply as the symbol multiply. If you only include
the line “exports multiply” then the name of the external symbol is likely to
be “_multiply” or “_multiply@8” depending on whether the function is com-
piled as __cdecl or __stdcall. The addition of the “= multiply” overrides
the internal function name with the new name.

If you run Windows then you can view the list of exported symbols from a
given DLL by selecting the DLL from an explorer, then right clicking on it and
selecting QuickView. This brings up some text about the DLL.

Finally, you should use the LispWorks FLI to define your C function in your
Lisp code. This definition should look something like:

(fli:define-foreign-function (multiply "multiply")
 ((x :int)
 (y :int))
 :result-type int
 :module :my-dll
 :calling-convention :cdecl)

Note that the define-foreign-function also includes a :calling-conven-
tion keyword to specify that the function we are interfacing to is defined as
using the __cdecl calling convention.

4.6.2 Using C++ DLLs

You must make the exported names match the FLI definitions. To do this:

• If you can alter the C++ code, wrap extern "C" {} around the C++
function definitions, or

• Create a second DLL with C functions that wrap around each C++ func-
tion, and make those C functions accessible as described in “Using C
DLLs” on page 48.
 49

4 Advanced Uses of the FLI

50
Note: watch out for the calling convention of the exported function, which
must match the :calling-convention in the FLI definitions.

4.7 Interfacing to graphics functions
If you use graphics functionality via the FLI on Windows be aware that you
may need to call the function gp:ensure-gdiplus. See the LispWorks CAPI Ref-
erence Manual for a detailed explanation.

This condition does not apply on non-Windows platforms.

4.8 Summary
In this chapter a number of more advanced examples have been presented to
illustrate various features of the FLI. The use of the FLI to pass strings dynam-
ically to Win32 API functions was examined, as was the definition of new FLI
types and the use of callable functions and foreign functions.

The next two chapters form the reference section of this manual. They provide
reference entries for the functions, macros, and types which make up the FLI.

5

5 Function and Macro
Reference
align-of Function

Summary Returns the alignment in bytes of a foreign type.

Package fli

Signature align-of type-name => alignment

Arguments type-name A foreign type whose alignment is to be
determined.

Values alignment The alignment of the foreign type type-name
in bytes.

Description The function align-of returns the alignment in bytes of the
foreign language type named by type-name.

Example The following example shows types with various alignments.
51

5 Function and Macro Reference

52
(fli:align-of :char)
=>
1

(fli:align-of :int)
=>
4

(fli:align-of :double)
=>
8

(fli:align-of :pointer)
=>
4

See also allocate-foreign-object

free-foreign-object

alloca Function

Summary A synonym for allocate-dynamic-foreign-object.

Package fli

Signature alloca &key type pointer-type initial-element initial-contents
 nelems => pointer

Description The function alloca is a synonym for allocate-dynamic-
foreign-object.

See also allocate-dynamic-foreign-object

allocate-dynamic-foreign-object Function

Summary Allocates memory for an instance of a foreign object within
the scope of a with-dynamic-foreign-objects macro.

Package fli

Signature allocate-dynamic-foreign-object &key type pointer-type
initial-element initial-contents fill nelems size-slot => pointer

Arguments type A FLI type specifying the type of the object
to be allocated. If type is supplied, pointer-
type must not be supplied.

pointer-type A FLI pointer type specifying the type of the
pointer object to be allocated. If pointer-type
is supplied, type must not be supplied.

initial-element A keyword setting the initial value of every
element in the newly allocated object to ini-
tial-element.

initial-contents A list of forms which initialize the contents
of each element in the newly allocated
object.

fill An integer between 0 to 255.

nelems An integer specifying how many copies of
the object should be allocated. The default
value is 1.

size-slot A symbol naming a slot in the object.

Values pointer A pointer to the specified type or pointer-type.

Description The function allocate-dynamic-foreign-object allocates
memory for a new instance of an object of type type or an
instance of a pointer object of type pointer-type within the
scope of the body of the macro with-dynamic-foreign-
objects.

The object is initialized as if by allocate-foreign-object.

Once this macro has executed, the memory allocated using
allocate-dynamic-foreign-object is therefore
automatically freed for other uses.
 53

5 Function and Macro Reference

54
Example A full example using with-dynamic-foreign-objects and
allocate-dynamic-foreign-object is given in “An example
of dynamic memory allocation” on page 7.

See also allocate-foreign-object

with-dynamic-foreign-objects

allocate-foreign-object Function

Summary Allocates memory for an instance of a foreign object.

Package fli

Signature allocate-foreign-object &key type pointer-type initial-element
initial-contents fill nelems size-slot => pointer

Arguments type a FLI type specifying the type of the object to
be allocated. If type is supplied, pointer-type
must not be supplied.

pointer-type A FLI pointer type specifying the type of the
pointer object to be allocated. If pointer-type
is supplied, type must not be supplied.

initial-element A keyword setting the initial value of every
element in the newly allocated object to ini-
tial-element.

initial-contents A list of forms which initialize the contents
of each element in the newly allocated
object.

fill An integer between 0 to 255.

nelems An integer specifying how many copies of
the object should be allocated. The default
value is 1.

size-slot A symbol naming a slot in the object.

Values pointer A pointer to the specified type or pointer-type.

Description The function allocate-foreign-object allocates memory
for a new instance of an object of type type or an instance of a
pointer object of type pointer-type. Memory allocated in this
manner must be explicitly freed using free-foreign-object
once the object is no longer needed.

An integer value of fill is initializes all the bytes of the object.
If fill is not supplied, the object is not initialized unless initial-
element or initial-contents is passed.

A supplied value of size-slot applies if the type is a struct or
union type. The slot size-slot is set to the size of the object in
bytes. This occurs after the fill, initial-element and initial-con-
tents arguments are processed. If nelems is greater than 1, then
the slot size-slot is initialized in each element. If size-slot is not
supplied, then no such setting occurs.

Notes Memory allocated by allocate-foreign-object is in the C
heap. Therefore pointer (and any copy) cannot be used after
save-image or deliver.

Example In the following example a structure is defined and an
instance with a specified initial value of 10 is created with
memory allocated using allocate-foreign-object. The
dereference function is then used to get the value that point
points to, and finally it is freed.

(fli:define-c-typedef LONG :long)

(setq point (fli:allocate-foreign-object
 :type 'LONG
 :initial-element 10))

(fli:dereference point)

(fli:free-foreign-object point)

See also allocate-dynamic-foreign-object

free-foreign-object
 55

5 Function and Macro Reference

56
cast-integer Function

Summary Casts an integer to a given type.

Package fli

Signature cast-integer integer type => result

Arguments integer A Lisp integer.

type A foreign type.

Values result A Lisp integer.

Description The function cast-integer casts the integer integer to the for-
eign type type.

type must be a FLI integer type, either primitive or derived.

Example (format nil "~B"
 (fli:cast-integer -1 '(:unsigned :int)))
=>
"11111111111111111111111111111111"

See also :signed

:unsigned

connected-module-pathname Function

Summary Returns the real pathname of a connected module.

Package fli

Signature connected-module-pathname name => pathname

Arguments name A string or symbol.

Values pathname A pathname or nil.

Description The function connected-module-pathname returns the real
pathname of the connected module registered with name
name.

If no module name is registered, or if the module name is not
connected, then connected-module-pathname returns nil.

Example (fli:connected-module-pathname "gdi32")
=>
#P"C:/WINNT/system32/GDI32.dll"

(fli:register-module :user-dll
 :real-name "user32"
 :connection-style :immediate)
=>
:user-dll

(fli:connected-module-pathname :user-dll)
=>
#P"C:/WINNT/system32/USER32.dll"

(fli:disconnect-module :user-dll)
=>
t

(fli:connected-module-pathname :user-dll)
=>
nil

See also disconnect-module

register-module

convert-from-foreign-string Function

Summary Converts a foreign string to a Lisp string.

Package fli

Signature convert-from-foreign-string pointer &key external-format
length null-terminated-p allow-null => string
 57

5 Function and Macro Reference

58
Arguments pointer A pointer to a foreign string.

external-format An external format specification.

length The length of the string to convert.

null-terminated-p If t, it is assumed the string terminates with
a null character. The default value for null-
terminated-p is t.

allow-null A boolean. The default is false.

Values string A Lisp string, or nil.

Description The function convert-from-foreign-string, given a pointer
to a foreign string, converts the foreign string to a Lisp string.
The pointer does not need to be of the correct type, as it will
automatically be coerced to the correct type as specified by
external-format.

The external-format argument is interpreted as by with-for-
eign-string.

Either length or null-terminated-p must be non-nil. If null-ter-
minated-p is true and length is not specified, it is assumed that
the foreign string to be converted is terminated with a null
character.

If allow-null is true, then if a null pointer pointer is passed, nil
is returned.

See also convert-to-foreign-string

set-locale

set-locale-encodings

with-foreign-string

convert-integer-to-dynamic-foreign-object Function

Summary Converts a Lisp integer to foreign bytes.

Signature convert-integer-to-dynamic-foreign-object integer =>
pointer, length

Arguments integer An integer.

Values pointer A foreign pointer.

length An integer.

Description The function convert-integer-to-dynamic-foreign-
object makes a dynamic foreign object containing the bytes
of integer and returns pointer pointing to the first byte of that
object and length which is the number of bytes in that object.
The layout of the bytes is unspecified, but the bytes and the
length are sufficient to reconstruct integer by calling make-
integer-from-bytes.

See also with-integer-bytes

make-integer-from-bytes

convert-to-foreign-string Function

Summary Converts a Lisp string to a foreign string.

Signature convert-to-foreign-string string &key external-format null-
terminated-p allow-null into limit allocation => pointer

convert-to-foreign-string string &key external-format null-
terminated-p allow-null into limit allocation => pointer, length,
byte-count

Package fli

Arguments string A Lisp string.

external-format An external format specification.

null-terminated-p If t, the foreign string terminates with a null
character. The default value is t.
 59

5 Function and Macro Reference

60
allow-null A boolean. The default is nil.

into A foreign array, or nil. The default is nil.

limit A non-negative fixnum, or nil. The default
is nil.

allocation A keyword, either :dynamic or :static. The
default is :static.

Values pointer A FLI pointer to the foreign string.

length The length of the foreign string (including
the terminating null character if there is
one).

byte-count The number of bytes in the foreign string.

Description The function convert-to-foreign-string converts a Lisp
string to a foreign string, and returns a pointer to the string.

The external-format argument is interpreted as by with-for-
eign-string.

The null-terminated-p argument specifies whether the foreign
string is terminated with a null character. It defaults to t.

If allow-null is non-nil, then if string is nil a null pointer
pointer is returned.

If into is passed, then it is a foreign array which gets filled
with elements converted from the characters of string up to
limit.

If limit is a fixnum, then only the characters of string below
index limit are converted.

If allocation is :dynamic, then convert-to-foreign-string
allocates memory for the string and pointer within the scope
of the body of with-dynamic-foreign-objects and
additional values, length and byte-count are returned. This is
equivalent to using convert-to-dynamic-foreign-string.
Otherwise, the allocation is static.

See also convert-from-foreign-string

set-locale

set-locale-encodings

with-foreign-string

convert-to-dynamic-foreign-string Function

Summary Converts a Lisp string to a foreign string within the scope of
the body of a with-dynamic-foreign-objects macro.

Package fli

Signature convert-to-dynamic-foreign-string string &key
external-format null-terminated-p allow-null => pointer, length,
byte-count

Arguments string A Lisp string.

external-format An external format specification.

null-terminated-p If t, the foreign string terminates with a null
character. The default value is t.

allow-null A boolean. The default is nil.

Values pointer A FLI pointer to the foreign string.

length The length of the string (including the termi-
nating null character if there is one).

byte-count The number of bytes in the converted string.

Description The function convert-to-dynamic-foreign-string converts
a Lisp string to a foreign string, and returns a pointer to the
string and the length of the string. The memory allocation for
the string and pointer is within the scope of the body of a
with-dynamic-foreign-objects command.

The external-format argument is interpreted as by with-for-
eign-string.
 61

5 Function and Macro Reference

62
The null-terminated-p keyword specifies whether the foreign
string is terminated with a null character. It defaults to t.

If allow-null is non-nil, then if string is nil a null pointer
pointer is returned.

See also allocate-dynamic-foreign-object

convert-from-foreign-string

convert-to-foreign-string

set-locale

set-locale-encodings

with-dynamic-foreign-objects

with-foreign-string

copy-pointer Function

Summary Returns a copy of a pointer object.

Package fli

Signature copy-pointer pointer &key type pointer-type => copy

Arguments pointer A pointer to copy.

type The type of the object pointer to by pointer.

pointer-type The type of pointer.

Values copy A copy of pointer.

Description The function copy-pointer returns a copy of pointer.

Example In the following example a pointer point1 is created, point-
ing to a :char type. The variable point2 is set equal to point1
using setq, whereas point3 is set using copy-pointer. When
point1 is changed using incf-pointer, point2 changes as
well, but point3 remains the same.

(setq point1 (fli:allocate-foreign-object :type
 :char))

(setq point2 point1)

(setq point3 (fli:copy-pointer point1))

(fli:incf-pointer point1)

The results of this can be seen by evaluating point1, point2,
and point3.

The reason for this behavior is that point1 and point2 are
Lisp variables containing the same foreign object; a pointer to
a char, whereas point3 contains a copy of the foreign pointer
object.

See also make-pointer

decf-pointer Function

Summary Decreases the address held by a pointer.

Package fli

Signature decf-pointer pointer &optional delta => pointer

Arguments pointer A FLI pointer.

delta An integer. The default is 1.

Values pointer The pointer passed.

Description The function decf-pointer decreases the address held by the
pointer. If delta is not given the address is decreased by the
size of the type pointed to by the pointer. The address can be
decreased by a multiple of the size of the type by specifying a
value for delta.
 63

5 Function and Macro Reference

64
The function decf-pointer is often used to move a pointer
through an array of values.

Example In the following example an array with 10 entries is defined.
A copy of the pointer to the array is made, and is incre-
mented and decremented.

(setq array-obj
 (fli:allocate-foreign-object :type :int
 :nelems 10
 :initial-contents '(0 1 2 3 4 5 6 7 8 9)))

(setq point1 (fli:copy-pointer array-obj))

(dotimes (x 9)
 (fli:incf-pointer point1)
 (print (fli:dereference point1)))

(dotimes (x 9)
 (fli:decf-pointer point1)
 (print (fli:dereference point1)))

See also incf-pointer

define-c-enum Macro

Summary Defines a FLI enumerator type specifier corresponding to the
C enum type.

Package fli

Signature define-c-enum name-and-options &rest enumerator-list => list

name-and-options ::= name | (name option*)

option ::= (:foreign-name string)

enumerator-list ::= {entry-name | (entry-name entry-value)}*

Arguments name A symbol naming the new enumeration
type specifier

string A string specifying the foreign name of the
type

enumerator-list A sequence of symbols, possibly with inte-
ger values, constituting the enumerator type

entry-name A symbol

entry-value An integer value for an entry-name

Values list The list (:enum name)

Description The macro define-c-enum is used to define a FLI enumerator
type specifier, which corresponds to the C enum type. It is a
convenience function, as an enumerator type could also be
defined using define-foreign-type.

Each entry in the enumerator-list can either consist of a sym-
bol, in which case the first entry has an integer value of 0, or
of a list of a symbol and its corresponding integer value.

Example In the following example a FLI enumerator type specifier is
defined, and the corresponding definition for a C enumerator
type follows.

(define-c-enum colors red green blue)

enum colors { red, green, blue};

The next example illustrates how to start the enumerator
value list counting from 1, instead of from the default start
value of 0.

(define-c-enum half_year (jan 1) feb mar apr may jun)

enum half_year { jan = 1, feb, mar, apr, may, jun }

See also define-c-struct

define-c-typedef

define-c-union

define-foreign-type

enum-symbol-value
 65

5 Function and Macro Reference

66
define-c-struct Macro

Summary Defines a FLI structure type specifier corresponding to the C
struct type.

Package fli

Signature define-c-struct name-and-options &rest descriptions => list

name-and-options ::= name | (name option*)

option ::= (:foreign-name string)

descriptions ::= {slot-description | byte-packing}*

slot-description ::= {slot-name | (slot-name slot-type)}

byte-packing ::= (:byte-packing nbytes)

nbytes ::= integer

Arguments name A symbol naming the new structure type
specifier

string A string specifying the foreign name of the
structure.

slot-description A symbol, or a list of symbol and type
description, naming a slot in the structure

slot-name A symbol naming the slot

slot-type The foreign type of the slot

byte-packing A list specifying byte packing for the subse-
qent slots

nbytes The number of 8-bit bytes to pack

Values list The list (:struct name)

Description The macro define-c-struct is used to define a FLI structure
type specifier, which corresponds to the C struct type. It is a
convenience function, as a structure type could also be
defined using define-foreign-type.

A structure is an aggregate type, or collection, of other FLI
types. The types contained in a structure are referred to as
slots, and can be accessed using the define-foreign-type
and foreign-slot-value functions.

Some C compilers support pragmas such as

#pragma pack(1)

which causes fields in a structure to be aligned on a byte
boundary even if their natural alignment is larger. This can
be achieved from Lisp by specifying suitable byte-packing
forms in the structure definition, as in the example below.
Each byte-packing form specifies the packing for each slot-
description that follows it in the define-c-struct form. It is
important to use the same packing as the C header file con-
taining the foreign type.

Example The first example shows a C structure definition and the cor-
responding FLI definition:

struct a-point {
 int x;
 int y;
 byte color;
 char ident;
};

(fli:define-c-struct a-point (x :int)
 (y :int)
 (color :byte)
 (ident :char))

The second example shows how you might retrieve data in
Lisp from a C function that returns a structure:
 67

5 Function and Macro Reference

68
struct 3dvector
{
 float x;
 float y;
 float z;
 }

static 3dvector* vector;

3dvector* fn ()
{
 return vector;
 }

(fli:define-c-struct 3dvector
 (x :float)
 (y :float)
 (z :float))

(fli:define-foreign-function fn ()
 :result-type (:pointer (:struct 3dvector)))

(let ((vector (fn)))
 (fli:with-foreign-slots (x y z) vector
 (values x y z)))

Finally an example to illustrate byte packing. This structure
will require 4 bytes of memory because the field named
a-short will be aligned on a 2 byte boundary and hence a byte
will be wasted after the a-byte field:

(fli:define-c-struct foo ()
 (a-byte (:unsigned :byte))
 (a-short (:unsigned :short)))

After adding the byte-packing form, the structure will require
only 3 bytes:

(fli:define-c-struct foo
 (:byte-packing 1)
 (a-byte (:unsigned :byte))
 (a-short (:unsigned :short)))

See also define-c-enum

define-c-typedef

define-c-union

define-foreign-type

foreign-slot-names

foreign-slot-type

foreign-slot-value

define-c-typedef Macro

Summary Defines FLI type specifiers corresponding to type specifiers
defined using the C typedef command.

Package fli

Signature define-c-typedef name-and-options type-description => name

name-and-options ::= name | (name option*)

option ::= (:foreign-name string)

Arguments name A symbol naming the new FLI type

string A string specifying the foreign name of the
type

type-description A symbol or list defining the new type

Values name The name of the new FLI type

Description The define-c-typedef macro is used to define FLI type spec-
ifiers, which corresponds to those defined using the C func-
tion typedef. It is a convenience function, as types can also
be defined using define-foreign-type.

Example In the following example three types are defined using the
FLI function define-c-typedef, and the corresponding C
definitions are then given.

(fli:define-c-typedef intptr (:pointer :int))
(fli:define-c-typedef bar (:struct (one :int)))

These are the corresponding C typedef definitions:
 69

5 Function and Macro Reference

70
typedef int *intptr;
typedef struct (int one;) bar;

See also define-c-enum

define-c-struct

define-c-union

define-foreign-type

define-c-union Macro

Summary Defines a FLI union type corresponding to the C union type.

Package fli

Signature define-c-union name-and-options &rest slot-descriptions => list

name-and-options ::= name | (name option*)

option ::= (:foreign-name string)

slot-descriptions ::= {slot-name | (slot-name slot-type)}*

Arguments name A symbol naming the new union type
descriptor

string A string specifying the foreign name of the
type

slot-descriptions A sequence of symbols, possibly with type
descriptions, naming the slots of the union.

slot-name A symbol naming the slot.

slot-type The FLI type of the slot.

Values list The list (:union name).

Description The macro define-c-union is used to define a FLI union type
specifier, which corresponds to the C union type. It is a con-
venience function, as a union type could also be defined
using define-foreign-type.

A union is an aggregate type, or collection, of other FLI types.
The types contained in a union are referred to as slots, and
can be accessed using the foreign-slot-type and foreign-
slot-value functions.

Example In the following example a union is defined using define-c-
union, and the corresponding C code is given.

(fli:define-c-union a-point (x :int)
 (color :byte)
 (ident :char))

union a-point {
 int x;
 byte color;
 char ident;
};

See also define-c-enum

define-c-struct

define-c-typedef

define-foreign-type

define-foreign-callable Macro

Summary Defines a Lisp function which can be called from a foreign
language.

Package fli

Signature define-foreign-callable (foreign-name &key encode language
result-type result-pointer no-check calling-convention) ({args}*)
&body body => lisp-name

args ::= {arg-name} | (arg-name arg-type)

language ::= :c | :ansi-c

Arguments foreign-name A string or symbol naming the Lisp callable
function created.
 71

5 Function and Macro Reference

72
encode By default, LispWorks performs automatic
name encoding to translate foreign-name

If you want to explicitly specify an encod-
ing, the encode option can be one of the fol-
lowing:

:source tells LispWorks that foreign-name is
the function name to call from the foreign
source code. This is the default value of
encode if foreign-name is a string.

:object tells LispWorks that foreign-name is
the literal name to be called in the foreign
object code.

:lisp tells LispWorks that if foreign-name is a
Lisp symbol, it must be translated and
encoded. This is the default value of encode if
foreign-name is a symbol.

:dbcs modifies the function name on Win-
dows, as described for define-foreign-
function.

language The language in which the foreign calling
code is written. The default is :ansi-c.

result-type The FLI type of the Lisp foreign callable
function’s return value which is passed back
to the calling code.

result-pointer A variable which will be bound to a foreign
pointer into which the result should be writ-
ten when the result-type is an aggregate
type.

no-check If nil, the result of the foreign callable func-
tion, produced by body, is checked to see if
matches the result-type, and an error is raised
if they do not match. Setting no-check to t
overrides this check.

calling-convention

Specifies the calling convention used on
Windows.

args The arguments of the Lisp foreign callable
function. Each argument can consist either
of an arg-name, in which case LispWorks
assumes it is an :int, or an arg-name and an
arg-type, which is a FLI type.

body A list of forms which make up the Lisp for-
eign callable function.

Values lisp-name A string or symbol naming the Lisp callable
function created.

Description The macro define-foreign-callable defines a Lisp function
that can be called from a foreign language, for example from
a C function. When the Lisp function is called, data passed to
it is converted to the appropriate FLI representation, which is
translated to an appropriate Lisp representation for the Lisp
part of the function. Once the callable function exits, any
return values are converted back into a FLI format to be
passed back to the calling language.

When you use :reference with :lisp-to-foreign-p t as an
arg-type, you need to set arg-name to the value that you want
to return in that reference. That value is then converted and
stored into the pointer supplied by the calling foreign
function. This is done after the visible body of your
define-foreign-callable form returns.

calling-convention is ignored on non-Windows platforms,
where there is no calling convention issue. On Windows,
:stdcall is the calling convention used to call Win32 API
functions and matches the C declarator "__stdcall". This is
the default value. :cdecl is the default calling convention for
C/C++ programs and matches the C declarator "__cdecl".
 73

5 Function and Macro Reference

74
When result-type is an aggregate type, an additional variable
is bound in the body to allow the value of the function to be
returned (the value returned by the body is ignored). This
argument is named after the result-pointer argument or is
named result-pointer in the current package if unspecified.
While the body is executing, the variable will be bound to a
foreign pointer that points to an object of the type result-type.
The body must set the slots in this foreign object in order for
the value to be returned to the caller.

To make a function pointer referencing a foreign callable
named "Foo", use:

(make-pointer :symbol-name "Foo")

Notes 1. For a delivered application where the string name of your
foreign callable is not passed in dll-exports, be aware that a
call to make-pointer like that above will not retain the
foreign callable in a delivered application. Internally a
Lisp symbol named |%FOREIGN-CALLABLE/Foo| is used so
you could retain that explicitly (see the LispWorks Delivery
User Guide for details, and take care to specify the pack-
age). However it is simpler to name the foreign callable
with your Lisp symbol, and pass that to make-pointer.
This call will keep your foreign callable in the delivered
application:
(make-pointer :symbol-name ’foo :functionp t)

2. If you specify any of the FLI float types :float, :double,
:lisp-float, :lisp-single-float and so on, then the
value of language should be :ansi-c.

Example The following example demonstrates the use of foreign call-
able. A foreign callable function, square, is defined, which
takes an integer as its argument, and returns the square of the
integer.

(fli:define-foreign-callable
 ("square" :result-type :int)
 ((arg-1 :int)) (* arg-1 arg-1))

The foreign callable function, square, can now be called from
a foreign language. We can mimic a foreign call by using the
define-foreign-function macro to define a FLI function to
call square.

(fli:define-foreign-function (call-two "square")
 ((in-arg :int)) :result-type :int)

The call-two function can now be used to call square. The
next command is an example of this.

(call-two 9)

This last example shows how the address of a foreign callable
can be passed via a pointer object, which is how you use
foreign callables in practice. The foreign library in this
example is libgsl:

(fli:define-foreign-callable ("gsl-error-handler")
 ((reason (:reference-return :ef-mb-string))
 (file (:reference-return :ef-mb-string))
 (lineno :integer)
 (gsl-errno :integer))
 (error
 "Error number ~a inside GSL [file: ~a, lineno ~a]:
~a"
 gsl-errno file lineno reason))

(fli:define-foreign-function gsl-set-error-handler
 ((func :pointer))
 :result-type :pointer)

To set the error handler, you would do:

(gsl-set-error-handler
 (fli:make-pointer :symbol-name "gsl-error-handler"))

See also define-foreign-function

define-foreign-variable

make-pointer
 75

5 Function and Macro Reference

76
define-foreign-converter Macro

Summary Defines a new FLI type specifier that converts to or from
another type specifier.

Package fli

Signature define-foreign-converter type-name lambda-list object-names
&key foreign-type foreign-to-lisp lisp-to-foreign predicate tested-
value error-form documentation => type-name

Arguments type-name A symbol naming the new FLI type.

lambda-list A lambda list which is the argument list of
the new FLI type.

object-names A symbol or a list of two symbols

foreign-type A macroexpansion form that evaluates to a
FLI type descriptor

foreign-to-lisp A macroexpansion form to convert between
Lisp and the FLI.

lisp-to-foreign A macroexpansion form to convert between
the FLI and Lisp.

predicate A macroexpansion form to check if a Lisp
object is of this type.

tested-value A macroexpansion form to give an error if a
Lisp object is not of this type.

error-form A macroeXpansion form to give an error if
predicate returns false.

documentation A string.

object-names ::= object-name | (lisp-object-name foreign-object-
name)

Values type-name The name of the new FLI converter type

Description Note: this macro is for advanced use of the FLI type system.
See define-foreign-type for simple aliasing of FLI type
descriptors.

The macro define-foreign-converter defines a new FLI
type specifier type-name that wraps another FLI type specifier
and optionally performs data conversion and type checking.
The string documentation is associated with type-name with the
define-foreign-type documentation type.

The lambda list of the new FLI type specifier is lambda-list
and its variables are available for use in the foreign-type, for-
eign-to-lisp, lisp-to-foreign, predicate and tested-value forms.

If object-names is a symbol object-name, then it provides the
name of a variable for use in all of the macroexpansion forms.
Otherwise object-names should be a list of the form (lisp-object-
name foreign-object-name), where lisp-object-name provides the
name of a variable for use in the lisp-to-foreign, predicate and
tested-value forms and foreign-object-name provides the name
of a variable for use in the foreign-to-lisp form.

When the new FLI type is used, the foreign-type form is evalu-
ated to determine the underlying FLI type descriptor to be
converted. It can use variables bound by lambda-list, but not
object-names.

When type-name is used to convert a foreign value to Lisp (for
example when as the result-type in define-foreign-func-
tion), the foreign-to-lisp form is evaluated to determine how
the conversion should be made. It works like a macroexpan-
sion function, so should return a form that converts the for-
eign value, which will be bound to object-name (or foreign-
object-name). It can use variables bound by lambda-list.

When type-name is used to convert a Lisp value to a foreign
value (for example in the argument list of define-foreign-
function), the type of the Lisp value can be checked before
conversion using tested-value and predicate and then con-
verted using lisp-to-foreign as detailed below.
 77

5 Function and Macro Reference

78
If tested-value is specified, it is used as a macroexpansion
function that returns a form that must return object-name (or
lisp-object-name) if it is of the required type or give an error. It
can use variables bound by lambda-list, but not object-names.

Otherwise, if predicate is specified, it is used as a macroexpan-
sion function that returns a form that must return true if
object-name (or lisp-object-name) is of the required type. If pred-
icate is specified, then error-form can be specified as a mac-
roexpansion function that signals an error about object-name
(or lisp-object-name) not being of the required type. If error-
form is omitted, a default error is signaled. Both predicate and
error-form can use variables bound by lambda-list, but not
object-names.

If both tested-value and predicate are omitted, then no type
checking is performed.

After type checking, lisp-to-foreign is used as a macroexpan-
sion function that returns a form that converts the Lisp object
object-name (or lisp-object-name) to the underlying FLI type for-
eign-type. It can use variables bound by lambda-list, but not
object-names.

Examples This defines a FLI type (real-double lisp-type), which
allows any real value in Lisp to be passed to foreign code as a
double precision float. When a foreign value is converted to
Lisp, it is coerced to type:

(fli:define-foreign-converter real-double (lisp-type)
 object
 :foreign-type :double
 :foreign-to-lisp `(coerce ,object ',lisp-type)
 :lisp-to-foreign `(coerce ,object 'double-float)
 :predicate `(realp ,object))

This defines a FLI type int-signum, which uses -1, 0 and 1 for
values on the foreign side. There is no foreign-to-lisp form
specified, so it will return these values to Lisp too:

(fli:define-foreign-converter int-signum () object
 :foreign-type :int
 :lisp-to-foreign `(signum ,object))

This defines a FLI type (bigger-in-lisp n), which is an
integer type for values that are n bigger in Lisp than on the
foreign side.

(fli:define-foreign-converter bigger-in-lisp
 (&optional (n 1))
 object
 :foreign-type :int
 :foreign-to-lisp `(+ ,object ,n)
 :lisp-to-foreign `(- ,object ,n)
 :predicate `(integerp ,object))

(fli:with-dynamic-foreign-objects ((x :int 10))
 (fli:dereference x :type '(bigger-in-lisp 2))) => 12

See also define-foreign-type

define-opaque-pointer

:wrapper

define-foreign-forward-reference-type Macro

Summary Defines a FLI type specifier if it is not already defined.

Package fli

Signature define-foreign-forward-reference-type type-name lambda-
list &body forms => type-name

Arguments These are interpreted as in define-foreign-type.

Values type-name The name of the FLI type.

Description The macro define-foreign-forward-reference-type
defines a new FLI type called type-name, unless type-name is
already defined. This macro is useful when a type declaration
is needed but the full definition is not yet available.
 79

5 Function and Macro Reference

80
See also define-foreign-type

define-opaque-pointer

define-foreign-funcallable Macro

Summary Defines a Lisp function which, when passed a pointer to a
foreign function, calls it.

Package fli

Signature define-foreign-funcallable the-name args &key lambda-list
documentation result-type language no-check calling-convention =>
the-name

args ::= ({arg}*)

Arguments the-name A symbol naming the Lisp function.

The other arguments are interpreted as by define-foreign-
function.

Description This is like define-foreign-function, but creates a function
with an extra argument at the start of the argument list for
the address to call.

Example Define a caller for this shape:

(fli:define-foreign-funcallable
 call-with-string-and-int
 ((string (:reference-pass :ef-mb-string))
 (value :int)))

printf is defined here:

(fli:register-module "msvcrt")

Call printf. Note that the output goes to console output
which is hidden by default:

(let ((printf-func
 (fli:make-pointer :symbol-name "printf")))
 (call-with-string-and-int
 printf-func "printf called with %d" 1234))

See also define-foreign-function

define-foreign-function Macro

Summary Defines a Lisp function which acts as an interface to a foreign
function.

Package fli

Signature define-foreign-function name ({arg}*) &key lambda-list
documentation result-type language no-check calling-convention
module => lisp-name

name ::= lisp-name | (lisp-name foreign-name [encoding])

encoding ::= :source | :object | :lisp | :dbcs

arg ::= arg-name | (arg-name arg-type) | (:constant value
value-type) | &optional | &key | ((arg-name default) arg-type)
| (:ignore arg-type)

language ::= :c | :ansi-c

calling-convention ::= :stdcall | :cdecl

Arguments lisp-name A symbol naming the defined Lisp function.

foreign-name A string or a symbol specifying the foreign
name of the function.

arg-name A variable.

arg-type A foreign type name.

value A Lisp object.

value-type A foreign type name.
 81

5 Function and Macro Reference

82
lambda-list The lambda list to be used for the defined
Lisp function.

documentation A documentation string for the foreign func-
tion.

result-type A foreign type.

result-pointer The name of the keyword argument that is
added to the lambda-list of the Lisp function
when the result-type is an aggregate type.

language The language in which the foreign source
code is written. The default is :ansi-c.

no-check If nil, the types of the arguments provided
when the Lisp function is called are com-
pared with the expected types and an error
is raised if they do not match. Setting no-
check to t overrides this check.

If the compilation safety level is set to 0 then
no-check is automatically set to t. The default
value for no-check is nil.

calling-convention

Specifies the calling convention used on
Windows.

module A symbol or string naming the module in
which the foreign symbol is defined.

Values lisp-name A symbol naming the defined Lisp function.

Description The macro define-foreign-function defines a Lisp function
lisp-name which acts as an interface to a foreign language
function, for example a C function. When the Lisp function is
called its arguments are converted to the appropriate foreign
representation before being passed to the specified foreign
function. Once the foreign function exits, any return values

are converted back from the foreign format into a Lisp for-
mat.

encoding specifies how the Lisp function name is translated
into the function name in the foreign object code. Its values
are interpreted as follows:

:source foreign-name is the name of the function in
the foreign source code. This is the default
value of encoding when foreign-name is a
string.

:object foreign-name is the literal name of the func-
tion in the foreign object code.

:lisp If foreign-name is a Lisp symbol, it must be
translated and encoded. This is the default
value of encoding if foreign-name is a symbol.

:dbcs A suffix is automatically appended to the
function name depending on the Windows
operating system that LispWorks runs in.
The suffix is "A" for Windows 95-based sys-
tems and "W" for Windows NT-based sys-
tems.

The number and types of the arguments of lisp-name must be
given. Lisp arguments may take any name, but the types
must be accurately specified and listed in the same order as
in the foreign function, unless otherwise specified using
lambda-list.

If the arg-name syntax of arg is used, then define-foreign-
function assumes that it is of type :int. Otherwise arg-type
or value-type specifies the foreign type of the argument.

If arg is of the form (:constant value value-type) then value is
always passed through to the foreign code, and arg is omitted
from the lambda list of lisp-name.

If arg is &optional or &key, then the lambda list of the Lisp
function lisp-name will contain these lambda-list-keywords
 83

5 Function and Macro Reference

84
too. Any argument following &optional or &key can use the
((arg-name default) arg-type) syntax to provide a default
value default for arg-name.

If arg is of the form (:ignore arg-type) then nil is always
passed through to the foreign code and arg is omitted from
the lambda list of lisp-name. This is generally only useful
when arg-type is a :reference-return type, where the value
nil will be ignored.

When language is :ansi-c the foreign code is expected to be
written in ANSI C. In particular single floats are passed
through as single-floats whereas language :c causes them to
be passed through as double floats. Similarly :c causes dou-
ble floats to be returned from C and :ansi-c causes a single-
floats to be returned. In both cases the type returned to Lisp
is determined by result-type.

lambda-list allows you to define the order in which the Lisp
function lisp-name takes its arguments to be different from the
order in which the foreign function takes them, and to use
standard lambda list keywords such as &optional even if
they do not appear in args. If lambda-list is not supplied, the
lambda list of lisp-name is generated from the list of args.

The :reference, :reference-pass and :reference-return
types are useful with define-foreign-function. It is fairly
common for a C function to return a value by setting the con-
tents of an argument passed by reference (that is, as a
pointer). This can be handled conveniently by using the
:reference-return type, which dynamically allocates mem-
ory for the return value and passes a pointer to the C func-
tion. On return, the pointer is dereferenced and the value is
returned as an extra multiple value from the Lisp function.

The :reference-pass type can be used to automatically
construct an extra level of pointer for an argument. No extra
results are returned.

The :reference type is like :reference-return but allows
the initial value of the reference argument to be set.

result-type optionally specifies the type of the foreign func-
tion’s return value. When result-type is an aggregate type, an
additional keyword argument is placed in the lambda-list of
the Lisp function. This keyword is named after the result-
pointer argument or is called :result-pointer if unspecified.
When calling the Lisp function, a foreign pointer must be
supplied as the value of this keyword argument, pointing to
an object of type result-type. The result of the foreign call is
written into this object and the foreign pointer is returned as
the primary value from the Lisp function. This allows the
caller to maintain control over the lifetime of this object (in C
this would typically be stored in a local variable). If result-
type is :void or is omitted, then no value is returned.

calling-convention is ignored on non-Windows platforms,
where there is no calling convention issue. On Windows,
:stdcall is the calling convention used to call Win32 API
functions and matches the C declarator "__stdcall". This is
the default value. :cdecl is the default calling convention for
C/C++ programs and matches the C declarator "__cdecl".

If module is the name of a module registered using register-
module then that module is used to look up the symbol.
Otherwise module should be a string, and a module named
module is automatically registered and used to look up the
symbol. Such automatically-registered modules have connec-
tion-style :manual - this prevents them being used by other
define-foreign-function forms which do not specify a
module.

Notes The module argument is not accepted in LispWorks for UNIX.
This restriction applies to LispWorks for UNIX only (not
LispWorks for Linux, FreeBSD, or x86/x64 Solaris).
 85

5 Function and Macro Reference

86
Compatibility
note

In LispWorks 4.4 and previous versions, the default value for
language is :c. In LispWorks 5.0 and later, the default value is
:ansi-c.

Example A simple example of the use of define-foreign-function is
given in “Defining a FLI function” on page 5. More detailed
examples are given in Chapter 4, “Advanced Uses of the
FLI”.

Here is an example using the :reference-return type.

Unix/Linux/Macintosh version:

int cfloor(int x, int y, int *remainder)
{
 int quotient = x/y;
 *remainder = x - y*quotient;
 return quotient;
}

Windows version:

__declspec(dllexport) int __cdecl cfloor(int x, int y,
int *remainder)
{
 int quotient = x/y;
 *remainder = x - y*quotient;
 return quotient;
}

In this foreign function definition the main result is the
quotient and the second return value is the remainder:

(fli:define-foreign-function cfloor
 ((x :int)
 (y :int)
 (rem (:reference-return :int)))
 :result-type :int)

(cfloor 11 5 t)
=>
2,1

This example illustrates a use of the lambda list keyword
&optional and a default value for the optional argument:

(define-foreign-function one-or-two-ints
 ((arg-one :int)
 &optional
 ((arg-two 42) :int)))

The call (one-or-two-ints 1 2) passes 1 and 2.

The call (one-or-two-ints 1) passes 1 and 42.

See also define-foreign-callable

define-foreign-funcallable

define-foreign-variable

register-module

define-foreign-pointer Macro

Summary Defines a new FLI pointer type.

Package fli

Signature define-foreign-pointer name-and-options points-to-type &rest
slots => type-name

name-and-options ::= type-name | (type-name (option*))

option ::= (option-name option-value)

Arguments type-name A symbol naming the new FLI type.

option-name :allow-null or a defstruct option.

option-value A symbol.

points-to-type A foreign type.

slots Slots of the new type.

Values type-name The name of the new FLI pointer type.

Description The macro define-foreign-pointer defines a new FLI
pointer type called type-name.
 87

5 Function and Macro Reference

88
type-name is a subtype of pointer.

The option :allow-null takes an option-value of either t or
nil, defaulting to nil. It controls whether the type type-name
accepts nil.

The other allowed options are the defstruct options
:conc-name, :constructor, :predicate, :print-object,
:print-function. In each case the symbol supplied as option-
value provides the corresponding operator for type-name.

define-foreign-type Macro

Summary Defines a new FLI type specifier.

Package fli

Signature define-foreign-type name-and-options lambda-list &body forms
=> name

name-and-options ::= name | (name option*)

option ::= (:foreign-name string)

Arguments name A symbol naming the new FLI type

string A string specifying the foreign name of the
type

lambda-list A lambda list which is the argument list of
the new FLI type

forms One or more Lisp forms which provide a
definition of the new type

Values name The name of the new FLI type

Description The macro define-foreign-type defines a new FLI type
called name. The forms in the definition can be used to deter-

mine the behavior of the type, depending on the arguments
supplied to the lambda-list.

Example In the following example an integer array type specifier is
defined. Note that the type takes a list as its argument, and
uses this to determine the size of the array.

(fli:define-foreign-type :int-array (dimensions)
 ‘(:c-array :int ,@dimensions))

(setq number-array (fli:allocate-foreign-object
 :type '(:int-array (2 2))))

In the next example a boolean type, called :bool, with the
same size as an integer is defined.

(fli:define-foreign-type :bool () ‘(:boolean :int))

(fli:size-of :bool)

See also define-c-typedef

define-foreign-converter

define-foreign-forward-reference-type

foreign-type-equal-p

define-foreign-variable Macro

Summary Defines a Lisp function to access a variable in foreign code.

Package fli

Signature define-foreign-variable the-name &key type accessor language
 no-check module => lisp-name

the-name ::= lisp-name | (lisp-name foreign-name [encoding])

encoding ::= :source | :object | :lisp | :dbcs

accessor ::= :value | :address-of | :read-only |
:constant

language ::= :c | :ansi-c
 89

5 Function and Macro Reference

90
Arguments the-name Names the Lisp function which is used to
access the foreign variable.

lisp-name A symbol naming the Lisp accessor.

foreign-name A string or a symbol specifying the foreign
name of the variable.

encoding An option controlling how the Lisp variable
name is translated to match the foreign vari-
able name in the foreign DLL. The encoding
option can be one of the following:

:source tells LispWorks that foreign-name is
the name of the variable in the foreign
source code. This is the default value of
encoding when foreign-name is a string.

:object tells LispWorks that foreign-name is
the literal name of the variable in the foreign
object code.

:lisp tells LispWorks that if foreign-name is a
Lisp symbol, it must be translated and
encoded. This is the default value of encod-
ing if foreign-name is a symbol.

:dbcs modifies the variable name on Win-
dows, as described for define-foreign-
function.

type The FLI type corresponding to the type of
the foreign variable to which Lisp is interfac-
ing.

accessor An option specifying what kind of accessor
is generated for the variable. It can be one of
the following:

:value gets the value of the foreign variable
directly. This is the default value when type
is a non-aggregate type. (There is no default
accessor for aggregate types.)

:address-of returns a FLI pointer to the for-
eign variable.

:read-only ensures that no setf method is
defined for the variable, which means that
its value can be read, but it cannot be set.

:constant is like :read-only and will
return a constant value. For example, this is
more efficient for a variable that always
points to the same string.

language The language in which the foreign source
code for the variable is written. The default
is :ansi-c.

no-check If nil, the types of the arguments provided
when the Lisp function is called are com-
pared with the expected types and an error
is raised if they do not match. Setting no-
check to t overrides this check.

module A string or symbol naming the module in
which the foreign variable is defined.

Values lisp-name A symbol naming the Lisp accessor.

Description The macro define-foreign-variable defines a Lisp accessor
which can be used to get and set the value of a variable
defined in foreign code.

If the foreign variable has a type corresponding to an FLI
aggregate type, then accessor must be supplied (there is no
default). If accessor is :value, then a copy of the object is allo-
cated using allocate-foreign-object, and the copy is
returned. In general, it is more useful to use accessor
:address-of for aggregate types, to allow the original aggre-
gate to be updated.
 91

5 Function and Macro Reference

92
Notes If you specify any of the FLI float types :float, :double,
:lisp-float, :lisp-single-float and so on, then the value
of language should be :ansi-c.

module is processsed as for define-foreign-function.

Example The following example illustrates how to use the FLI to
define a foreign variable, given the following C variable in a
DLL:

int num;

The first example defines a Lisp variable, num1, to interface
with the C variable num.

(fli:define-foreign-variable (num1 "num") :type :int)

The following commands return the value of num, and
increase its value by 1:

(num1)

(incf (num1))

In the next example, the Lisp variable num2 interfaces with
num in a read-only manner.

(fli:define-foreign-variable (num2 "num")
 :type :int :accessor :READ-ONLY)

In this case, the next command still returns the value of num,
but the second command raises an error, because num2 is
read-only.

(num2)

(incf (num2))

The final example defines a Lisp variable, num3, which
accesses num through pointers.

(fli:define-foreign-variable (num3 "num")
 :type :int :accessor :address-of)

As a result, the next command returns a pointer to num, and
to obtain the actual value stored by num, num3 needs to be
dereferenced.

(num3)

(fli:dereference (num3))

See also define-foreign-callable

define-foreign-function

define-opaque-pointer Macro

Summary Defines an opaque foreign pointer type.

Package fli

Signature define-opaque-pointer pointer-type structure-type

Arguments pointer-type A symbol.

structure-type A symbol.

Description The macro define-opaque-pointer defines an opaque
foreign pointer type and foreign structure type. An opaque
pointer is a pointer to a structure which does not have a
structure description. It is the equivalent to the C declaration

typedef struct structure-type *pointer-type;

An opaque pointer is useful for dealing with pointers that are
returned by foreign functions and are then passed to other
foreign functions. It checks the type of the foreign pointer,
and thus prevents passing pointers of the wrong type.

Example Using the C standard file* pointer:
 93

5 Function and Macro Reference

94
(fli:define-opaque-pointer file-pointer file)

(fli:define-foreign-function fopen
 ((name (:reference-pass :ef-mb-string))
 (mode (:reference-pass :ef-mb-string)))
 :result-type file-pointer)

(fli:define-foreign-function fgetc
 ((file file-pointer))
 :result-type :int)

(fli:define-foreign-function fclose
 ((file file-pointer)))

(fli:define-foreign-function fgets
 ((string
 (:reference-return (:ef-mb-string :limit 200)))
 (:constant 200 :int)
 (file file-pointer))
 :result-type (:pointer-integer :int)
 :lambda-list (file &aux string))

(defun print-a-file (name)
 (let ((file-pointer (fopen name "r")))
 (if (fli:null-pointer-p file-pointer)
 (error "failed to open ~a" name)
 (unwind-protect
 (loop (multiple-value-bind (res line)
 (fgets file-pointer)
 (when (zerop res) (return))
 (princ line)))
 (fclose file-pointer)))))

See also define-foreign-type

dereference Function

Summary Accesses and returns the value of a foreign object.

Package fli

Signature dereference pointer &key index type copy-foreign-object => value

(setf dereference) value pointer &key index type copy-foreign-
object => value

Arguments pointer An instance of a FLI pointer.

index An integer. If index is supplied, dereference
assumes that pointer points to one element in
an array of object, and returns the element at
the index position in the array.

type The foreign object type that pointer points to.
If the specified type is different to the actual
type, dereference returns the value of the
object in the format of type where possible.

copy-foreign-object

This option is only important when dealing
with aggregate FLI types, which cannot be
returned by value.

If set to t, dereference makes a copy of the
aggregate object pointed to by pointer and
returns the copy.

If set to nil, dereference returns the aggre-
gate object directly.

If set to :error then dereference signals an
error. This is the default value for copy-
foreign-object.

Values value The value of the dereferenced object at
pointer.

Description The function dereference accesses and returns the value of
the FLI object pointed to by pointer, unless pointer points to an
aggregate type. In the case of aggregates, the return value is
specified by using the copy-foreign-object option.
 95

5 Function and Macro Reference

96
An error is signaled if value is an aggregate type and
copy-foreign-object is not set accordingly.

The value of an object at pointer can be changed using (setf
dereference). See the examples section for an example of
this.

An error is signaled if pointer is a null pointer. You can use
null-pointer-p to detect null pointers.

Example In the following example a LONG type is defined and an
instance, pointed to by point, with a specified initial value of
10 is created with memory allocated using allocate-for-
eign-object. The dereference function is then used to get
the value that point points to.

(fli:define-c-typedef LONG :long)

(setq point (fli:allocate-foreign-object
 :type 'LONG
 :initial-element 10))

(fli:dereference point)

Finally, the value of the object of type LONG is changed to 20
using (setf dereference).

(setf (fli:dereference point) 20)

In the next example, a boolean FLI type is defined, but is
accessed as a char.

(fli:define-c-typedef BOOL (:boolean :int))

(setq point2 (fli:allocate-foreign-object :type 'BOOL))

(fli:dereference point2 :type :char)

See also allocate-foreign-object

free-foreign-object

foreign-slot-value

null-pointer-p

disconnect-module Function

Summary Disconnects the DLL associated with a registered module.

Package fli

Signature disconnect-module name &key verbose remove =>

Arguments name A symbol or string.

verbose Either nil or a stream. Default value: nil.

remove A boolean. Default value: nil.

Values None.

Description The function disconnect-module disconnects the DLL asso-
ciated with a registered module specified by name and regis-
tered with register-module.

When disconnecting, if verbose is set to a recognized stream,
then disconnect-module with send disconnection informa-
tion to that stream.

If remove is nil then after disconnection the module will be in
the same state as it was when first registered by register-
module, that is, lookups for foreign symbols can still automat-
ically reconnect the DLL. If remove is t then name is removed
from the list of registered modules. Any foreign symbols
which refer to the module will then be reset as unresolved
symbols.

See also register-module
 97

5 Function and Macro Reference

98
enum-symbol-value
enum-value-symbol
enum-values
enum-symbols
enum-symbol-value-pairs Functions

Summary Finds values and symbols in a FLI enumerator type.

Package fli

Signature enum-symbol-value enum-type symbol => value

enum-value-symbol enum-type value => symbol

enum-values enum-type => values

enum-symbols enum-type => symbols

enum-symbol-value-pairs enum-type => pairs

Arguments enum-type A FLI enumerator type defined by define-
c-enum.

symbol A symbol.

value An integer.

Values value An integer or nil.

symbol A symbol or nil.

values A list.

symbols A list.

pairs A list of conses.

Description The function enum-symbol-value returns the value value of
symbol symbol in the FLI enumerator type enum-type, or nil if
enum-type does not contain symbol.

The function enum-value-symbol returns the symbol symbol
in the FLI enumerator type enum-type at value value, or nil if
value is out of range for enum-type.

The functions enum-values, enum-symbols and enum-symbol-
value-pairs respectively return a list of the values, symbols
and pairs for the enum-type, where a pair is a cons of symbol
and value.

enum-type must be defined by define-c-enum.

Example (fli:define-c-enum colors red green blue)
=>
(:ENUM COLORS)

(fli:enum-symbol-value 'COLORS 'red)
=>
0

(fli:enum-value-symbol 'COLORS 0)
=>
RED

(fli:define-c-enum half_year (jan 1) feb mar apr may
jun)
=>
(:ENUM HALF_YEAR)

(fli:enum-symbol-value 'HALF_YEAR 'feb)
=>
2

(fli:enum-value-symbol 'HALF_YEAR 2)
=>
FEB

(fli:enum-symbol-value-pairs 'HALF_YEAR)
((JAN . 1) (FEB . 2) (MAR . 3) (APR . 4) (MAY . 5) (JUN
. 6))

See also define-c-enum
 99

5 Function and Macro Reference

100
fill-foreign-object Function

Summary Fills a foreign object, given a pointer to it.

Package fli

Signature fill-foreign-object pointer &key nelems byte => pointer

Arguments pointer A foreign pointer.

nelems A non-negative integer. The default is 1.

byte An integer. The default is 0.

Values pointer The foreign pointer.

Description The function fill-foreign-object fills the pointer pointer
with the value byte. If nelems is greater than 1, an array of
objects starting at pointer is filled.

Example (fli:with-dynamic-foreign-objects ()
 (let ((pp (fli:allocate-dynamic-foreign-object
 :type :char
 :initial-element 66
 :nelems 6)))
 (fli:fill-foreign-object pp :nelems 3 :byte 65)
 (loop for i below 6 collect
 (fli:dereference pp :type :char :index i))))
=>
(#\A #\A #\A #\B #\B #\B)

See also replace-foreign-object

foreign-aref Function

Summary Accesses and returns the value at a specified point in an
array.

Package fli

Signature foreign-aref array &rest subscripts => value

(setf foreign-aref) value array &rest subscripts => value

Arguments array A FLI array or a pointer to a FLI array.

subscripts A list of valid array indices for array.

Values value An element of array.

Description The function foreign-aref accesses a specified element in an
array and returns its value if the element is an immediate
type. If it is an aggregate type, such as a :struct, :union, or
:c-array, an error is signaled. The function foreign-array-
pointer should be used to access such embedded aggregate
data.

The value of an element in an array can be changed using
(setf foreign-aref). See the examples section for an exam-
ple of this.

Example In the first example, a 3 by 3 integer array is created, and
(setf foreign-aref) is used to set all the elements to 42.

(setq array1 (fli:allocate-foreign-object
 :type '(:c-array :int 3 3)))

(dotimes (x 3)
 (dotimes (y 3)
 (setf (fli:foreign-aref array1 x y)
 42)))

Next, foreign-aref is used to dereference the value at posi-
tion 2 2 in array1. Remember that the count for the indices
of an array start at 0.

(fli:foreign-aref array1 2 2)

In the following example, an array of arrays of integers is cre-
ated. When an element is dereferenced, a copy of an array of
integers is returned.
 101

5 Function and Macro Reference

102
(setq array2 (fli:allocate-foreign-object
 :type '(:c-array (:c-array :int 3) 3)))

(fli:foreign-array-pointer array2 2)

The array returned can be bound to the variable array3, and
accessed using foreign-aref again. This time an integer is
returned.

(setq array3 *)

(fli:foreign-aref array3 1)

See also foreign-array-dimensions

foreign-array-element-type

foreign-array-pointer

foreign-typed-aref

foreign-array-dimensions Function

Summary Returns a list containing the dimensions of an array.

Package fli

Signature foreign-array-dimensions array-or-type => dimensions

Arguments array-or-type A FLI array, a pointer to a FLI array or the
name of a FLI array type.

Values dimensions A list containing the dimensions of array-or-
type.

Description The function foreign-array-dimensions takes a FLI array, a
pointer to a FLI array or the name of a FLI array type as its
argument and returns a list containing the dimensions of the
array.

Examples In the following example an instance of a 3 by 4 array is cre-
ated, and these dimensions are returned using the foreign-
array-dimensions function.

(setq array1 (fli:allocate-foreign-object
 :type '(:c-array :int 3 4)))

(fli:foreign-array-dimensions array1)

See also foreign-aref

foreign-array-element-type

foreign-array-pointer

foreign-array-element-type Function

Summary Returns the type of the elements of an array.

Package fli

Signature foreign-array-element-type array-or-type => type

Arguments array-or-type A FLI array, a pointer to a FLI array or the
name of a FLI array type.

Values type The type of the elements of array-or-type.

Description The function foreign-array-element-type takes a FLI array,
a pointer to a FLI array or the name of a FLI array type as its
argument and returns the type of the elements of that array.

Examples In the following example a 3 by 4 array with integer elements
is defined, and the foreign-array-element-type function is
used to confirm that the elements of the array are indeed
integers.

(setq array1 (fli:allocate-foreign-object
 :type '(:c-array :int 3 4)))

(fli:foreign-array-element-type array1)
 103

5 Function and Macro Reference

104
See also foreign-aref

foreign-array-dimensions

foreign-array-pointer

foreign-array-pointer Function

Summary Returns a pointer to a specified element in an array.

Package fli

Signature foreign-array-pointer array &rest subscripts => pointer

Arguments array A FLI array or a pointer to a FLI array.

subscripts A list of valid array indices for array.

Values pointer A pointer to the element at position
subscripts in array.

Description The function foreign-array-pointer returns a pointer to a
specified element in an array. The value pointed to can then
be obtained by dereferencing the pointer returned, or set to a
specific value using (setf dereference).

Examples In this example a 3 by 2 array of integers is created, and a
pointer to the element at position 2 0 is returned using
foreign-array-pointer.

(setq array1 (fli:allocate-foreign-object
 :type '(:c-array :int 3 2)))

(setq array-ptr (fli:foreign-array-pointer array1 2 0))

The (setf dereference) function can now be used to set the
value pointed to by array-ptr.

(setf (fli:dereference array-ptr) 42)

See also foreign-aref

foreign-array-dimensions

foreign-array-element-type

foreign-slot-names Function

Summary Returns a list of the slot names in a foreign structure.

Package fli

Signature foreign-slot-names object => slot-names

Arguments object A foreign object or a pointer to a foreign
object.

Values slot-names A list containing the slot names of object.

Description The foreign-slot-names function returns a list containing
the slot names of a foreign object defined by define-c-
struct. If object is not a structure, an error is signaled.

Example In the following example a structure with three slots is
defined, an instance of the structure is made, and foreign-
slot-names is used to return a list of the slot names.

(fli:define-c-struct POS
 (x :int)
 (y :int)
 (z :int))

(setq my-pos (fli:allocate-foreign-object :type 'POS))

(fli:foreign-slot-names my-pos)

See also define-c-struct

foreign-slot-value
 105

5 Function and Macro Reference

106
foreign-slot-offset Function

Summary Returns the offset of a slot in a FLI object.

Package fli

Signature foreign-slot-offset object-or-type slot-name => offset

Arguments object-or-type A foreign object, a pointer to a foreign
object, or a foreign structure or union type.

slot-name A symbol or a list of symbols identifying the
slot to be accessed, as described for for-
eign-slot-value.

Values offset The offset, in bytes, of the slot slot-name in
the FLI object object.

Description The function foreign-slot-offset returns the offset, in
bytes, of a slot in a FLI object. The offset is the number of
bytes from the beginning of the object to the start of the slot.
For example, the offset of the first slot in any FLI object is 0.

Example The following example defines a structure, creates an
instance of the structure pointed to by dir, and then finds the
offset of the third slot in the object.

(fli:define-c-struct COMPASS
 (east :int)
 (west (:c-array :char 20))
 (north :int)
 (south :int))

(fli:foreign-slot-offset 'COMPASS 'north)

(setq dir (fli:allocate-foreign-object :type 'COMPASS))

(fli:foreign-slot-offset dir 'north)

See also foreign-slot-value

foreign-slot-pointer

size-of

foreign-slot-pointer Function

Summary Returns a pointer to a specified slot of an object.

Package fli

Signature foreign-slot-pointer object slot-name &key type object-type =>
pointer

Arguments object A foreign object, or a pointer to a foreign
object.

slot-name A symbol or a list of symbols identifying the
slot to be accessed, as described for for-
eign-slot-value.

type The type of the slot slot-name.

object-type The FLI structure type that contains slot-
name. If this is passed, the compiler might be
able to optimize the access to the slot. If this
is omitted, the object type is determined
dynamically from object.

Values pointer A pointer to the slot identified by slot-name.

Description The function foreign-slot-pointer takes a foreign object, a
slot within the object, and optionally the type of the slot, and
returns a pointer to the slot.

Example In the following example a structure type called COMPASS is
defined. An instance of the structure is allocated using
allocate-foreign-object, pointed to by point1. Then
 107

5 Function and Macro Reference

108
foreign-slot-pointer is used to get a pointer, called
point2, to the second slot of the foreign object.

(fli:define-c-struct COMPASS
 (west :int)
 (east :int))

(setq point1 (fli:allocate-foreign-object :type
 'COMPASS))

(setq point2 (fli:foreign-slot-pointer point1 'east
 :type :int))

The :type keyword can be used to return the value stored in
the slot as a different type, providing the type is compatible.
In the next example, point3 is set to be a pointer to the same
address as point2, but it expects the value stored there to be a
boolean.

(setq point3 (fli:foreign-slot-pointer point1 'east
 :type '(:boolean :int)))

Using dereference the value can be set as an integer using
point2 and read as a boolean using point3.

(setf (fli:dereference point2) 0)

(fli:dereference point3)

(setf (fli:dereference point2) 1)

(fli:dereference point3)

See also decf-pointer

incf-pointer

make-pointer

foreign-slot-value

foreign-slot-offset

foreign-slot-type Function

Summary Returns the type of a specified slot of a foreign object.

Package fli

Signature foreign-slot-type object-or-type slot-name => type

Arguments object-or-type A foreign object, a pointer to a foreign
object, or a foreign structure or union type.

slot-name A symbol or a list of symbols identifying the
slot whose type is to be returned. The value
is interpreted as described for foreign-
slot-value.

Values type The type of slot-name.

Description The function foreign-slot-type returns the type of a slot of
a foreign object.

Example In the following example two new types, EAST and WEST are
defined. Then a new structure, COMPASS, is defined, with two
slots. An instance of the structure is created, and foreign-
slot-type is used to get the type of the first slot of the struc-
ture.

(fli:define-c-typedef EAST (:boolean :int))

(fli:define-c-typedef WEST :long)

(fli:define-c-struct COMPASS
 (x EAST)
 (y WEST))

(fli:foreign-slot-type 'COMPASS 'x)

(setq dir (fli:allocate-foreign-object :type 'COMPASS))

(fli:foreign-slot-type dir 'x)

See also foreign-slot-names

foreign-slot-value
 109

5 Function and Macro Reference

110
foreign-slot-value Function

Summary Returns the value of a slot in a foreign object.

Package fli

Signature foreign-slot-value object slot-name &key type object-type
copy-foreign-object => value

(setf foreign-slot-value) value object slot-name &key type
object-type copy-foreign-object => value

Arguments object Either an instance of or a pointer to a FLI
structure.

slot-name A symbol or a list of symbols identifying the
slot to be accessed.

type The type of object. Specifying type makes
accessing the object faster. If the specified
type is different to the actual type, foreign-
slot-value returns the value of the object in
the format of type where possible.

object-type The FLI structure type that contains slot-
name. If this is passed, the compiler might be
able to optimize the access to the slot. If this
is omitted, the object type is determined
dynamically from object.

copy-foreign-object

This option is only important when dealing
with slots which are aggregate FLI types,
and cannot be returned by value. The recog-
nized values are t, nil and :error:

If copy-foreign-object is t, foreign-slot-
value makes a copy of the aggregate slot of
the object pointed to by pointer and returns
the copy.

If copy-foreign-object is nil, foreign-slot-
value returns the aggregate slot of the object
directly.

If copy-foreign-object is :error then foreign-
slot-value signals an error. This is the
default value for copy-foreign-object.

Value value The value of the slot slot-name in the FLI
object object is returned.

Description The function foreign-slot-value returns the value of a slot
in a specified object. An error is signaled if the slot is an
aggregate type and copy-foreign-object is not set accordingly.
Use foreign-slot-pointer to access such aggregate slots.

If slot-name is a symbol then it names the slot of object to be
accessed. If slot-name is a list of symbols, then these symbols
name slots in nested structures starting with the outermost
structure object, as in the inner/middle/outer example
below.

The function (setf foreign-slot-value) can be used to set
the value of a slot in a structure, as shown in the example
below.

Example In the following example a foreign structure is defined, an
instance of the structure is made with my-pos pointing to the
instance, and foreign-slot-value is used to set the y slot of
the object to 10.

(fli:define-c-struct POS
 (x :int)
 (y :int)
 (z :int))

(setq my-pos (fli:allocate-foreign-object :type 'POS))

(setf (fli:foreign-slot-value my-pos 'y) 10)

The next forms both return the value of the y slot at my-pos,
which is 10.
 111

5 Function and Macro Reference

112
(fli:foreign-slot-value my-pos 'y)

(fli:foreign-slot-value my-pos 'y :object-type 'pos)

See the LispWorks User Guide and Reference Manual section
"Optimizing your code" for an example showing how to
inline foreign slot access.

This example accesses a slot in nested structures:

(fli:define-c-struct inner
 (v1 :int)
 (v2 :int))

(fli:define-c-struct middle
 (i1 (:struct inner))
 (i2 (:struct inner)))

(fli:define-c-struct outer
 (m1 (:struct middle))
 (m2 (:struct middle)))

(fli:with-dynamic-foreign-objects
 ((obj (:struct outer)))
 (setf (fli:foreign-slot-value obj '(m1 i2 v1)) 99))

See also foreign-slot-pointer

foreign-slot-offset

dereference

with-foreign-slots

foreign-type-equal-p Function

Summary Determines whether two foreign types are the same
underlying foreign type.

Package fli

Signature foreign-type-equal-p type1 type2 => result

Arguments type1 A foreign type.

type2 A foreign type.

Values result A boolean.

Description The function foreign-type-equal-p returns true if type1 and
type2 are the same underlying foreign type, and false other-
wise.

Example (fli:define-foreign-type aa () '(:signed :byte))
=>
aa

(fli:define-foreign-type bb () '(:signed :char))
=>
bb

(fli:foreign-type-equal-p 'aa 'bb)
=>
t

(fli:foreign-type-equal-p 'bb :char)
=>
nil

See also define-foreign-type

foreign-type-error Condition Class

Summary The class of errors signaled when an object does not match a
foreign type.

Package fli

Superclasses type-error

Description The condition class foreign-type-error is used for errors
signaled when an object does not match a foreign type.
 113

5 Function and Macro Reference

114
foreign-typed-aref Function

Summary Accesses a foreign array and can be compiled to efficient
code.

Package fli

Signature foreign-typed-aref type array index => value

(setf foreign-typed-aref) value type array index => value

Arguments type A type specifier.

array A foreign pointer.

index A non-negative integer.

Values value An element of array.

Description The function foreign-typed-aref accesses a foreign array
and is compiled to efficient code when compiled at safety 0. It
corresponds to sys:typed-aref which accesses Lisp vectors.

type must evaluate to a supported element type for foreign
arrays. In 32-bit LispWorks these types are double-float,
single-float, (unsigned-byte 32), (signed-byte 32),
(unsigned-byte 16), (signed-byte 16), (unsigned-byte
8), (signed-byte 8) and sys:int32. In 64-bit LispWorks
type can also be (unsigned-byte 64) or (signed-byte 64).

array is a foreign pointer to a FLI array. Memory can be
allocated with:

(fli:allocate-foreign-object
 :type :double
 :nelems
 (ceiling byte-size
 (fli:size-of :double)))

to get sufficient alignment for any call to foreign-typed-
aref.

In the case the memory is allocated by the operating system
the best approach is to reference it from Lisp by a pointer
type, to avoid making a :c-array foreign type dynamically.

index should be a valid byte index for array. If index is
declared to be of type fixnum then the compiler will optimize
it slightly better. Some parts of the FLI (for example, allo-
cate-foreign-object) assume fixnum sizes so it is best to
use fixnums only.

Notes Efficient access to a Lisp vector object is also available. See
sys:typed-aref in the LispWorks User Guide and Reference
Manual.

See also foreign-aref

free Function

Summary A synonym for free-foreign-object.

Package fli

Signature free pointer => null-pointer

Description The function free is a synonym for free-foreign-object.

See also free-foreign-object

free-foreign-object Function

Summary Deallocates the space in memory pointed to by a pointer.

Package fli

Signature free-foreign-object pointer => null-pointer
 115

5 Function and Macro Reference

116
Arguments pointer A pointer to the object to de-allocate.

Values null-pointer A pointer with address zero.

Description The free-foreign-object function deallocates the space in
memory pointed to by pointer, which frees the memory for
other uses. The address of pointer is the start of a block of
memory previously allocated by allocate-foreign-object.

If pointer is a null pointer then free-foreign-object takes no
action.

Example In the following example a boolean type is defined and an
instance is created with memory allocated using allocate-
foreign-object. The function free-foreign-object is then
used to free up the memory used by the boolean.

(fli:define-c-typedef BOOL (:boolean :int))

(setq point (fli:allocate-foreign-object :type 'BOOL))

(fli:free-foreign-object point)

See also allocate-foreign-object

incf-pointer Function

Summary Increases the address held by a pointer.

Package fli

Signature incf-pointer pointer &optional delta => pointer

Arguments pointer A FLI pointer.

delta An integer. The default value is 1.

Values pointer The pointer passed.

Description The function incf-pointer increases the address held by the
pointer. If delta is not given the address is increased by the
size of the type pointed to by the pointer. The address can be
increased by a multiple of the size of the type by specifying a
delta.

The function incf-pointer is often used to move a pointer
through an array of values.

Example In the following example an array with 10 entries is defined.
A copy of the pointer to the array is made, and is incre-
mented and decremented.

(setq array-obj
 (fli:allocate-foreign-object :type :int
 :nelems 10
 :initial-contents '(0 1 2 3 4 5 6 7 8 9)))

(setq point1 (fli:copy-pointer array-obj))

(dotimes (x 9)
 (fli:incf-pointer point1)
 (print (fli:dereference point1)))

(dotimes (x 9)
 (fli:decf-pointer point1)
 (print (fli:dereference point1)))

See also decf-pointer

locale-external-formats Variable

Summary Provides a mapping from locale names to encodings

Package fli

Description The variable *locale-external-formats* contains the map-
ping from locale names to external formats that set-locale uses
to set the correct defaults for FLI. The value is an alist with ele-
ments of the form:
 117

5 Function and Macro Reference

118
 (locale multi-byte-ef wide-character-ef)

The locale names are given as strings. If the first character of
the string is #*, then that entry matches any locale having
the rest of the string as a suffix. If the last character of the
string is #*, then that entry matches any locale having the
rest of the string as a prefix. Either external format may be
given as nil, in which case the corresponding foreign type
cannot be used without specifying an external format.

Notes *locale-external-formats* is used only on Linux and Unix
platforms. On Windows, the external formats are based on
the Windows Code Page.

See also :ef-mb-string

:ef-wc-string

set-locale

make-integer-from-bytes Function

Summary Converts foreign bytes back to a Lisp integer.

Signature make-integer-from-bytes pointer length => integer

Arguments pointer A foreign pointer.

length An integer.

Values integer An integer.

Description The function make-integer-from-bytes converts length
bytes starting at pointer into the Lisp integer integer. The
bytes and length must have been generated by with-inte-
ger-bytes or convert-integer-to-dynamic-foreign-
object.

See also with-integer-bytes

convert-integer-to-dynamic-foreign-object

make-pointer Function

Summary Creates a pointer to a specified address.

Package fli

Signature make-pointer &key address type pointer-type symbol-name
functionp module encoding => pointer

Arguments address The address pointed to by the pointer to be
created.

type The type of the object pointed to by the
pointer to be created.

pointer-type The type of the pointer to be made.

symbol-name A string or a symbol.

functionp If type or pointer-type are not specified, then
functionp can be used.

If t, the pointer made is a pointer to type
:function. This is the default value.

If nil, the pointer made is a pointer to type
:void.

module A symbol or string naming a module, or nil.

encoding One of :source, :object, :lisp or :dbcs.

Values pointer A pointer to address.

Description The function make-pointer creates a pointer of a specified
type pointing to a given address, or optionally to a function
or foreign callable.
 119

5 Function and Macro Reference

120
symbol-name is either a string containing the name of a foreign
symbol defined in a DLL, or a string or symbol naming a
foreign callable defined by define-foreign-callable.

encoding controls how symbol-name is processed. The values
are interpreted like the encode argument of define-foreign-
callable. The default value of encoding is :source if symbol-
name is a string and :lisp if symbol-name is a symbol.

In the case of a pointer to a foreign callable or foreign func-
tion, the module keyword can be used to ensure that the
pointer points to the function in the correct DLL if there are
other DLLs containing functions with the same name. module
is processed as by define-foreign-function.

Example In the following example a module is defined, and the vari-
able setpoint is set equal to a pointer to a function in the
module.

(fli:register-module :user-dll :real-name "user32")

(setq setpoint
 (fli:make-pointer :symbol-name "SetCursorPos"
 :module :user-dll)

See also copy-pointer

define-foreign-callable

register-module

with-coerced-pointer

malloc Function

Summary A synonym for allocate-foreign-object.

Package fli

Signature malloc &key type pointer-type initial-element initial-contents
nelems => pointer

Description The function malloc is a synonym for allocate-foreign-
object.

See also allocate-foreign-object

module-unresolved-symbols Function

Summary Returns foreign symbol names that cannot be resolved.

Note: This function is not defined in LispWorks for UNIX.

Package fli

Signature module-unresolved-symbols &key module => list

Arguments module nil, :all, or a string. The default is :all.

Values list A list of strings.

Description The function unresolved-module-symbols returns a list of
foreign symbol names, each of which cannot be resolved in
the currently known modules.

If module is nil, then list includes only those names not
associated with a module.

If module is :all, then list includes the unresolved names in
all modules and those not associated with a module.

If module is a string, then it names a module and list contains
only the unresolved symbols associated with that module.

See also register-module
 121

5 Function and Macro Reference

122
null-pointer Variable

Summary A null pointer.

Package fli

Description The variable *null-pointer* contains a (:pointer :void)
with address 0.

This provides a simple way to pass a null pointer when needed.

Example (fli:pointer-address fli:*null-pointer*)
=>
0

(fli:null-pointer-p fli:*null-pointer*)
=>
T

See also pointer-address

null-pointer-p

:pointer

null-pointer-p Function

Summary Tests a pointer to see if it is a null pointer.

Package fli

Signature null-pointer-p pointer => result

Arguments pointer A FLI pointer.

Values result A boolean.

Description The function null-pointer-p is used to determine if a
pointer is a null pointer. A null pointer is a pointer pointing
to address 0.

If pointer is a null pointer (that is, a pointer pointing to
address 0) then result is true, otherwise null-pointer-p
returns false.

Example In the following example a pointer to an :int is defined, and
tested with null-pointer-p. The pointer is then freed,
becoming a null pointer, and is once again tested using null-
pointer-p.

(setq point (fli:allocate-foreign-object :type :int))

(fli:null-pointer-p point)

(fli:free-foreign-object point)

(fli:null-pointer-p point)

See also *null-pointer*

pointer-address

pointer-eq

pointer-address Function

Summary Returns the address of a pointer.

Package fli

Signature pointer-address pointer => address

Arguments pointer A FLI pointer.

Values address The address pointed to by pointer.

Description The function pointer-address returns the address of a
pointer.

Example In the following example a pointer is defined, and its address
is returned using pointer-address.
 123

5 Function and Macro Reference

124
(setq point (fli:allocate-foreign-object :type :int))

(fli:pointer-address point)

See also null-pointer-p

pointer-eq

pointer-element-size Function

Summary Returns the size in bytes of a foreign object or a foreign type.

Package fli

Signature pointer-element-size pointer-or-type => size

Arguments pointer-or-type A FLI pointer to a foreign object or the name
of a FLI pointer type.

Values size A non-negative integer.

Description The function pointer-element-size returns the size, in
bytes, of the object or type specified.

If pointer-or-type is an FLI pointer, size is the size, in bytes, of
the object pointed to by pointer-or-type.

If pointer-or-type is the name of a FLI pointer type, size is the
size, in bytes, of the elements of that type.

Example In the following example a pointer to an integer is created.
Then the size in bytes of the integer is returned using
pointer-element-size.

(setq point (fli:allocate-foreign-object :type :int))

(fli:pointer-element-size point)

See also pointer-element-type

size-of

pointer-element-type Function

Summary Returns the type of the foreign object pointed to by a FLI
pointer.

Package fli

Signature pointer-element-type pointer-or-type => type

Arguments pointer-or-type A FLI pointer to a foreign object or the name
of a FLI pointer type.

Values type The name of a FLI pointer type.

Description The function pointer-element-type returns the type of the
foreign object specified, or the element type of the foreign
type specified.

If pointer-or-type is a FLI pointer, type is the type of the foreign
object pointed to by pointer-or-type.

If pointer-or-type is the name of a FLI pointer type, type is the
type of the elements of that FLI pointer type.

Example In the following example a pointer to an integer is defined,
and pointer-element-type is used to confirm that the
pointer points to an integer.

(setq point (fli:allocate-foreign-object :type :int))

(fli:pointer-element-type point)

In the next example a new type, HAPPY, is defined. The pointer
point is set to point to an instance of HAPPY, and pointer-
element-type is used to find the type of the object pointed to
by point.

(fli:define-c-typedef HAPPY :long)

(setq point (fli:allocate-foreign-object :type 'HAPPY))

(fli:pointer-element-type point)
 125

5 Function and Macro Reference

126
See also foreign-slot-type

pointer-element-size

pointer-element-type-p

pointer-element-type-p Function

Summary Tests whether a FLI pointer matches a given element type.

Package fli

Signature pointer-element-type-p pointer type => result

Arguments pointer A FLI pointer to a foreign object.

type A foreign type.

Values result A boolean.

Description The function pointer-element-type-p returns true if the
element type of the foreign object pointed to by pointer has
the same underlying type as type.

Example (setq point (fli:allocate-foreign-object :type :int))
=>
=> #<Pointer to type :INT = #x007F3970>

(fli:pointer-element-type-p point :signed)
->
t

See also pointer-element-type

pointer-eq Function

Summary Test whether two pointers point to the same memory
address.

Package fli

Signature pointer-eq pointer1 pointer2 => boolean

Arguments pointer1 A FLI pointer.

pointer2 A FLI pointer.

Values boolean If pointer1 points to the same address as
pointer2, pointer-eq returns t, otherwise it
returns nil.

Description The function pointer-eq tests whether two pointers point to
the same address, and returns t if they do, and nil if they do
not.

Example In the following example a pointer, point1, is defined, and
point2 is set equal to it. Both are then tested to see if they are
equal to each other using pointer-eq. Then point2 is defined
to point to a different object, and the two pointers are tested
for equality again.

(setq point1 (fli:allocate-foreign-object :type :int))

(setq point2 point1)

(fli:pointer-eq point1 point2)

(setq point2 (fli:allocate-foreign-object :type :int))

(fli:pointer-eq point1 point2)

See also null-pointer-p

pointerp

pointer-pointer-type Function

Summary Returns the pointer type of a FLI pointer.

Package fli
 127

5 Function and Macro Reference

128
Signature pointer-pointer-type pointer => pointer-type

Arguments pointer A FLI pointer.

Values pointer-type The pointer type of pointer.

Description The function pointer-pointer-type returns the pointer type
of the foreign pointer pointer.

Example (setq point (fli:allocate-foreign-object :type :int))
=>
#<Pointer to type :INT = #x007F3DF0>

(fli:pointer-pointer-type point)
=>
(:POINTER :INT)

(fli:free-foreign-object point)
=>
#<Pointer to type :INT = #x00000000>

See also make-pointer

pointerp Function

Summary Tests whether an object is a pointer or not.

Package fli

Signature pointerp pointer => result

Arguments pointer An object that may be a FLI pointer.

Values result A boolean.

Description The function pointerp tests whether the argument pointer is a
pointer.

result is t if pointer is a pointer, otherwise nil is returned.

Example In the following example a pointer, point, is defined, and an
object which is not a pointer is defined. Both are tested using
pointerp.

(setq point (fli:allocate-foreign-object :type :int))

(setq not-point 7)

(fli:pointerp point)

(fli:pointerp not-point)

See also null-pointer-p

pointer-address

pointer-eq

print-collected-template-info Function

Summary Prints the FLI Template information in the image.

Package fli

Signature print-collected-template-info &key output-stream => nil

Arguments output-stream An output stream designator. The default is
nil, meaning standard output.

Description The FLI converters require pieces of compiled code known as
FLI templates, and sometimes your delivered application will
need extra templates not included in LispWorks as shipped.

The function print-collected-template-info prints the
information about FLI templates that has been collected.
These must be compiled and loaded into your application.

See the LispWorks Delivery User Guide for further details.

See also start-collecting-template-info
 129

5 Function and Macro Reference

130
print-foreign-modules Function

Summary Prints the foreign modules loaded into the image by regis-
ter-module.

Package fli

Signature print-foreign-modules &optional stream verbose => nil

Arguments stream An output stream.

verbose A generalized boolean.

Description The function print-foreign-modules prints a list of the
foreign modules loaded via register-module, to the stream
stream.

The default value of stream is the value of
standard-output.

If verbose is true, more information is printed if possible.
Currently this only has an effect in LispWorks for Unix. The
default value of verbose is nil.

See also register-module

register-module Function

Summary Informs LispWorks of the presence of a dynamic library.

Signature register-module name &key connection-style lifetime real-name
dlopen-flags => name

Arguments name A symbol or string specifying the Lisp name
the module will be registered under.

connection-style A keyword determining when the
connection to the dynamic library is made.
One of :automatic , :manual or :immediate.
The default value is :automatic.

lifetime A keyword specifying the lifetime of the
connection. One of :indefinite or :ses-
sion. The default value is :indefinite.

real-name Overrides the name for identifying the actual
dynamic library to connect to.

dlopen-flags Controls use of dlopen on Unix-based
systems. One of t, nil, :local-now,
:global-now, :global-lazy, :local-lazy,
or a fixnum. The default value is nil on
Darwin, and t on other platforms.

Values name The name argument.

Description The function register-module explicitly informs LispWorks
of the presence of a DLL or shared object file, referred to here
as a dynamic library. Functions such as make-pointer and
define-foreign-function have a module keyword which
can be used to specify which module the function refers to.

The main use of modules is to overcome ambiguities that can
arise when two different dynamic libraries have functions
with the same name.

If an application is delivered after calling register-module,
then the application attempts to reload the module on startup
but does not report any errors. Therefore it is strongly recom-
mended that you call register-module during initialization
of your application, rather than at compile time or build time.
Loading the module at run time allows you to:

• report loading errors to the user or application error log

• compute the path (as described below), if needed

• make the loading conditional, if needed
 131

5 Function and Macro Reference

132
You should compute and supply the appropriate full path if
possible.

name is used for explicit look up from the :module keyword
of functions such as define-foreign-function. If name is a
symbol, then real-name should also be passed to provide a
filename. If real-name is not specified then name must be a
string and specifies the actual name of the dynamic library to
connect to.

The naming convention for the module name can contain the
full pathname for the dynamic library. For example, a path-
name such as

#p"C:/MYPRODUCT/LIBS/MYLIBRARY.DLL"

is specified as

"C:\\MYPRODUCT\\LIBS\\MYLIBRARY.DLL"

On Windows, if the module is declared without an extension,
".DLL" is automatically appended to the name. To declare a
name without an extension it must end with the period char-
acter ("."). On other platforms, you should provide the exten-
sion, since there is more than one library format. Typical
would be .so on Linux or FreeBSD and .dylib on Macintosh.

If a full pathname is not specified for the module, then it is
searched for.

On Windows the following directories (in the given order)
are searched:

1. The directory of the executable.

2. The current directory. This step can be switched off on
Windows XP.

3. The Windows system directory (as specified by
GetSystemDirectory). For Windows NT/2000/XP the
16-bit system directory (SYSTEM) is also searched.

4. The Windows directory (as specified by
GetWindowsDirectory)

5. Directories specified by the PATH variable.

The simplest approach is usually to place the DLL in the
same directory as the LispWorks executable or application.
However if you really need different directories then be sure
to call register-module at run time with the appropriate
pathname.

On Linux, the search is conducted in this order:

1. Directories on the user’s LD_LIBRARY path environment
variable.

2. The list of libraries specified in /etc/ld.so.cache.

3. /usr/lib, followed by /lib.

If connection-style is :automatic then the system
automatically connects to a dynamic library when it needs to
resolve currently undefined foreign symbols.

If connection-style is :manual then the system only connects to
the dynamic library if the symbol to resolve is explicitly
marked as coming from this module via the :module key-
word of functions such as define-foreign-function.

Note: on LispWorks for UNIX only (not LispWorks for Linux,
FreeBSD, or x86/x64 Solaris) this value :manual for connec-
tion-style is not supported.

If connection-style is :immediate then the connection to the
dynamic library is made immediately. This checks that the
library can actually be loaded before its symbols are actually
needed: an error is signalled if loading fails.

If lifetime is :session then the module is disconnected when
Lisp starts up. The only supported value of lifetime in Lisp-
Works for UNIX is :indefinite.

You should load only libraries of the correct architecture into
LispWorks. You will need to obtain a 32-bit dynamic library
for use with 32-bit LispWorks and similarly you need a 64-bit
dynamic library for use with 64-bit LispWorks. (If you build
 133

5 Function and Macro Reference

134
the dynamic library, pass -m32 or -m64 as appropriate to cc.)
You can conditionalize the argument to register-module as
in the example below.

Note: On Linux, you may see a spurious "No such file or
directory" error message when loading a dynamic library of
the wrong architecture. The spurious message might be local-
ized.

Note: In LispWorks for UNIX the loader function link-
load:read-foreign-modules is now deprecated in favor of
register-module.

Note: static libraries are not supported except on UNIX. For
example, on Linux evaluating this form:

 (fli:register-module "libc.a"
 :real-name "/usr/lib/libc.a"
 :connection-style :immediate)

results in an error:

Could not register handle for external module "libc"
/usr/lib/libc.a : invalid ELF header

The problem is that libc.a is a static library. Instead, do:

(fli:register-module "libc.so"
 :real-name "libc.so.6"
 :connection-style :immediate)

Note that :real-name is given a relative path in this case,
because libc is a standard library on Linux and it is best to
let the operating system locate it.

dlopen-flags has an effect only on Unix-based systems. It
controls the value that is passed to dlopen as second
argument when the module is connected, and on Darwin it
also controls whether dlopen is used at all.

The keyword values of dlopen-flags correspond to combina-
tions of RTLD_* constants (see /usr/include/dlfcn.h). The
value t means the same as :local-lazy. The value nil
means the same as t except on Darwin. On Darwin the value

nil means do not use dlopen, and use the older interfaces
instead.

A fixnum value means pass this value dlopen-flags to dlopen
without checking. It is the responsibility of the caller to get it
right in this case.

The default value of dlopen-flags is nil on Darwin, because it
seems dlopen does not work properly on this platform.

Notes 1. It is strongly recommended that you call register-mod-
ule during initialization of your application, rather than
at compile time or build time.

2. When developing with foreign code in LispWorks, the
utilities provided in the Editor are useful - see “Compil-
ing and Loading Foreign Code with the Editor” on page
190

Example In the following example on Windows, the user32 DLL is
registered, and then a foreign function called
set-cursor-pos is defined to explicitly reference the
SetCursorPos function in the user32 DLL.

(fli:register-module :user-dll :real-name "user32")

(fli:define-foreign-function (set-cursor-pos
 "SetCursorPos")
 ((x :long)
 (y :long))
 :module :user-dll)

This example on Linux loads the shared library even though
its symbols are not yet needed. An error is signalled if load-
ing fails:

(fli:register-module "libX11.so"
 :connection-style :immediate)

This example loads a module from the same directory as the
Lisp executable, by executing this code at runtime:
 135

5 Function and Macro Reference

136
(fli:register-module
 modulename
 :file-name
 (merge-pathnames "modulefilename.dylib"
 (lisp-image-name)))

In this last example a program which runs in both 32-bit
LispWorks and 64-bit LispWorks loads the correct library for
each architecture:

(fli:register-module #+:lispworks-32bit "mylib32"
 #+:lispworks-64bit "mylib64")

See also connected-module-pathname

define-foreign-function

make-pointer

module-unresolved-symbols

print-foreign-modules

replace-foreign-array Function

Summary Copies the contents of one foreign or Lisp array into another.

Package fli

Signature replace-foreign-array to from &key start1 start2 end1 end2 =>
to

Arguments to A foreign array, foreign pointer or a Lisp
array.

from A foreign array, foreign pointer or a Lisp
array.

start1 An integer.

start2 An integer.

end1 An integer.

end2 An integer.

Values to A foreign array, foreign pointer or a Lisp
array.

Description The function replace-foreign-array copies the contents of
the array specified by from into another array specified by to.
The arrays element types must have the same size and both
be either signed or unsigned.

The argument to is destructively modified by copying
successive elements into it from from. Elements of the
subsequence of from bounded by start2 and end2 are copied
into the subsequence of to bounded by start1 and end1. If
these subsequences are not of the same length, then the
shorter length determines how many elements are copied;
the extra elements near the end of the longer subsequence are
not involved in the operation.

Each of to and from can be one of the following:

A lisp array. The start and end are handled in the same
way as Common Lisp sequence functions.

A foreign array. The start and end are handled in the same
way as Common Lisp sequence functions.

A pointer to a foreign array

The start and end are handled in the same
way as Common Lisp sequence functions.

A pointer to any other foreign object.

In this case, the pointer is assumed to point
to an array of such objects. Start and end are
used as indices into that array, but without
any bounds checking.

Example This example demonstrates copying from a foreign pointer to
a lisp array.

An initial array filled with 42:
 137

5 Function and Macro Reference

138
(setq lisp-array
 (make-array 10
 :element-type '(unsigned-byte 8)
 :initial-element 42))

A foreign pointer to 10 consecutive unsigned chars:

(setq foreign-array
 (fli:allocate-foreign-object
 :type '(:unsigned :char)
 :nelems 10
 :initial-contents '(1 2 3 4 5 6 7 8 9 10)))

Copy some of the unsigned char into the lisp array. Without
:start2 and :end2, only the first unsigned char would be
copied:

(fli:replace-foreign-array
 lisp-array foreign-array
 :start1 3
 :start2 5 :end2 8)
=>
#(42 42 42 6 7 8 42 42 42 42)

This example demonstrates copying from a foreign array to a
lisp array.

A pointer to a foreign array of 10 unsigned chars:

(setq foreign-array
 (fli:allocate-foreign-object
 :type
 '(:c-array (:unsigned :char) 10)))

(dotimes (i 10)
 (setf (fli:foreign-aref foreign-array i) (1+ i)))

Copy part of the foreign array into the lisp array:

(fli:replace-foreign-array
 lisp-array foreign-array :start1 7)
=>
#(42 42 42 6 7 8 42 1 2 3)

See also allocate-foreign-object

copy-pointer

make-pointer

replace-foreign-object

replace-foreign-object Function

Summary Copies the contents of one foreign object into another.

Package fli

Signature replace-foreign-object to from &key nelems => pointer

Arguments to A foreign object or a pointer to a foreign
object.

from A foreign object or a pointer to a foreign
object.

nelems An integer.

Values pointer A pointer to the object specified by from.

Description The function replace-foreign-object copies the contents
of the foreign object specified by from into another foreign
object specified by to. Block copying on an array of elements
can also be performed by specifying the number of elements
to copy using the nelems keyword.

Example In the following object two sets of ten integers are defined.
The object from-obj contains the integers from 0 to 9. The
object to-obj contains random values. The replace-for-
eign-object function is then used to copy the contents of
from-obj into to-obj.

(setf from-obj
 (fli:allocate-foreign-object
 :type :int
 :nelems 10
 :initial-contents
 '(0 1 2 3 4 5 6 7 8 9)))
 139

5 Function and Macro Reference

140
(setf to-obj
 (fli:allocate-foreign-object
 :type :int
 :nelems 10))

(fli:replace-foreign-object to-obj from-obj :nelems 10)

See also allocate-foreign-object

fill-foreign-object

copy-pointer

make-pointer

replace-foreign-array

set-locale Function

Summary Sets the C locale and the default for FLI string conversions.

Package fli

Signature set-locale &optional locale => c-locale

Arguments locale A string, the locale name.

Values c-locale A string naming the C locale, or nil..

Description This function can be called to set the C locale; if you set the
locale in any other way, then Lisp might not do the right
thing when passing strings and characters to C. It calls
setlocale to tell the C library to switch and then calls set-
locale-encodings to tell the FLI what conversions to do
when passing strings and characters to C. The locale argu-
ment should be a locale name; if not passed, it defaults
according to the OS conventions.

If set-locale fails to set the C locale, a warning is signaled,
nil is returned and the FLI conversion defaults are not
modified.

Example On a Windows system:

(fli:set-locale "English_UK")
=>
"English_United Kingdom.1252"

On a Linux system:

(fli:set-locale)
=>
"en_US"

See also convert-from-foreign-string

convert-to-foreign-string

:ef-mb-string

:ef-wc-string

locale-external-formats

set-locale-encodings

with-foreign-string

set-locale-encodings Function

Summary Tells the FLI what default conversions to use when passing
strings and characters to C.

Package fli

Signature set-locale-encodings mb wc => mb

Arguments mb An external format specification.

wc An external format specification, or nil..

Description The function set-locale-encodings changes the default
encodings used by those FLI functions and types which con-
vert strings and characters and accept an :external-format
argument.

set-locale calls set-locale-encodings after successfully
setting the C locale.
 141

5 Function and Macro Reference

142
See also convert-from-foreign-string

convert-to-foreign-string

:ef-mb-string

:ef-wc-string

set-locale-encodings

with-foreign-string

size-of Function

Summary Returns the size in bytes of a foreign type.

Package fli

Signature size-of type-name => size

Arguments type-name A foreign type whose size is to be deter-
mined.

Values size The size of the foreign type type-name in
bytes.

Description The function size-of returns the size in bytes of the foreign
language type named by type-name.

Example This example returns the size of the C integer type (usually 4
bytes on supported platforms):

(fli:size-of :int)

This example returns the size of a C array of 10 integers:

(fli:size-of '(:c-array :int 10))

The function size-of can also be used to determine the size
of a structure:

(fli:define-c-struct POS
 (x :int)
 (y :int)
 (z :int))

(fli:size-of 'POS)

See also allocate-foreign-object

free-foreign-object

start-collecting-template-info Function

Summary Nullifies the FLI Template information in the image.

Package fli

Signature start-collecting-template-info => nil

Description The FLI converters require pieces of compiled code known as
FLI templates, and sometimes your delivered application will
need extra templates not included in LispWorks as shipped.

The function start-collecting-template-info throws
away any information about FLI templates that has been col-
lected. Call it when you want to start collecting to create a
definitive set of template information.

See the LispWorks Delivery User Guide for further details.

See also print-collected-template-info

with-coerced-pointer Macro

Summary Makes a temporary copy of a pointer, executes a list of forms
which may use and alter the copy of the pointer across the
scope of the macro, and then deallocates the memory pro-
vided for the copy of the pointer.
 143

5 Function and Macro Reference

144
Package fli

Signature with-coerced-pointer (binding-name &key type pointer-type)
pointer &body body => last

Arguments binding-name A temporary name used to access a copy of
pointer.

type The type of the object pointed to by the tem-
porary pointer. This keyword can be used to
access the data at the pointer as a different
type.

pointer-type The pointer-type of the temporary pointer.

pointer A FLI pointer of which a copy is made. The
lifetime of the copy is across the scope of the
with-coerced-pointer macro.

body A list of forms to be executed across the
scope of the temporary pointer binding.

Values last The value of the last form in body.

Description The macro with-coerced-pointer makes a temporary copy
of a pointer, and executes a list of forms which may use the
copy across the scope of the macro. Once the macro has ter-
minated the memory allocated to the copy of the pointer is
automatically freed.

Example In the following example an array of ten integers is defined,
pointed to by array-obj. The macro with-coerced-pointer
is used to return the values stored in the array, without alter-
ing array-obj, or permanently tying up memory for a sec-
ond pointer.

(setf array-obj
 (fli:allocate-foreign-object :type :int
 :nelems 10
 :initial-contents
 '(0 1 2 3 4 5 6 7 8 9)))

(fli:with-coerced-pointer (temp) array-obj
 (dotimes (x 10)
 (print (fli:dereference temp))
 (fli:incf-pointer temp)))

See also allocate-dynamic-foreign-object

free-foreign-object

with-dynamic-foreign-objects

with-dynamic-foreign-objects Macro

Summary Allocates memory for a list of foreign objects, executes a list
of forms which may use the objects across the scope of the
macro, and then deallocates the foreign objects.

Package fli

Signature with-dynamic-foreign-objects bindings &body body => last

bindings ::= (binding*)

binding ::= (var foreign-type &key initial-element initial-contents
fill nelems size-slot)

body ::= form*

Arguments var A symbol to be bound to a foreign type.

foreign-type A foreign type descriptor to be bound to the
variable var.

form A form to be executed with bindings in effect.

Values last The value of the last form in body.

Description The macro with-dynamic-foreign-objects binds variables
according to the list bindings, and then executes body. Each
element of bindings is a list which binds a symbol to a pointer
which points to a locally allocated instance of a foreign type.
 145

5 Function and Macro Reference

146
initial-element, initial-contents, fill, nelems and size-slot initialize
the allocated instance as if by allocate-foreign-object.

The lifetime of the bound foreign objects, and hence the allo-
cation of the memory they take up, is within the scope of the
with-dynamic-foreign-objects function.

Any object created with allocate-dynamic-foreign-object
within body will automatically be deallocated once the scope
of the with-dynamic-foreign-objects function has been
left.

Compatibility
note

There is an alternative syntax for binding with an optional ini-
tial-element which is the only way to supply an initial element
in LispWorks 5.0 and previous versions. Like this:

binding ::= (var foreign-type &optional initial-element)

This alternative syntax is deprecated in favor of the keyword
syntax for binding defined in “Signature” above which is sup-
ported in LispWorks 5.1 and later.

Example This example shows the use of with-dynamic-foreign-
objects with an implicitly created pointer.

Windows version:

typedef struct {
 int one;
 float two;
} foo ;

__declspec(dllexport) void __cdecl init_alloc(foo *ptr,
int a, float b)
{
 ptr->one = a;
 ptr->two = b;
};

Unix/Linux/Macintosh version:

typedef struct {
 int one;
 float two;
} foo ;

void init_alloc(foo * ptr, int a, float b)
{
 ptr->one = a;
 ptr->two = b;
};

Here are the FLI definitions interfacing to the above C code:

(fli:define-c-typedef (foo (:foreign-name "foo"))
 (:struct (one :int) (two :float)))

(fli:define-foreign-function (init-alloc "init_alloc")
 ((ptr (:pointer foo))
 (a :int)
 (b :float))
 :result-type :void
 :calling-convention :cdecl)

Try this test function which uses with-dynamic-foreign-
objects to create a transient foo object and pointer:

(defun test-alloc (int-value float-value &optional
(level 0))
 (fli:with-dynamic-foreign-objects ((object foo))
 (init-alloc object int-value float-value)
 (format t "~%Level - ~D~& object : ~S~& slot one
: ~S~& slot two : ~S~&"
 level object
 (fli:foreign-slot-value object ’one)
 (fli:foreign-slot-value object ’two))
 (when (> int-value 0)
 (test-alloc (1- int-value)
 (1- float-value) (1+ level)))
 (when (> float-value 0)
 (test-alloc (1- int-value)
 (1- float-value) (1+ level)))))
 147

5 Function and Macro Reference

148
(test-alloc 1 2.0)
=>
Level - 0
 object : #<Pointer to type FOO = #x007E6338>
 slot one : 1
 slot two : 2.0

Level - 1
 object : #<Pointer to type FOO = #x007E6340>
 slot one : 0
 slot two : 1.0

Level - 2
 object : #<Pointer to type FOO = #x007E6348>
 slot one : -1
 slot two : 0.0

Level - 1
 object : #<Pointer to type FOO = #x007E6340>
 slot one : 0
 slot two : 1.0

Level - 2
 object : #<Pointer to type FOO = #x007E6348>
 slot one : -1
 slot two : 0.0

A further example using with-dynamic-foreign-objects
and a pointer created explicitly by allocate-dynamic-for-
eign-object is given in “An example of dynamic memory
allocation” on page 7.

See also allocate-dynamic-foreign-object

free-foreign-object

with-coerced-pointer

with-dynamic-lisp-array-pointer Macro

Summary Creates a dynamic-extent foreign pointer which points to the
data in a given Lisp array while the forms are executed.

Package fli

Signature with-dynamic-lisp-array-pointer (pointer-var lisp-array &key
start type) &body body => last

Arguments pointer-var A variable to be bound to the foreign
pointer.

lisp-array A Lisp array.

start An index into the Lisp array. The default is
0.

type A foreign type. The default is :void.

body A list of forms.

Values last The value of the last form in body.

Description The macro with-dynamic-lisp-array-pointer enables the
data in a Lisp array (a string or a byte array) to be shared
directly with foreign code, without making a copy. A
dynamic-extent pointer to the array’s data can be used within
body wherever the :pointer foreign type allows.

with-dynamic-lisp-array-pointer creates a dynamic
extent foreign pointer, with element type type, which is ini-
tialized to point to the element of lisp-array at index index.

This foreign pointer is bound to pointer-var, the forms of body
are executed and the value of the last form returned.

Pointers created with this macro must be used with care.
There are three restrictions:

1. lisp-array must be static, for example allocated as shown
below.

2. The pointer has dynamic extent and lisp-array is
guaranteed to be preserved only during the execution of
body. If you keep the value of the pointer, you must also
preserve lisp-array, that is you must ensure it is not
garbage-collected.
 149

5 Function and Macro Reference

150
3. Lisp strings and arrays are not null-terminated, therefore
foreign code must only access the data of lisp-array up to
its known length.

Example (let ((vector
 (make-array 3 :element-type '(unsigned-byte 8)
 :initial-contents '(65 77 23)
 :allocation :static)))
 (fli:with-dynamic-lisp-array-pointer
 (ptr vector :start 1 :type :unsigned-byte)
 (fli:dereference ptr)))
=>
77

See also :lisp-array

:lisp-simple-1d-array

with-foreign-slots Macro

Summary Allows convenient access to the slots of a foreign structure.

Package fli

Signature with-foreign-slots slots-and-options form &body body

slots-and-options := (slots &key object-type) | slots

slots := (slot-spec*)

slot-spec := slot-name | (variable-name slot-name &key copy-
foreign-object)

Arguments variable-name A symbol

slot-name A symbol

object-type A FLI structure type

form A form evaluating to an instance of (or a
pointer to) a FLI structure

body Forms to be executed

Description The macro with-foreign-slots is analogous to the Common
Lisp macro with-slots. Within body, each slot-name (or vari-
able-name) evaluates to the result of calling foreign-slot-
value on form with that slot. setf can be used to set the for-
eign slot value.

If the first syntax of slots-and-options is used, then object-type is
passed as the value of the :object-type keyword argument
in all the generated calls to foreign-slot-value. If the sec-
ond syntax of slots-and-options is used, no object-type is
passed.

Each slot-spec can either be a symbol slot-name naming a slot
in the object, which will be also be used in body, or a list of
variable-name, a symbol naming a slot, and a plist of options.
In this case the copy-foreign-object option is passed as the
value of the :copy-foreign-object keyword argument in
the generated call to foreign-slot-value. The default value
of copy-foreign-object is :error.

The with-foreign-slots form returns the value of the last
form in body.

Example (fli:define-c-struct abc
 (a :int)
 (b :int)
 (c :int))
=>
(:STRUCT ABC)

(setf abc (fli:allocate-foreign-object :type 'abc))
=>
#<Pointer to type (:STRUCT ABC) = #x007F3BE0>

(fli:with-foreign-slots (a b c) abc
 (setf a 6 b 7 c (* a b)))
=>
42

(fli:foreign-slot-value abc 'c)
=>
42
 151

5 Function and Macro Reference

152
See also foreign-slot-value

with-foreign-string Macro

Summary Converts a Lisp string to a foreign string, binds variables to a
pointer to the foreign string, the number of elements in the
string, and the number of bytes taken up by the string, then
executes a list of forms, and finally de-allocates the foreign
string and pointer.

Package fli

Signature with-foreign-string (pointer element-count byte-count &key
external-format null-terminated-p allow-null) string &body body =>
last

body::= form*

Arguments pointer A symbol bound to a pointer to the foreign
string.

element-count A symbol bound to the number of elements
in the foreign string.

byte-count A symbol bound to the number of bytes
occupied by the foreign string. If the element
size of the string is equal to one byte, then
byte-count will be the same as element-count.

external-format An external format specification.

null-terminated-p If t, the foreign string is terminated by a null
character. The null character is included in
the element-count of the string.

allow-null A boolean. The default is nil.

string The Lisp string to convert.

body A list of forms to be executed.

form A form to be executed.

Values last The value of the last form in body.

Description The macro with-foreign-string is used to dynamically con-
vert a Lisp string to a foreign string and execute a list of
forms using the foreign string. The macro first converts
string, a Lisp string, into a foreign string. The symbol pointer
is bound to a pointer to the start of the string, the symbol
element-count is set equal to the number of elements in the
string, and the symbol byte-count is set equal to the number of
bytes the string occupies. Then the list of forms specified by
body is executed. Finally, the memory allocated for the foreign
string and pointer is de-allocated.

The external-format argument is used to specify the encoding
of the foreign string. It defaults to a format appropriate for C
string of type char*. For Unicode encoded strings, specify
:unicode. If you want to pass a string to the Win32 API,
known as STR in the Win32 API terminology, specify *multi-
byte-code-page-ef*, which is a variable holding the exter-
nal format corresponding to the current Windows multi-byte
code page. To change the default, call set-locale or set-
locale-encodings.

The null-terminated-p keyword specifies whether the foreign
string is terminated with a null character. It defaults to t. If
the string terminates in a null character, it is included in the
element-count.

If allow-null is non-nil, then if string is nil a null pointer is
passed.

Example See “Passing a string to a Windows function” on page 27 and
“Modifying a string in a C function” on page 29 for examples
of the use of with-foreign-string.

See also convert-to-foreign-string

set-locale

set-locale-encodings

with-dynamic-foreign-objects
 153

5 Function and Macro Reference

154
with-integer-bytes Macro

Summary Converts a Lisp integer to foreign bytes while executing a
body of code.

Signature with-integer-bytes (pointer length) integer &body body => last

Arguments pointer A variable to be bound to the foreign
pointer.

length A variable to be bound to the length in
bytes.

integer An integer.

body Forms to be executed.

Values last The value of the last form in body.

Description The macro with-integer-bytes evaluates the forms in body
with pointer bound to a dynamic foreign object containing the
bytes of integer and length bound to the number of bytes in
that object. The layout of the bytes is unspecified, but the
bytes and the length are sufficient to reconstruct integer by
calling make-integer-from-bytes.

See also convert-integer-to-dynamic-foreign-object

make-integer-from-bytes

6

6 Type Reference
:boolean FLI type descriptor

Summary Converts between a Lisp boolean value and a C representa-
tion of a boolean value.

Syntax :boolean &optional encapsulates

Arguments encapsulates An integral type.

Description The FLI :boolean type converts between a Lisp boolean
value and a C representation of a boolean value. The encapsu-
lates option is used to specify the size of the value from which
the boolean value is obtained. For example, if a byte is used
in C to represent a boolean, the size to map across for the FLI
will be one byte, but if an int is used, then the size will be
four bytes.

A value of 0 in C represents a nil boolean value in Lisp, and
a non-zero value in C represents a t boolean value in Lisp.

Example In the following three examples, the size of a :boolean, a
(:boolean :int) and a (:boolean :byte) are returned.
155

6 Type Reference

156
(fli:size-of :boolean)

(fli:size-of '(:boolean :int))

(fli:size-of '(:boolean :byte))

See also size-of

:byte FLI type descriptor

Summary Converts between a Lisp integer with a C signed char.

Syntax :byte

Arguments None.

Description The FLI :byte type converts between a Lisp integer type and
a C signed char type.

See also :char

:short

:c-array FLI type descriptor

Summary Converts between a FLI array and a C array type.

Syntax :c-array type &rest dimensions

Arguments type The type of the elements of the array.

dimensions A sequence of the dimensions of the new
array.

Description The FLI :c-array type converts between FLI arrays and the
C array type. In C, pointers are used to access the elements of
an array. The implementation of the :c-array type takes this
into account, by automatically dereferencing any pointers

returned when accessing an array using foreign-aref,
unlike :foreign-array.

When using the :c-array type in the specification of an
argument to define-foreign-function, a pointer to the
array is passed to the foreign function, as specified by the C
language. You are allowed to call the foreign function with a
FLI pointer pointing to an object of type type instead of a FLI
array.

Note that :c-array uses the C convention that the first index
value of an array is 0.

Example The following code defines a 3 by 3 array of integers.

(setq array1 (fli:allocate-foreign-object
 :type '(:c-array :int 3 3)))

The next example defines an array of arrays of bytes.

(setq array2 (fli:allocate-foreign-object
 :type '(:c-array (:c-array :byte 3) 2)))

See foreign-aref and foreign-array-pointer for more
examples on the use of arrays.

See also foreign-aref

:foreign-array

foreign-array-pointer

:char FLI type descriptor

Summary Converts between a Lisp character type and a C char type.

Syntax :char

Arguments None.

Description The FLI :char type converts between a Lisp character and a
C char type.
 157

6 Type Reference

158
Notes If you want an integer on the Lisp side, rather than a charac-
ter, then you should use (:signed :char) or (:unsigned
:char).

See also :byte

:signed

:unsigned

:const FLI type descriptor

Summary Corresponds to the C const type.

Syntax :const &optional type

Arguments type The type of the constant. The default is :int.

Description The FLI :const type corresponds to the C const type quali-
fier. The behavior of a :const is exactly the same as the
behavior of its type, and it is only included to ease the read-
ability of FLI code and for naming conventions.

Example In the following example a constant is allocated and set equal
to 3.141.

(setq pi1 (fli:allocate-foreign-object
 :type '(:const :float)))

(setf (fli:dereference pi1) 3.141))

See also :volatile

:double FLI type descriptor

Summary Converts a Lisp double float to a C double.

Syntax :double

Arguments None.

Description The FLI :double type converts between a Lisp double float
and the C double type.

Compatibility
Note

In LispWorks 4.4 and previous on Windows and Linux plat-
forms, all Lisp floats are doubles. In LispWorks 6.0, there are
three disjoint Lisp float types, on all platforms.

See also :float

:ef-mb-string FLI type descriptor

Summary Converts between a Lisp string and a C multi-byte string .

Syntax :ef-mb-string &key limit external-format null-terminated-p

Arguments limit The maximum number of bytes of the C
multi-byte string.

external-format An external format specification.

null-terminated-p
A boolean controlling the null termination
byte.

Description The FLI :ef-mb-string type converts between a Lisp string
and a C multi-byte string. The C string may have a maximum
length of limit bytes. The limit can be omitted in cases where a
new foreign string is being allocated.

The external-format is used to specify the encoding of the for-
eign string. It defaults to an encoding appropriate for C string
of type char*. If you want to pass a string to the Windows
API, known as STR in the Windows API terminology, specify
win32:*multibyte-code-page-ef*, which is a variable hold-
ing the external format corresponding to the current Win-
 159

6 Type Reference

160
dows multi-byte code page. To change the default, call set-
locale or set-locale-encodings.

If null-terminated-p is non-nil, a NULL byte is added to the
end of the string.

Notes If you want to pass a string argument by reference but also
allow conversion from Lisp nil to a null pointer, specify the
:reference type :allow-null argument, for example:

(:reference-pass :ef-mb-string :allow-null t)

See also :ef-wc-string

:reference

set-locale

set-locale-encodings

:ef-wc-string FLI type descriptor

Summary Converts between a Lisp string and a C wide-character
string.

Syntax :ef-wc-string &key limit external-format null-terminated-p

Arguments limit The maximum number of characters of the C
wide-character string.

external-format An external format specification.

null-terminated-p
A boolean controlling the null termination
byte.

Description The FLI :ef-wc-string type converts between a Lisp string
and a C wide-character string. The C string may have a maxi-
mum length of limit characters. The limit can be omitted in
cases where a new foreign string is being allocated.

The external-format is used to specify the encoding of the for-
eign string. It defaults to an encoding appropriate for C string
of type wchar_t*. For Unicode encoded strings, specify :uni-
code. If you want to pass a string to the Windows API,
known as WSTR in the Windows API terminology, also specify
:unicode. To change the default, call set-locale or set-
locale-encodings.

If null-terminated-p is non-nil, a NULL word is added to the
end of the string.

See also :ef-mb-string

set-locale

set-locale-encodings

:enum FLI type descriptor

Summary Converts between a Lisp symbol and a C enum.

Syntax :enum &rest enum-constants

enum-constants ::= {symbol | (symbol value)}*

Arguments enum-constants A sequence of one or more symbols naming
the elements of the enumeration.

symbol A symbol naming an element of the enumer-
ation.

value An integer specifying the value of symbol.

Description The FLI :enum type converts between a Lisp symbol and the
C enum type. Each entry in the enum-constants can either con-
sist of a symbol, in which case the first entry has a value 0, or
of a list of a symbol and its corresponding integer value.

Example See define-c-enum, page 64, for an example using the :enum
type.
 161

6 Type Reference

162
See also define-c-enum

:enumeration FLI type descriptor

Summary A synonym for :enum

Syntax :enumeration &rest enum-constants

Description The FLI :enumeration type is the same as the FLI :enum type.

See also :enum

:fixnum FLI type descriptor

Summary Converts between a Lisp fixnum and a 32 bit raw integer.

Syntax :fixnum

Arguments None.

Description The FLI :fixnum type converts between a Lisp fixnum and a
32 bit integer in C.

:float FLI type descriptor

Summary Converts a Lisp single float to a C float.

Syntax :float

Arguments None.

Description The FLI :float type converts between a Lisp single float and
the C float type.

Compatibility
note

In LispWorks 4.4 and previous on Windows and Linux plat-
forms, all Lisp floats are doubles. In LispWorks 6.0, there are
three disjoint Lisp float types, on all platforms.

See also :double

:foreign-array FLI type descriptor

Summary Converts between a FLI array and a foreign array type.

Syntax :foreign-array type dimensions

Arguments type The type of the elements of the array.

dimensions A list containing the dimensions of the array.

Description The FLI :foreign-array converts between FLI arrays and
the foreign array type. It creates an array with the dimensions
specified in dimensions, of elements of the type specified by
type.

Example The following code defines a 3 by 4 foreign array with ele-
ments of type :byte.

(setq farray (fli:allocate-foreign-object
 :type '(:foreign-array :byte (3 4)))

See also :c-array

foreign-aref

foreign-array-pointer

:function FLI type descriptor

Summary Converts between Lisp and the C function type.
 163

6 Type Reference

164
Syntax :function &optional args-spec return-spec &key calling-
convention

Arguments args-spec A list of function argument types.

return-spec A list of function return types.

calling-convention

One of :stdcall or :cdecl.

Description The FLI :function type allows for conversion from the C
function type. It is typically used in conjunction with the
:pointer type to reference an existing foreign function.

The default value of calling-convention is as described for
define-foreign-function.

Example The following code lines present a definition of a pointer to a
function type, and a corresponding C definition of the type.
The function type is defined for a function which takes as its
arguments an integer and a pointer to a void, and returns an
integer value.

(:pointer (:function (:int (:pointer :void)) :int))

int (*)(int, void *)

See also :pointer

:int FLI type descriptor

Summary Converts between a Lisp integer and a C int type.

Syntax :int

Arguments None.

Description The :int type converts between an Lisp integer and a C int
type. It is equivalent to the :signed and (:signed :int)
types.

See also :signed

:int8
:int16
:int32
:int64
:intmax
:intptr FLI type descriptors

Summary The signed sized integer types.

Description FLI types are defined for integers of particular sizes. These
are equivalent to the types defined by ISO C99. For example,
Lisp :int8 is ISO C99 int8_t.

The types have these meanings:

:int8 8-bit signed integer

:int16 16-bit signed integer

:int32 32-bit signed integer

:int64 64-bit signed integer

:intmax The largest type of signed integer available

:intptr A signed integer the same size as a pointer

See also :uint8
 165

6 Type Reference

166
:lisp-array FLI type descriptor

Summary A foreign type which passes the address of a Lisp array direct
to C.

Syntax :lisp-array &optional type

Arguments type A list. The default is nil.

Description :lisp-array is a foreign type which accepts a Lisp array and
passes a pointer to the first element of that array. The Lisp
array may be non-simple.

It is vital that the garbage collector does not move the Lisp
array, hence :lisp-array checks that the array is statically
allocated.

Note also that the Lisp garbage collector does not know
about the array in the C code. Therefore, if the C function
retains a pointer to the array, then you must ensure the Lisp
object is not collected, for example by retaining a pointer to it
in Lisp.

The argument type, if non-nil, is a list (element-type &rest
dimensions) and is used to check the element type and dimen-
sions of the Lisp array passed.

Example This C function fills an array of doubles from an array of sin-
gle floats.

Windows version:

__declspec(dllexport) void __cdecl ProcessFloats(int
count, float * fvec, double * dvec)
{
 for(--count ; count >= 0 ; count--) {
 dvec[count] = fvec[count] * fvec[count];
 }
}

Linux/Unix/Macintosh version:

void ProcessFloats(int count, float * fvec, double *
dvec)
{
 for(--count ; count >= 0 ; count--) {
 dvec[count] = fvec[count] * fvec[count];
 }
}

The following Lisp code demonstrates the use of
:lisp-array in a call to ProcessFloats:

(fli:define-foreign-function (process-floats
 "ProcessFloats")
 ((count :int)
 (fvec :lisp-array)
 (dvec :lisp-array)))

(defun test-process-floats (length)
 (let ((f-vector
 (make-array length
 :element-type 'single-float
 :initial-contents
 (loop for x below
 length
 collect
 (coerce x 'single-float))
 :allocation :static))
 (d-vector
 (make-array length
 :element-type 'double-float
 :initial-element 0.0D0
 :allocation :static)))
 (process-floats length f-vector d-vector)
 (dotimes (x length)
 (format t "f-vector[~D] = ~A; d-vector[~D] = ~A~%"
 x (aref f-vector x)
 x (aref d-vector x)))))

Now

(test-process-floats 3)

prints

single-array[0] = 0.0; double-array[0] = 0.0
single-array[1] = 1.0; double-array[1] = 1.0
single-array[2] = 2.0; double-array[2] = 4.0
 167

6 Type Reference

168
See also :lisp-simple-1d-array

with-dynamic-lisp-array-pointer

:lisp-double-float FLI type descriptor

Summary A synonym for :double.

Syntax :lisp-double-float

Description The FLI :lisp-double-float type is the same as the FLI
:double type.

See also :double

:lisp-float FLI type descriptor

Summary Converts between any Lisp float and the C double type or the
C float type.

Syntax :lisp-float &optional float-type

float-type ::= :single | :double

Arguments float-type Determines the C type to convert to. The
default is :single.

Description The FLI :lisp-float type converts between any Lisp float
and either the C float or the C double type. The default is to
convert to the C float type, but by specifying :double for
float-type, conversion occurs between any Lisp float and the C
double type.

See also :double

:float

:lisp-simple-1d-array FLI type descriptor

Summary A foreign type which passes the address of a Lisp simple
vector direct to C.

Syntax :lisp-simple-1d-array &optional type

Arguments type A list. The default is nil.

Description :lisp-simple-1d-array is a foreign type which accepts a
Lisp simple vector and passes a pointer to the first element of
that vector.

The Lisp vector must be simple. That is, it does not have a fill
pointer, is not adjustable, and it is not a displaced array.

The Lisp vector as subject to the same memory management
restrictions as the array passed with :lisp-array. It must be
statically allocated, and may need to be retained explicitly in
Lisp.

The argument type, if non-nil, is a list (element-type &rest
dimensions) and is used to check the element type and
dimensions of the Lisp array passed.

See also :lisp-array

with-dynamic-lisp-array-pointer

:lisp-single-float FLI type descriptor

Summary A synonym for :float.

Syntax :lisp-single-float

Description The FLI :lisp-single-float type is the same as the FLI
:float type.

See also :float
 169

6 Type Reference

170
:long FLI type descriptor

Summary Converts between a Lisp integer and a C long.

Syntax :long &optional integer-type

integer-type ::= :int | :double | :long

Arguments integer-type One of :int, :double, or :long.

Description The FLI :long type converts between the Lisp integer type
and the C long type. See Table 6.1 for comparisons between
Lisp and C long types.

See also :int

:long-long

:short

:long-long FLI type descriptor

Summary Converts between a Lisp integer and a signed C long long.

Syntax :long-long

Arguments None.

Description The FLI :long-long type converts between the Lisp integer
type and the C long long type.

Table 6.1 A comparison between Lisp and C
long types

Lisp type FLI type C type
integer :long long

integer :long :int long

integer :long :double long double

integer :long :long

:long-long

long long

Notes This is supported only on platforms where the C long long
type is the same size as the C long type.

See also :long

:one-of FLI type descriptor

Summary Converts between Lisp and C types of the same underlying
type.

Syntax :one-of &rest types

Arguments types A list of types sharing the same underlying
type.

Description The FLI :one-of type is used to allocate an object which can
be one of a number of types. The types must have the same
underlying structure, which means they must have the same
size and must be referenced in the same manner. The FLI
:one-of type is useful when a foreign function returns a
value whose underlying type is known, but whose exact type
is not.

Example In the following example, a :one-of type is allocated.

(setq thing (fli:allocate-foreign-object
 :type '(:one-of :ptr :int :unsigned)))

If thing is set to be 100 using dereference, it is taken to be an
object of type :int, as this is the first element in the sequence
of types defined by :one-of which matches the type of the
number 100.

(setf (fli:dereference thing) 100)

However, if thing is now dereferenced, it is returned as a
pointer to the address 100 (Or hex address 64), as there is no
 171

6 Type Reference

172
method for determining the type of thing, and therefore the
first element in the list of :one-of is used.

(fli:dereference thing)

See also :union

:pointer FLI type descriptor

Summary Defines a C-style FLI pointer to an object of a specified type.

Syntax :pointer type

Arguments type The type of FLI object pointed to by the
pointer.

Description The FLI :pointer type is part of the FLI implementation of
pointers. It defines a C-style pointer to an object of type. Pass-
ing nil instead of a pointer is treated the same as passing a
null pointer (that is, a pointer to address 0)

For more details on pointers, including examples on pointer
coercion, dereferencing, making, and copying see Chapter 3,
“FLI Pointers”.

See also copy-pointer

dereference

make-pointer

null-pointer

:ptr FLI type descriptor

Summary A synonym for :pointer.

Syntax :ptr type

Description The FLI :ptr type is the same as the FLI :pointer type.

See also :pointer

:ptrdiff-t FLI type descriptor

Summary Converts between a Lisp integer and an ISO C ptrdiff_t.

Syntax :ptrdiff-t

Arguments None.

Description The FLI :ptrdiff-t type converts between a Lisp integer
and an ISO C ptrdiff_t type, which is an signed integer repre-
senting the difference in bytes between two pointers.

:reference FLI type descriptor

Summary Passes a foreign object of a specified type by reference, and
automatically dereferences the object.

Syntax :reference type &key allow-null lisp-to-foreign-p foreign-to-lisp-p

Arguments type The type of the object to pass by reference.

allow-null If non-nil, if the input argument is nil a null
pointer is passed instead of a reference to an
object containing nil.

lisp-to-foreign-p If non-nil, allow conversion from Lisp to the
foreign language. The default value is t.

foreign-to-lisp-p If non-nil, allow conversion from the foreign
language to Lisp. The default value is t
 173

6 Type Reference

174
Description The FLI :reference type is essentially the same as a
:pointer type, except that :reference is automatically
dereferenced when it is processed.

The :reference type is useful as a foreign function argu-
ment. When a function is called with an argument of the type
(:reference type), an object of type is dynamically allocated
across the scope of the foreign function, and is automatically
de-allocated once the foreign function terminates. The value
of the argument is not copied into the temporary instance of
the object if lisp-to-foreign-p is nil, and similarly, the return
value is not copied back into a Lisp object if foreign-to-lisp-p is
nil.

Notes If the argument is of an aggregate type and foreign-to-lisp-p is
true, then a malloc'd copy is made which you should later
free explicitly. It is usually better to use:pointer, make the
temporary foreign object using with-dynamic-foreign-
objects and then copy whatever slots you need into a nor-
mal Lisp object on return.

Example In the following example an :int is allocated, and a pointer
to the integer is bound to the Lisp variable number. Then a
pointer to number, called point1, is defined. The pointer
point1 is set to point to number, itself a pointer, but to an
:int.

(setq number (fli:allocate-foreign-object :type :int))

(setf (fli:dereference number) 42)

(setq point1 (fli:allocate-foreign-object
 :type '(:pointer :int)))

(setf (fli:dereference point1) number)

If point1 is dereferenced, it returns a pointer to an :int. To
get at the value stored in the integer, we need to dereference
twice:

(fli:dereference (fli:dereference point1))

However, if we dereference point1 as a :reference, we only
have to dereference it once to get the value:

(fli:dereference point1 :type '(:reference :int))

See also :reference-pass

:reference-return

:reference-pass FLI type descriptor

Summary Passes an object from Lisp to the foreign language by refer-
ence.

Syntax :reference-pass type &key allow-null

Arguments type The type of the object to pass by reference.

allow-null If non-nil, if the input argument is nil a null
pointer is passed instead of a reference to an
object containing nil.

Description The FLI type :reference-pass is equivalent to:

(:reference :lisp-to-foreign-p t
 :foreign-to-lisp-p nil)

 See :reference for the details.

See also :reference

:reference-return

:reference-return FLI type descriptor

Summary Passes an object from the foreign language to Lisp by refer-
ence.

Syntax :reference-return type &key allow-null
 175

6 Type Reference

176
Arguments type The type of the object to return by reference.

allow-null If non-nil, if the input argument is nil a null
pointer is passed instead of a reference to an
object containing nil.

Description The FLI type :reference-return is equivalent to:

(:reference :lisp-to-foreign-p nil
 :foreign-to-lisp-p t)

See :reference for the details.

See also :reference

:reference-pass

:short FLI type descriptor

Summary Converts between a Lisp fixnum type and a C short type.

Syntax :short &optional integer-type

interger-type ::= :int

Arguments integer-type If specified, must be :int, which associates a
Lisp fixnum with a C int.

Description The FLI :short type associates a Lisp fixnum with a C short.

The FLI types :short, (:short :int), (:signed :short),
and (:signed :short :int) are equivalent.

See also :int

:signed

:signed FLI type descriptor

Summary Converts between a Lisp integer and a foreign signed integer.

Syntax :signed &optional integer-type

integer-type ::= :byte | :char | :short | :int |
 :long | :long :int | :short :int

Arguments integer-type The type of the signed integer.

Description The :signed type converts between a Lisp integer and a for-
eign signed integer. The optional integer-type argument speci-
fies other kinds of signed integer types. See Table 6.2 for a
comparison between Lisp and C signed types.

See also cast-integer

:unsigned

:size-t FLI type descriptor

Summary Converts between a Lisp integer and an ISO C size_t.

Syntax :size-t

Arguments None.

Table 6.2 A comparison of Lisp and C signed types

Lisp type FLI type C type
integer :signed signed int

fixnum :signed :byte signed char

fixnum :signed :char signed char

fixnum :signed :short signed short

integer :signed :int signed int

integer :signed :long signed long

fixnum :signed :short

:int

signed short

integer :signed :long :int signed long
 177

6 Type Reference

178
Description The FLI :size-t type converts between a Lisp integer and an
ISO C size_t type, which is an unsigned integer representing
the size of an object in bytes.

See also :ssize-t

:ssize-t FLI type descriptor

Summary Converts between a Lisp integer and the platform-specific
ssize_t type.

Syntax :ssize-t

Arguments None.

Description The FLI :ssize-t type converts between a Lisp integer and a
platform-specific ssize_t type, which is a signed integer
representing the size of an object in bytes.

See also :size-t

:struct FLI type descriptor

Summary Converts between a FLI structure and a C struct.

Syntax :struct &rest slots

slots ::= {symbol | (symbol slot-type)}*

slot-type ::= type | (:bit-field integer-type size)

Arguments slots A sequence of one or more slots making up
the structure.

symbol A symbol naming the slot.

type The slot type. If no type is given it defaults
to an :int.

integer-type An integer type. Only :int, (:unsigned
:int) and (:signed :int) are guaranteed
to work on all platforms.

size An integer specifying a number of bits for
the field.

Description The FLI :struct type is an aggregate type, and converts
between a FLI structure and a C struct type. The FLI struc-
ture consists of a collection of one or more slots. Each slot has
a name and a type. A structure can also contain bit fields,
which are integers with a specified number of bits.

The foreign-slot-names, foreign-slot-type, and for-
eign-slot-value functions can be used to access and change
the slots of the structure. The convenience FLI function
define-c-struct is provided to simplify the definition of
structures.

Example In the following example a structure for passing coordinates
to Windows functions is defined.

(fli:define-c-struct tagPOINT (x :long) (y :long))

An instance of the structure is allocated and bound to the
Lisp variable place.

(setq place
 (fli:allocate-foreign-object :type 'tagPOINT))

Finally, the x slot of place is set to be 4 using fli:foreign-
slot-value.

(seft (fli:foreign-slot-value place 'x) 4)

See also define-c-struct

foreign-slot-names

foreign-slot-offset

foreign-slot-pointer
 179

6 Type Reference

180
foreign-slot-type

foreign-slot-value

:time-t FLI type descriptor

Summary Converts between a Lisp integer and the platform-specific
time_t type.

Syntax :time-t

Arguments None.

Description The FLI :time-t type converts between a Lisp integer and an
ISO C time_t type, which is an integer type used for storing
system time values.

:uint8
:uint16
:uint32
:uint64
:uintmax
:uintptr FLI type descriptors

Summary The unsigned sized integer types.

Description FLI types are defined for integers of particular sizes. These
are equivalent to the types defined by ISO C99. For example,
Lisp :uint8 is ISO C99 uint8_t.

The types have these meanings:

:uint8 8-bit unsigned integer

:uint16 16-bit unsigned integer

:uint32 32-bit unsigned integer

:uint64 64-bit unsigned integer

:uintmax The largest type of unsigned integer avail-
able

:uintptr An unsigned integer the same size as a
pointer

See also :int8

:union FLI type descriptor

Summary Converts between a FLI union and a C union type.

Syntax :union &rest slots

slots ::= {symbol | (symbol type)}*

Arguments slots A sequence of one or more slots making up
the union.

symbol A symbol naming the slot.

type The slot type. If no type is given, it defaults
to an :int.

Description The FLI :union type is an aggregate type, and converts
between a FLI union and a C union type. The FLI union con-
sists of a collection of one or more slots, only one of which
can be active at any one time. The size of the whole union
structure is therefore equal to the size of the largest slot. Each
slot has a name and a type.

The foreign-slot-names, foreign-slot-type, and for-
eign-slot-value functions can be used to access and change
the slots of the union. The convenience FLI function define-
c-union is provided to simplify the definition of unions.

Example In the following example a union type with two slots is
defined.
 181

6 Type Reference

182
(fli:define-c-union my-number
 (small :byte) (large :int))

An instance of the union is allocated and bound to the Lisp
variable length.

(setq length
 (fli:allocate-foreign-object :type 'my-number))

Finally, the small slot of the union is set equal to 24.

(setf (fli:foreign-slot-value length 'small))

See also define-c-union

foreign-slot-names

foreign-slot-offset

foreign-slot-pointer

foreign-slot-type

foreign-slot-value

:unsigned FLI type descriptor

Summary Converts between a Lisp integer and a foreign unsigned inte-
ger.

Syntax :unsigned &optional integer-type

integer-type ::= :byte | :char | :short | :int |
 :long | :long :int | :short :int

Arguments integer-type The type of the unsigned integer.

Description The :unsigned type converts between a Lisp integer and a
foreign unsigned integer. The optional integer-type argument
specifies other kinds of unsigned integer types. See Table 6.3
for a comparison between Lisp and C unsigned types.

Table 6.3 A comparison of Lisp and C unsigned types

Lisp type FLI type C type
integer :unsigned unsigned int

See also cast-integer

:signed

:void FLI type descriptor

Summary Represents the C void type.

Syntax :void

Arguments None.

Description The FLI :void type represents the C void type. It can only be
used in a few limited circumstances, as the:

• result-type of a define-foreign-function, define-for-
eign-funcallable or define-foreign-callable form.
In this case, it means that no values are generated.

• element type of a :pointer type, that is (:pointer
:void). Any FLI pointer can be converted to this type,
for example when used like this as the argument type in
define-foreign-function.

• element type of a FLI pointer when memory is not being
allocated, for example in a call to make-pointer. It is an

fixnum :unsigned :byte unsigned char

fixnum :unsigned :char unsigned char

fixnum :unsigned :short unsigned short

integer :unsigned :int unsigned int

integer :unsigned :long unsigned long

fixnum :unsigned :short

:int

unsigned short

integer :unsigned :long

:int

unsigned long

Table 6.3 A comparison of Lisp and C unsigned types

Lisp type FLI type C type
 183

6 Type Reference

184
error to dereference a FLI pointer with element type
:void (but with-coerced-pointer can be used).

• expansion of a define-c-typedef or define-foreign-
type form. The type defined in this way can only be used
in situations where :void is allowed.

See also :pointer

:volatile FLI type descriptor

Summary Corresponds to the C volatile type.

Syntax :volatile &optional type

Arguments type The type of the volatile. The default is :int.

Description The FLI :volatile type corresponds to the C++ volatile
type. The behavior of a :volatile is exactly the same as the
behavior of its type, and it is only included to ease the read-
ability of FLI code and for naming conventions.

See also :const

:wchar-t FLI type descriptor

Summary Converts between a Lisp character and a C wchar_t.

Syntax :wchar-t

Arguments None.

Description The FLI :wchar-t type converts between a Lisp character
and a C wchar_t type.

:wrapper FLI type descriptor

Summary Allows the specification of automatic conversion functions
between Lisp and an instance of a FLI type.

Syntax :wrapper foreign-type &key lisp-to-foreign foreign-to-lisp

Arguments foreign-type The underlying type to wrap.

lisp-to-foreign Code specifying how to convert between
Lisp and the FLI.

foreign-to-lisp Code specifying how to convert between the
FLI and Lisp.

Description The FLI :wrapper type allows for an extra level of conversion
between Lisp and a foreign language through the FLI. With
the :wrapper type you can specify conversion functions from
and to an instance of another type. Whenever data is passed
to the object, or received from the object it is passed through
the conversion function. See below for an example of a use of
:wrapper to pass values to an :int as strings, and to receive
them back as strings when the pointer to the :int is derefer-
enced.

Example In the following example an :int is allocated with a wrapper
to allow the :int to be accessed as a string.

(setq wrap (fli:allocate-foreign-object
 :type '(:wrapper :int
 :lisp-to-foreign read-from-string
 :foreign-to-lisp prin1-to-string)))

The object pointed to by wrap, although consisting of an
underlying :int, is set with dereference by passing a string,
which is automatically converted using the Lisp function
read-from-string. Similarly, when wrap is dereferenced, the
value stored as an :int is converted using prin1-to-string
to a Lisp string, which is the returned. The following two
commands demonstrate this.
 185

6 Type Reference

186
(setf (fli:dereference wrap) "#x100")

(fli:dereference wrap)

The first command sets the value stored at wrap to be 256 (100
in hex), by passing a string to it. The second command deref-
erences the value at wrap, but returns it as a string. The
pointer wrap can be coerced to return the value as an actual
:int as follows:

(fli:dereference wrap :type :int)

7

7 The Foreign Parser
7.1 Introduction
The Foreign Parser automates the generation of Foreign Language Interface
defining forms, given files containing C declarations.

The result does often need some editing, due to ambiguities in C.

7.1.1 Requirements

The Foreign Parser requires a C preprocessor, so you must have a suitable
preprocessor installed on your machine.

By default LispWorks invokes cl.exe (VC++) on Windows and cc on other
platforms. If you have this installed, then make sure it is on your PATH.

On Windows, if you don't have cl.exe, download the VC++ toolkit from
Microsoft

Preprocessors known to work with LispWorks are:

• Microsoft Visual Studio’s cl.exe.

• cc

• gcc
187

7 The Foreign Parser

188
To use a preprocessor other than the default, set the variable foreign-
parser:*preprocessor*, for example:

(setf foreign-parser:*preprocessor* "gcc")

7.2 Loading the Foreign Parser
The Foreign Parser is in a loadable module foreign-parser.

Load it by:

(require "foreign-parser")

7.3 Using the Foreign Parser
The interface is the function foreign-parser:process-foreign-file.

Suppose we wish to generate the FLI definitions which interface to the C
example from “Modifying a string in a C function” on page 29. The header file
test.h needs to be slightly different depending on the platform.

Windows version:

__declspec(dllexport) void __cdecl modify(char *string)

Linux/Unix/Macintosh version:

void modify(char *string)

1. Load the Foreign Parser:

(require "foreign-parser")

2. Now generate prototype FLI definitions:

7.3 Using the Foreign Parser
(foreign-parser:process-foreign-file
 "test.h"
 :case-sensitive nil)
=>
;;; Output dff file #P"test-dff.lisp"
;;; Parsing source file "test.h"

;;; Process-foreign-file : Preprocessing file

;;; Process-foreign-file : Level 1 parsing

;;; Process-foreign-file : Selecting foreign forms
NIL

3. You should now have a Lisp file test-dff.lisp containing a form like
this:

(fli:define-foreign-function
 (modify "modify" :source)
 ((string (:pointer :char)))
 :result-type
 :void
 :language
 :c
 :calling-convention
 :cdecl)

4. This edited version passes a string using :ef-mb-string:

(fli:define-foreign-function
 (modify "modify" :source)
 ((string (:reference (:ef-mb-string :limit 256))))
 :result-type
 :void
 :language
 :c
 :calling-convention
 :cdecl)
=>
MODIFY

5. Create a DLL containing the C function.

6. Load the foreign code by

(fli:register-module "test.dll")

or
 189

7 The Foreign Parser

190
(fli:register-module "/tmp/test.so")

7. Call the C function from LISP:

(modify "Hello, I am in LISP")
=>
NIL
"'Hello, I am in LISP' modified in a C function"

7.4 Using the LispWorks Editor
The LispWorks Editor’s C Mode offers a convenient alternative to using
foreign-parser:process-foreign-file directly as above. It also allows you to
generate and load a C object file.

To use this, you should be familiar with the LispWorks Editor as described in
the LispWorks IDE User Guide and the LispWorks Editor User Guide.

7.4.1 Processing Foreign Code with the Editor

1. Open the file test.h in the LispWorks Editor. Note that the buffer is in C
Mode, indicated by "(C)" in the mode line.

2. Use the menu command Buffer > Evaluate, or equivalently run
Meta+X Evaluate Buffer.

3. A new buffer named test.h (C->LISP) is created. It contains the
prototype FLI definition forms generated by
foreign-parser:process-foreign-file.

4. You can now edit the Lisp forms if necessary (note that your new buffer
is in Lisp mode) and save them to file. Follow the previous example
from Step 4.

7.4.2 Compiling and Loading Foreign Code with the Editor

1. Open the file test.c in the LispWorks Editor. Note that the buffer is in C
Mode, indicated by "(C)" in the mode line.

2. Use the menu command Buffer > Compile, or equivalently run Meta+X
Compile Buffer.

7.5 Foreign Parser Reference
3. Your C file is compiled with the same options as lw:compile-system
would use, and the object file is loaded. The object file name is printed in
the Output tab. It is written in your temporary directory (usually that
given by the value of the environment variable TEMP) and deleted after
register-module is called on it.

7.5 Foreign Parser Reference

preprocessor Variable

Package foreign-parser

Initial Value "cc" on Unix, Linux and Mac OS X.

"cl" on Windows

Description The variable *preprocessor* provides the default value for
the preprocessor used by process-foreign-file.

See also *preprocessor-options*

process-foreign-file

preprocessor-format-string Variable

Package foreign-parser

Initial Value On Windows:

""~A" /nologo /E ~A ~{/D~A ~}~{/I"~A" ~}/Tc "~A""

On Unix, Linux and and Mac OS X:

"~A -E ~A ~{-D~A~ ~}~{-I~A ~}~A"

Description The variable *preprocessor-format-string* provides the
default value for the preprocessor-format-string used by pro-
cess-foreign-file.
 191

7 The Foreign Parser

192
See also process-foreign-file

preprocessor-include-path Variable

Package foreign-parser

Initial Value nil

Description The variable *preprocessor-include-path* provides the
default value for the preprocessor-include-path used by pro-
cess-foreign-file.

See also process-foreign-file

preprocessor-options Variable

Package foreign-parser

Initial Value nil

Description The variable *preprocessor-options* provides the default
preprocessor-options passed to the preprocessor used by
process-foreign-file.

See also *preprocessor*

process-foreign-file

process-foreign-code Macro

Summary Compiles and loads C code, or allows it to be included in a
Lisp fasl file, in 32-bit LispWorks on Solaris and HP-UX.

Package foreign-parser

7.5 Foreign Parser Reference
Syntax process-foreign-code c-string &key language control =>

Arguments c-string A string.

language One of :c or :ansi-c.

control One of :fasl, :object or :source.

Description c-string is a string containing C source code.

language is :c by default.

If control is :fasl, the C code is compiled at Lisp compile-
file time into a temporary .o file. The resulting object mod-
ule is stored in the fasl file. If the value is :object, the C code
is compiled at compile-file time into a .o file with the same
name as the Lisp source file, and loaded when the fasl file is
loaded. If the value is :source, compilation and loading of
the C code is done when the macro function is evaluated. The
default value of control is :fasl.

Notes 1. process-foreign-code is implemented only in 32-bit
LispWorks on Solaris and HP-UX.

2. The Foreign Parser is loaded by:
(require "foreign-parser")

Example When this statement is evaluated the C code is compiled and
also loaded into the image:

(foreign-parser:process-foreign-code
 "int sum (int a, int b)
 { return a+b; } "
 :control :source)

The C function can be called from Lisp in the usual way:

(fli:define-foreign-function sum
 ((a :int)
 (b :int))
 :result-type :int)

(sum 2 3) => 5
 193

7 The Foreign Parser

194
See also define-foreign-function

link-load:read-foreign-modules in the LispWorks User
Guide and Reference Manual.

process-foreign-file Function

Package foreign-parser

Syntax process-foreign-file source &key dff language preprocess
preprocessor preprocessor-format-string preprocessor-options
preprocessor-include-path case-sensitive package =>

Arguments source One or more filenames.

dff A filename.

language A keyword.

preprocess A boolean.

preprocessor-format-string

A string.

preprocessor A string.

preprocessor-options

A string.

include-path A list.

case-sensitive See description.

package A package designator or nil.

Description The process-foreign-file function takes a file or files of
foreign declarations — usually header files — and parses
them, producing ‘dff’ files of Lisp definitions using define-
foreign-function, define-foreign-variable, define-for-
eign-type, and so on, providing a Lisp interface to the for-
eign code.

7.5 Foreign Parser Reference
source gives the name of the header files or file to be pro-
cessed. The name of a file consists of source-file-name and
source-file-type (typically .h).

dff is an output file which will contain the Lisp foreign func-
tion definitions. The default value is nil, in which case the
dff file will be source-file-name-dff.lisp. (See source, above.)

language specifies the language the header files are written in.
Currently the supported languages are :c (standard K&R C
header files) and :ansi-c. The default value is :ansi-c.

preprocess, when non-nil, runs the preprocessor on the input
files. The default value is t.

preprocessor-format-string should be a format string which is
used to make a preprocessor command line. The format
arguments are a pathname or string giving the preprocessor
executable, a list of strings giving the preprocessor options, a
list of strings giving macro names to define, a list of
pathnames or strings contain the include path, and a source
pathname. On Windows, the default contains options
needed for VC++. The default is the value of *preproces-
sor-format-string*.

preprocessor is a string containing the pathname of the prepro-
cessor program. By default this is the value of
preprocessor.

preprocessor-options is a string containing command line
options to be passed to the preprocessor if it is called. By
default this is the value of *preprocessor-options*.

include-path should be a list of pathnames or strings that will
be added as the include path for the preprocessor. The
default is the value of *preprocessor-include-path*.

case-sensitive specifies whether to maintain case sensitivity in
symbol names as in the source files. Values can be:

• t — the names of all Lisp functions and classes created
are of the form |name|. This is the default value.
 195

7 The Foreign Parser

196
• nil — all foreign names are converted to uppercase and
an error is signalled if any name clashes occur as a result
of this conversion. For example, OneTwoTHREE becomes
ONETWOTHREE.

• :split-name — attempts to split the name up into some-
thing sensible. For example, OneTwoTHREE becomes ONE-
TWO-THREE.

• :prefix — changes lowercase to uppercase and concate-
nates the string with the string held in sys:*prefix-
name-string*. For example, OneTwoTHREE becomes FOR-
EIGN-ONETWOTHREE.

• (list :user-routine function-name) — enables you to
pass your own function for name formatting. Your func-
tion must take a string argument and return a string
result. It is not advised to use destructive functions (for
example, nreverse) as this may cause unusual side
effects.

If case-sensitive takes any other value, names are not changed.

package is used to generate an in-package form at the start of
the output (dff) file. The name of the package designated by
package is used in this form. The default value of package is the
value of *package*.

Note that in some cases the derived Lisp FLI definitions will
not be quite correct, due to an ambiguity in C. char* can
mean a pointer to a character, or a string, and in many cases
you will want to pass a string. Therefore,
process-foreign-file is useful for generating prototype
FLI definitions, especially when there are many, but you do
need to check the results when char* is used.

See also process-foreign-code

register-module

preprocessor

preprocessor-options

Glossary
aggregate type

Any FLI type which is made up of other FLI types. This can be either an
array of instances of a given FLI type, or a structured object.

Arrays, string, structure, and unions are all aggregate types. Pointers are
not aggregates.

callable function

A Lisp function, defined with the FLI macro define-foreign-callable,
which can be called from a foreign language.

coerced pointer

A coerced pointer is a pointer that is dereferenced with the :type key in
order to return the value pointed to as a different type than specified by
the pointer type. For example, a pointer to a byte can be coerced to
return a boolean on dereferencing.

FLI

The Foreign Language Interface, which consists of the macros, functions,
types and variables defined in the fli package.

FLI code

Code written in Lisp using the functions, macros and types in the fli
package.
197

198
FLI function

A function in the fli package used to interface Lisp with a foreign lan-
guage.

FLI type

A data type specifier in the fli package used to define data objects that
interface between Lisp and the foreign language. For example, a C long
might be passed to LispWorks through an instance of the FLI type :long,
from which it is transferred to a Lisp integer.

foreign callable function

See callable function.

foreign function

A Lisp function, defined using the FLI macro define-foreign-
function, which calls a function written in a foreign language. A foreign
function contains no body, consisting only of a name and a list of argu-
ments. The function in the foreign language provides the body of the for-
eign function.

foreign language

A language to which Lisp can be interfaced using the FLI. Currently the
FLI interfaces to C, and therefore also the Win32 API functions.

immediate type

See scalar type.

pointer

A FLI type consisting of an address and a type specification. A pointer
normally points to the memory location of an instance of the type speci-
fied, although there might not actually be an allocated instance of the
type at the pointer location.

A pointer is a boxed foreign object because it contains type information
about the type it is pointing to (so that we can dereference it). In 'C' a
pointer can be represented by a single register.

scalar type

A FLI type that is not an aggregate type. The FLI type maps directly to a
single foreign type such as integer, floating point, enumeration and
pointer.

wrapper

A description of the :wrapper FLI type which "wraps" around an object,
allowing data to be passed to or obtained from the object as though it
was of a different type. A wrapper can be viewed as a set of conversion
functions defined on the object which are automatically invoked when
the wrapped object is accessed.
 199

200

Index
A
align-of function 51
alloca function 52
allocate-dynamic-foreign-object

function 52
allocate-foreign-object function 54
allocating memory dynamically 7

B
:boolean type 155
:byte type 156

C
C

calling from Lisp 2, 81
calling into Lisp 45, 71

C code
declarations 187

C++
calling from Lisp 2, 81
calling into Lisp 45, 71

:c-array type 156
cast-integer function 56
:char type 157
conditions
foreign-type-error 113

connected-module-pathname function 56
:const type 158
convert-from-foreign-string

function 57

convert-integer-to-dynamic-foreign-
object function 58

convert-to-dynamic-foreign-string
function 61

convert-to-foreign-string function 59
copy-pointer function 62

D
decf-pointer function 63
define-c-enum macro 64
define-c-struct macro 66
define-c-typedef macro 69
define-c-union macro 70
define-foreign-callable macro 44, 47,

71
define-foreign-converter macro 76
define-foreign-forward-reference-

type macro 79
define-foreign-funcallable macro 80
define-foreign-function macro 44, 81
define-foreign-pointer macro 20, 87
define-foreign-type macro 9, 88
define-foreign-variable macro 89
define-opaque-pointer macro 93
defining FLI functions 5
defining FLI types 4
defining forms

ambiguity 196
automated generation 187

dereference function 94
disconnect-module function 97
DLLs

exporting functions from 48–50
documentation strings 10
:double type 158

201

202
dynamic memory allocation 7

E
:ef-mb-string type 159
:ef-wc-string type 160
:enum type 161
:enumeration type 162
enum-symbols function 98
enum-symbol-value function 98
enum-symbol-value-pairs function 98
enum-values function 98
enum-value-symbol function 98

F
fill-foreign-object function 100
:fixnum type 162
FLI functions

defining 5
FLI templates 129, 143
FLI types

defining 4
:float type 162
foreign callable

defining 44
passing and returning strings 46

Foreign Parser 187
foreign-aref function 100
:foreign-array type 163
foreign-array-dimensions

function 102
foreign-array-element-type

function 103
foreign-array-pointer function 104
foreign-parser package symbols
process-foreign-file 194

foreign-slot-names function 105
foreign-slot-offset function 106
foreign-slot-pointer function 107
foreign-slot-type function 108
foreign-slot-value function 110
foreign-typed-aref function 114
foreign-type-equal-p function 112
foreign-type-error condition 113
free function 115
free-foreign-object function 115
:function type 163
functions
align-of 51
alloca 52
allocate-dynamic-foreign-

object 52
allocate-foreign-object 54
cast-integer 56
connected-module-pathname 56
convert-from-foreign-string 57
convert-integer-to-dynamic-for-

eign-object 58
convert-to-dynamic-foreign-

string 61
convert-to-foreign-string 59
copy-pointer 62
decf-pointer 63
dereference 94
disconnect-module 97
enum-symbols 98
enum-symbol-value 98
enum-symbol-value-pairs 98
enum-values 98
enum-value-symbol 98
fill-foreign-object 100
foreign-aref 100
foreign-array-dimensions 102
foreign-array-element-type 103
foreign-array-pointer 104
foreign-slot-names 105
foreign-slot-offset 106
foreign-slot-pointer 107
foreign-slot-type 108
foreign-slot-value 110
foreign-typed-aref 114
foreign-type-equal-p 112
free 115
free-foreign-object 115
incf-pointer 116
make-integer-from-bytes 118
make-pointer 119
malloc 120
module-unresolved-symbols 121
null-pointer-p 122
pointer-address 123
pointer-element-size 124
pointer-element-type 125
pointer-element-type-p 126
pointer-eq 126
pointerp 128
pointer-pointer-type 127
print-collected-template-info 129
print-foreign-modules 130
process-foreign-file 194
register-module 130
replace-foreign-array 136
replace-foreign-object 139
set-locale 140

set-locale-encodings 141
size-of 142
start-collecting-template-info 143

G
gdi+ 50
gdiplus 50
graphics functions 50

I
incf-pointer function 116
:int type 164
:int16 type 165
:int32 type 165
:int64 type 165
:int8 type 165
:intmax type 165
:intptr type 165

L
languages supported 1
Lisp

calling from C 45, 71
calling from C++ 45, 71
calling into C 2, 81
calling into C++ 2, 81

:lisp-array type 166
:lisp-double-float type 168
:lisp-float type 168
:lisp-simple-1d-array type 169
:lisp-single-float type 169
locale-external-formats

variable 117
:long type 170
:long-long type 170
lpctstr type 40
lptstr type 40

M
macros
define-c-enum 64
define-c-struct 66
define-c-typedef 69
define-c-union 70
define-foreign-callable 44, 47, 71
define-foreign-converter 76
define-foreign-forward-reference-

type 79
define-foreign-funcallable 80
define-foreign-function 44, 81
define-foreign-pointer 20, 87

define-foreign-type 9, 88
define-foreign-variable 89
define-opaque-pointer 93
process-foreign-code 192
with-coerced-pointer 143
with-dynamic-foreign-objects 145
with-dynamic-lisp-array-

pointer 148
with-foreign-slots 150
with-foreign-string 152
with-integer-bytes 154

make-integer-from-bytes function 118
make-pointer function 119
malloc 21
malloc function 120
memory allocation 7, 21
module-unresolved-symbols

function 121

N
New in LispWorks 6.0
:ptrdiff-t 173
:size-t 177
:ssize-t 178
:time-t 180
convert-integer-to-dynamic-for-

eign-object 58
enum-symbols 98
enum-symbol-value-pairs 98
enum-values 98
make-integer-from-bytes 118
new-function 154
with-integer-bytes 154

null pointers 21
null-pointer variable 122
null-pointer-p function 122

O
:one-of type 171

P
:pointer type 172
pointer-address function 123
pointer-element-size function 124
pointer-element-type function 125
pointer-element-type-p function 126
pointer-eq function 126
pointerp function 128
pointer-pointer-type function 127
pointers 19–26

coercing 23

 203

204
copying 21
creating 19
dereferencing 22–24
dynamically allocating 25
null pointers 21
test functions for 21–22

preprocessor variable 188, 191
preprocessor-format-string

variable 191
preprocessor-include-path

variable 191, 192
preprocessor-options variable 192
print-collected-template-info

function 129
print-foreign-modules function 130
process-foreign-code macro 192
process-foreign-file function 194
:ptr type 172
:ptrdiff-t type 173

R
:reference type 173
:reference-pass type 175
:reference-return type 175
register-module function 130
replace-foreign-array function 136
replace-foreign-object function 139

S
set-locale function 140
set-locale-encodings function 141
:short type 176
:signed type 176
size-of function 142
:size-t type 177
:ssize-t type 178
start-collecting-template-info

function 143
strings

modifying in C 29
passing to C 27, 31
returning from C 33

:struct type 178

T
templates, FLI 129, 143
:time-t type 180
tstr type 40
type constructors 10
types
:boolean 155
:byte 156
:c-array 156
:char 157
:const 158
:double 158
:ef-mb-string 159
:ef-wc-string 160
:enum 161
:enumeration 162
:fixnum 162
:float 162
:foreign-array 163
:function 163
:int 164
:int16 165
:int32 165
:int64 165
:int8 165
:intmax 165
:intptr 165
:lisp-array 166
:lisp-double-float 168
:lisp-float 168
:lisp-simple-1d-array 169
:lisp-single-float 169
:long 170
:long-long 170
:one-of 171
:pointer 172
:ptr 172
:ptrdiff-t 173
:reference 173
:reference-pass 175
:reference-return 175
:short 176
:signed 176
:size-t 177
:ssize-t 178
:struct 178
:time-t 180
:uint16 180
:uint32 180
:uint64 180
:uint8 180
:uintmax 180
:uintptr 180
:union 181
:unsigned 182
:void 183
:volatile 184
:wchar-t 184
:wrapper 185

aggregate 10, 12–14
defining new types 44
immediate 10–11
lpctstr 40
lptstr 40
tstr 40

U
:uint16 type 180
:uint32 type 180
:uint64 type 180
:uint8 type 180
:uintmax type 180
:uintptr type 180
:union type 181
:unsigned type 182

V
variables
locale-external-formats 117
null-pointer 122
preprocessor 188, 191
preprocessor-format-string 191
preprocessor-include-path 191,

192
preprocessor-options 192

:void type 183
:volatile type 184

W
:wchar-t type 184
with-coerced-pointer macro 143
with-dynamic-foreign-objects

macro 145
with-dynamic-lisp-array-pointer

macro 148
with-foreign-slots macro 150
with-foreign-string macro 152
with-integer-bytes macro 154
:wrapper type 185

 205

206

	Foreign Language Interface User Guide and Reference Manual
	Copyright and Trademarks
	Contents
	Preface
	1 Introduction to the FLI
	1.1 An example of interfacing to a foreign function
	1.1.1 Defining the FLI function
	1.1.2 Loading foreign code
	1.1.3 Calling foreign code

	1.2 Using the FLI to get the cursor position
	1.2.1 Defining FLI types
	1.2.2 Defining a FLI function
	1.2.3 Accessing the results

	1.3 Using the FLI to set the cursor position
	1.4 An example of dynamic memory allocation
	1.5 Summary

	2 FLI Types
	2.1 Immediate types
	2.1.1 Integral types
	2.1.2 Floating point types
	2.1.3 Character types
	2.1.4 Boolean types
	2.1.5 Pointer types

	2.2 Aggregate types
	2.2.1 Arrays
	2.2.2 Strings
	2.2.3 Structures and unions

	2.3 Parameterized types
	2.4 Encapsulated types
	2.4.1 Passing Lisp objects to C
	2.4.2 An example

	2.5 The void type
	2.6 Summary

	3 FLI Pointers
	3.1 Creating and copying pointers
	3.1.1 Creating pointers
	3.1.2 Copying pointers
	3.1.3 Allocation of FLI memory

	3.2 Pointer testing functions
	3.3 Pointer dereferencing and coercing
	3.4 An example of dynamic pointer allocation
	3.5 More examples of allocation and pointer allocation
	3.6 Summary

	4 Advanced Uses of the FLI
	4.1 Passing a string to a Windows function
	4.2 Modifying, passing and returning strings
	4.2.1 Use of Reference Arguments
	4.2.2 Modifying a string in a C function
	4.2.3 Passing a constant string
	4.2.4 Returning a string via a buffer
	4.2.5 Calling a C function that takes an array of strings
	4.2.6 Foreign string encodings
	4.2.7 Foreign string line terminators
	4.2.8 Win32 API functions that handle strings
	4.2.9 Mapping Nil to a Null Pointer

	4.3 Lisp integers
	4.4 Defining new types
	4.5 Foreign callables and foreign functions
	4.5.1 Strings and foreign callables

	4.6 Using DLLs within the LispWorks FLI
	4.6.1 Using C DLLs
	4.6.2 Using C++ DLLs

	4.7 Interfacing to graphics functions
	4.8 Summary

	5 Function and Macro Reference
	align-of
	alloca
	allocate-dynamic-foreign-object
	allocate-foreign-object
	cast-integer
	connected-module-pathname
	convert-from-foreign-string
	convert-integer-to-dynamic-foreign-object
	convert-to-foreign-string
	convert-to-dynamic-foreign-string
	copy-pointer
	decf-pointer
	define-c-enum
	define-c-struct
	define-c-typedef
	define-c-union
	define-foreign-callable
	define-foreign-converter
	define-foreign-forward-reference-type
	define-foreign-funcallable
	define-foreign-function
	define-foreign-pointer
	define-foreign-type
	define-foreign-variable
	define-opaque-pointer
	dereference
	disconnect-module
	enum-symbol-value
	enum-value-symbol
	enum-values
	enum-symbols
	enum-symbol-value-pairs
	fill-foreign-object
	foreign-aref
	foreign-array-dimensions
	foreign-array-element-type
	foreign-array-pointer
	foreign-slot-names
	foreign-slot-offset
	foreign-slot-pointer
	foreign-slot-type
	foreign-slot-value
	foreign-type-equal-p
	foreign-type-error
	foreign-typed-aref
	free
	free-foreign-object
	incf-pointer
	locale-external-formats
	make-integer-from-bytes
	make-pointer
	malloc
	module-unresolved-symbols
	null-pointer
	null-pointer-p
	pointer-address
	pointer-element-size
	pointer-element-type
	pointer-element-type-p
	pointer-eq
	pointer-pointer-type
	pointerp
	print-collected-template-info
	print-foreign-modules
	register-module
	replace-foreign-array
	replace-foreign-object
	set-locale
	set-locale-encodings
	size-of
	start-collecting-template-info
	with-coerced-pointer
	with-dynamic-foreign-objects
	with-dynamic-lisp-array-pointer
	with-foreign-slots
	with-foreign-string
	with-integer-bytes

	6 Type Reference
	:boolean
	:byte
	:c-array
	:char
	:const
	:double
	:ef-mb-string
	:ef-wc-string
	:enum
	:enumeration
	:fixnum
	:float
	:foreign-array
	:function
	:int
	:int8
	:int16
	:int32
	:int64
	:intmax
	:intptr
	:lisp-array
	:lisp-double-float
	:lisp-float
	:lisp-simple-1d-array
	:lisp-single-float
	:long
	:long-long
	:one-of
	:pointer
	:ptr
	:ptrdiff-t
	:reference
	:reference-pass
	:reference-return
	:short
	:signed
	:size-t
	:ssize-t
	:struct
	:time-t
	:uint8
	:uint16
	:uint32
	:uint64
	:uintmax
	:uintptr
	:union
	:unsigned
	:void
	:volatile
	:wchar-t
	:wrapper

	7 The Foreign Parser
	7.1 Introduction
	7.1.1 Requirements

	7.2 Loading the Foreign Parser
	7.3 Using the Foreign Parser
	7.4 Using the LispWorks Editor
	7.4.1 Processing Foreign Code with the Editor
	7.4.2 Compiling and Loading Foreign Code with the Editor

	7.5 Foreign Parser Reference
	preprocessor
	preprocessor-format-string
	preprocessor-include-path
	preprocessor-options
	process-foreign-code
	process-foreign-file

	Glossary
	Index

