
Delivery User Guide
Version 6.0

Copyright and Trademarks
LispWorks Delivery User Guide

Version 6.0

November 2009

Copyright © 2009 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be construed as a
commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or inaccuracies that may appear in this
publication. The software described in this book is furnished under license and may only be used or copied in accordance with the terms of
that license.

LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the registered trade-
marks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986, 1987, 1988 Xerox
Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, pro-
vided that this copyright and permission notice appear in all copies and supporting documentation, and that the name of M.I.T. not be used
in advertising or publicity pertaining to distribution of the software without specific, written prior permission. M.I.T. makes no representa-
tion about the suitability of this software for any purpose. It is provided “as is” without express or implied warranty. M.I.T. disclaims all war-
ranties with regard to this software, including all implied warranties of merchantability and fitness. In no event shall M.I.T. be liable for any
special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of con-
tract, negligence or other tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of ICU software obtained from http://source.icu-project.org and which bears the following copyright and permis-
sion notice:
ICU License - ICU 1.8.1 and later
COPYRIGHT AND PERMISSION NOTICE
Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Soft-
ware"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright
notice(s) and this permission notice appear in all copies of the Software and that both the above copyright notice(s) and this permission
notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIM-
ITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF
THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or
other dealings in this Software without prior written authorization of the copyright holder. All trademarks and registered trademarks men-
tioned herein are the property of their respective owners.

US Government Restricted Rights
The LispWorks Software is a commercial computer software program developed at private expense and is provided with restricted rights.
The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth in the accompanying End User
License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR 12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14
Alt III, as applicable. Rights reserved under the copyright laws of the United States.

Address

LispWorks Ltd
St. John’s Innovation Centre
Cowley Road
Cambridge
CB4 0WS
England

Telephone

From North America: 877 759 8839
(toll-free)

From elsewhere: +44 1223 421860

Fax
From North America: 617 812 8283
From elsewhere: +44 870 2206189

www.lispworks.com

http://www.lispworks.com

Contents
1 Introduction 1

What does Delivery do? 1
What do you get with Delivery? 1
Conventions and terminology used in this manual 2
A breakdown of the delivery process 3
Runtime licensing on UNIX 7

2 A Short Delivery Example 11

Developing the program 11
Delivering the program 12

3 Writing Code Suitable for Delivery 15

Basic considerations when coding for delivery 15
Efficiency considerations when coding for delivery 16

4 Delivering your Application 21

The delivery function: deliver 21
Using the delivery tools effectively 23
Delivering a standalone application executable 24
Delivering a dynamic library 25

iii

iv
How to deliver a smaller and faster application 30
How Delivery makes an image smaller 31

5 Keywords to the Delivery Function 33

Topic-based list of deliver keywords 34
Alphabetical list of deliver keywords 39

6 Delivery on Mac OS X 77

Universal binaries 77
Application bundles 78
Cocoa and GTK images 78
Terminal windows and message logs 78
File associations for a Macintosh application 79
Editor emulation 79
Standard Edit keyboard gestures 80
Quitting a CAPI/Cocoa application 80
Platforms supporting dynamic library delivery 80

7 Delivery on Microsoft Windows 81

Runtime library requirement 81
Application Manifests 82
DOS windows and message logs 83
File associations for a Windows application 83
Editor emulation 83
ActiveX controls 84

8 Delivery on Linux, FreeBSD and Unix 85

GTK+ considerations 85
X11/Motif considerations 86
Logging debugging messages 87
Editor emulation 87
Products supporting dynamic library delivery 88

9 Delivery and Internal Systems 89

Delivery and CLOS 89
Editors for delivered applications 93
Delivery and CAPI 95

Error handling in delivered applications 96
Delivery and the FLI 99
Modules 101
Symbol and package issues during delivery 101
Throwing symbols and packages out of the application 102
Keeping packages and symbols in the application 105
Coping with intern and find-symbol at runtime 106
Symbol-name comparison 107

10 Troubleshooting 109

Debugging errors in the delivery image 109
Problems with undefined functions or variables 110
Failure to find a class 111
REQUIRE was called after delivery time with module ... 111
Failed to reserve... error in compacted image 111
Memory clashes with other software 112
Possible explanations for a frozen image 112
Errors when finalizing classes 113
Warnings about combinations and templates 113
Valid type specifier errors 113
Stack frames with the name NIL in simple backtraces 113
Blank or obscure lines in simple backtraces 114
Nil is not of type hash-table errors 114
FLI template needs to be compiled 114
Failure to lookup X resources 114
Reducing the size of the delivered application 114
Debugging with :no-symbol-function-usage 115
Interrogate-Symbols 115

11 User Actions in Delivery 119

General strategy for reducing the image size 119
User interface to the delivery process 120

12 Delivering CAPI Othello 127

Preparing for delivery 127
Delivering a standalone image 129
Creating a Mac OS X application bundle 129

 v

vi
Command line applications 131
Making a smaller delivered image 132

 Index133

1

1 Introduction
1.1 What does Delivery do?
Delivery allows you to take programs developed in LispWorks, and turn them
into smaller, standalone applications, as executables or dynamic libraries. This
process is called delivery.

The principle behind application delivery is quite simple: an application does
not use everything in the LispWorks development environment when it is
running, so there is no need for those unused parts of LispWorks to be in the
image. Delivery can discard the unnecessary code and create a single execut-
able image file that contains just what is needed to run the application.

Because the delivered application (sometimes called a runtime) is smaller, it
can reduce virtual memory paging and thereby run faster than it did under
LispWorks. Delivery can also actively speed code up by, for example, convert-
ing single-method generic functions into ordinary functions. Packing it all into
a single file means it is simple to start up and can be run without running
LispWorks as well.

1.2 What do you get with Delivery?
Delivery consists of an extended routine that is called once all the code that
your application needs has been loaded in to LispWorks.
1

1 Introduction

2

To deliver your application, you use the Application Builder tool in the Lisp-
Works IDE, or run LispWorks directly with your build file which does all the
necessary preparations (normally just loading patches and the application
code) and then calls the function deliver.

1.2.1 Programming libraries and facility support code

LispWorks also provides sets of programming libraries and code supporting
various other facilities that you may want to use in your application. Some of
these facilities are available in the basic LispWorks image, while others are
provided as modules and need to be loaded explicitly using require.

See the LispWorks User Guide and Reference Manual for further details.

1.2.2 Functionality removed by delivery

The following general Lisp development functionality is forcibly removed by
delivery:

• compile-file

• save-image

• deliver

• The graphical LispWorks IDE

Contact Lisp Sales if you want to build an application which uses these fea-
tures.

1.3 Conventions and terminology used in this manual
This section discusses the conventions and terminology that are used through-
out this manual.

1.3.1 Common Lisp reference text

The Common Lisp reference text for Delivery and LispWorks is the ANSI
Common Lisp standard. A HTML version of this standard is installed with
LispWorks and can be viewed by choosing Help > Manuals from the LispWorks

1.4 A breakdown of the delivery process
podium and selecting “ANSI Common Lisp Standard”. This is referred to as
“the ANSI standard” throughout.

1.3.2 Platform-specific keywords

Some of the delivery parameters do not apply to all platforms. This is indi-
cated where applicable:

Windows means all supported Microsoft Windows operating sys-
tems.

Linux means all supported Linux and FreeBSD operating sys-
tems.

x86/x64 Solaris means all supported Solaris operating systems running
on x86 or x64 hardware. It does not include SPARC
hardware.

UNIX means supported UNIX operating systems including
SPARC Solaris and HP-UX, but not including Linux,
FreeBSD, x86/x64 Solaris or Mac OS X.

DLL means a Microsoft Windows dynamic link library.

Dynamic librarymeans a loadable dynamic shared library on any plat-
form, including Windows DLLs.

1.4 A breakdown of the delivery process
The process of developing and delivering a LispWorks application can typi-
cally be broken down as follows:

1. Develop and fully compile your application.

2. Load the application into the LispWorks image and deliver a standalone
image.

3. If the delivered version of the image is broken, go back to step 2 and
adjust the delivery parameters.

4. If performance problems remain, go back to step 1 and refine your code.
 3

1 Introduction

4

1.4.1 Developing your application

Develop your application using LispWorks. Applications may be developed
in pure Common Lisp, or if you wish to build a graphical user interface (GUI)
into your final application, also using CAPI and Graphics Ports (GP) or CLIM.

Application development is covered in detail in Chapter 3, “Writing Code
Suitable for Delivery”.

Read Chapter 6, “Delivery on Mac OS X”, Chapter 7, “Delivery on Microsoft
Windows” or Chapter 8, “Delivery on Linux, FreeBSD and Unix”, as appro-
priate according to your target platform(s).

If you use CLOS, the FLI or the LispWorks editor in your application, you
should also read Chapter 9, “Delivery and Internal Systems”.

1.4.2 Managing and compiling your application

You can use the defsystem macro to help organize your sources during devel-
opment and use functions such as load-system and compile-system to work
with them as a whole.

1.4.3 Debugging, profiling and tuning facilities

You may discover performance bottlenecks in your application, before or after
delivery. LispWorks provides tools to help eliminate these sorts of problems.
A profiler is available in LispWorks, in order to help you make critical code
more efficient.

You can also tune the behavior of the garbage collector. See the LispWorks User
Guide and Reference Manual for details.

There is a TTY-based debugger available to help debug applications broken by
severe delivery parameters. You can deliver this debugger in the application
so that you can debug it on-line if something goes wrong.

See the LispWorks User Guide and Reference Manual for more information about
these facilities.

1.4 A breakdown of the delivery process
1.4.4 Delivering your compiled application

Once your application is ready, you can deliver it by loading it and then call-
ing deliver. Note that this has to be done in a script, as described in “Deliver-
ing the program” on page 12.

deliver takes many keyword arguments for fine-tuning, but it is intended to
work well with a minimal number of keywords. You should start by deliver-
ing with no more than the following keywords if required: :interface :capi,
or :multiprocessing t. Only add other keywords when you find that they
are needed.

You can also make LispWorks discard unused code, in order to reduce the
delivered image size and thereby improve performance. You should not do
this until your delivered application is working, though, because discarding
certain code impedes debugging.

There is usually some trial-and-error work involved in delivering an applica-
tion. You will almost certainly need to attempt delivery several times in order
to find the best set of delivery parameters. This trial-and-error work is neces-
sary because it is not possible for Delivery to work out for itself precisely what
can and cannot be thrown out of an application. Because of this, you should
allot time to delivery itself when planning your application’s development.

A good set of delivery parameters should not be too lenient, leaving too much
unused code in the delivered application. Nor should it be too severe, throw-
ing necessary code out and thereby breaking the delivered application. It is
expected that you will need to use no more than a few delivery keywords: if
you find that you use more than 6 delivery keywords, please contact Lisp Sup-
port with details.

Delivery is covered in Chapter 4, “Delivering your Application”.

Chapter 5, “Keywords to the Delivery Function”, describes the keywords you
can pass to the delivery function, deliver, that permit fine control over the
delivery process.

1.4.5 Licensing issues

Runtime files that are created using Delivery with LispWorks for Windows,
LispWorks for Linux, LispWorks for FreeBSD, LispWorks for x86/x64 Solaris
 5

1 Introduction

6

and LispWorks for Macintosh Professional and Enterprise Editions do not
require a runtime license.

Runtime files generated by LispWorks (32-bit) for UNIX do require a Lisp-
Works runtime license. See “Runtime licensing on UNIX” on page 7 for more
information.

1.4.6 Modules

You should load all the Lisp modules that your application needs into the
LispWorks image before attempting to deliver your application. Do this by
calling require with each module name in your delivery script.

1.4.7 Error handling

Delivered applications can deal with errors using the Common Lisp Condi-
tion System and error handling facilities if so desired. But if you cannot keep
the full Common Lisp Condition System because it is too large, you can still
use some basic facilities provided for handling errors.

See Section 9.4 on page 96 for more details.

1.4.8 Troubleshooting

Chapter 10, “Troubleshooting”, presents a number of explanations and
workarounds for problems you might have when delivering your application.

1.4.9 Examples

There are a number of examples in the manual which help to illustrate the
delivery process.

Chapter 2, “A Short Delivery Example”, shows how to deliver a very small
application.

Chapter 12, “Delivering CAPI Othello”, shows how an example CAPI pro-
gram can be delivered.

1.5 Runtime licensing on UNIX
1.5 Runtime licensing on UNIX
This section applies only to LispWorks for UNIX only (not LispWorks for
Linux, FreeBSD, or x86/x64 Solaris).

1.5.1 Protection of the delivery product on UNIX

This section applies only to LispWorks for UNIX only (not LispWorks for
Linux, FreeBSD, or x86/x64 Solaris).

When you start up LispWorks and call (require "delivery"), a check is
made that you are licensed to run LispWorks Delivery. If this check fails, the
require does not succeed.

1.5.2 Protection of the delivered image on UNIX

This section applies only to LispWorks for UNIX only (not LispWorks for
Linux, FreeBSD, or x86/x64 Solaris).

In general, the delivered application is also protected by the keyfile and net-
work licensing mechanism. Unless action is taken to retarget the image, the
end-users of your application will require a LispWorks Delivery key (but no
other key).

Retargeting the image means: substituting the image’s requirement for a Deliv-
ery key with the requirement for a runtime key. This substitution is controlled
by the product code which Lisp Support will supply to your organization.
(See Reporting bugs in the LispWorks Release Notes and Installation Guide for
information on contacting Lisp Support.) You should use the same code for
retargetting all of your products. You may wish to make your own security
arrangements in additions to those required by Lisp Support.

Unless you have made arrangements to the contrary, runtime licenses will be
generated by the Lisp Support desk. Runtime licenses will be issued only to
you (the application developer) and not to the end-user. We will need to know
the machine identifier of the host target machine in the usual way. Note that
undated runtime keys are only transferrable from one machine to another
upon payment of an administration charge.

All keys are specific to the major version of LispWorks for which they are
issued. The current release is LispWorks 6.0. If you re-issue your application to
 7

1 Introduction

8

your end-users and base it on a different major version of LispWorks, then all
existing keys will need replacement. This re-issue of keys for existing plat-
forms will not attract the above administration fee.

While you are working on the delivery of your application there is no need to
retarget it as you can run trial versions with your Delivery keys.

1.5.3 Unprotected runtime applications on UNIX

This section applies only to LispWorks for UNIX only (not LispWorks for
Linux, FreeBSD, or x86/x64 Solaris).

It is possible to remove all keyfile protection from the delivered application by
specifying :product-code :none. If you do this, a check is made during the
delivery process to ensure that you have in addition to a LispWorks Delivery
key, a key for LispWorks Delivery PLUS. If you do not have this key then your
image will exit immediately when the check fails. Therefore you should only
specify :none as your product code if you have made a prior arrangement
with Lisp Support to do so.

You may wish to make your own security arrangements or you may choose to
leave the runtime image totally unprotected. Although an unprotected runt-
ime application will not require any keys (even for any layered products
which were loaded into it before delivery), it may still be subject to time-expi-
ration.

1.5.4 Expiration of unprotected runtime applications on UNIX

This section applies only to LispWorks for UNIX only (not LispWorks for
Linux, FreeBSD, or x86/x64 Solaris).

Dated license keys used at delivery time when delivering an unprotected
runtime affect the expiration date of that delivered runtime image.

Specifically, if any of

• the license key used by the delivery image upon startup, or

• the keys used when loading layered products

1.5 Runtime licensing on UNIX
are dated, then the earliest expiration date of all such keys will be hard-wired
into the runtime image. However, the LispWorks Delivery PLUS key itself
does not affect the expiration date.

When you obtain undated keys for LispWorks or any layered product, it is
therefore advisable to either delete or comment out any corresponding dated
keys from that keyfile.
 9

1 Introduction

10

2

2 A Short Delivery Example
This chapter presents a simple example of Delivery in use. It shows a small,
pre-written program being delivered.

There are usually four stages to application delivery: coding, compiling, deliv-
ering, and debugging. The example is broken up into these stages and the dis-
cussion in each case points to more detailed material later in the manual.

If you would like to try this example delivery out while following the text,
you can find a copy of the program in the LispWorks distribution. To locate
the pathname of the source file, evaluate the following form in a listener:

(example-file "delivery/hello/hello.lisp")

2.1 Developing the program
The program we use in the example is:

(in-package "CL-USER")

(defun hello-world ()
 (capi:display-message "Hello World!"))

Compile the file to a writable location, load it and test the program by calling
(hello-world).
11

2 A Short Delivery Example

12
2.2 Delivering the program
Having compiled the program, the next step is to attempt delivery, where you
will load the compiled file in a fresh LispWorks session.

Programs are delivered with the function deliver. This function takes three
mandatory arguments. There are also many optional keyword arguments to
help Delivery make the smallest image possible.

You can read more about the deliver function in Chapter 4, “Delivering your
Application”.

Chapter 5, “Keywords to the Delivery Function” describes all the optional
keyword arguments available.

In this example, we use just one of the optional keyword arguments, and of
course we provide the mandatory arguments. These are:

• The name of a startup function. This is the first function called when the
application is run.

• A pathname specifying where to write the delivered image.

• A delivery level. This is an integer in the range 0 to 5. It controls how
much work is done to make the image smaller during delivery. At level
0, little effort is put into making a smaller image, while at level 5 a vari-
ety of strategies are employed.

You can deliver and run the application in two ways: either use the LispWorks
IDE, or use a command shell. This means a DOS command window (on
Microsoft Windows), Terminal.app (Mac OS X) or a shell (Unix/Linux etc).

2.2.1 Delivering the program using the LispWorks IDE

You can use the Application Builder tool in the LispWorks IDE to deliver your
application. This performs the same steps as described in “Delivering the pro-
gram using a command shell” on page 13, but provides a windowing interface
which is easier to use.

To start, you will need a script which loads your compiled application code.
This can be as simple as

2.2 Delivering the program
(in-package "CL-USER")
(example-compile-file "delivery/hello/hello" :load t)

but you can also start with a complete delivery script such as that shown in
“Delivering the program using a command shell” on page 13.

For full instructions on using the Application Builder tool, see the LispWorks
IDE User Guide.

2.2.2 Delivering the program using a command shell

Continuing with the example:

1. Write a delivery script file (deliver.lisp) that compiles and loads the
program, and then calls deliver:

(in-package "CL-USER")
(load-all-patches)
(example-compile-file "delivery/hello/hello" :load t)
#+:cocoa
(example-compile-file
 "configuration/macos-application-bundle" :load t)
(deliver 'hello-world
 #+:cocoa
 (write-macos-application-bundle
 "~/Desktop/Hello.app"
 ;; Do not copy Lisp Source File
 ;; association from LispWorks.app
 :document-types nil)
 #-:cocoa "~/hello"
 0
 :interface :capi)

2. Run the lisp image passing your file as the build script. For example, on
Microsoft Windows open a DOS window. Ensure you are in the folder
containing the LispWorks image and type:

lispworks-6-0-0-x86-win32.exe -build deliver.lisp

On UNIX, Linux or FreeBSD type the following into a shell:

% lispworks-6-0-0-x86-linux -build deliver.lisp

Note: the image name varies between the supported platforms.
 13

2 A Short Delivery Example

14
On Mac OS X, use Terminal.app. Ensure you’re in the directory of the
image first:

% cd "/Applications/LispWorks 6.0/LispWorks.app/Contents/MacOS"
% ./lispworks-6-0-0-macos-universal -build deliver.lisp

If you want to see the output, you can redirect the output with > to a file
or use |, if it works on your system.

3. Run the application, which is saved in hello.exe on Microsoft Win-
dows, hello on UNIX/Linux/FreeBSD, and Hello.app on Mac OS X.

4. Now generate a smaller executable by discarding unused code while
delivering. Do this by editing your file deliver.lisp to specify a higher
level argument in the call to deliver. Try changing it to 5 for the largest
effect.

2.2.3 Further example

There is another more detailed example at the end of the manual. This is in
Chapter 12, and shows how to deliver a small CAPI application. The applica-
tion is an implementation of the board game Othello.

3

3 Writing Code Suitable for
Delivery
How successfully you can deliver your application depends to a large extent
upon how you wrote it in the first place. Delivery reduces the size of some
symbols and constructs more than others, so a knowledge of what sort of code
leads to the best delivered images is useful.

This chapter explains what sorts of considerations you might make when cod-
ing your application.

3.1 Basic considerations when coding for delivery
The main consideration to make when developing an application that is to be
delivered is efficiency. Ask yourself: does one implementation technique tend
to produce smaller and/or faster delivered images than another? Can I avoid
using large modules?

This extra consideration probably means that it takes longer to develop the
application in the first place. But the time is usually well spent: choosing the
right techniques and facilities at the development stage avoids costly rewrites
after delivery reveals that the application code as it stands cannot be delivered
within the required size.
15

3 Writing Code Suitable for Delivery

16
3.2 Efficiency considerations when coding for delivery
There are numerous efficiency considerations when coding for delivery. They
are detailed below.

3.2.1 Use of modules

Can you avoid using a large module and still get the functionality you need?
Modules are saved in the image, and even after Delivery has gone through
them to throw things out, they may still have a noticeable effect on the size of
the delivered image. The fewer modules you use, the smaller the delivered
size of your application.

Note: Some modules are built on top of others. If you load such a module into
the image the others are loaded too. Pay close attention to these “hidden” con-
tributions to image size by following the loader messages in the Listener.

3.2.2 Loading code at runtime

You may retain the loader in a delivered application, and use it to load com-
piled code or any of the supplied modules at runtime. This is useful if your
application’s users need to load their own code into it.

However, we do not recommend using this as a means of deferring the addi-
tion of module code to your image. It is far better to deliver your application
with all the modules it needs. The first benefit is that the module itself is deliv-
ered — if you load it at runtime you cannot do this. Second, you avoid slow-
ing your application to a halt while it loads the module. Finally, if you leave
the option open of loading arbitrary code into the image, you may need to
keep the entire COMMON-LISP package, which adds greatly to the size of the
delivered image.

3.2.3 Use of symbols, functions, and classes

Bear in mind that symbols, functions, and classes contribute significantly to
the size of a delivered application. While it is not worth letting this interfere
greatly with good design and maintainability, efforts to minimize their use in
your application may pay off.

3.2 Efficiency considerations when coding for delivery
Note: Symbols, functions and classes interact. If a symbol is retained, any
function or class bound to it is also retained in the delivered application, even
if it is never funcalled or instantiated. Delivery cannot be sure that the symbol
is not ever used to do these things, and so errs on the side of safety, at the
expense of image size.

3.2.4 Making references to packages

Certain Common Lisp functions and macros make explicit reference to pack-
ages. If you use any of these on particular packages, you may need to keep
those packages in the application. This can contribute greatly to the size of the
delivered application image. For more details, see Section 9.8.5 on page 103.

3.2.5 Declaring the types of variables used in function calls

You can minimize, or even eliminate, runtime decisions about the types of
function arguments by making them instances of a known type. This gives the
compiler a chance to inline appropriate code or perform other optimizations.

3.2.6 Avoid referencing type names

Referencing the name of a type (that is, a symbol) in code means that delivery
cannot remove that type even if it is not used anywhere else. This is often seen
in code using typep, typecase or subtypep to discriminate between types.

For example, if you have code like this:

(defun foo (x)
 (cond ((typep x 'class1) ...)
 ((typep x 'class2) ...)
 ...
 ((subtypep x 'class1000) ...)))

then delivery would keep all of the classes class1,...,class1000 even if
nothing else references these classes.

Possible solutions are described in “Referencing types via methods” on page
18 and “Referencing types via predicates” on page 18.
 17

3 Writing Code Suitable for Delivery

18
3.2.6.1 Referencing types via methods

Code can reference type names either directly as shown in “Avoid referencing
type names” on page 17 or via type-of in code like this:

(defun foo (x)
 (let ((type (type-of x)))
 (cond ((eq type 'class1) ...)
 ((eq type 'class2) ...)
 ...
 ((eq type 'class1000) ...))))

Instead, you could express the conditional clauses as methods specialized for
each class:

(defmethod foo ((x class1)) ...)
(defmethod foo ((x class2)) ...)
...
(defmethod foo ((x class1000)) ...)

This would allow any unused classes to be removed by delivery, because each
method is a separate function.

3.2.6.2 Referencing types via predicates

If you do not wish to retain CLOS, and are referencing types that have built-in
predicates, or structure types, you could use these predicates instead of the
type names to allow delivery to remove unused types. For example this code:

(typecase x
 (integer (process-an-integer x))
 (string (process-a-string x))
 (a-struct (process-a-struct x)))

could be rewritten as:

(cond ((integerp x) (process-an-integer x))
 ((stringp x) (process-a-string x))
 ((a-struct-p x) (process-a-struct x)))

3.2.7 Use of the INTERN and FIND-SYMBOL functions

These functions allow a running program to locate arbitrary symbols. If your
application uses them you may need to keep many symbols in the image,

3.2 Efficiency considerations when coding for delivery
along with any associated definitions. See “Coping with intern and find-sym-
bol at runtime” on page 106.

Note: The read function typically calls intern, thus causing the same prob-
lems.

3.2.8 Use of the EVAL function and the invocation of uncompiled functions

Applications using eval or invoking uncompiled functions in other ways
need the entire Common Lisp interpreter available to them. Delivery therefore
keeps it in the delivered image, adding significantly to its size.

3.2.9 User-defined and built-in packages

Try to develop your application using a well-defined set of packages. Particu-
larly, try not to intern symbols in built-in packages. You may find at delivery
time that a particular built-in package is suitable for throwing out, and there-
fore have to go back and take your symbol out of it in order to do so safely.

Note: When you use built-in packages in your own packages (via
defpackage), take care when naming symbols, since they may accidentally tie
up with external function or class definitions in the built-in package and cause
them to be retained unnecessarily. (This retention occurs because Delivery
does not throw out unused definitions if they are referred to by some other
symbol in the application — See “Use of symbols, functions, and classes” on
page 16.)
 19

3 Writing Code Suitable for Delivery

20

4

4 Delivering your Application
This chapter describes the process of delivering a completed application.

The first part of the delivery process is to make a standalone version of your
application, that runs without assistance from LispWorks. After that, you may
want to look into making your program smaller and more efficient.

Delivering a standalone application, and much of the work in making it
smaller and faster, is extremely simple and can be accomplished by entering a
simple form. However, fine-tuning the delivery process to make the applica-
tion as small and as fast as possible is a more involved process that usually
requires trial-and-error work. You should therefore allot time to a delivery
phase when planning the development of your application.

A call to the function deliver starts the delivery process. A variety of argu-
ments control the effects of delivery. A few of the keywords are introduced in
this chapter, but all are documented fully in Chapter 5, “Keywords to the
Delivery Function”.

4.1 The delivery function: deliver
The function deliver is the main interface to the delivery tools. Its basic syn-
tax is shown below:
21

4 Delivering your Application

22
deliver Function

Signature: deliver function file level &rest keywords

The following three arguments are required:

function The name of the function that starts an executable
application.

file A string or pathname naming the file in which the
delivered image should be saved.

The file extension .exe or .dll is appended to executa-
bles or DLLs delivered on Microsoft Windows.

If the delivery keyword :split is true then a second file
containing the Lisp heap is created.

On Mac OS X, you may wish to create an application
bundle containing your delivered image. For an exam-
ple showing how to do this, see “Creating a Mac OS X
application bundle” on page 129.

level An integer specifying the delivery level.

This is a measure of how much work Delivery does to
reduce the size of the image. It must be an integer in the
range 0 to 5. Level 5 is the most severe, while the least
work on image reduction is done at level 0.

The most important keywords arguments are :interface and :multiprocess-
ing. If your application uses the CAPI, you must pass :interface :capi. If
your application does not use the CAPI, but does use multiprocessing, then
you must pass :multiprocessing t. Your first attempt to deliver your applica-
tion should use no more than these keywords.

In addition, a variety of other keywords can be passed to deliver. These are
for fine-tuning by controlling aspects of delivery explicitly. Add more key-
words only when you find that you need them.

All the deliver keywords are documented in Chapter 5, “Keywords to the
Delivery Function”. Additionally, they can been seen in the LispWorks image
by calling:

4.2 Using the delivery tools effectively
(require "delivery")
(deliver-keywords)

4.2 Using the delivery tools effectively
This section gives some useful tips that should speed the delivery process up
and make mistakes less likely.

4.2.1 Saving the image before attempting delivery

Since you must almost certainly make several delivery attempts before find-
ing the optimal set of delivery parameters, the time spent starting LispWorks
and loading application and library code soon adds up.

You can cut down on this startup time by saving a copy of the image when the
compiled application and library code has been loaded. Use save-image (see
the LispWorks User Guide and Reference Manual) to do this. You then have an
image that is “ready to go” for delivery as soon as it is started up.

Note: Before and after saving the image, it is a good idea to check that the
application still works exactly as it did running on top of the LispWorks devel-
opment environment.

4.2.2 Delivering the application in memory

You can save time when experimenting with delivery parameters by deliver-
ing the application in memory rather than saving it to disk.

If the deliver keyword :in-memory-delivery is non-nil, the delivered image
is not saved to disk, but instead starts up automatically after the delivery
operations are complete.

For example, a good early test is

(deliver 'run
 "the-application"
 0
 :in-memory-delivery t)

Note: The image exits as soon as the application terminates.
 23

4 Delivering your Application

24
4.3 Delivering a standalone application executable
There are usually two considerations when delivering an application.

1. Making the application run standalone. That is, turn the application into
a single file that needs no assistance from LispWorks in order to run.

2. Make the application smaller. That is, make the application smaller than
the development environment plus application code.

We recommend delivering a standalone executable application first, with no
attempt to make the image smaller. Do this by delivering at delivery level 0,
which removes very little from the image. You can then look into making the
image smaller if you need to.

If you try to do both of these in the first attempt and the delivered application
does not work, it is not clear whether the wrong thing was removed from the
image, or the application would not have delivered properly even if no image
reduction work was done.

Once you have developed and compiled your application, you are ready to
deliver it as a standalone application. Delivering a standalone version is done
by calling deliver with level 0, which does not try to make the image smaller,
but does remove the LispWorks development tools as described in “Function-
ality removed by delivery” on page 2. To do this modify your deliver.lisp
script from “Delivering the program” on page 12 as appropriate to your appli-
cation:

(load-all-patches)
(load-my-application)
;;; unless you have it already loaded as suggested in
;;;“Saving the image before attempting delivery” on page 23
(deliver 'my-function "my-program" 0 :interface :capi)

This is assuming your application uses CAPI. If it does not, you can eliminate
:interface :capi. In this case, if your application requires multiprocessing,
you to need to pass :multiprocessing t:

(deliver ‘my-function "my-program" 0 :multiprocessing t)

Then run LispWorks with deliver.lisp as a build script. You can do this
using the graphical Application Builder tool (see “Delivering the program
using the LispWorks IDE” on page 12) or in a command window, like this:

4.4 Delivering a dynamic library
• On Microsoft Windows, open a DOS window and enter:

MS-DOS> lispworks-6-0-0-x86-win32.exe -build deliver.lisp

• On UNIX, Linux and FreeBSD systems, enter a command line like this
in a shell:

% lispworks-6-0-0-x86-linux -build deliver.lisp

Note: the image name varies between the supported platforms.

• On Mac OS X, use Terminal.app:

% ./lispworks-6-0-0-macos-universal -build deliver.lisp

This creates an executable in my-program.exe on Microsoft Windows, or my-
program on UNIX/Linux/FreeBSD/Mac OS X. When this executable starts, it
calls my-function without arguments.

4.4 Delivering a dynamic library
Depending on how your application needs to interoperate with other soft-
ware, you may want to build it as a DLL (also referred to as a dynamic library)
rather than an executable.

4.4.1 Simple delivery of a dynamic library

Supply the names of your library’s exports in a list value for the deliver key-
word :dll-exports. Each name in dll-exports should be a string naming a Lisp
function defined by fli:define-foreign-callable.

The deliver function argument should be nil, because a dynamic library does
not have a startup function.

Supply the file type of the delivered image in the deliver file argument if nec-
essary.

As when delivering a LispWorks executable, start at deliver level 0. Increase
the delivery level, if desired, after you have debugged your library. Whenever
possible, debug your code running in the LispWorks development image. If
the problem only occurs when your code runs inside a dynamic library, you
may be able to debug it on your development machine in a dynamic library
created by save-image rather than deliver.
 25

4 Delivering your Application

26
4.4.2 Using the dynamic library

A Microsoft Windows application should use LoadLibrary to load the DLL
and GetProcAddress to find the address of the exported names. On other plat-
forms the application should use dlopen and dlsym.

For more information about the behavior of LispWorks dynamic libraries see
the chapter "LispWorks as a dynamic library" in the LispWorks User Guide and
Reference Manual.

4.4.3 Simple Windows example

The script below creates hello.dll.

-------------------- hello.lisp -------------------------
(in-package "CL-USER")
(load-all-patches)
;; The signature of this function is suitable for use with
;; rundll32.exe.
(fli:define-foreign-callable ("Hello"
 :calling-convention :stdcall)
 ((hwnd w:hwnd)
 (hinst w:hinstance)
 (string :pointer)
 (cmd-show :int))
 (capi:display-message "Hello world")
 ;; quit when library's job is done
 (dll-quit))

(deliver nil "hello" 0 :dll-exports '("Hello") :interface :capi)

You can build the DLL with this command line:

lispworks-6-0-0-x86-win32.exe -build hello.lisp

and you can test it with this command line:

rundll32 hello.dll,Hello

4.4.3.1 Using the Application Builder

The Application Builder tool provides another way to build and test
hello.dll:

4.4 Delivering a dynamic library
1. In the LispWorks for Windows IDE do Works > Tools > Application Builder

2. Set the Build script to be your file hello.lisp and do Works > Build >
Build to build the DLL.

3. Do Works > Build > Run With Arguments. Enter rundll32 in the Execute
pane, enter hello.dll,Hello in the Arguments pane, and press OK to
test the library.

4.4.4 Further example

This example builds a dynamic library which in principle could be loaded by
any application and called to calculate square numbers.

For illustrative purposes, we show how to load the dynamic library into the
LispWorks development image. This illustrates some platform-specific initial-
ization. Then we use the library, ensure it exits cleanly, and finally delete the
dynamic library file.

Note that on Linux/Macintosh/FreeBSD, to deliver a dynamic library, the
build machine must have a C compiler installed.

For convenience the code is presented without external files. To run it, copy
each form in turn and enter it at the Listener prompt.

1. Define a path for the dynamic library:

(defvar *dynamic-library-path*
 (merge-pathnames (make-pathname :name "CalculateSquareExample"
 :type scm::*object-file-suffix*)
 (get-temp-directory)))

2. Define a function to create the dynamic library:
 27

4 Delivering your Application

28
(defun save-dynamic-library ()
 (let* ((file (make-temp-file t "lisp"))
 (ns (namestring file)))
 (format file
 "
 (fli:define-foreign-callable (calculate-square :result-
type :int)
 ((arg :int))
 (* arg arg))
 (deliver nil ~s 5 :dll-exports '(\"calculate_square\"))"
 (namestring *dynamic-library-path*))
 (close file)
 (sys:call-system-showing-output (list (lisp-image-name)
 "-build"
 ns))
 (delete-file file nil)))

3. Create the dynamic library:

(save-dynamic-library)

4. Define functions to use the dynamic library:

(fli:define-foreign-function (my-quit-lispworks "QuitLispWorks")
 ((force :int)
 (milli-timeout :int))
 :result-type :int
 ;; specifying :module ensures the foreign function finds
 ;; the function in our module
 :module 'my-dynamic-library)
(fli:define-foreign-function (my-init-lispworks "InitLispWorks")
 ((milli-timeout :int)
 (base-address (:pointer-integer :int))
 (reserve-size (:pointer-integer :int)) ; really size_t
)
 :result-type :int
 :module 'my-dynamic-library)
(fli:define-foreign-function calculate-square
 ((arg :int))
 :result-type :int
 :module 'my-dynamic-library)

5. Define a function to load the dynamic library, use it, and then unload it:

4.4 Delivering a dynamic library
(defun run-the-dynamic-library ()
 (fli:register-module 'my-dynamic-library
 :connection-style :immediate
 :file-name *dynamic-library-path*)
;; Windows and Mac OS X can detect and resolve memory clashes.
 ;; On other platforms, tell the library to load at different
 ;; address (that is, relocate) because otherwise it will use
 ;; the same address as the running LispWorks development image.
 ;; Relocation may be needed when loading a LispWorks dynamic
 ;; library in other applications.
 #-(or mswindows darwin)
 (my-init-lispworks 0
 #+lispworks-64bit #x5000000000
 #+lispworks-32bit #x50000000
 0)
 (dotimes (x 4)
 (format t "square of ~d = ~d~%" x
 (calculate-square x)))
 (my-quit-lispworks 0 1000)
 (fli:disconnect-module 'my-dynamic-library))

6. Use the dynamic library:

(run-the-dynamic-library)

Check the output to see that it computed square numbers.

7. (optional) Delete the dynamic library file:

(delete-file *dynamic-library-path* nil)

4.4.5 More about building dynamic libraries

On Macintosh/Linux/FreeBSD/Unix you can supply files to be included in
the library via the deliver keyword argument :dll-added-files. This is
useful if you need to write wrappers around calls into the library.

You can specify whether your LispWorks dynamic library initializes itself
automatically on loading with the deliver keyword argument :automatic-
init. For more information see "Initialization of the dynamic library" in the
LispWorks User Guide and Reference Manual.
 29

4 Delivering your Application

30
4.5 How to deliver a smaller and faster application
Saving your application standalone is only the first step towards delivering a
satisfactory image. The next step is to try and make it smaller.

An entire Common Lisp system, and other supporting code, remains in a stan-
dalone image delivered at delivery level 0. A good deal of this can usually be
removed.

What can be removed depends on the needs of the application. Few applica-
tions use all the facilities in the basic image. For instance, if the application
does not use any complex numbers, all the code in the image for working with
complex numbers can be deleted.

4.5.1 Making the image smaller

You can specify that the image be made smaller in two complementary ways:

1. By increasing the delivery level.

This is the simplest way to make the image smaller. As you increase the
delivery level, delivery employs different and increasingly severe strate-
gies.

2. By specifying what to remove and what to keep, using keyword argu-
ments to deliver.

This is a more complicated way to control image size, and should only
be resorted to if there are problems or not enough savings can be
achieved by simply increasing the delivery level. These keywords are
documented in Chapter 5, “Keywords to the Delivery Function”.

These two approaches are based upon the same mechanism: delivery levels
are in fact nothing more than different combinations of keyword parameters.
But when you specify a delivery level and at the same time pass keyword val-
ues, the values you pass override any settings forced by the delivery level.

As an example of how explicit directions to Delivery can be necessary for
effective delivery, consider the general addition function, +. The internal rep-
resentation of the function contains references to functions that carry out com-
plex number arithmetic, since + has to use them if it is given complex
arguments. If you know your application does not ever pass complex argu-

4.6 How Delivery makes an image smaller
ments to +, you should probably remove those functions from the delivered
image.

Delivery cannot decide for itself that you do not pass + any complex argu-
ments, and so does not delete the complex number functions. You can tell
Delivery to do so explicitly, by passing :keep-complex-numbers nil to
deliver. (See page 52 for a discussion of this keyword.)

4.6 How Delivery makes an image smaller
Delivery makes an image smaller in two ways.

1. By garbage collecting the image.

This is done automatically.

2. By “shaking” the image with the treeshaker.

This is done automatically from delivery level 2 upward.

4.6.1 Garbage collecting the image

The image is garbage collected during delivery. The garbage collector locates
any unreferenced objects and frees the space they occupy. Then Delivery com-
pacts the remaining memory so that the saved image is smaller.

Garbage collection is a generally good method of trimming the image size at
delivery time. However, it is generally too conservative, and so it has no effect
on a significant portion of the Common Lisp system and your application:
Interned symbols, class definitions, and methods discriminating on classes.
Such objects must be dealt with by the treeshaker.

4.6.2 Shaking the image

From delivery level 2 upward, the image is “shaken” by default during deliv-
ery with the treeshaker. You can also invoke the treeshaker directly with the
deliver keyword :shake-shake-shake, discussed on page 68.

As discussed above, the garbage collector does not delete any interned sym-
bols, class definitions, or methods discriminating on classes from the image,
even when they are unused. This is because it is designed to keep any object
for which a reference exists.
 31

4 Delivering your Application

32
There are always references to interned symbols, class definitions, and meth-
ods discriminating on classes. Interned symbols, naturally, are referred to by
their package. Class definitions are always pointed to by their superclasses
(the root class, t, has no superclass but is protected from garbage collection),
and a method discriminating on a class is always pointed to by the class.

Thus we have a special class of objects that cannot be removed under the nor-
mal garbage collection scheme. Using the treeshaker, however, we can do so.
The treeshaker does the following to overcome the default links between these
objects:

1. Record the default links.

2. Break the links.

3. Garbage collect the image.

4. Reinstate the links.

Step 2 renders the objects the same as all others in the image. They are now
only protected from garbage collection if there are links to them elsewhere in
the image — that is, if they are actually used in the application.

The term “treeshaker” is derived from the notion that the routine picks up, by
its root, a tree comprising the objects in the image and the links between them,
and then shakes it until everything that is not somehow connected to the root
falls off, and only the important objects remain. (An image would usually be
better characterized as a directed graph than a tree, but the metaphor has per-
sisted in the Lisp community.)

5

5 Keywords to the Delivery
Function
This chapter describes the keywords to the delivery function, deliver.

The keyword descriptions are given in alphabetical order. Before the alphabet-
ical section, there is a topic-based list of keyword names which should be of
value if you are looking for a keyword to perform a particular task for you,
but do not know what it is called or do not know if it exists.

The list of keywords can be printed by calling deliver-keywords, which is
documented in Section 11.2 on page 120.

Note: Delivery is designed to work well with a small number of delivery key-
words only. Start attempting delivery by passing no keywords, or :interface
:capi, or :multiprocessing t, as required. Only add other keywords when
you find that you need them. If you are passing more than 6 delivery key-
words, please contact Lisp Support with details.

Caution: Many keywords interact with one another, causing apparent values
to change. It is a good idea to check how keywords interact and also what
happens to their defaults at the different delivery levels. In the descriptions of
the default values of deliver keywords in “Alphabetical list of deliver key-
words” on page 39, the level appears as the symbol *delivery-level*.
33

5 Keywords to the Delivery Function

34
5.1 Topic-based list of deliver keywords
This section provides a topic-based index to the descriptions of deliver key-
words. Use the topic headings to find a keyword related to a particular kind of
delivery task, then look it up on the page given to see how to use it.

5.1.1 Controlling the behavior of the delivered application

The following keywords control aspects of the delivered application’s behav-
ior. There are keywords for specifying startup banners, application icons,
image security, and so on.

• :action-on-failure-to-open-display

• :analyse

• :clean-for-dump-type

• :console

• :dll-exports

• :editor-style

• :icon-file

• :image-type

• :interface

• :interrogate-symbols

• :interrupt-function

• :keep-gc-cursor

• :license-info

• :multiprocessing

• :product-code

• :product-name

• :quit-when-no-windows

• :redefine-compiler-p

• :registry-path

• :split

• :startup-bitmap-file

• :versioninfo

5.1 Topic-based list of deliver keywords
5.1.2 Testing and debugging during delivery

The following keywords can be used to help test and debug the application
either during delivery or at runtime. There are keywords for encoding test
routines into the delivered application, for ensuring that features such as the
debugger and the read-eval-print loop are kept in the image, for performing
delivery without writing the image out to disk, and so on.

• :analyse

• :call-count

• :clos-info

• :condition-deletion-action

• :diagnostics-file

• :error-on-interpreted-functions

• :post-delivery-function

• :in-memory-delivery

• :interrogate-symbols

• :keep-conditions

• :keep-debug-mode

• :keep-modules

• :keep-stub-functions

• :keep-symbol-names

• :keep-top-level

• :kill-dspec-table

• :run-it

• :symbol-names-action

• :warn-on-missing-templates

5.1.3 Behavior of the delivery process

The following keywords control the behavior of the delivery process itself.
They do not affect the delivered application’s behavior or the debugging
information generated.

• :display-progress-bar
 35

5 Keywords to the Delivery Function

36
5.1.4 Retaining or removing functionality

The keywords listed in this section control the main part of the delivery pro-
cess, involved in keeping things in and deleting things from the image. Most
of the deliver keywords are in this general category, so it has been split up
into a number of subcategories.

5.1.4.1 Directing the behavior of the treeshaker and garbage collector

The following keywords control the invocation of the treeshaker and garbage
collector during delivery:

• :compact

• :shake-shake-shake

• :clean-down

• :redefine-compiler-p

5.1.4.2 Classes and structures

The following keywords are for examining, for keeping and for removing data
information in the image about structured data: structures, classes and so on.

• :classes-to-keep-effective-slots

• :generic-function-collapse

• :gf-collapse-output-file

• :gf-collapse-tty-output

• :keep-clos

• :keep-clos-object-printing

• :keep-structure-info

• :metaclasses-to-keep-effective-slots

• :shake-class-accessors

• :shake-class-direct-methods

• :structure-packages-to-keep

5.1 Topic-based list of deliver keywords
5.1.4.3 Symbols, functions, and packages

The following keywords are for examining, for keeping and for removing
symbols, functions, and entire packages from the image.

• :delete-packages

• :exports

• :functions-to-remove

• :keep-documentation

• :keep-foreign-symbols

• :keep-function-name

• :keep-load-function

• :keep-package-manipulation

• :keep-symbols

• :macro-packages-to-keep

• :never-shake-packages

• :no-symbol-function-usage

• :packages-to-keep

• :packages-to-keep-symbol-names

• :redefine-compiler-p

• :remove-setf-function-name

• :shake-externals

• :smash-packages

• :smash-packages-symbols

• :symbol-names-action

5.1.4.4 LispWorks environment

Keywords for keeping and for removing editor commands and LispWorks
environment tools:

• :editor-commands-to-delete

• :editor-commands-to-keep

• :keep-editor

• :keep-walker
 37

5 Keywords to the Delivery Function

38
5.1.4.5 CLOS metaclass compression
• :classes-to-keep-effective-slots

• :metaclasses-to-keep-effective-slots

5.1.4.6 Input and output

The following keywords are for keeping and for removing code loading facili-
ties, fasl dumping facilities, special printing code, and so on, from the image.

• :format

• :keep-fasl-dump

• :keep-lisp-reader

• :keep-load-function

• :print-circle

5.1.4.7 Dynamic code

The following keywords are for keeping and for removing code facilitating
dynamic runtime activities, such as macroexpansion, evaluation, use of the
Common Lisp reader and the lexer, and so on, from the image.

• :keep-eval

• :keep-macros

• :macro-packages-to-keep

• :remove-setf-function-name

5.1.4.8 Numbers

The following keywords are for keeping and for removing code from the
image that can handle certain numerical types:

• :keep-complex-numbers

• :numeric

5.1.4.9 Conditions deletion

The following keywords are for controlling the preservation or deletion of
conditions.

5.2 Alphabetical list of deliver keywords
• :condition-deletion-action

• :keep-conditions

• :packages-to-remove-conditions

5.2 Alphabetical list of deliver keywords
This section describes each of the deliver keywords. They are presented in
alphabetical order.

:action-on-failure-to-open-display Keyword

Default value: nil

GTK and Motif applications only: if the application uses the X11 code or
CAPI, it may fail to run if it cannot open the X display.

In this case, if the value is a function it calls this function with one argu-
ment, the display name. The default value of nil means that a message
is printed and Lisp quits.

:analyse Keyword

Default: nil

When non-nil, the delivery code arranges to generate an analysis of
what there is in the image before running the application. If the value of
:analyse is a string or a pathname, it writes the analysis to this file,
otherwise it writes to *standard-output*.

:automatic-init Keyword

Default value: t on Microsoft Windows, nil on other platforms

automatic-init specifies whether a LispWorks dynamic library should
initialize automatically on loading. Automatic initialization is useful
when the dynamic library does not communicate by function calls but
prevents you from relocating the library if necessary or doing other
initialization.
 39

5 Keywords to the Delivery Function

40
To deliver a dynamic library on Linux/Macintosh/FreeBSD, the build
machine must have a C compiler installed. This is typically gcc (which is
available on the Macintosh by installing Xcode).

deliver uses automatic-init just like save-image. See save-image in the
LispWorks User Guide and Reference Manual for more details.

For more information about the behavior of LispWorks DLLs (dynamic
libraries) and in particular a discussion of automatic and explicit initial-
ization, see the chapter "LispWorks as a dynamic library" in the Lisp-
Works User Guide and Reference Manual.

:call-count Keyword

Default value: nil

This keyword can be used to produce reports about what is left in the
image when delivery is over. It is useful when determining which
remaining parts of the system are not needed. When nil, no reports are
generated.

Possible values of :call-count are:

:size After running the application, the image is scanned,
and the size of each object, in bytes, is printed out. This
produces a lot of output, comparable in size to the
delivered image itself, so make sure you have plenty of
disk space first.

:all After running the application, the image is scanned,
and the name of each symbol found is printed out. A +
sign is printed next to the symbol if it is non-nil. If the
symbol is fboundp, the call count (that is, the number of
times it was called while the application ran) is printed
too.

Delivery sets the call counter for all symbols to 0 before
the saving the delivered image.

Interpreted functions do not maintain a call counter.

t This has the same effect as :all, but only symbols with
function definitions that were not called are printed.

5.2 Alphabetical list of deliver keywords
The output is written to a file or the standard output. You can specify its
name with :diagnostics-file.

:classes-to-keep-effective-slots Keyword

Default value: nil

Classes on this list retain their effective-slot-definitions.

:classes-to-remove Keyword

Default value: nil

This keyword accepts a list naming the classes to be deleted from image
during delivery.

Note: Their subclasses are also deleted, because they have lost their con-
nection to the root class.

:clean-down Keyword

Default value: t

If true, call clean-down before saving the image.

:clean-for-dump-type Keyword

Default value: :user

Related to the :type argument of save-image. This is for expert use only
- please consult Lisp Support before using.

:clos-info Keyword

Default value: nil

With this keyword you can make the delivered image print a list of the
remaining classes, methods, or both, after execution terminates.

Possible values of :clos-info are:

:classes print remaining classes only

:methods print remaining methods only
 41

5 Keywords to the Delivery Function

42
:classes-and-methods

print remaining classes and methods

The output is written to the file given by :diagnostics-file.

:compact Keyword

Default value:

(and (not (delivery-value :keep-debug-mode))
 (not (delivery-value :interrogate-symbols))
 (eq (delivery-value :dll-exports) :no))

x86 platforms only: If this is non-nil, the heap is compacted just before
the delivered image is saved, with all functions being made static. This
usually gives the greatest size reduction in delivery. You may want to
leave this until the final delivery if you are using a slow machine on
which this operation takes some time.

:condition-deletion-action Keyword

Default value: (when (> *delivery-level* 0) :delete)

The value is one of:

nil Do not delete any condition class. This is the default at
delivery level 0.

:delete Delete unwanted conditions. If an error for a deleted
condition is signaled, it is signalled as a simple error
condition, with the arguments in the format-arguments
slot. This is the default at delivery level > 0.

:redirect Redirect unwanted conditions to the first parent in their
hierachy which is not deleted.

See “Deleting of condition classes” on page 98.

:console Keyword

Default value: :default

5.2 Alphabetical list of deliver keywords
Windows and Macintosh only. This is the same as the :console keyword
argument to hcl:save-image. See the LispWorks User Guide and Reference
Manual for details.

:delete-packages Keyword

Default value: nil

This keyword takes a list of packages, in addition to those in the variable
delete-packages, that should be deleted during delivery. The Com-
mon Lisp function delete-package is used to do this.

When a package is deleted, all of its symbols are uninterned, and the
package’s name and nicknames cease to be recognized as package
names.

After the package is deleted, its symbols continue to exist, but because
they are no longer interned in a package they become eligible for
removal at the next garbage collection. They survive only if there are ref-
erences to them elsewhere in the application.

Note: Invoking the treeshaker has much the same effect on packages as
deleting them. However, by deleting a package you regain some extra
space taken up by hash tables.

Affected by: :packages-to-keep

:diagnostics-file Keyword

Default value: nil

The string passed with this keyword specifies a file to which output gen-
erated by :call-count and :clos-info is written (in that order). The
value nil means write to *standard-output*.

Compatibility Note: In LispWorks 4.4 and previous on Windows and
Linux platforms, the default value of :diagnostics-file was
"dvout.txt". The default value is now nil on all platforms.

:display-progress-bar Keyword

Default value: t
 43

5 Keywords to the Delivery Function

44
Windows only: by default a progress bar is displayed during the deliv-
ery process. If the value of the :display-progress-bar keyword is false,
it does not display a progress bar.

Compatibility Note: In LispWorks for Windows 4.4 and previous, there
was no way to prevent the display of the progress bar.

:dll-added-files Keyword

Default value: nil

Unix/Linux/FreeBSD and Macintosh only: A list value means that the
saved image is a dynamic library file rather than an executable. The
build machine must have a C compiler installed.

If non-nil, dll-added-files should be a list of filenames and then a dynamic
library containing each named file is saved. Each file must be of a format
that the default C compiler can incorporate into a shared library and
must not contain exports that clash with predefined exports in the Lisp-
Works shared library. The added files are useful to write wrappers
around calls into the LispWorks dynamic library.

deliver uses dll-added-files just like save-image. See save-image in the
LispWorks User Guide and Reference Manual for more details.

For more information about the behavior of LispWorks DLLs (dynamic
libraries) see the chapter "LispWorks as a dynamic library" in the Lisp-
Works User Guide and Reference Manual.

:dll-exports Keyword

Default value: :default

dll-exports is implemented only on Windows, Linux, x86/x64 Solaris,
Macintosh and FreeBSD. It controls whether the image saved is an exe-
cutable or a dynamic library (DLL). If dll-exports is :default, the deliv-
ered image is an executable. The value :com is supported on Microsoft
Windows only (see below). Otherwise dll-exports should be list (poten-
tially nil). In this case a dynamic library is saved, and each string in
dll-exports names a function which becomes an export of the dynamic
library and should be defined as a Lisp function using fli:define-for-

5.2 Alphabetical list of deliver keywords
eign-callable . Each exported name can be found by GetProcAddress
(on Windows) or dlsym (on other platforms). The exported symbol is
actually a stub which ensures that the LispWorks dynamic library has
finished initializing, and then enters the Lisp code.

On Microsoft Windows dll-exports can also contain the keyword :com, or
dll-exports can simply be the keyword :com, both of which mean that the
DLL is intended to be used as a COM server. See the LispWorks COM/
Automation User Guide and Reference Manual for details.

To deliver a dynamic library on Linux/Macintosh/FreeBSD, the build
machine must have a C compiler installed. This is typically gcc (which is
available on the Macintosh by installing Xcode).

On Mac OS X the default behavior is to generate an object of type "Mach-
O dynamically linked shared library" with file type dylib. See image-type
below for information about creating another type of library on Mac OS
X.

ON Microsoft Windows you can use LoadLibrary from the main appli-
cation to load the DLL and GetProcAddress to find the address of the
external names.

There is an example DLL delivery script in “Delivering a dynamic
library” on page 25.

For more information about the behavior of LispWorks DLLs (dynamic
libraries) see the chapter "LispWorks as a dynamic library" in the Lisp-
Works User Guide and Reference Manual.

:editor-commands-to-delete Keyword

Default value: :all-groups

When the Editor is loaded, you can delete some of its commands by
passing a list of them with this keyword. Note that, by default, most Edi-
tor commands are retained. See “Editors for delivered applications” on
page 93 for more details.

Affected by: :keep-debug-mode.
 45

5 Keywords to the Delivery Function

46
:editor-commands-to-keep Keyword

Default value: nil

When the Editor is loaded, you can keep some of its commands by pass-
ing a list of them with this keyword. Note that, by default, most Editor
commands are retained. See “Editors for delivered applications” on
page 93 for more details.

:editor-style Keyword

Default value :default

This controls the editor emulation style used in capi:editor-pane (and
subclasses) in the delivered image.

The value should be one of:

:emacs Use Emacs emulation.

:pc Use Microsoft Windows emulation on Windows, and
KDE/Gnome style keys on GTK and Motif.

:mac Use Mac OS X editor emulation.

:default Use the default emulation style for the current
platform. That is, use :pc on Microsoft Windows, :mac
on Mac OS X/Cocoa and :emacs on GTK and Motif.

nil Use the default setting on the current machine.

Note that not all emulation styles are supported on all platforms. See the
the "Emulation" chapter of the LispWorks Editor User Guide for details
about the different emulation styles.

:error-handler Keyword

Default value: nil

The value :btrace changes error handling, so that a simple backtrace is
generated whenever error is called.

5.2 Alphabetical list of deliver keywords
:error-on-interpreted-functions Keyword

Default value: nil

If this is non-nil, an error is signalled during delivery if the interpreter is
removed (with :keep-eval nil) while interpreted functions remain in
the image.

:exe-file Keyword

On Microsoft Windows, used as the basis for the new executable. This is
for expert use only - please consult Lisp Support before using.

:exports Keyword

Default value: nil

This keyword takes a list of symbols that should be exported from their
home packages before any delivery work takes place.

:format Keyword

Default value: t

If this is nil, part of the functionality of format is removed. The format
directives deleted are:

 ~ | R P O G E C B ? < / W $

The value can also be a list of directives to keep. The elements of the list
should be Lisp characters corresponding to (some of) the format direc-
tives above.

:functions-to-remove Keyword

Default value: nil

This keyword takes a list of symbols to be fmakunbound during delivery.

:generic-function-collapse Keyword

Default value:
 47

5 Keywords to the Delivery Function

48
(and (>= *delivery-level* 3)
 (not (member (delivery-value :keep-clos)
 ’(t
 :full-dynamic-definition
 :method-dynamic-definition))))

If this is non-nil, generic functions with single methods and simple argu-
ments are collapsed — that is, replaced by ordinary functions.

Note: Methods cannot be added to collapsed generic functions, since
after their collapse to ordinary functions the generic functions defini-
tions are deleted.

A formatted report detailing the actions performed during the collapse
is output to the file specified by :gf-collapse-output-file. The
default is "gfclps.txt".

:gf-collapse-output-file Keyword

Default value: nil

If the value is a string, it is the name of the file in which the report of the
generic function collapse is written.

:gf-collapse-tty-output Keyword

Default value: nil

If true, send the report of generic function collapsing to the console.

:icon-file Keyword

Default value:(if (eq (delivery-value :console) t) nil :default)

Windows only: The name of a file containing the icon to use, in Win-
dows .ico format, or nil (meaning no icon -- not recommended except
for console applications) or :default (which uses the icon from the Lisp-
Works image).

Note: to achieve the same effect on Mac OS X, do not pass :icon-file,
but put your delivered image in a suitable application bundle which
contains the application icon. See the examples in the LispWorks library
directory examples/delivery/macos/.

5.2 Alphabetical list of deliver keywords
:image-type Keyword

Default: (if (eq (delivery-value :dll-exports) :no) :exe :dll)

image-type defines whether the image is to be an executable or a dynamic
library. The value can be :exe, :dll or :bundle. It defaults to :exe or :dll
according to the value of dll-exports and therefore you do not normally need to
supply image-type.

image-type :bundle is used only when saving a dynamic library. On Mac
OS X it generates an object of type "Mach-O bundle" and is used for
creating shared libraries that will be used by applications that cannot
load dylibs (FileMaker for example). It also does not force the filename
extension to be dylib. On other Unix-like systems image-type merely has
the effect of not forcing the filename extension of the delivered image,
and the format of the delivered image is the same as the default. On
Microsoft Windows image-type :bundle is ignored.

On Linux/Macintosh/FreeBSD image-type :bundle requires that the
build machine has a C compiler installed. This is typically gcc (available
by installing Xcode on the Macintosh).

Note: image-type :bundle is completely unrelated to the Mac OS X notion
of an application bundle.

:in-memory-delivery Keyword

Default value: nil

If this is non-nil, the delivered application is not saved, but run in mem-
ory instead.

This can be useful while still deciding on the best delivery parameters
for your application. Writing the delivered image to disk takes a lot of
time, and is not really necessary until you have finished work on deliv-
ering it.

Note: When using this keyword, the deliver function still demands that
you pass it a filename. However, the filename you give is ignored. You
can use nil.
 49

5 Keywords to the Delivery Function

50
:interface Keyword

Default value: nil

Set this to :capi for applications that use the CAPI.

Because the CAPI uses multiprocessing, :interface :capi also sets the
deliver keyword :multiprocessing to t.

:interrogate-symbols Keyword

Default value: nil

When non-nil this does two things:

First it loads the reverse-pointers-code module. This can be used to
check what things to keep in the image. If you need documentation for
reverse-pointers-code, please contact Lisp Support.

Secondly it sets the image up such that calling the application with com-
mand line argument -interrogate-symbols, before starting the applica-
tion, allows you to interrogate-symbols. See “Interrogate-Symbols” on
page 115.

:interrupt-function Keyword

Default value: t

A function to call when an interrupt occurs. When it is t, it is calling
quit.

:keep-clos Keyword

Default value:

(if (= *delivery-level* 0)
 :full-dynamic-definition
 (if (= *delivery-level* 1)
 :method-dynamic-definition
 :no-dynamic-definition))

If this is :no-dynamic-definition, then the functions for dynamic class
and method definition are deleted -- defmethod , defclass and so on
and the direct slots and direct methods slots all classes are set to nil.

5.2 Alphabetical list of deliver keywords
If the value of the :keep-clos deliver keyword is nil, then it is treated
as :no-dynamic-definition.

If it is :meta-object-slots, then the direct slots and direct methods of
all classes are retained, and the dynamic definition functionality is
deleted.

If it is :method-dynamic-definition, nothing is smashed or deleted,
though the direct slots and direct methods of all classes are emptied.
With this setting, methods can be defined dynamically but not classes.

If it is :full-dynamic-definition or t, then all dynamic class and
method definition is allowed.

Compatibility Note: In LispWorks 4.3 and previous versions the values
:no-empty and :no-empty-no-dd were documented for the :keep-clos
deliver keyword. These values are still accepted in LispWorks 6.0, but
you should not rely on this. Change to one of the new values described
above.

Note: CLOS make-instance initarg checking in the delivered application
may be controlled by :make-instance-keyword-check.

:keep-clos-object-printing Keyword

Default value:

(or (delivery-value :keep-debug-mode)
 (<= *delivery-level* 2))

If nil, the generic function print-object is redefined to be the ordinary
function x-print-object:

(defun x-print-object (object stream)
 (t-print-object object stream))
 51

5 Keywords to the Delivery Function

52
(defun t-print-object (object stream)
 (print-unreadable-object (object stream :identity t)
 (if (and (fboundp 'find-class)
 (find-class 'undefined-function nil)
 (ignore-errors
 (typep object 'undefined-function)))
 (progn
 (write-string "Undefined function " stream)
 (prin1 (cell-error-name object) stream))
 (progn
 (princ (or (ignore-errors (type-of object))
 "<Unknown type>")
 stream)
 (ignore-errors
 (when-let (namer (find-symbol "NAME" "CLOS"))
 (when-let (name (and (slot-exists-p object namer)
 (slot-boundp object namer)
 (slot-value object namer)))
 (format stream " ~a" name))))))))

You may redefine x-print-object.

Affected by: :keep-debug-mode

:keep-complex-numbers Keyword

Default value: (delivery-value :numeric)

If this is non-nil, all numeric functions that can handle complex numbers
are retained.

Compatibility Note: This keyword has an effect on all platforms in Lisp-
Works 5.0 and later. It has no effect in LispWorks 4.4 and previous on
Windows and Linux platforms.

Affected by: :numeric

:keep-conditions Keyword

Default value: nil

The value should be one of:

 :none Eliminate all conditions.

5.2 Alphabetical list of deliver keywords
:minimal Keep only the conditions that are in the class-prece-
dence-list of simple-error. (simple-error, simple-
condition error, and serious-condition condition).
This is useful for applications that use only ignore-
errors. It is equivalent to

:keep-conditions '(simple-error) :packages-to-

remove-conditions '("common-lisp")

:all Keep all conditions.

A list A list of conditions to keep. For each condition, all the
precedence list is kept.

See “Deleting of condition classes” on page 98.

:keep-debug-mode Keyword

Default value: (> 5 *delivery-level*)

If this is non-nil, by default delivery retains the full TTY debugger, so it
can be used when debugging delivered applications.

On Unix, if the value is :all, all debug information is kept

On all platforms, if :keep-debug-mode is set to :keep-packages, all
packages are retained as well as the debugger, so that they can be used
for debugging purposes.

The value of :keep-debug-mode affects the default value of the following
keywords to:
 53

5 Keywords to the Delivery Function

54
:compact
:keep-clos-object-printing
:keep-eval
:keep-function-name
:keep-lisp-reader
:keep-load-function
:keep-structure-info
:keep-top-level
:make-instance-keyword-check
:no-symbol-function-usage
:packages-to-keep-symbol-names

:keep-documentation Keyword

Default value: (= *delivery-level* 0)

If non-nil, documentation strings in the image are preserved.

:keep-editor Keyword

Default: nil

Keep the editor intact. By default some parts of the editor (mainly those
that deal with Lisp definitions) are explicitly eliminated. When this key-
word is true, nothing is removed.

:keep-eval Keyword

Default value:

(or (delivery-value :keep-debug-mode)
 (< *delivery-level* 4))

If this is non-nil, the evaluator is preserved.

:keep-fasl-dump Keyword

Default value: nil

If this is non-nil, the internal functions needed to dump fasl files are pre-
served.

5.2 Alphabetical list of deliver keywords
:keep-foreign-symbols Keyword

Default value: nil

UNIX only: If this is nil, the code and information that is required for
dynamic loading of foreign code is eliminated from the image.

The value can be a list of strings which are the foreign symbols to keep.
The value can also be t, meaning keep all foreign symbols.

:keep-function-name Keyword

Default value:

(if (delivery-value :shake-shake-shake)
 (if (delivery-value :keep-debug-mode) t nil)
 :all)

This keyword controls the retention of names for functions. The follow-
ing values are accepted:

nil Do not keep names

:minimal Keep names as strings, but keep no other debug infor-
mation

t Keep names as strings and retain argument informa-
tion.

:all Do not modify function names

On x86 platforms, if :call-count is either t or :all, then :keep-func-
tion-name is set to t automatically.

When :keep-debug-mode is non-nil, :keep-function-name is set to t
automatically.

Affected by: :keep-debug-mode, :shake-shake-shake

Compatibility Note: In LispWorks 4.4 and previous on Windows and
Linux platforms, if the keyword :compact is non-nil, function names are
eliminated. This is not true in LispWorks 5.0 and later versions.
 55

5 Keywords to the Delivery Function

56
:keep-gc-cursor Keyword

Default value: nil

Windows only: If this is non-nil, the mouse pointer turns into a distinc-
tive ‘GC’ cursor during the garbage collection of generations 1 and
above. (Even if the cursor is kept, generation 0 collections are never indi-
cated, because they occur frequently and do not cause a noticeable delay
in operation.)

:keep-keyword-names Keyword

Default: t

If non-nil, keep symbol names of keywords.

:keep-lisp-reader Keyword

Default value:

(or (delivery-value :keep-debug-mode)
 (< *delivery-level* 5))

If the value is nil, the functions and values used to read Lisp expres-
sions are deleted. This means that the listener no longer works.

The :keep-lisp-reader keyword is set to t automatically if :keep-
debug-mode is t.

:keep-load-function Keyword

Default value:

(when (or (delivery-value :keep-debug-mode)
 (delivery-value :keep-modules)
 (<= *delivery-level* 2))
 :full)

If this is nil, the load function is deleted. Runtime loading is no longer
possible when this is done, whether or not require is being used.

It can take two non-nil values:

t Keeps the loading code required to load data files.

5.2 Alphabetical list of deliver keywords
:full Keeps the code as for t, plus those internal functions
that are required for loading Lisp code. Note that if the
Lisp code uses functions that are shaken, these func-
tions must be explicitly kept.

Note: In most cases you need to keep the COMMON-LISP (CL) package if
files might be loaded into your application, and probably some other
packages too. (See :packages-to-keep.)

:keep-macros Keyword

Default value: (< *delivery-level* 2)

If this is nil, the functions macroexpand, macroexpand-1 and macro-
function are deleted, and all macro functions and special forms are
undefined.

Note: This has no effect on compiled code, unless it explicitly calls mac-
roexpand.

:keep-modules Keyword

Default value: (< *delivery-level* 1)

If non-nil, the mechanism for loading modules is preserved.

:keep-package-manipulation Keyword

Default value: (< *delivery-level* 2)

If this is non-nil, the following package manipulation functions are pre-
served: shadowing-import, shadow, unexport, unuse-package, delete-
package, rename-package, import, export, make-package, use-package,
unintern.

:keep-pretty-printer Keyword

Default value: nil

If nil the pprint functionality is eliminated.
 57

5 Keywords to the Delivery Function

58
:keep-structure-info Keyword

Default value:

(or (delivery-value :keep-debug-mode)
 (case *delivery-level*
 ((0 1) t)
 (2 :print)
 (otherwise nil)))

This keyword controls the extent to which structure internals are shaken
out of the image.

If nil, all references from structure-objects to their conc-names, (BOA)
constructors, copiers, slot names, printers and documentation are
removed. See also :structure-packages-to-keep.

To retain slot name information (necessary if either the #S() reader syn-
tax or CLOS slot-value are to be used for structure-objects) set :keep-
structure-info to :slots.

To retain slot names and the default structure printer, set :keep-struc-
ture-info to :print.

Note: Any functions (constructors, copiers or printers) referenced in the
application are retained, just as any other code would be. It is therefore
not normally necessary to set this keyword.

Affected-by: :keep-debug-mode

:keep-stub-functions Keyword

Default value: t

When this is non-nil, all functions deleted by the treeshaker are replaced
by small stub functions. When a deleted function is called by the appli-
cation, its stub prints a message telling you that the function has been
deleted and how it can be reinstated. These stubs can take up a lot of
space if you smash large packages, but are invaluable while refining
delivery parameters.

For instance, if your application calls complexp after delivery with
:keep-complex-numbers set to nil, a message like the following is
printed:

5.2 Alphabetical list of deliver keywords
Attempt to invoke function COMPLEXP on arguments (10).
 COMPLEXP was removed by Delivery keyword :KEEP-COMPLEX-NUMBERS
 NIL.
 Try :KEEP-COMPLEX-NUMBERS T.

:keep-symbol-names Keyword

Default: nil

A list of symbols that must retain their symbol names.

:keep-symbols Keyword

Default value: nil

This keyword takes a list of symbols that are retained in the delivered
image. A pointer to this list is kept throughout the delivery process, pro-
tecting them from garbage collection.

:keep-top-level Keyword

Default value:

 (or (< *delivery-level* 5) (delivery-value :keep-debug-mode))

If this is nil, functions for handling the top level read-eval-print loop are
deleted. Note that this means that if the line based debugger is invoked,
there is no way to communicate with it

Note: the top level history is cleared, regardless of the value of the
:keep-top-level argument.

Affected by: :keep-debug-mode

:keep-trans-numbers Keyword

Default value: (delivery-value :numeric)

If this is nil, eliminate transcendental functions (for example sin).

Compatibility Note: This keyword has an effect on all platforms in Lisp-
Works 5.0 and later. It has no effect in LispWorks 4.4 and previous on
Windows and Linux platforms.
 59

5 Keywords to the Delivery Function

60
Affected by: :numeric

:keep-walker Keyword

Default value: nil

If this is nil, the walker is deleted.

:kill-dspec-table Keyword

Default value: (> *delivery-level* 0)

The dspec table is an internal table used for tracking redefinitions by
defadvice, trace and so on. If this keyword is non-nil it does an implicit
call to untrace, and previous uses of trace and defadvice are dis-
carded.

:license-info Keyword

Default value: nil

This keyword is obselete. Was previously used to pass license informa-
tion for products on certain platforms.

:macro-packages-to-keep Keyword

Default value: nil

A list of package names. Symbols in these packages that have a macro
definition are not fmakunbound when the delivery process deletes mac-
ros from the image (when :keep-macros is nil). Note that if these sym-
bols are not referenced, they may be shaken anyway. When ::keep-
macros is nil, this keyword has no effect.

:make-instance-keyword-check Keyword

Default value: (if (delivery-value :keep-debug-mode) :default
nil)

The value of the :make-instance-keyword-check keyword controls
whether make-instance checks its initargs in the delivered application.

5.2 Alphabetical list of deliver keywords
If the value is nil, then make-instance checks are switched off. If the
value is t, then make-instance checks are switched on.

If the value is :default, the make-instance checks are not affected by
the delivery process. See the function clos:set-make-instance-argu-
ment-checking for instructions on controlling make-instance checks in
this situation.

Compatibility note: In LispWorks 5.1 and previous versions, the value t
of :keep-clos overrides the effect of :make-instance-keyword-check.
In LispWorks 6.0 :make-instance-keyword-check always affects the
behavior in the delivered application, regardless of :keep-clos.

Compatibility note: In LispWorks 5.1 and previous versions, a true
value of :keep-debug-mode would always switch the checks on. In Lisp-
Works 6.0 :keep-debug-mode retains the current setting of make-
instance checks, rather than forcing the checks to be switched on.

Affected by: :keep-debug-mode

:manifest-file Keyword

Default value: nil

Windows only. Overrides the default application manifest, which can
affect whether an executable application is themed.

If the value is a string it must name a file that is a legal application man-
ifest containing the "dependency" element for Microsoft.VC80.CRT. If
the value is the keyword :no-common-controls-6 a manifest without
the element for common controls is used. If the value is nil, then the
LispWorks manifest is used.

See “Application Manifests” on page 82 for more information about
Windows application manifests in LispWorks applications.

:metaclasses-to-keep-effective-slots Keyword

Default value:

(when (member (delivery-value :keep-clos)
 ’(t :full-dynamic-definition))
 :all)
 61

5 Keywords to the Delivery Function

62
If the value is a list, the elements are metaclasses whose classes retain
their effective-slot-definitions. Value :all means all metaclasses.

:multiprocessing Keyword

Default value: nil

If set to t, starts multiprocessing with the delivery function (that is, the
first argument to deliver) running in a process created specially for it.

If set to :manual, allows multiprocessing to be started by the delivery
function, which should call mp:initialize-multiprocessing.

If set to nil, multiprocessing cannot be used in the delivered applica-
tion.

The value of this keyword argument is automatically t when :inter-
face is :capi, so you only need to supply it if CAPI is not being used.

:never-shake-packages Keyword

Default: delivery::*never-shake-packages*

A list of package names that will not be shaken. These packages and all
their symbols are preserved.

:no-symbol-function-usage Keyword

Default value: (not (delivery-value :keep-debug-mode))

x86 platforms only: eliminates symbols that are used only for function
calls.

See “Debugging with :no-symbol-function-usage” on page 115 for infor-
mation about debugging an image where these symbols have been elim-
inated.

:numeric Keyword

Default: t

Keep all numeric operations, unless overridden by :keep-complex-num-
bers.

5.2 Alphabetical list of deliver keywords
Compatibility Note: This keyword has an effect on all platforms in Lisp-
Works 5.0 and later. It has no effect in LispWorks 4.4 and previous on
Windows and Linux platforms.

:packages-to-keep Keyword

Default value: nil

This keyword takes a list of packages to be retained. All packages in the
list are kept in the delivered image, regardless of the values of the
:smash-packages and :delete-packages keywords.

If :packages-to-keep is :all, then the two variables above are set to
nil. See also “Coping with intern and find-symbol at runtime” on page
106.

Note: Other keywords push packages onto the :packages-to-keep list.

Note: When you keep a package by :packages-to-keep, this does not
cause that package’s symbols to be kept. To retain symbols, see “Ensur-
ing that symbols are kept” on page 105.

:packages-to-keep-externals Keyword

Default value: nil

A list of packages that should retain their external symbols, even when
:shake-externals is t (the default). When :shake-externals is nil,
this keyword has no effect.

The externals of the setf package are always retained, regardless of the
value of :packages-to-keep-externals.

:packages-to-keep-symbol-names Keyword

Default value:

(if (or
 (delivery-value :keep-debug-mode)
 (< *delivery-level* 5))
 :all
 nil)
 63

5 Keywords to the Delivery Function

64
A list of packages that should keep their symbol names. The names of
symbols in these packages are not modified, irrespective of the value of
:symbol-names-action.

The value can also be :all, meaning all packages.

:packages-to-remove-conditions Keyword

Default value: nil

A list of packages whose conditions are removed (that is where the sym-
bol-package of the name of the condition is one of the packages). The
system automatically adds the internal packages to this list. Conditions
that are in these packages but are also in the :keep-conditions list or its
precdence list are kept. The defaults cause all the conditions that are
defined by the system and are not standard to be deleted. To keep all the
conditions, you should pass :keep-conditions :all (or :condition-
deletion-action nil). To eliminate all conditions, you should do
:keep-conditions :none.

See “Deleting of condition classes” on page 98.

:packages-to-shake-externals Keyword

Default value: nil

A list of package names for which their external symbols should be
shaken when the value of :shake-externals is nil. When the value of
:shake-externals is t (the default), this keyword has no effect.

The externals of the keyword package are always shaken, regardless of
the value of :packages-to-shake-externals.

:post-delivery-function Keyword

Default value: nil

When non-nil, the value post-delivery-function should be a function
designator for a function of one argument:

post-delivery-function successp

5.2 Alphabetical list of deliver keywords
The system calls post-delivery-function after delivery. successp is true if
delivery was successful and false otherwise.

Note: during the delivery process, the Lisp system can be in an unstable
state, so it is not always possible to recover when delivery is not success-
ful.

:print-circle Keyword

Default value:

(or (= *delivery-level* 0)
 (delivery-value :interrogate-symbols))

When this is nil, the mechanism for printing circular structures is elimi-
nated.

:product-code Keyword

Default value: nil

UNIX only. Used to re-target the licensing requirements of the delivery
image to those of the delivered application. :product-code is a fixnum
supplied by Lisp Support. If the :product-code is :none, the application
will have no keyfile protection. You should not use the product code
:none without a prior arrangement with Lisp Support. If :product-code
is not supplied then the image is not re-targeted and will require a “Lisp-
Works Delivery” key to restart. Note that this should not be a problem
while developing an application.

:product-name Keyword

Default value: nil

On UNIX only the value product-name is used in keyfile error messages
to identify a product whose key is incorrect. If it is not supplied then
product-name defaults to "Anonymous Application".

On Microsoft Windows only product-name has an entirely different inter-
pretation: it provides the name that is used in CAPI dialogs which have
no specific title or owner.
 65

5 Keywords to the Delivery Function

66
On other platforms, product-name is ignored.

:quit-when-no-windows Keyword

Default value: t

If t, then after the application has opened at least one CAPI window,
whenever the application is waiting for input, a routine is run to check
whether any of its CAPI windows are still open. If there are no open
windows, the application exits.

Note: a multiprocessing LispWorks executable will stop multiprocessing
when there is no process other than the Idle Process. So if your applica-
tion simply displays a window, which is closed, then multiprocessing
will stop. This is independent of quit-when-no-windows.

:redefine-compiler-p Keyword

Default value: (>= *delivery-level* 1)

When this is true, the function compile is eliminated from the image.

Note: the function compile-file is always removed by delivery, regard-
less of :redefine-compiler-p.

:registry-path Keyword

Path for storing user preferences.

On Microsoft Windows this is relative to HKEY_CURRENT_USER.

On UNIX/Linux/FreeBSD/Mac OS X, this relative to the user home
directory.

Note: see “Delivery and CAPI” on page 95 for information on a possible
problem with delivered applications that record window geometries in
the registry.

:remove-plist-indicators Keyword

Default value: nil

This keyword takes a list of plist indicators to be deleted.

5.2 Alphabetical list of deliver keywords
:remove-setf-function-name Keyword

Default value: (not (delivery-value :keep-macros)

When t, the direct pointer from a symbol to its setf expansion is
removed. That means that macroexpansion of setf is not reliable any-
more. Normally, that is not a problem for the application.

:run-it Keyword

Default value: t

If this is t, the function argument to deliver is used as the application
startup function.

If this is nil, no application startup function is called when the delivered
image is started up.

The image exits immediately upon startup when :run-it is nil. Any
:call-count report requested is still generated on exit.

This keyword can be useful if you want to look at the symbols in the
image (with the keyword :call-count) but cannot you actually run the
application — for example because the application links up to a data-
base, but the database has not been started up. In such cases, set it to nil.

:shake-class-accessors Keyword

Default value:

(cond ((>= *delivery-level* 4) :remove)
 ((>= *delivery-level* 3) t)
 (t nil)))

This keyword controls whether class accessor functions are kept in their
slot-definition objects. Removing them allows unreferenced functions to
be deleted.

If it is nil it ensures all accessors are kept.

If it is non-nil, class accessors which are never referenced are deleted.

If it is :remove, all class accessor functions are removed from their slot
descriptions.
 67

5 Keywords to the Delivery Function

68
In general, accessors may be safely removed. However, if your applica-
tion needs to examine the slots of class instances, you need to retain
them.

:shake-class-direct-methods Keyword

Default value: (>= *delivery-level* 3)

This keyword controls whether class-direct methods are deleted.

Note: A method is not deleted if it specializes on a class that remains in
the delivered image.

:shake-classes Keyword

Default value: (>= *delivery-level* 2)

This keyword controls whether classes are shaken.

:shake-externals Keyword

Default value: t

If this is nil, all external symbols are preserved.

If this is non-nil, external symbols are also made eligible for garbage col-
lection when the treeshaker is invoked. See also :packages-to-shake-
externals.

:shake-shake-shake Keyword

Default value: (>= *delivery-level* 2)

If this is non-nil, the treeshaker is invoked during delivery. The tree-
shaker attempts to get rid of unreferenced symbols from the delivered
image.

It uninterns every package’s internal symbols. (In the special case of the
KEYWORD package, it uninterns the external symbols.) A garbage collec-
tion is then carried out, after which any remaining symbols are rein-
terned in the package from which they came. A similar procedure for

5.2 Alphabetical list of deliver keywords
class definitions and methods discriminating on classes is also per-
formed.

If you require that certain internal symbols be kept, and know they will
not be kept because they are not referenced in the image, you can export
them explicitly. See :exports. Doing so prevents them from being
deleted.

External symbols are shaken by default.. See :shake-externals.

:smash-packages Keyword

Default value: nil

This keyword takes a list of packages that should be smashed during
delivery.

When a package is smashed, all of its symbols are uninterned, and the
package structure is deleted. Also, its function definitions, property lists,
classes, values, and structure definitions are deleted or set to nil.

See “Smashing packages” on page 103 for more details.

CAUTION: Smashing destroys a whole package and all information
within its symbols. You are advised to avoid using it if possible. A better
alternative, if you cannot deal individually with symbols, is :smash-
packages-symbols.

Affected by: :keep-clos, :packages-to-keep, :keep-debug-mode

:smash-packages-symbols Keyword

Default value: nil

Takes a list of packages as for :smash-packages but only the symbols in
each specified package are smashed. The package is left, making it easier
to see which symbols in the specified packages are pointed to by other
packages.

:split Keyword

Default value: nil
 69

5 Keywords to the Delivery Function

70
When true, causes the Lisp heap and the executable to be saved in two
separate files.

If split is nil (the default), then the saved image is written as a single
executable file containing the Lisp heap. If split is t, then the saved Lisp
heap is split into a separate file, named by adding .lwheap to the name
of the executable (as specified by the argument file). When the executable
runs, it reloads the Lisp heap from the .lwheap file automatically.

In addition, when saving LispWorks as an application bundle on the
Macintosh (for example by using create-macos-application-bundle),
split can be the symbol :resources. This places the Lisp heap file in the
Resources directory of the bundle, rather than in the Contents/MacOS
directory alongside the executable, which allows the heap to be included
in the signature of the bundle.

The main use of split is to allow third-party code signing to be applied to
the executable, which is often not possible when saving an image with
the Lisp heap included in a single file.

:startup-bitmap-file Keyword

Default value: nil

A string naming a file containing an image to be displayed when the
application starts.

On Microsoft Windows, the image needs to be in Windows Bitmap for-
mat and must be Indexed Color rather than RGB color.

On Cocoa, GTK and Motif, the image can be in any format supported by
Graphics Ports, and the file will be read as if by gp:read-external-
image. See the "Working with images" section in the LispWorks CAPI User
Guide for details.

On Windows the user can dismiss the startup screen by clicking on it. It
can be dismissed programmatically by calling win32:dismiss-splash-
screen - see the LispWorks User Guide and Reference Manual for details.

The value nil means no bitmap is displayed.

5.2 Alphabetical list of deliver keywords
:structure-packages-to-keep Keyword

Default value: nil

A list of packages. For symbols in these packages that have a structure
definition, delivery keeps all the information in this structure definition,
regardless of the value of :keep-structure-info.

:symbol-names-action Keyword

Default value: (>= *delivery-level* 5)

Defines what to with symbol names. When it is nil, or when :pack-
ages-to-keep-symbol-names is :all, all symbol names are kept. When
it is t, symbol names (except those which are kept by :keep-symbol-
names, :keep-keyword-names or :packages-to-keep-symbol-names) are
changed to the same string "Dummy Symbol Name".

Compatibility Note: in LispWorks 4.4 and previous on Windows and
Linux platforms, :symbol-names-action t shortens symbol names to a
three-character unique code. This has changed, as described above, in
LispWorks 5.0 and later.

Removing symbol names makes it very difficult to debug the applica-
tion, and it is assumed that it is done after the application is essentially
error free. However, some applications may make use of symbol names
as strings, which may cause errors to appear only when the symbol
names are removed. In some cases the easiest solution is to retain sym-
bol names. This will result in a larger executable, though the size
increase is usually small.

If you do want to remove symbol names and need to debug your appli-
cation, :symbol-names-action takes these other values :spell-error,
:reverse, :invert and :plist. In the case of :spell-error (which is
probably the most useful), the last alphabetic characters in the first 6
characters of the symbol name are rotated by one, that is, A becomes B, g
becomes h, and Z becomes A. This leaves the symbol names quite read-
able, but any function that relies on symbol names fails. A more drastic
effect is achieved by the value :reverse, which reverses the symbol
name. The value :invert just changes the case of every alphabetic char-
acter to the other case. This is more readable than :spell-error, but if
 71

5 Keywords to the Delivery Function

72
the application relies on symbol names but does not care about case, the
errors do not appear. The value :plist causes the symbol names to be
set to the dummy name, but the old string is being put on the plist of
the symbol (get symbol ‘sys::real-symbol-name). The simple
backtracer uses the property when it exists to get the symbol name.

If the debugging shows that some symbols must retain their symbol
name for the application to work, this must be flagged to deliver by
either :keep-symbol-names or :packages-to-keep-symbol-names.

After debugging your delivered application using :spell-error,
:reverse, :invert or :plist, you may want the production build to be
done with :symbol-names-action t to remove symbol names and
achieve a small reduction in size.

Compatibility Note: in LispWorks 4.4 and previous on Windows and
Linux platforms, :symbol-names-action allows the value :dump. This is
no longer supported.

:symbols-to-keep-structure-info Keyword

Default value: nil

A list of symbols of which the structure information should be kept, in
addition to the symbols in the packages in :structure-packages-to-
keep.

:versioninfo Keyword

Default value: nil

Windows only. A plist containing version information to be placed in the
delivered file.

If :versioninfo is nil, no version information is supplied. Other-
wise:versioninfo should be a plist of the following keywords. All
strings should be in a form suitable for presentation to the user. Some of
the keywords discussed below are mandatory, and some are optional.

Mandatory keywords:

5.2 Alphabetical list of deliver keywords
:binary-version :binary-file-version :binary-product-version

You must specify either :binary-version or both
:binary-file-version and :binary-product-ver-
sion.

The file version relates to this file only; the product ver-
sion relates to the product of which this file forms a
part.

If :binary-version is specified, it is used as both the
file and product version.

The binary version numbers are 64-bit integers; conven-
tionally, this quantity is split into 16-bit subfields,
denoting, for example, major version, minor version
and build number. For example, version 1.10 build 15
might be denoted #x0001000A0000000F.

Note: There is no requirement to follow this conven-
tion; the only requirement is that later versions have
larger binary version values.

:version-string :file-version-string :product-version-string

You must specify either :version-string or both
:file-version-string and :product-version-
string.

The file version relates to this file only; the product ver-
sion relates to the product of which this file forms a
part.

If :version-string is specified, it is used as both the
file and product version.

The version strings specify the file and product versions
as strings, suitable for presentation to the user. There
are no restrictions on the format.

:company-name The name of the company producing the product.

:product-name The name of the product of which this file forms a part.
 73

5 Keywords to the Delivery Function

74
:file-description

A (brief) description of this file.

Optional keywords:

:private-build Indicates that this is a private build. The value should
be a string identifying the private build (for example,
who the build was produced for).

:special-build Indicates that this is a special build, and the file is a
variation of the normal build with the same version
number. The value should be a string identifying how
this build differs from the standard build.

:debugp A non-nil value indicates that this is a debugging ver-
sion.

:patchedp A non-nil value indicates that this file has been patched;
that is, it is not identical to the original version with the
same version number. It should normally be nil for
original files.

:prereleasep A non-nil value indicates that this is a prerelease ver-
sion.

:file-os Indicates the OS for which this file is intended. The
default value is :windows32. (:nt :windows32) may be
specified instead, to indicate that this application is
intended for Windows NT.

:comments A string value, which allows additional comments to be
specified, in a form suitable to presentation to the user.

:original-filename

This specifies the filename (excluding drive and direc-
tory) of this file. Normally it is defaulted based on the
filename argument to deliver.

:internal-nameThis the internal name of this file. Normally it is
defaulted to the value of original-filename, with the
extension stripped.

5.2 Alphabetical list of deliver keywords
:legal-copyright

A string containing copyright messages.

:legal-trademarks

A string containing trademark information.

:language The language for which this version of the file is
intended.

This can be either a numeric Windows language identi-
fier, or one of the keywords listed below. The default is
:us-english.

:arabic :bulgarian :catalan :traditional-chinese :czech :danish
:german :greek :us-english :castilian-spanish :finish :french
:hebrew :hungarian :icelandic :italian :japanese :korean :dutch
:norwegian-bokmal :polish :bralilian-portuguese :rhaeto-romanic
:romanian :russian :croatio-serbian-latin :slovak :albanian
:swedish :thai :turkish :urdu :bahasa :simplified-chinese
:swiss-german :uk-english :mexican-spanish :belgian-french
:swiss-italian :belgian-dutch :norwegian-nynorsk :portuguese
:serbo-croatian-cyrillic :canadian-french :swiss-french

:warn-on-missing-templates Keyword

 Default value: nil

Controls whether to warn about missing CLOS templates, which should
be pre-compiled. See “Finding the necessary templates” on page 90 for
details.
 75

5 Keywords to the Delivery Function

76

6

6 Delivery on Mac OS X
This chapter describes several issues relevant to delivery with LispWorks for
Macintosh.

6.1 Universal binaries
LispWorks (32-bit) for Macintosh is a universal binary, containing both Pow-
erPC and Intel architectures. To deliver a universal binary application from
LispWorks (32-bit) for Macintosh, you will need an Intel-based Macintosh
computer. You can specify a universal binary build in the Application Builder
tool (see the LispWorks IDE User Guide) or call save-universal-from-script
directly (see the LispWorks User Guide and Reference Manual).

LispWorks (64-bit) for Macintosh is also a universal binary, containing both
PowerPC and Intel architectures. To create a universal binary application from
LispWorks (64-bit) for Macintosh, you will need to deliver separately on both
a PowerPC Macintosh and an Intel-based Macintosh computer. Contact Lisp
Support if you need advice on creating a 64-bit universal binary after that.
77

6 Delivery on Mac OS X

78
6.2 Application bundles
deliver creates a single executable file. However graphical Macintosh appli-
cations consist of an application bundle, which is a folder Foo.app with sev-
eral subfolders containing the main executable and other resources.

LispWorks for Macintosh is supplied with example code that constructs an
application bundle. It is convenient to use this code - or your variant of it - at
delivery time, so that your delivered executable is ready to run in its applica-
tion bundle in the usual Mac OS X way. See “Creating a Mac OS X application
bundle” on page 129 for an illustration of this.

There is another example in examples/configuration/save-macos-applica-
tion.lisp. This code is actually a save-image script (rather than deliver) but
it shows how to avoid writing the application bundle twice when saving a
universal binary application.

6.3 Cocoa and GTK images
LispWorks for Macintosh is supplied with two images. One supports the
Cocoa GUI, the other supports the GTK+ GUI (and can load the Motif GUI).
You cannot build a Cocoa application using the GTK LispWorks image, and
vice versa.

You should use the appropriate image to deliver your application.

For GTK and Motif applications delivered with LispWorks for Macintosh, the
issues described in Chapter 8, Delivery on Linux, FreeBSD and Unix will be rele-
vant.

6.4 Terminal windows and message logs

6.4.1 Controlling use of a terminal window

A graphical Macintosh application does not usually have a console/terminal
window.

You can achieve this by supplying the keyword argument console :input
when delivering your application.

6.5 File associations for a Macintosh application
6.4.2 Logging debugging messages

Output to *terminal-io* from an application without a console/terminal
window will not ordinarily be visible to the user, so debugging messages
should be written to a log file.

Log files are recommended for any complex application as they make it easier
for you to get information back from your users.

You can use dbg:log-bug-form for logging errors. See the LispWorks User
Guide and Reference Manual for details.

6.5 File associations for a Macintosh application
To create an assocation between your LispWorks for Macintosh application
and files with a specified type (file extension):

1. Create the appropriate entries for the file type in the
CFBundleDocumentTypes array within the Info.plist file of the delivered
application.

2. Define a subclass of capi:cocoa-default-application-interface with
a message-callback.

3. Implement the :open-file message in the message-callback function.

4. Set the application interface on startup.

Also see the examples in

examples/delivery/macos/simple-application.lisp and examples/deliv-
ery/macos/full-application.lisp.

6.6 Editor emulation
If your application uses capi:editor-pane or its subclasses, your should con-
sider the input style. The editor in the delivered application can emulate
Emacs or Mac OS X style editing. The deliver keyword :editor-style con-
trols which emulation is used.
 79

6 Delivery on Mac OS X

80
6.7 Standard Edit keyboard gestures
To implement the standard gestures Command+X, Command+C and Command+V in
your CAPI/Cocoa runtime application, you must include an Edit menu explic-
itly in your capi:interface definition.

Note: The LispWorks IDE adds a minimal Edit menu to all CAPI interfaces
automatically, in order to make these standard gestures work in the Lisp-
Works IDE, but this does not persist after delivery.

6.8 Quitting a CAPI/Cocoa application
The application menu’s quit callback (that is, the callback normally invoked
by Command+Q) should simply call capi:destroy with the application interface
and should not call lw:quit directly.

For an example see the Quit My Application Full menu item in examples/capi/
cocoa-application.lisp.

6.9 Platforms supporting dynamic library delivery
You can deliver a dynamic library using 32-bit LispWorks or 64-bit LispWorks
on Intel-based Macintosh machines.

However you cannot deliver a dynamic library using any LispWorks product
on a PowerPC Macintosh.

LispWorks does not support dynamic libraries for the PowerPC architecture.
Therefore you cannot build a universal binary dylib.

7

7 Delivery on Microsoft
Windows
This chapter describes several issues relevant to delivery with LispWorks for
Windows.

7.1 Runtime library requirement
Applications that you build with LispWorks for Windows require the
Microsoft Visual Studio runtime library msvcr80.dll, so you must ensure it is
available on target machines. It is part of Windows Vista, but for earlier
Windows operating systems you should use the Microsoft redistributable
mentioned below.

At the time of writing, the redistributable vcredist_x86.exe for use with for
LispWorks (32-bit) applications is freely available at

http://www.microsoft.com/downloads/
details.aspx?familyid=32BC1BEE-A3F9-4C13-9C99-
220B62A191EE&displaylang=en

The redistributable vcredist_x64.exe for use with LispWorks (64-bit) appli-
cations is freely available at

http://www.microsoft.com/downloads/
details.aspx?FamilyID=90548130-4468-4bbc-9673-
d6acabd5d13b&DisplayLang=en
81

http://www.microsoft.com/downloads/details.aspx?familyid=32BC1BEE-A3F9-4C13-9C99-220B62A191EE&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=90548130-4468-4bbc-9673-d6acabd5d13b&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=90548130-4468-4bbc-9673-d6acabd5d13b&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=90548130-4468-4bbc-9673-d6acabd5d13b&DisplayLang=en

7 Delivery on Microsoft Windows

82
Run the redistributable from your application’s installer, or tell your users to
run it directly themselves before running your application.

7.2 Application Manifests
LispWorks for Windows is supplied with an embedded application manifest.
This default manifest tells the Operating System:

• which msvcr80.dll to use, and

• to use Common Controls 6

You can change the manifest in your delivered image by passing the keyword
argument :manifest-file to deliver. The value must be the name of a file
that is a legal application manifest, which is is used as the manifest. The mani-
fest must contain at least the "dependency" element for Microsoft.VC80.CRT
(without it, your application will fail to start with error messages "Failed to
find msvcr80.dll" or "The application configuration is incorrect"). If the mani-
fest does not contain the "dependency" element for Microsoft.Windows.com-
mon-controls your application will use Common Controls 5, and therefore
will not be a "Themed" application.

The value of :manifest-file can also be the special value :no-common-con-
trols-6, in which case a default manifest without the element for Common
Controls is used.

The default manifests that LispWorks uses are provided by way of documen-
tation in the lib/6-0-0-0/config directory. If desired, you can base your
application manifests as supplied via :manifest-file on these files:

Note: the above only applies when LispWorks is an executable. If LispWorks
is a DLL, then it will be themed if the executable that loads it contains the
Common Controls 6 manifest

32-bit LispWorks 64-bit LispWorks

With Common Controls 6 winlisp32.manifest winlisp64.manifest

Without Common Controls 6 lisp32.manifest lisp64.manifest

Table 7.1 The default manifests used by LispWorks

7.3 DOS windows and message logs
7.3 DOS windows and message logs

7.3.1 Controlling use of a DOS window

A graphical Windows application does not usually have a console (or "DOS
window").

You can achieve this by supplying the keyword argument console :input
when delivering your application.

7.3.2 Logging debugging messages

Output to *terminal-io* from an application without a console will not ordi-
narily be visible to the user, so debugging messages should be written to a log
file.

Log files are recommended for any complex application as they make it easier
for you to get information back from your users.

You can use dbg:log-bug-form for logging errors. See the LispWorks User
Guide and Reference Manual for details.

7.4 File associations for a Windows application
To create an assocation between your LispWorks for Windows application and
files with a specified type (file extension), create a DDE server in Lisp and reg-
ister the file types in Windows.

There is an example of this (for the LispWorks IDE) in examples/dde/lisp-
works-ide.lisp, but the technique is the same for any file extension.

7.5 Editor emulation
If your application uses capi:editor-pane or its subclasses, your should con-
sider the input style. The editor in the delivered application can emulate
Emacs or Microsoft Windows style editing. The deliver keyword :editor-
style controls which emulation is used.
 83

7 Delivery on Microsoft Windows

84
7.6 ActiveX controls
If your library foo is a Windows ActiveX control (that is, it uses capi:ole-
control-component and capi:define-ole-control-component) you may
choose to specify file "foo.ocx" as the file argument to deliver. The file type
defaults to "dll".

The file extension does not alter functionality - the system simply loads the file
referenced in the Windows registry.

8

8 Delivery on Linux, FreeBSD
and Unix
This chapter describes issues relevant to delivery with LispWorks for Linux,
LispWorks for FreeBSD, LispWorks for x86/x64 Solaris, and LispWorks for
Unix.

8.1 GTK+ considerations
The section describes issues relevant to delivery of CAPI applications running
on GTK+.

8.1.1 GTK+ libraries on the target machine

A suitable version of the GTK+ libraries must be installed on the target
machine for your CAPI/GTK application to run. The version requirements are
as for LispWorks itself, as mentioned in the LispWorks Release Notes and Instal-
lation Guide.

8.1.2 Fallback resources

If your CAPI/GTK application needs fallback resources then it should pass
the :application-class and :fallback-resources arguments when calling
capi:display and/or capi:convert-to-screen.
85

8 Delivery on Linux, FreeBSD and Unix

86
See capi:convert-to-screen in the LispWorks CAPI Reference Manual for a full
description of these arguments.

You could use the LispWorks resources as a starting point when constructing
your application’s resources. You can see the LispWorks fallback resources
(these are for application class Lispworks) as described under "Using X
resources" in the LispWorks CAPI User Guide.

You can override the default resource name using the capi:element initarg
:widget-name or the accessor (setf capi:element-widget-name). There is an
example in examples/capi/elements/gtk-resources.lisp.

8.2 X11/Motif considerations
The section describes issues relevant to delivery of CAPI applications running
on X11/Motif.

Note that the X11/Motif GUI is deprecated on Linux, FreeBSD, x86/x64
Solaris and Mac OS X, because the alternative GTK+ GUI library is now sup-
ported.

8.2.1 Loading Motif

On LispWorks platforms supporting pthreads, the supplied image contains
the GTK GUI only, and therefore GTK is the default graphical library for
applications. To build a Motif application on these platforms you need to
include

(require "capi-motif")

in your delivery script.

You may wish to consider building a GTK version of your application too.

8.2.2 Motif on the target machine

A suitable version of the OpenMotif library must be installed on the target
machine for your CAPI/Motif application to run. The version requirements
are as for LispWorks itself, as mentioned in the LispWorks Release Notes and
Installation Guide.

8.3 Logging debugging messages
8.2.3 Fallback resources

If your CAPI/Motif application needs fallback resources then it should pass
the :application-class and :fallback-resources arguments when calling
capi:display and/or capi:convert-to-screen.

See capi:convert-to-screen in the LispWorks CAPI Reference Manual for a full
description of these arguments.

You could use the LispWorks resources as a starting point when constructing
your application’s resources. You can see the LispWorks fallback resources
(these are for application class Lispworks) as described under "Using X
resources" in the LispWorks CAPI User Guide.

You can override the default resource name using the capi:element initarg
:widget-name or the accessor (setf capi:element-widget-name).

8.2.4 X resource names use Lisp symbol names

The default color and other attributes for each CAPI pane on X11/Motif is
computed as an X resource using the symbol name of the pane's class.
Therefore obtaining the correct X resources depends on the application
containing these symbol names.

Symbol names are removed at delivery level 5, but you can retain specific
names in the delivered image by passing a list of the class names to deliver as
the value of the keyword argument :keep-symbol-names.

8.3 Logging debugging messages
Log files are recommended for any complex application as they make it easier
for you to get information back from your users. The log should contain any
debugging messages, and can also contain information from your program.

You can use dbg:log-bug-form for logging errors. See the LispWorks User
Guide and Reference Manual for details.

8.4 Editor emulation
If your application uses capi:editor-pane or its subclasses, your should con-
sider the input style. The editor in the delivered application can emulate
 87

8 Delivery on Linux, FreeBSD and Unix

88
Emacs or KDE/Gnome style editing. The deliver keyword :editor-style
controls which emulation is used.

8.5 Products supporting dynamic library delivery
You can deliver a dynamic library using LispWorks on any supported x86
hardware and also using any 64-bit LispWorks product.

However you cannot deliver a dynamic library using LispWorks (32-bit) for
SPARC Solaris or LispWorks (32-bit) for HP-UX.

9

9 Delivery and Internal
Systems
9.1 Delivery and CLOS
Most applications using CLOS can be delivered without difficulty. However,
there are a few potential exceptions to this rule. Code dynamically redefining
classes and methods, and with certain method combinations, needs some
extra work.

9.1.1 Applications defining classes or methods dynamically

Set the deliver keyword :keep-clos to t or :full-dynamic-definition to
keep the code needed for dynamic definition in the image.

9.1.2 Special dispatch functions and templates for them

The LispWorks CLOS implementation achieves fast method dispatch by pro-
ducing special functions to perform discrimination and method dispatch.
Since the required operation can often only be determined by seeing what
arguments a generic function is called with, these functions can often end up
being generated and compiled at runtime.

If the compiler has been removed in a delivered application, then these special
runtime-generated functions cannot be compiled on the fly.
89

9 Delivery and Internal Systems

90
There are two ways in which the delivery system deals with this problem.

The first is to have a set of pre-compiled "template" constructors which can
construct an appropriate function. LispWorks comes with extensive set of
such constructors, which should cover most of cases. The programmer can
add her own, as explained below.

The other mechanism is to construct generic closures to do the work. The code
that generates the closures can cope with:

1. A simple method combination, with the operator naming a function (or
generic function) -- not a macro or special form.

2. A more complicated method combination, constructing a form which
should effectively be a tree of progn , multiple-value-prog1 and call-
method forms.

In most cases the effect on method dispatch time of using the generic tech-
nique is negligible. Pathological cases might, however, cause a slowdown of
10-20% over compiled special functions. In this case, as well as for cases of
user-defined complex method combinations which the generic mechanism
cannot cope with, the delivered image must have precompiled "template" con-
structors, and if they are not already there the user needs to add them, as
described next.

9.1.2.1 Finding the necessary templates

Even though it cannot compile the functions at runtime, delivery can generate
the forms for them. The necessary method combination templates can be
found by using the keyword :warn-on-missing-templates. This defaults to
nil. If this keyword is non-nil, a warning is issued whenever a missing tem-
plate is detected. The value of this keyword can be either a string or a path-
name, in which case it is a file to put the warning in, or t, in which case the
warning goes to *terminal-io*. The warning takes this form:

9.1 Delivery and CLOS
;*****

;>>> Add this combination to the template file <<<

(CLOS::PRE-COMPILE-COMBINED-METHODS

 ((1 COMMON-LISP:NIL) COMMON-LISP:NIL (CLOS::_CALL-METHOD_)))

; *****

You can take this template, place it in an ordinary lisp file, return to Lisp-
Works, and compile it. This compiled file should be loaded into the image
before delivery. See “Incorporating the templates into the application” on
page 91.

Most missing templates can be found statically, and if :warn-on-missing-
templates has been set, they are output at the time of saving the delivery
image. An attempt is made to find all missing templates. However, because
method combinations are dependent on the actual arguments to generic func-
tions, it is not always possible to find every missing template. The application
must be run to be sure of finding all the missing templates.

Note: Valid combinations may be generated or seen in warnings even if they
are never used. Delivery can only tell you what combinations the application
could potentially use.

9.1.2.2 Incorporating the templates into the application

A typical measure is to put all the templates generated into a file. You can add
new ones to it as you work through the delivery process. The templates must
be compiled and loaded into the application before delivery. To do this:

1. Collect into one template file all the method combination template forms
that have been output, so that it looks something like this:
 91

9 Delivery and Internal Systems

92
(CLOS::PRE-COMPILE-COMBINED-METHODS ((1 COMMON-LISP:NIL) COMMON-
LISP:NIL

 (COMMON-LISP:MULTIPLE-VALUE-PROG1 (CLOS::_CALL-METHOD_)

 (CLOS::_CALL-METHOD_)

 (CLOS::_CALL-METHOD_))))

(CLOS::DEFINE-PRE-TEMPLATES

 CLOS::DEMAND-CACHING-DCODE-MISS-FUNCTION (5 COMMON-LISP:NIL
(4)))

(CLOS::DEFINE-PRE-TEMPLATES

 CLOS::DEMAND-CACHING-DCODE-MISS-FUNCTION (6 COMMON-LISP:NIL
(4)))

...

No matter how many times the template form is printed, it only needs to
be included in the template file once.

2. In the LispWorks image, compile the template file.

3. Load the compiled template file into the image (along with the applica-
tion and library files) before delivery.

9.1.3 Delivery and the MOP

MOP programmers should note that, by default, the direct slots and direct
methods of all classes are emptied at delivery level 1 and above. To prevent
this, set the deliver keyword :keep-clos to t, :full-dynamic-definition
or :meta-object-slots as required.

9.1.4 Compression of CLOS metaobjects

To reduce the size of the delivered image, the delivery process compresses the
representation of CLOS metaobjects (classes, generic functions and methods).
This includes:

1. nullifying the class direct slots of the class.

9.2 Editors for delivered applications
2. Changing the effective slots to a function that is used in the initialization
of the instance. This is controlled by :metaclasses-to-keep-effec-
tive-slots and :classes-to-keep-effective-slots.

3. Compressing the representation of method objects. This is controlled by
:keep-clos. If :keep-clos is t, the representation of method objects is
not compressed. There is also no compression if you add a method to
method-qualifiers, method-specializers or method-function.

4. Compressing the representation of generic functions. This is not done if
:keep-clos is t, or if you add methods to any of the accessors of generic
functions.

9.1.5 Classes, methods, and delivery

See “Shaking the image” on page 31 for a discussion of how unused class def-
initions and methods are treated by delivery process.

9.1.6 Delivery and make-instance initarg checking

By default make-instance checks for valid initargs in LispWorks, signalling
an error on an invalid call. However, in a delivered application this behavior
may not be useful.

Initarg checking in the delivered application is controlled by the deliver key-
word :make-instance-keyword-check.

For more information about make-instance initarg checking, see the Lisp-
Works User Guide and Reference Manual.

9.2 Editors for delivered applications
This section contains information on how to include the LispWorks editor in
your delivered applications and how to control its behavior.

9.2.1 Form parsing and delivery

If the delivered image is used to edit LISP code, the parsing of forms will still
not work properly. The deliver keyword :keep-editor can be used to keep
the code for parsing forms in the editor.
 93

9 Delivery and Internal Systems

94
9.2.2 Emulation and delivery

The editor in the delivered application can emulate Emacs style, and
Microsoft Windows or Mac OS X style editing (depending on the platform).
The deliver keyword :editor-style controls which emulation is used.

9.2.3 Editor command groups

If any part of the editor is present in the image, every editor command that
has been loaded will be kept in the delivered image. Two deliver keywords
allow you to specify which commands to keep and which commands to
delete:

:editor-commands-to-keep (default nil)

:editor-commands-to-delete (default :all-groups)

The effect of these default values is that all the commands are deleted. If a
command is both these lists, it is kept.

To get rid of editor commands, use the keyword argument :editor-com-
mmands-to-delete to deliver.

Deleting a command does not automatically delete the associated function.
For example, the function editor:do-something-command could be called by
the application even if the command "Do Something" has been deleted.

The function itself is only deleted if it is not referenced elsewhere in the appli-
cation or if it is removed explicitly. Therefore, an application which uses the
editor in a non-interactive or limited interactive manner can delete all or most
of the editor commands. Note also that key bindings associate key sequences
with commands and not functions, so if a command is deleted any sequences
bound to it will no longer work. For consistency, the delivery process unbinds
them too.

The keyword :editor-commands-to-delete is processed in different ways
depending on the sort of value passed:

List value Process each element of the list. (Thus the list is tra-
versed recursively.)

String value The corresponding editor command is deleted.

9.3 Delivery and CAPI
Symbol value Taken to specify a Command Group.

The available Command Groups are:

:simple-editorThe simple editor contains basic mechanisms for edit-
ing text files, including regions, buffers and windows,
movement, insertion and removal commands, key
bindings, the echo area and extended commands (such
as Alt+X), file handling commands, filling and indent-
ing, and undo.

:full-editor The full editor has all the facilities of the simple editor,
and adds handling for Lisp forms, auto-save help and
other documentation commands searching, including
the system based search commands, tags support, and
support for interactive modes.

:extended-editor

The extended editor adds Lisp introspection to those
features: arglists, evaluate, trace, walk-form, symbol
completion, dspecs, callers and callees, buffer changes,
and hooks into the inspector and class, generic function,
and system browsers.

:demand-loadedCommands present in the standard LispWorks image
only if they are demand loaded.

:tools Commands supporting tools which must be explicitly
loaded on top of the editor, for example the listener.

:exclude Commands always deleted by the delivery process, for
example, compilation commands.

9.3 Delivery and CAPI
This section describes platform-independent issues in delivered applications
which use CAPI. See also Chapter 6, “Delivery on Mac OS X”, Chapter 7,
“Delivery on Microsoft Windows”, and Chapter 8, “Delivery on Linux,
FreeBSD and Unix” for issues specific to each supported windowing system.
 95

9 Delivery and Internal Systems

96
See the LispWorks CAPI Reference Manual for details of the CAPI symbols
mentioned.

9.3.1 Interface geometry depends on Lisp symbol names

The function capi:top-level-interface-geometry-key depends on symbol
names and hence will break at delivery level 5 unless the relevant symbol
names are retained. Use the deliver keyword :keep-symbols to keep the
class name of your top level interface.

9.4 Error handling in delivered applications
The error handling facilities ordinarily provided by the Common Lisp Condi-
tion System are not present by default in delivered applications. If you choose
not to retain the full Condition System, you can make use of the more limited,
but smaller, error systems available with Delivery.

Simplified error handling is still possible in applications without the Condi-
tion System. They can only trap “conditions” of type ERROR or WARNING. If an
application signals any condition other than WARNING or SIMPLE-WARNING, the
condition is categorized (and therefore trappable) as one of type ERROR.

9.4.1 Making the application handle errors

There are two classes of error an application is likely to need to handle: errors
generated by the application, and errors generated by the Lisp system.

9.4.1.1 Handling errors generated by the application

Error conditions that can occur in your application domain can be handled
easily enough if you define your own error handling or validation functions to
trap them. For instance, you might ordinarily have the following code, which
manages an error condition and makes a call to error:

 (let ((res (call-something)))
 (when res
 (generate-error res))

9.4 Error handling in delivered applications
(defun generate-error(res)
 (error 'application-error
 :error-number res))

You can easily define a version of generate-error that does all the work:

(defun generate-error (res)
 (let ((action
 (capi:prompt-with-list
 '(("Abort Operation" . abort)
 ("Retry Operation" . retry)
 ("Ignore Error")
 ("Quit" . stop-application)
 ("Do Something Else" . do-something-else))
 (find-error-string res)
 :print-function 'first
 :value-function 'rest)))
 (case action
 ((abort retry) (invoke-restart action))
 ((nil))
 (t (funcall action)))))

9.4.1.2 Handling errors generated by the Lisp system

Errors generated by the Lisp system, rather than the application domain, are a
little harder to deal with.

Suppose your application performs an operation upon a file. The application
calls a system function to complete this operation, so when there is no error
system, any errors it generates must be caught by the application itself.

The best solution to this problem is to wrap an abort restart around the oper-
ation. For example:

(defun load-knowledge-base (name pathname)
 (restart-case
 (internal-load-knowledge-base name pathname)
 (abort ()
 (capi:display-message
 "Failed to load knowledge base ~a from file ~a"
 name (namestring pathname))
 nil)))

Another solution would be to use a handler, as in the example below:
 97

9 Delivery and Internal Systems

98
(defun my-handler (type &rest args)
 (if (symbolp type)
 (apply 'capi:display-message
 "An error of type ~A occured, args ~A"
 type args)
 (apply 'capi:display-message args)))

The disadvantage of this approach is that the message is unclear.

In general, the application should not cause Lisp errors. Because it is difficult
to ensure that these never happen, it is a good idea for the application to wrap
an error handler around all its code. For example:

(handler-bind ((error 'application-handler-error))
 (loop
 (catch 'application-error
 (setup-various-things)
 (do-various-things))))

 (defun application-handler-error (condition)
 (when *application-catch-errors*
 (progn (give-some-indication-of-error)
 (do-some-cleanup)
 (throw 'application-error nil))))

(when *application-catch-errors* is nil, this just returns and then the
debugger is invoked).

In addition, the areas that are more prone to errors should be dealt with spe-
cifically. For example, file access is prone to error, so it should wrapped with
error handling.

9.4.1.3 Providing a fallback handler for uncaught errors

The variable cl:*debugger-hook* can be used to handle errors that are not
caught by other handlers.

9.4.2 Deleting of condition classes

Condition types are classes like any other class, so may be shaken out. How-
ever the code may contain many references to condition types through error
calls that are never going to happen in the application. Therefore, there is a
special deletion action for conditions, which is controlled by the deliver key-

9.5 Delivery and the FLI
words :condition-deletion-action, :keep-conditions and :packages-to-
remove-conditions.

When a condition is deleted (that is when :condition-deletion-action is
:delete), trying to signal it returns a simple-error, which means that it got
the wrong type. On the other hand, it has all the information in the format-
arguments slot. If the conditions are redirected (that is, when :condition-
deletion-action is :redirect), a stricter type is returned, but some of the
information may be lost, because the condition that it redirects to has fewer
slots.

User defined conditions are kept, unless:

1. You add packages to :packages-to-remove-conditions.

2. You set :keep-conditions to :none, in which case all the conditions are
eliminated, or :minimal, in which case all the user conditions are
deleted.

9.5 Delivery and the FLI
This section describes particular issues relevant to a delivered image contain-
ing Foreign Language Interface (FLI) code.

9.5.1 Foreign Language Interface templates

The Foreign Language Interface requires compiled code (known as FLI tem-
plates) to convert between foreign objects and Lisp objects. Most of these FLI
templates are already available in the image, and most applications do not
need extra templates.

However it is difficult to know in advance exactly which FLI templates will be
needed. When a new template is actually required, it is compiled. In a deliv-
ered image where the compiler has been removed, this causes an error like
this:

FLI template needs to be compiled
(see 'Foreign Language Interface templates' in the LispWorks
Delivery User Guide):
 (FLI::DEFINE-PRECOMPILED-FOREIGN-OBJECT-SETTER-FUNCTIONS
((:FLOAT :SIZE 4)))
 99

9 Delivery and Internal Systems

100
To solve this you need to find which templates your application uses that are
not already available, compile them, and load them before delivering.

To find which templates your application needs, do the following:

1. Start the undelivered application image (that is, LispWorks with your
application code loaded).

2. Call

 (FLI:START-COLLECTING-TEMPLATE-INFO)

3. Exercise the application.

4. Call

 (FLI:PRINT-COLLECTED-TEMPLATE-INFO)

This prints all the templates that were generated while exercising your appli-
cation. These FLI template forms should be put in a file which is compiled and
loaded as part of your application . FLI:PRINT-COLLECTED-TEMPLATE-INFO
takes a keyword :OUTPUT-STREAM to make this easier, for example:

(with-open-file (stream "fli-templates.lisp" :direction :output)
(FLI:PRINT-COLLECTED-TEMPLATE-INFO

:OUTPUT-STREAM stream))

Once you have compiled the file containing the templates, it should be loaded
as part of your application.

9.5.2 Foreign callable names

In most cases foreign callable names are passed to deliver in the value of the
:dll-exports keyword argument, and each of these foreign callables will be
retained automatically in the delivered image.

However other foreign callables defined with a string foreign-name are liable to
be shaken from the delivered image. The best approach is to use a symbol to
name such foreign callables, as described under fli:define-foreign-call-
able in the LispWorks Foreign Language Interface User Guide and Reference Man-
ual.

9.6 Modules
9.6 Modules
Part of the system is implemented using load on demand modules that are
loaded automatically when a function is called. Most of these modules are
only useful during development, so are not needed in the application. How-
ever, in some cases the application may need some module.

You can obtain the list of loaded modules by entering

 :bug-form nil

in a Listener. This prints, inter alia, the list of loaded modules.

To obtain a minimal list of modules, follow these steps:

1. Start a fresh LispWorks image, making sure it does not load any irrele-
vant code (for example in your .lispworks init file):

C:\Program Files\LispWorks> lispworks-6-0-0-x86-win32.exe -

init -

2. Load the application and run it.

3. Exercise the application, to ensure that any entry points for load on
demand modules are called.

4. Enter :bug-form nil in a Listener. The list of loaded modules should
include only modules that your application needs.

Once you know a module is required in your application, you need to load it
before delivering, by calling require:

(require module-name)

Add the call to require to your delivery script.

Note: require is case-sensitive, and generally module-name is lowercase for
LispWorks modules.

9.7 Symbol and package issues during delivery
Symbols and packages usually have the most significant effect on the size of a
delivered application, so it is worth paying attention to them during delivery.
 101

9 Delivery and Internal Systems

102
The basic principle of delivery is to garbage collect the image, freeing any-
thing the application does not refer to in order to make the image smaller. This
strategy works well enough for most objects, but not for symbols within pack-
ages: since all such symbols are referred to by their package, none of them can
be deleted.

You can overcome this problem in the following ways:

1. By shaking the image.

2. By deleting packages.

3. By smashing packages.

Deleting and smashing packages are not recommended. Deleting and smash-
ing are explained in the next section. They are both ways of removing symbols
from the application, one being more extreme than the other. You should note,
however, that it is possible to handle specific symbols individually. This is pre-
ferred.

By default, Delivery deletes all of the system’s packages, and smashes some of
them. This following section also explains how to prevent this when neces-
sary.

9.8 Throwing symbols and packages out of the application
This section discusses the circumstances in which you might want to throw
symbols and packages out of the application, by deleting or smashing them.

9.8.1 Deleting packages

When you delete a package, the following happens:

1. All the package’s symbols are uninterned.

2. The package name is deleted.

After the package is deleted, its symbols continue to exist, but because they
are no longer interned in a package they become eligible for collection at the
next garbage collection. They survive only if there are useful references to
them elsewhere in the application.

9.8 Throwing symbols and packages out of the applica-
tion
Note: Invoking the treeshaker has much the same effect on packages as delet-
ing them. However, by deleting a package you regain some extra space taken
up by hash tables.

9.8.2 How to delete packages

You can pass deliver a list of packages to delete with the keyword :delete-
packages.

9.8.3 Smashing packages

When you smash a package, the following happens:

1. All the package’s symbols are uninterned.

2. The package structure is deleted.

3. Its symbols’ function definitions, property lists, classes, values, and
structure definitions are deleted or set to nil.

After the package is smashed, the symbols continue to exist, but all the infor-
mation they contained is gone. By being uninterned they become eligible for
garbage collection. Also, the chances of any objects they referred to being col-
lected are increased.

CAUTION: Smashing destroys a whole package and all information within
its symbols. Use it carefully.

Note: Any symbol whose home package is to be smashed can be retained by
being uninterned before delivery commences.

9.8.4 How to smash packages

You can pass deliver a list of packages to smash with the keyword :smash-
packages or :smash-packages-symbols.

9.8.5 When to delete and smash packages

Note: In general, you are advised against deleting or smashing packages
unless it is absolutely necessary. Always try to reduce the image size as much
as possible by treeshaking first.
 103

9 Delivery and Internal Systems

104
If an application does one of the following things, packages are involved and
you must consider keeping them in the application:

1. Makes an explicit reference to a package by some of the package func-
tions, for example, intern, find-symbol and so on.

2. Uses the reader, with read or any of the other reader functions.

These functions make reference to a package (either *package* or one
given explicitly) whenever they read a symbol.

3. Printing a symbol with the format directive ~S.

The format function prints the symbol with a package prefix if the sym-
bol is part of a package.

4. Loading a file, whether compiled or interpreted.

5. Using the function symbol-package.

Fortunately, most applications are unlikely to do these things to more than a
small number of packages. You should, therefore, be able to delete most pack-
ages without breaking the application. When you know that none of the sym-
bols belonging to a package are used, you can go one step further and smash
it.

Smashing a package guarantees space savings where deleting it would not.
Even in a case where a symbol is referenced but unused, because it has been
smashed you still regain space taken up by objects hanging from slots for
function definition, value, property list and so on.

You do not usually gain much by smashing your own packages that you
would not gain by just deleting them — you are after all unlikely to have
included an entire package of symbols in your final application if you know it
is not going to use them. The real benefits of smashing can be seen when it is
performed on the system’s packages, some of which may be entirely irrelevant
to your application. In addition, you are unlikely to gain very much by delet-
ing a package that you would not gain by treeshaking. In general, you should
try to avoid either deleting or smashing packages explicitly.

However, if symbols in your packages are referenced through complex data
structures, making it difficult to track references down, smashing may still
prove useful.

9.9 Keeping packages and symbols in the application
9.9 Keeping packages and symbols in the application
This section explains how to keep packages and symbols in the application
when Delivery would otherwise remove them.

9.9.1 Ensuring that packages are kept

Your application may rely upon certain system packages that Delivery deletes
or smashes by default.

You can protect these packages with :packages-to-keep. All packages in the
list passed with this keyword are kept in the delivered image, regardless of
the state of the :smash-packages and :delete-packages keywords. If you
pass :packages-to-keep :all, then the two variables are set to nil.

Note: COMMON-LISP is the package your application is most likely to rely on,
and it is also very large. Keeping it has a very noticeable effect on the size of
the application. However, if your application uses read or load, it invites the
possibility of reading arbitrary code, and so COMMON-LISP must be kept.

See also “Coping with intern and find-symbol at runtime” on page 106.

9.9.2 Ensuring that symbols are kept

Internal symbols in packages you have kept may still be shaken out. If any
such symbol must be kept in the application, retain it force in one of the fol-
lowing four ways:

1. With the :keep-symbols keyword.

This is the recommended solution. See :keep-symbols.

2. With the :never-shake-packages keyword.

This solution is suitable when all the symbols to keep are in one
package, FOO-PKG say. Pass :never-shake-packages (list "FOO-PKG").
See :never-shake-packages.

3. Export the symbol from the package.

External symbols are always shaken during delivery.

You can override this behavior by passing :shake-externals nil to
deliver. See :shake-externals.
 105

9 Delivery and Internal Systems

106
You can also specify :packages-to-shake-externals and :packages-
to-keep-externals.

4. Make explicit reference to the symbol with another object that you know
will not be deleted.

A reference from the object to the symbol ensures that the garbage col-
lector passes over it during delivery.

See also “Coping with intern and find-symbol at runtime” on page 106.

9.10 Coping with intern and find-symbol at runtime
If you want to delete or smash a package, but discover that a symbol is created
in it at runtime with intern, or found in it with intern or find-symbol, you
have two choices: either change the source to create or manipulate the symbol
in another package, or keep the package after all.

If you cannot or do not want to change the source, and the package is large,
you face the annoying prospect of having to keep a lot of code in the image for
the sake of one symbol created or manipulated at runtime. Fortunately, there
are ways to get around this.

The method is to migrate the symbols by hand into new or smaller, “dummy”
packages. This is the only working method if at compile time you do not
know the names of the symbols to be saved.

Create a special package or packages for the symbols mentioned in these calls,
and delete the original packages. When this package is created (with
make-package or defpackage), it should use as few of the other packages in
the application as possible. Typically, :use nil suffices. For example:

(rename-package "XYZ" "XXX")
(push "XXX" *delete-packages*) ; discard pkg
(make-package "XYZ" :use nil) ; new pkg to reference

This allows the real package XYZ to be deleted without breaking a call to
intern such as the following:

(intern "FISH" "XYZ")

9.11 Symbol-name comparison
9.11 Symbol-name comparison
In a non-delivered LispWorks image, the form

(eq (symbol-name 'foo) (symbol-name 'foo))

evaluates to t. This behaviour is due to the way symbol names are cached.
There is no requirement or guarantee that the results of successive calls to
symbol-name be the same (eq) object.

After delivery, LispWorks symbol names are implemented differently such
that the eq test above fails. Take care that your application does not rely on
identity of symbol names.

Note: eq is not a reliable comparison of strings in general. Use equal for reli-
able string comparison.
 107

9 Delivery and Internal Systems

108

10

10 Troubleshooting
This chapter provides solutions to common delivery problems.

10.1 Debugging errors in the delivery image
In general, it is worth avoiding debugging an image that has been delivered at
a high delivery level if possible. If you discover a bug:

1. First check if the same error occurs in the original (undelivered)
development image. If it does, debug the problem in this image.

2. If the error is not reproducible in the development image, check if it is
reproducible in an image delivered at a lower delivery level (try 0, then 1
etc). If it is, read the error message and backtrace carefully. In most cases,
this is enough to debug the problem.

3. Make sure you can see messages printed by the application (the runtime
output), which may contain useful information. In the case of a graphical
application on Microsoft Windows or Macintosh these messages may
not normally be visible but can be captured by redirecting the runtime
output to a file.
109

10 Troubleshooting

110
To redirect the runtime output, run the application in a command shell.
This means a DOS command window (on Microsoft Windows), Termi-
nal.app (Mac OS X) or a shell (Unix/Linux etc). Enter the application
executable filename followed by > followed by the output filename, for
example,

on Windows:

C:\Program Files\MyApp> myapp.exe > C:\temp\myapp-output

on Macintosh:

mymac:/Applications/MyApp/MyApp.app/Contents/MacOS 2 % ./myapp >
/tmp/myapp-ouput

4. Consider the possibility that you are trying to use functionality that was
removed by delivery. You may need to keep the functionality explicitly,
by using one of the deliver keywords described in “Retaining or
removing functionality” on page 36.

5. If the problem occurs only in the delivered image and not in the original
image, and it is still not clear what the problem is, please contact Lisp
Support immediately. Send us your deliver script, all the output of the
delivery process and the runtime output of the application itself. This
situation is regarded by Lisp Support as a bug that should be fixed.

10.2 Problems with undefined functions or variables
A function or variable can be undefined for any of the following reasons:

1. It was never defined.

Check the image to see if it was defined before calling deliver again.

2. It belongs to a package that was smashed.

Check whether its package is in the list of smashed packages printed by
deliver. Use symbol-package to find out its home package.

3. It was interned in the wrong package.

This would probably be because its real package was deleted. Check if
the symbol that was called is one that was interned after delivering the
image — that is, while the application was running.

10.3 Failure to find a class
4. It has been deleted explicitly.

For example, load, complex number functions, and so on. Check in
Chapter 5 that there is no deliver keyword with a default setting that
throws it out.

5. It is an internal symbol and was shaken out.

If a symbol that is printed is uninterned and you cannot work out its
home package from its name, try using find-all-symbols or apropos in
the image after loading the application, but before the call to deliver, to
find the possible symbols.

6. It belongs to a load-on-demand module. See Section 9.6 on page 101.

See “Symbol and package issues during delivery” on page 101 for the expla-
nation and suggestions in cases 2, 3 and 5 above.

10.3 Failure to find a class
This situation can be resolved by much the same procedure as that described
in “Problems with undefined functions or variables” on page 110.

10.4 REQUIRE was called after delivery time with module ...
This error message means that a loadable module was omitted from the
application build, and the program now tries and fails to load that module.
The solution is described in “Modules” on page 101.

10.5 Failed to reserve... error in compacted image
Loading a compacted LispWorks (32-bit) for Windows DLL might result in an
error message like this:

Failed to reserve 14024705 bytes of memory (preferred address
0x20000000)
Error 487: Attempt to access invalid address.

LispWorks normally relocates its heap if the default address 0x20000000 is
already in use (for example, by another DLL) but this is not possible if the
DLL is compacted.
 111

10 Troubleshooting

112
The solution is to build a non-compacted DLL:

(deliver nil "foo" 5 :dll-exports '("Foo") :compact nil)

10.6 Memory clashes with other software
LispWorks executables and dynamic libraries have a default startup location
which may clash with other software already mapped at that location. Also, a
LispWorks image may grow up to an address where other software is already
mapped. Where possible LispWorks attempts to avoid such clashes automati-
cally.

If LispWorks fails to use other memory as it grows, the effect will be to limit
the size of the Lisp heap, possibly leading to messages

failed to enlarge memory

at the console. On some platforms LispWorks can fail to detect a clash safely,
which will lead to unpredictable behavior if it overwrites other code.

The behavior is specific to the particular platform and LispWorks implemen-
tation. There is a discussion of these issues (with the platform-specific details)
and a description of how you can avoid memory clashes under "Startup relo-
cation" in the LispWorks User Guide and Reference Manual.

10.7 Possible explanations for a frozen image
The image may die or hang up without issuing any useful message, either at
runtime or possibly during delivery. Some possible remedies follow:

• Deliver the application at a lower delivery level.

If things work after this, try the same level, but override the changed
keywords one by one.

• Retain more packages, with the keyword :packages-to-keep

For example:

(deliver 'application-entry
 "application"
 5
 :packages-to-keep '("LISPWORKS"))

10.8 Errors when finalizing classes
The COMMON-LISP package normally should not be deleted or smashed,
so it is unlikely to cause problems , but LISPWORKS and the packages
defined in the application itself are worth investigating.

If this gets the image working again, try to find out why the package is
required and see if you can eliminate this need. See “Symbol and pack-
age issues during delivery” on page 101 for more information on keep-
ing and throwing away packages.

10.8 Errors when finalizing classes
If an error occurs when finalizing a class, it usually means that a superclass is
missing.

10.9 Warnings about combinations and templates
Warning messages such as the following:

;*****
;>>> Add this combination to the template file <<<
(PRE-COMPILE-COMBINED-METHODS
 ((1 NIL) NIL (_CALL-METHOD_))) ;

occur when a method combination required by a particular function call is not
available. You can eliminate these warnings either by compiling the method
combination template forms output in the message and loading them into the
image before delivery, or by using the keyword :warn-on-missing-tem-
plates. See “Finding the necessary templates” on page 90, “Incorporating the
templates into the application” on page 91.

10.10 Valid type specifier errors
You may occasionally see an error of the form “symbol is not a valid type spec-
ifier”. This usually means that a class named symbol is missing.

10.11 Stack frames with the name NIL in simple backtraces
Such frames probably correspond to methods. Use the deliver keyword
:keep-function-name to get the names back.
 113

10 Troubleshooting

114
10.12 Blank or obscure lines in simple backtraces
These are usually stack frames named by the empty string. The keyword
:packages-to-keep-symbol-names, page 63 may fix this. This technique can
also be used on any symbol which prints as #:||.

10.13 Nil is not of type hash-table errors
This error is typically caused by evaluating special forms when the deliver
keyword :keep-macros has been set to nil.

Beware of this when interacting with the debugger at delivery levels 2 and
higher. The absence of the special forms quote and function can cause diffi-
culty. You may find the functions find-symbol, symbol-function and
funcall useful here. It may also help to keep the COMMON-LISP package (and
perhaps also the SYSTEM package), or specific symbols (with the :keep-
symbols keyword).

10.14 FLI template needs to be compiled
An error starting with

"FLI template needs to be compiled"

is probably a result of missing Foreign Language Interface templates. See
“Foreign Language Interface templates” on page 99 for instructions.

10.15 Failure to lookup X resources
X resource names use Lisp symbol names in CAPI/Motif, which might be
removed from the delivered image. This issue and the solution is described on
page 87.

10.16 Reducing the size of the delivered application
If your application does not contain very large data structures, the greatest
factor in its size when delivered is usually the number of symbols left in it.

10.17 Debugging with :no-symbol-function-usage
This is because function definitions (which are large) are usually associated
with symbols. Only when these symbols are deleted can the associated func-
tion definitions be deleted. Until that happens, the garbage collector passes
over them during delivery.

You should look for symbols that are left in the image, which do not need to
be there. You can do this by starting the delivered image in level 4 (or with
:keep-debug-mode) with the argument -listener. The image starts by inter-
acting with the user. You can then check which packages and symbols are left.

list-all-packages is one function you can use. Using the :call-count key-
word is another possibility.

10.17 Debugging with :no-symbol-function-usage
When no-symbol-function-usage is true while delivering an image "foo" on x86
platforms, delivery writes a file named "foo.zaps" (the "zaps file") containing
debug information about the symbols that were eliminated.

If an error occurs in the delivered image, the backtrace will contain a line of
the form.

("SYMBOL-FUNCTION-VECTOR" nnn)

where nnn is an integer. The actual function name can be recovered from the
zaps file by doing this in the LispWorks development image:

(require "delivery")
(dv::recover-zapped-symbol-from-file "foo.zaps" nnn)

The numbers are unique to each image, so take care to use the zaps file that
was produced at the same time as the delivered image.

10.18 Interrogate-Symbols
interrogate-symbols is designed to find why symbols are left in the image
even though they should not be. Since keeping information in the image
would itself keep symbols, the facility has as little functionality as possible.
The result is a non-intuitive interface, and you should be ready for this. You
are encouraged to try other methods first. In particular, you might consider
contacting Lisp Support first.
 115

10 Troubleshooting

116
To use interrogate-symbols pass :interrogate-symbols t to deliver. This
loads the interrogate symbol facility. and causes the delivered image to check
for the command line argument -interrogate-symbols on startup. If this
command line argument appears, the image first does symbol interrogation,
and then proceeds to run the application as normal.

Symbol interrogation starts by building an internal table of reverse pointers,
during which the image prints some messages about its progress. When it fin-
ishes, it prompts:

Enter Symbol >

The input is read one line at a time. Each line is interpreted as a single string,
as follows:

1. If the string does not contain the character #\:, and does not begin with
#\+, it is a symbol name. The string is used as the argument to find-
symbol (in the current package).

Note the string is used as-is, so it must not contain escape characters or
leading or trailing spaces, and must be in the right case. For example, the
symbol that is printed

SETF::\"USER\" \"WHATEVER\"

must be entered:

SETF::"USER" "WHATEVER"

[omitting the escape characters #\\] and to find the symbol CAR, you
must enter CAR, and not car. #\: characters after the first one (or the first
pair) are taken as part of the symbol.

If the symbol is found, the image prints a list, when the first element is
the symbol, the second element is a list of interesting symbols that point
to that symbol (possibly through uninteresting symbols), and the third
element is a list of symbols that point to the symbol directly. A symbol B
points to symbol B directly when there is a chain of pointers from A to B
which does not go via another symbol.

10.18 Interrogate-Symbols
An interesting symbol is a symbol in another package, or a symbol from
the same package which is pointed to by a symbol from another pack-
age. The idea is that the interesting symbols are the symbols that are
most likely to be worth further investigation.

Both the second and the third element may be the symbol :MANY rather
than a list, if there are more the sys::*maximum-interrogate-return*
(default value 30) of them.

2. If the string contains a #\: character or a pair of #\: characters, and there
are characters after it, it is a package name followed by a symbol name.
The characters up to the first #\: are used to search for the package. If it
is found, it skips the #\:, and if the following characters are #\: it skips
them, too. The rest of the string is then used as a symbol name. Like in 1.
above, both the package name and the symbol name must match exactly
the actual package and symbol name. The output is the same as in 1.

3. If the string starts with #\+ followed by a string as in 1. or 2., then the
symbol is found as in 1. or 2. Instead of looking for symbols that point to
it, the image builds a tree of rereverse pointers starting from the symbol,
going to depth sys::*check-symbol-depth*. In the tree, the car is an
object and the cdr is a list of pointers to it. Each pointer may be a single
object (if it has reached the depth limit, or found an object that is already
in the tree), or a recursive tree. The tree may be quite extensive.

4. If the first #\: character (or pair) is the last character in the string, than
the line specifies a package name. If the string does not start with a #\+,
the image prints each symbol from other packages that points (as
defined in 1.above) to symbols in the package, followed by a list of the
symbols in the package that it points to. To construct is this it has to
check the reverse pointers from all the symbols in the package, which
may take a long time if the package contains many symbols.

This option is especially useful in conjunction with the :smash-pack-
ages-symbols keyword to deliver, to find why a package that should
have gone remains in the image.

5. If the string ends with #\: as in 4. above, but starts with #\+, then the
rest of the string is treated as in 4., but the image simply prints for each
the symbol in the package the same information that 1. prints for a single
symbol.
 117

10 Troubleshooting

118

11

11 User Actions in Delivery
11.1 General strategy for reducing the image size
In many cases, the size of the image can be reduced if part of the user code or
data is eliminated, for example, when this code or data is present only for
debugging purposes. The system, however, cannot tell which part of the code
or data can be eliminated, so you have to do it yourself.

That can be done in either of two ways:

1. You can eliminate the code or data explictly before calling deliver, by
using fmakunbound, makunbound, remhash and so on. The advantage of
this approach is that it does not require you to know anything about
Delivery. The disadvantage of this is that these calls must be put explic-
itly in the delivery script.

2. The LispWorks image contains an action list called "Delivery actions",
which you can add actions to. See the LispWorks User Guide and Reference
Manual for information about action lists.

The "Delivery actions" action list is executed when the delivery process
starts, before any system action. For example, if *my-hash-table* con-
tains entries that are not required in the delivered application, then you
may write:
119

11 User Actions in Delivery

120
(defun clear-my-hash-table()
 (maphash #'(lambda (x y)
 (unless (required-in-the-application-p x y)
 (remhash x *my-hash-table*)))
 my-hash-table))
(define-action "delivery actions" "Clear my hash table"
 'clear-my-hash-table)

Using the action list has two advantages:

1. It does not have to be part of the deliver script, so it can be written near
the code that uses *my-hash-table*. This makes it easier to maintain
that code.

2. It can access the user interface of the delivery process. This is done via
the function delivery-value and (setf delivery-value).

11.2 User interface to the delivery process

delivery-value Function

Signature: delivery-value deliver-keyword

(setf delivery-value) assigns a new-value to deliver-keyword

These must be called after deliver is called. deliver-keyword must be one
of the legal keywords to deliver (which are listed in Section 5.2 on page
39, or can be displayed by calling deliver-keywords). delivery-value
returns the value associated with this keyword. When deliver is called,
the values associated with each keyword are initialized from the argu-
ments to deliver or using their default values (which are listed by
deliver-keywords), or set to nil. They can be modified later by user
actions that were added to the "Delivery actions" action-list, and then by
the system. Before starting the shaking operations, the values of the key-
words are reset, and delivery-value cannot be called after the shaking.

(setf delivery-value) can beused to set the value of a keyword. Since
the user actions are done before the system ones, the system actions
(which also use delivery-value to access the keywords value) will see
any change that the user actions did.

11.2 User interface to the delivery process
deliver-keywords Function

Lists the legal keywords to deliver. If the keyword default is non-nil, it
is printed on the same line. The default is a form that is evaluated if the
keyword was not passed to deliver, in the order that deliver-keywords
prints. deliver-keywords also prints a short documentation string for
each keyword.

delivery-shaker-cleanup Function

Signature: delivery-shaker-cleanup object function

Used to define a cleanup function that is called after the shaking opera-
tion. delivery-shaker-cleanup stores a pointer to function and a weak
pointer to object. After the shaking, the shaker goes through all the
object/function pairs, and for each object that is still alive, calls this func-
tion with the object as argument. This is used to perform operations that
are dependent on the results of the shaking operation.

If the cleanup function has to be called unconditionally, the object
should be t. The cleanup function should be a symbol or compiled func-
tion/closure, unless the evaluator is kept via :keep-eval. The shaker
performs another round of shaking after calling the cleanup functions,
so unless something points to them, they are shaken away before the
delivered image is saved. This also means that objects (including sym-
bols) that survived the shaking until the cleanup function is called, but
become garbage as a result of the cleanup function, are shaken away as
well.

The cleanup function cannot use delivery-value. If the value of one of
the keywords to deliver is needed in the cleanup function, it has to be
stored somewhere (for example, as a value of a symbol, or closed over).
It cannot be bound dynamically around the call to deliver, because the
cleanup function is executed outside the dynamic context in which
deliver is called.

An example:

Suppose the symbol P:X is referred to by objects that are not shaken, but its
values are used in function P:Y, which may or may not be shaken. We want to
 121

11 User Actions in Delivery

122
get rid of the value of P:X if the symbol P:Y has been shaken, and set the value
of P:X to T if :keep-debug-mode is passed to deliver and is non-nil, or nil
otherwise.

(defun setup-eliminate-x ()
 (let ((new-value (if (delivery-value :keep-debug-mode) t nil)))
 (delivery-shaker-cleanup
 t
 #'(lambda()
 (unless (find-symbol "Y" "P")
 (let ((sym (find-symbol "X" "P")))
 (when sym
 (set sym new-value))))))))
(define-action "Delivery actions" "Eliminate X"

'setup-eliminate-X)

This sets up the lambda to be called after the shaking operation. It will set the
value of P:X if the symbol P:Y has been shaken. Notes about the cleanup func-
tion:

1. It does not call delivery-value itself. Instead, it closes over the value.

2. It does not contain pointers to P:X or P:Y. In this case, it is specially
important not to keep a pointer to P:Y, because otherwise it is never
shaken.

3. It does not assume that P:X will survive the shaking.

[The code above assumes the the package "P" is not deleted or smashed]

The cleanup functions are called after the operation of delivery-shaker-
weak-pointer is complete, and are useful for cleaning up the operations of
delivery-shaker-weak-pointer.

delivery-shaker-weak-pointer Function

Signature: delivery-shaker-weak-pointer pointing accessor &key setter
remover dead-value pointed

Used to make a pointer from one object to another weak object during
the shaking operation. The operations of delivery-shaker-weak-
pointer are:

11.2 User interface to the delivery process
1. At the time it is called it computes the setter and remover if these are not
given, and stores all its arguments for the shaker.

2. Before the shaker starts, the shaker finds the value of the pointed object (if
this is not given) using the accessor, and stores weak pointers to the point-
ing object and the pointed object. It then uses the remover to remove the
pointer from the pointing object.

3. After the main shaking operation, for each pair of pointing/pointed objects
it checks if both have survived the shaking. If they did, it stores a pointer
to the pointed object in pointing using the setter.

Arguments:

pointing The pointing object. Because of the way delivery-
shaker-weak-pointer is defined, you are free to use
your own notion of pointing, for example, it may be the
key in a hash-table.

accessor The accessor that is called with the pointing object. It
returns the pointed object. The accessor is used for two
purposes:

1. getting the pointed object if it is not given.

2. computing the setter if it is not given.

If both :pointed and :setter are passed to delivery-
shaker-weak-pointer, the accessor is not used. The
accessor can be one of:

A symbol. This specifies a function that is called with
the pointing object as its argument.

A list starting with a symbol. In this case the car of the
list is called with the pointing object as its first argu-
ment, and the cdr forming the rest of the arguments,
that is:

(apply (car accessor) pointing (cdr accessor))

For example, if the accessor is (slot-value name), the
call is (slot-value pointing name), and

(aref 1 2) => (aref pointing 1 2).
 123

11 User Actions in Delivery

124
setter If the setter is not given, it is computed by the system
using the accessor and the same expansion that setf
would use. If it is given, it has the same properties as
the accessor, except that in the call the pointed object is
inserted before all the arguments. That is, if the setter is
(set-something name), the call is (set-something
pointed pointing name). In addition, where the accessor
accepts a symbol, the setter also accepts a function
object.

remover Default value t, which means use the setter. This is used
to remove the pointer from the pointing object. It is called
exactly like the setter, except that the first argument is
dead-value, rather than pointed.

pointed This gives the value of the pointed object. If it is not
given, the accessor is used to get the pointed object.

dead-value Default value nil. This the value that is stored by the
remover in the pointing value before starting the shak-
ing. Note that if the pointed object is shaken, the pointing
object is left with the dead-value.

Note that between the calls to the remover and the setter (steps 2 and 3
above), the pointing object points to the wrong thing (the dead-value). This
may cause problems if the object is used by the system during the shak-
ing (this does not happen unless you access objects which you should
not access), or if you define more than one delivery-shaker-weak-
pointer on the same object, and one of these uses a slot that has been
defined by the other. Thus you have to make sure that you do not cause
this situation.

Example 1:

Suppose the keys of *my-hash-table* are conses of an object and a number,
and it is desired to remove from *my-hash-table* those entries where the car
is not pointed to from anywhere else. This can be done by something like this :

11.2 User interface to the delivery process
;;;;--

;; This will eliminate all the entries where the car is nil
(defun clean-my-hash-table (table)
 (maphash (lambda (x y)
 (declare (ignore y))
 (unless (car x) (remhash x table)))
 table))

;; this will cause the car of any entry where the car is not
;; pointed to from another object to change to nil
(defun shake-my-hash-table ()
 (maphash #'(lambda (x y) (declare (ignore y))
 (delivery-shaker-weak-pointer x 'car))
 my-hash-table)

;;this will cause clean-my-hash-table to be called later
;; in the shaking, provided *my-hash-table* is still alive.
(delivery-shaker-cleanup *my-hash-table* 'clean-my-hash-table))

;; call this function at delivery time
(define-action "Delivery Actions" "shake my hash table"
 'shake-my-hash-table)

;;;;--

If the car can be nil, the code above removes some entries it should not. In
this case the appropriate lines should be changed to:

(delivery-shaker-weak-pointer x 'car :dead-value 'my-dead-value))

and

(when (eq (car x) 'my-dead-value) (remhash x table))

[This assumes there are no entries where the car is my-dead-value.]

Note that the cleanup function is not going to be called unless the hash table
actually survives the shaking operation.

Example 2:

The value of *aaa* is a list of objects of type a-struct, which has a slot called
name, which points to a symbol. We want to get rid of any of these structures if
the symbol is not pointed to by some other object.

Implementation A:
 125

11 User Actions in Delivery

126
Make the pointers from the structures to the names be weak, and have
the cleanup function throw away any structure where the name becomes
nil.

(defun clean-*aaa* ()
 (loop for a on *aaa*)

(delivery-shaker-weak-pointer a 'a-struct-name))
 (delivery-shaker-cleanup
 '*aaa*
 #'(lambda (symbol)
 (set symbol
 (remove-if-not 'a-struct-name

(symbol-value symbol))))))

(define-action "Delivery Actions" "Clean aaa" 'clean-*aaa*)

Implementation B:

Make a pointer from the symbol to the structure, and make *aaa* point
weakly to the names, and set *aaa* to nil. The remover and accessor do
nothing, and the setter is defined to restore *aaa*. This implementation
does not use the cleanup function.

(defun clean-*aaa* ()
 (let ((setter #'(lambda (name symbol)

(set symbol (nconc
(symbol-value symbol)
(list(get name 'a-struct))))

(remprop name 'a-struct))))
(dolist (x *aaa* ()

(let ((name (a-struct-name x)))
 (setf (get name 'a-struct) x)
 (delivery-shaker-weak-pointer '*aaa* nil
 :remover nil
 :pointed name
 :setter setter)))
 (setq *aaa* nil)))

(define-action "Delivery actions" "Clean aaa" 'clean-*aaa*)

12

12 Delivering CAPI Othello
This short example demonstrates how to deliver a small graphical application:
an implementation of the board game Othello, with the graphical portion of it
written using the CAPI library.

You can find the location of the code for this application in your LispWorks
installation by evaluating the following form:

(example-file "capi/applications/othello.lisp")

12.1 Preparing for delivery
With our ready-written application we can move straight to delivery. But first,
try the application out in an ordinary image so that you can see what it does.

To do this:

1. Create a directory called othello and copy the example file into it.

2. Start up LispWorks and its environment.

3. Compile and load the example file.

CL-USER 1 > (compile-file "othello.lisp" :load t)
[compilation messages elided]

4. Start up the application with the following form:
127

12 Delivering CAPI Othello

128
CL-USER 2 > (play-othello)

5. Play Othello!

Once you are familiar with this implementation of Othello, you can move on
to delivery preparations.

12.1.1 Writing a delivery script

The next task is to create a delivery script. This is a Lisp file that, when loaded
into the image, loads your compiled application code into the image, then
calls the delivery function deliver to produce a standalone image.

The first delivery should be at delivery level 0. A successful delivery at this
level proves that the code is suitable for delivery as a standalone application.
After assuring yourself of this, you can look into removing code from the
image to make it smaller.

If the delivered image is small enough for your purposes, there is no need to
pursue a smaller image. An application delivered at level 0 contains a lot more
in the way of debugging information and aids, and so is in some ways prefer-
able to a leaner image.

The startup function in the Othello game is cl-user::play-othello. The ini-
tial delivery script therefore looks like this:

(in-package "CL-USER")
(load-all-patches)
;; Load the compiled file othello. Should be in the same
;; directory as this script.
(load (current-pathname "othello" nil))
;; Now deliver the application itself to create the image othello
(deliver 'play-othello "othello" 0 :interface :capi)

Save this script in the newly created othello directory as script.lisp.

Note: Alternatively you can create a delivery script using the Application
Builder tool in the LispWorks IDE. The Application Builder is a windowing
interface offering another way to performs the steps described the following
sections. For full instructions on using the Application Builder tool, see the
LispWorks IDE User Guide.

The remainder of this section shows you how to complete delivery of the oth-
ello application using a command shell.

12.2 Delivering a standalone image
12.2 Delivering a standalone image
We now have a delivery script, enabling us to deliver the application as conve-
niently as possible. We can now try to deliver a simple, standalone image
(with the delivery script having been set up to deliver at delivery level 0) to
verify that the application can function standalone, before trying to make it
smaller.

1. Run the image with the script like this:

lispworks-6-0-0 -build script.lisp

See “Delivering the program” on page 12 for details of how to run the
image with a script on your platform. The LispWorks image name will
differ from the above according to the platform.

The script runs for a while, and as delivery proceeds a number of mes-
sages are printed. When it is finished, the image exits and there is an exe-
cutable file called othello.exe in your current working folder on
Microsoft Windows, and othello in your working directory on UNIX/
Linux/FreeBSD/Mac OS X.

2. Execute the othello file.

This should be a working, standalone Othello game.

Note: On Mac OS X/Cocoa you will also need to create an application
bundle to run GUI applications properly. See “Creating a Mac OS X
application bundle” on page 129 for details.

See “Delivering a standalone application executable” on page 24 for a more
detailed discussion of this part of the delivery process.

12.3 Creating a Mac OS X application bundle
The section applies only to LispWorks for Macintosh with the native Cocoa
GUI.

You should not simply run a Mac OS X/Cocoa GUI application from the com-
mand line in Terminal.app. Instead you should put the image in a suitable
Application Bundle and run it using the Finder. The example delivery scripts
in this manual automatically create the Application Bundle, using the code
described below.
 129

12 Delivering CAPI Othello

130
Your LispWorks Library contains example code which constructs a suitable
Mac OS X application bundle for your delivered image. The function write-
macos-application-bundle does several things:

• creates the folders comprising an Application Bundle

• adds the resources from a supplied template bundle (or LispWorks.app)
to the Application Bundle

• writes a suitable Info.plist file in the Application Bundle

• returns the path of the executable within the Application Bundle

12.3.1 Example application bundle delivery script

Note how this script calls deliver with the executable path returned by
write-macos-application-bundle:

(in-package "CL-USER")
(load-all-patches)
;; Compile and load othello example code
(compile-file (example-file "capi/applications/othello")
 :output-file :temp
 :load t)
;; Compile and load Application Bundle example code
#+:cocoa
(compile-file
 (example-file "configuration/macos-application-bundle")
 :output-file :temp
 :load t)
;; Now deliver the application itself and create the
;; application Othello.app
(deliver 'play-othello
 #+:cocoa (write-macos-application-bundle
 "~/Desktop/Othello.app"
 ;; Do not copy Lisp Source File
 ;; associations from LispWorks.app
 :document-types nil)
 #-:cocoa "~/othello"
 0 :interface :capi)

In the session below script.lisp is in the user’s home directory. Here is the
start and end of the session output in Terminal.app:

12.4 Command line applications
mymac:/Applications/LispWorks 5.1/LispWorks.app/Contents/MacOS 2
% ./lispworks-5-1-0-macos-universal -build ~/script.lisp
LispWorks(R): The Common Lisp Programming Environment
Copyright (C) 1987-2007 LispWorks Ltd. All rights reserved.
Version 5.1.0
Saved by LispWorks as lispworks-5-1-0-x86-darwin, at 18 Oct 2007
1:41
User dubya on mymac
; Loading text file /u/dubya/deliver-othello.lisp
; Loading text file /Applications/LispWorks 5.1/Library/lib/5-1-
0-0/private-patches/load.lisp
;;; Compiling file /Applications/LispWorks 5.1/Library/lib/5-1-0-
0/examples/capi/applications/othello ...
;;; Safety = 3, Speed = 1, Space = 1, Float = 1, Interruptible = 0

[... full compilation and delivery output not shown...]

Shaking stage : Saving image
Build saving image: /u/dubya/Desktop/Othello.app/Contents/MacOS/
Othello
Build saved image: /u/ldisk/dubya/Desktop/Othello.app/Contents/
MacOS/Othello

Delivery successful - /u/dubya/Desktop/Othello.app/Contents/
MacOS/Othello

The last line of the deliver output shows the full path to the executable, but
you should run the application bundle Othello.app via the Finder.

12.3.2 Further Mac OS X delivery examples

These can be found in your LispWorks library directory examples/delivery/
macos/.

12.4 Command line applications
If you need to deliver a non-GUI application for Mac OS X, change the deliv-
ery script to remove the code (conditionalized in the examples under #+cocoa)
that constructs the Application Bundle.

On all platforms, delivering a non-GUI application will not need the :inter-
face :capi keyword argument.
 131

12 Delivering CAPI Othello

132
Your delivery script to build a command line application will look something
like this:

(in-package "CL-USER")
(load-all-patches)
(load "non-gui-code")
(deliver 'dont-start-the-gui
 "non-gui-app"
 5)

12.5 Making a smaller delivered image
Having delivered a standalone image successfully, we can look into delivering
a smaller one. To do this we adjust the parameters passed to deliver in the
delivery script. The typical approach is to experiment with parameters until
you find a set that produces the smallest possible working image from your
application.

There are many ways to make the image smaller, but the simplest is to
increase the delivery level specified to the deliver function. See “How to
deliver a smaller and faster application” on page 30 for more details.

12.5.1 Increasing the delivery level

Applications that do not use any of Common Lisp’s more dynamic features
(creating classes at runtime, evaluating arbitrary code) can usually be deliv-
ered all the way up to the maximum level of 5 without breaking. Our Othello
game is one such application.

Try re-delivering the Othello game at different levels. Do this by editing your
delivery script, changing the third argument to deliver to a number between
0 and 5 inclusive.

Index
Symbols
"SYMBOL-FUNCTION-VECTOR" 115

A
ActiveX control 84
ActiveX DLL 84
Application Builder tool 12
applications

coding for efficient delivery 15–19
command line 131
icons 48
name of delivered image file 22
non-GUI 131
standalone delivery 24–29

automatic memory management. See gar-
bage collection.

C
call counting

all symbols in application 40
recording results of 41, 43
setting up 40

:call-count keyword 40
CAPI

geometry 96
preferences 96
window positions 96

classes
accessors 67
deleting and keeping 41

delivery issues 31
dynamic definition 89
ole-control-component 84
printing information about 41

:classes-to-remove keyword 41
:clean-down keyword 41
CLOS 89–93

deleting and keeping 50–52
diagnostics 41
dynamic definition 89
method dispatch efficiency 89–92
object printing code 51
templates for method combinations 91

:clos-info keyword 41
code signing 69
coding applications for efficient

delivery 15–19
command line applications 131
Command+C 80
Command+V 80
Command+X 80
Common Lisp Object System. See CLOS.
:compact keyword 42, 111
compile function 66
compile-file function 2, 66
complex number representation, deleting

and keeping 52
:condition-deletion-action

keyword 42
:console keyword 42
convert-to-screen function 85, 87

D
debugger-hook variable 98
debugging and testing

133

134
checking an image without running
it 67

in a delivered image 53
stub definitions for deleted

functions 58
define-foreign-callable

macro 25, 44, 100
define-ole-control-component

macro 84
delete-packages list 43
:delete-packages keyword 43, 103,

105
deleting and keeping

class accessors 67
classes 41
CLOS 50–52
complex number representation 52
debugger 53
documentation 54
dspec table 60
editor commands 45–46
eval function 19
evaluators 54
external symbols 68–69
fasl dumper 54
find-symbol function 18, 106
format directives 47
function names
functions 47
history of forms entered 59
listener top level 59
load function 56
macros 57
methods, class-direct 68
module facility 57
packages 43, 102
packages, all 53
plist indicators 66
structure internals 58
stub definitions for deleted

functions 58
walker 60

deliver function 2, 12, 22
delivered image

debugger 53
module facility, deleting and

keeping 57
Delivering on Linux, FreeBSD and

Unix 85–88
Delivering on Mac OS X 77–80
Delivering on Windows 81–84
deliver-keywords function 33, 121
delivery 12, 21–32
class issues 16, 31
diagnostics for all symbols 40
function issues 16
keywords for controlling 39–75
library dependencies, and 16
Lisp interface to 12, 22, 39–75
methods, and 31
package issues 19, 47, 57, 101
preparation for 23
severity level 22, 30
stages of 3, 30
standalone applications 24–29
stub definitions for deleted functions 58
symbol issues 16, 31, 101
system packages 102
treeshaking 31, 68
with a command shell 13
with a DOS command window 13
with Terminal.app 13
without running the application 67
without writing to disk 49

delivery level 22, 30
delivery-shaker-cleanup

function 121
delivery-shaker-weak-pointer

function 122
delivery-value function 120
diagnostics

all delivered symbols 40
CLOS usage 41

:diagnostics-file keyword 43
dismiss-splash-screen function 70
display function 85, 87
:display-progress-bar keyword 43
DLL delivery
:automatic-init keyword 39
:dll-added-files keyword 44
:dll-exports keyword 44, 100

documentation, deleting and keeping 54
dspec table, deleting and keeping 60
:dump-symbol-names keyword 45
dylib

architecture 80
dynamic library delivery
:automatic-init keyword 39
:dll-added-files keyword 44
:dll-exports keyword 44
:image-type keyword 49
on Macintosh 80

E
Edit menu

standard gestures 80
standard keystrokes 80

:editor-commands-to-delete
keyword 45, 94

:editor-commands-to-keep
keyword 46, 94

editors
deleting and keeping commands 45–46,

94–95
Emulation 46

:editor-style keyword 46
efficiency 15

runtime code loading 16
See also size of the application.

error handling 97–98
application-generated errors 96
fallback handler 98
system-generated errors 96–97

:error-handler keyword 46
:error-on-interpreted-functions

keyword 47
eval function

deleting and keeping 54
effects on size of application 19

:exe-file keyword 47
:exit-message keyword 47
exporting symbols from packages 47, 69
:exports keyword 47
external symbols and delivery 68–69

F
failed to enlarge memory 112
fasl dumper, deleting and keeping 54
file for call-count output 43
files

association for extension 79, 83
association for type 79, 83
double clicking 79, 83
launching 79, 83

find-symbol function
effects on application size 18, 106

FLI
templates 99, 114

:format keyword 47
function names, deleting and keeping
functions

deleting and keeping 47
deliver-keywords 33, 121
delivery-shaker-cleanup 121

delivery-shaker-weak-
pointer 122

delivery-value 120
dismiss-splash-screen 70
eval 54
names, deleting and keeping
save-image 43
stub definitions for deleted functions 58

:functions-to-remove keyword 47

G
garbage collection 4, 32

delivery, and 31
heap compaction before delivery 42
See also treeshaking.

generic functions
class-direct methods 68
collapsing into ordinary functions 48

:generic-function-collapse
keyword 47

:gf-collapse-output-file
keyword 48

H
heap compaction before delivery 42
history list of forms entered

deleting and keeping 59

I
:icon-file keyword 48
image

split on saving 69
:image-type keyword 49, 69
initialize-multiprocessing

function 62
:in-memory-delivery keyword 49
:interface keyword 50
intern function and application size 18,

31, 106
internal symbols and application size 68–

69

K
:keep-clos keyword 50, 89, 92
:keep-clos-object-printing

keyword 51
:keep-complex-numbers keyword 52
:keep-conditions keyword 52
:keep-debug-mode keyword 53
:keep-documentation keyword 54
:keep-editor keyword 93

 135

136
:keep-eval keyword 54
:keep-fasl-dump keyword 54
:keep-function-name keyword 55,

113
:keep-gc-cursor keyword 56
keeping. See deleting and keeping.
:keep-lisp-reader keyword 56
:keep-load-function keyword 56
:keep-macros keyword 57, 114
:keep-modules keyword 57
:keep-package-manipulation

keyword 57
:keep-pretty-printer keyword 57
:keep-structure-info keyword 58
:keep-stub-functions keyword 58
:keep-symbol-names keyword 59
:keep-symbols keyword 59, 105, 114
:keep-top-level keyword 59
:keep-trans-numbers keyword 59
:keep-walker keyword 60
keywords
:call-count 40
:classes-to-remove 41
:clean-down 41
:clos-info 41
:compact 42, 111
:condition-deletion-

action 42
:console 42
:delete-packages 43, 103, 105
:diagnostics-file 43
:display-progress-bar 43
:dump-symbol-names 45
:editor-commands-to-

delete 45, 94
:editor-commands-to-keep 46,

94
:editor-style 46
:error-handler 46
:error-on-interpreted-

functions 47
:exe-file 47
:exit-message 47
:exports 47
:format 47
:functions-to-remove 47
:generic-function-

collapse 47
:gf-collapse-output-file 48
:icon-file 48
:image-type 49, 69
:in-memory-delivery 49
:interface 50
:keep-clos 50, 89, 92
:keep-clos-object-printing 51
:keep-complex-numbers 52
:keep-conditions 52
:keep-debug-mode 53
:keep-documentation 54
:keep-editor 93
:keep-eval 54
:keep-fasl-dump 54
:keep-function-name 55, 113
:keep-gc-cursor 56
:keep-lisp-reader 56
:keep-load-function 56
:keep-macros 57, 114
:keep-modules 57
:keep-package-manipulation 57
:keep-pretty-printer 57
:keep-structure-info 58
:keep-stub-functions 58
:keep-symbol-names 59
:keep-symbols 59, 105, 114
:keep-top-level 59
:keep-trans-numbers 59
:keep-walker 60
:kill-dspec-table 60
:license-info 60
:macro-packages-to-keep 60
:make-instance-keyword-

check 60
:manifest-file 61
:multiprocessing 62
:never-shake-packages 62, 105
:no-symbol-function-usage 62
:numeric 62
:packages-to-keep 63, 105
:packages-to-keep-symbol-

names 63
:packages-to-remove-

conditions 64
:post-delivery-function 64
:print-circle 65
:product-code 65
:product-name 65
:quit-when-no-windows 66
:redefine-compiler-p 66
:registry-path 66
:remove-plist-indicators 66
:remove-setf-function-name 67
:run-it 67
:shake-class-accessors 67
:shake-class-direct-methods 68

:shake-classes 68
:shake-externals 68, 105
:shake-shake-shake 31, 68
:smash-packages 69, 103, 105
:split 69
:startup-bitmap-file 70
:structure-packages-to-keep 71
:symbol-names-action 71
:symbols-to-keep-structure-

info 72
:versioninfo 72
:warn-on-missing-templates 75,

91
keywords for controlling delivery 39–75

severity level, and 30
:kill-dspec-table keyword 60

L
libraries 2

dependencies between 16
effects on application size 16

:license-info keyword 60
LispWorks IDE 2
listener top level

deleting and keeping 59
load function, deleting and keeping 56
loading code at runtime 16

restrictions upon 56
log-bug-form function 79, 83, 87

M
:macro-packages-to-keep

keyword 60
macros
define-foreign-callable 25, 44,

100
define-ole-control-

component 84
macros, deleting and keeping 57
make-instance function 60, 93
:make-instance-keyword-check

keyword 60
:manifest-file keyword 61
memory clashes 112
memory management. See garbage collec-

tion.
methods

class-direct, deleting and keeping 68
discriminating on classes 31
dispatch efficiency 89–92
dynamic definition 89

printing information about 41
modules

loading 2, 56, 101
msvcr80.dll 81
:multiprocessing keyword 62

N
:never-shake-packages keyword 62,

105
non-GUI applications 131
:no-symbol-function-usage

keyword 62
:numeric keyword 62

O
ocx file 84
ole-control-component class 84

P
package manipulation, deleting and

keeping 57
packages

deleting and keeping 43, 102
deleting versus smashing 103
delivery 19
exporting symbols from 47, 69
keeping 63, 105
keeping all 53
smashing 69, 102–103

:packages-to-keep keyword 63, 105
:packages-to-keep-symbol-names

keyword 63
:packages-to-remove-conditions

keyword 64
plist indicators, deleting and keeping 66
:post-delivery-function

keyword 64
:print-circle keyword 65
:product-code keyword 65
:product-name keyword 65

Q
:quit-when-no-windows keyword 66

R
:redefine-compiler-p keyword 66
:registry-path keyword 66
:remove-plist-indicators

keyword 66
:remove-setf-function-name

 137

138
keywords 67
require function 2, 7, 56, 101
:run-it keyword 67
runtime library

requirement on Windows 81

S
save-image function 2, 43
save-universal-from-script

function 77
set-make-instance-argument-

checking function 61
severity level of the delivery 22, 30

keyword parameters, and 30
:shake-class-accessors

keyword 67
:shake-class-direct-methods

keyword 68
:shake-classes keyword 68
:shake-externals keyword 68, 105
:shake-shake-shake keyword 31, 68
shaking. See treeshaking.
size of the application
intern function, and 18, 106
internal symbols, and 68–69
interned symbols, and 31
packages, and 19

smashing packages 69, 102–103
:smash-packages keyword 69, 103,

105
splash screen 70
:split keyword 69
standalone applications. See delivery;

security, separately licensed
applications; applications, stan-
dalone delivery.

startup and shutdown
shutdown when all windows

closed 66
startup function 22
startup function, ignoring 67

startup image 70
startup screen 70
startup window 70
:startup-bitmap-file keyword 70
structure internals, deleting and

keeping 58
:structure-packages-to-keep

keyword 71
stub definitions for deleted functions 58
:symbol-names-action keyword 71
symbols
deleting and keeping 105
:symbols-to-keep-structure-info

keyword 72
system packages and delivery 102

T
templates

CLOS method combinations 91
FLI 99
Foreign Language Interface 99

the zaps file 115
top-level-interface-geometry-

key function 96
treeshaking 32

garbage collection, and 31
interned symbols, classes, functions,

and 31
Lisp interface to 68

type declaration and discrimination 17

U
uncaught errors

handling 98
universal binary 77

architecture 80

V
variables
debugger-hook 98

:versioninfo keyword 72

W
walker, deleting and keeping 60
:warn-on-missing-templates

keyword 75, 91

X
X resources

dependency on symbol names 87
fallback resources on GTK+ 85
fallback resources on Motif 87

	Delivery User Guide
	Copyright and Trademarks
	Contents
	1 Introduction
	1.1 What does Delivery do?
	1.2 What do you get with Delivery?
	1.2.1 Programming libraries and facility support code
	1.2.2 Functionality removed by delivery

	1.3 Conventions and terminology used in this manual
	1.3.1 Common Lisp reference text
	1.3.2 Platform-specific keywords

	1.4 A breakdown of the delivery process
	1.4.1 Developing your application
	1.4.2 Managing and compiling your application
	1.4.3 Debugging, profiling and tuning facilities
	1.4.4 Delivering your compiled application
	1.4.5 Licensing issues
	1.4.6 Modules
	1.4.7 Error handling
	1.4.8 Troubleshooting
	1.4.9 Examples

	1.5 Runtime licensing on UNIX
	1.5.1 Protection of the delivery product on UNIX
	1.5.2 Protection of the delivered image on UNIX
	1.5.3 Unprotected runtime applications on UNIX
	1.5.4 Expiration of unprotected runtime applications on UNIX

	2 A Short Delivery Example
	2.1 Developing the program
	2.2 Delivering the program
	2.2.1 Delivering the program using the LispWorks IDE
	2.2.2 Delivering the program using a command shell
	2.2.3 Further example

	3 Writing Code Suitable for Delivery
	3.1 Basic considerations when coding for delivery
	3.2 Efficiency considerations when coding for delivery
	3.2.1 Use of modules
	3.2.2 Loading code at runtime
	3.2.3 Use of symbols, functions, and classes
	3.2.4 Making references to packages
	3.2.5 Declaring the types of variables used in function calls
	3.2.6 Avoid referencing type names
	3.2.6.1 Referencing types via methods
	3.2.6.2 Referencing types via predicates

	3.2.7 Use of the INTERN and FIND-SYMBOL functions
	3.2.8 Use of the EVAL function and the invocation of uncompiled functions
	3.2.9 User-defined and built-in packages

	4 Delivering your Application
	4.1 The delivery function: deliver
	deliver
	4.2 Using the delivery tools effectively
	4.2.1 Saving the image before attempting delivery
	4.2.2 Delivering the application in memory

	4.3 Delivering a standalone application executable
	4.4 Delivering a dynamic library
	4.4.1 Simple delivery of a dynamic library
	4.4.2 Using the dynamic library
	4.4.3 Simple Windows example
	4.4.3.1 Using the Application Builder

	4.4.4 Further example
	4.4.5 More about building dynamic libraries

	4.5 How to deliver a smaller and faster application
	4.5.1 Making the image smaller

	4.6 How Delivery makes an image smaller
	4.6.1 Garbage collecting the image
	4.6.2 Shaking the image

	5 Keywords to the Delivery Function
	5.1 Topic-based list of deliver keywords
	5.1.1 Controlling the behavior of the delivered application
	5.1.2 Testing and debugging during delivery
	5.1.3 Behavior of the delivery process
	5.1.4 Retaining or removing functionality
	5.1.4.1 Directing the behavior of the treeshaker and garbage collector
	5.1.4.2 Classes and structures
	5.1.4.3 Symbols, functions, and packages
	5.1.4.4 LispWorks environment
	5.1.4.5 CLOS metaclass compression
	5.1.4.6 Input and output
	5.1.4.7 Dynamic code
	5.1.4.8 Numbers
	5.1.4.9 Conditions deletion

	5.2 Alphabetical list of deliver keywords
	:action-on-failure-to-open-display
	:analyse
	:automatic-init
	:call-count
	:classes-to-keep-effective-slots
	:classes-to-remove
	:clean-down
	:clean-for-dump-type
	:clos-info
	:compact
	:condition-deletion-action
	:console
	:delete-packages
	:diagnostics-file
	:display-progress-bar
	:dll-added-files
	:dll-exports
	:editor-commands-to-delete
	:editor-commands-to-keep
	:editor-style
	:error-handler
	:error-on-interpreted-functions
	:exe-file
	:exports
	:format
	:functions-to-remove
	:generic-function-collapse
	:gf-collapse-output-file
	:gf-collapse-tty-output
	:icon-file
	:image-type
	:in-memory-delivery
	:interface
	:interrogate-symbols
	:interrupt-function
	:keep-clos
	:keep-clos-object-printing
	:keep-complex-numbers
	:keep-conditions
	:keep-debug-mode
	:keep-documentation
	:keep-editor
	:keep-eval
	:keep-fasl-dump
	:keep-foreign-symbols
	:keep-function-name
	:keep-gc-cursor
	:keep-keyword-names
	:keep-lisp-reader
	:keep-load-function
	:keep-macros
	:keep-modules
	:keep-package-manipulation
	:keep-pretty-printer
	:keep-structure-info
	:keep-stub-functions
	:keep-symbol-names
	:keep-symbols
	:keep-top-level
	:keep-trans-numbers
	:keep-walker
	:kill-dspec-table
	:license-info
	:macro-packages-to-keep
	:make-instance-keyword-check
	:manifest-file
	:metaclasses-to-keep-effective-slots
	:multiprocessing
	:never-shake-packages
	:no-symbol-function-usage
	:numeric
	:packages-to-keep
	:packages-to-keep-externals
	:packages-to-keep-symbol-names
	:packages-to-remove-conditions
	:packages-to-shake-externals
	:post-delivery-function
	:print-circle
	:product-code
	:product-name
	:quit-when-no-windows
	:redefine-compiler-p
	:registry-path
	:remove-plist-indicators
	:remove-setf-function-name
	:run-it
	:shake-class-accessors
	:shake-class-direct-methods
	:shake-classes
	:shake-externals
	:shake-shake-shake
	:smash-packages
	:smash-packages-symbols
	:split
	:startup-bitmap-file
	:structure-packages-to-keep
	:symbol-names-action
	:symbols-to-keep-structure-info
	:versioninfo
	:warn-on-missing-templates

	6 Delivery on Mac OS X
	6.1 Universal binaries
	6.2 Application bundles
	6.3 Cocoa and GTK images
	6.4 Terminal windows and message logs
	6.4.1 Controlling use of a terminal window
	6.4.2 Logging debugging messages

	6.5 File associations for a Macintosh application
	6.6 Editor emulation
	6.7 Standard Edit keyboard gestures
	6.8 Quitting a CAPI/Cocoa application
	6.9 Platforms supporting dynamic library delivery

	7 Delivery on Microsoft Windows
	7.1 Runtime library requirement
	7.2 Application Manifests
	7.3 DOS windows and message logs
	7.3.1 Controlling use of a DOS window
	7.3.2 Logging debugging messages

	7.4 File associations for a Windows application
	7.5 Editor emulation
	7.6 ActiveX controls

	8 Delivery on Linux, FreeBSD and Unix
	8.1 GTK+ considerations
	8.1.1 GTK+ libraries on the target machine
	8.1.2 Fallback resources

	8.2 X11/Motif considerations
	8.2.1 Loading Motif
	8.2.2 Motif on the target machine
	8.2.3 Fallback resources
	8.2.4 X resource names use Lisp symbol names

	8.3 Logging debugging messages
	8.4 Editor emulation
	8.5 Products supporting dynamic library delivery

	9 Delivery and Internal Systems
	9.1 Delivery and CLOS
	9.1.1 Applications defining classes or methods dynamically
	9.1.2 Special dispatch functions and templates for them
	9.1.2.1 Finding the necessary templates
	9.1.2.2 Incorporating the templates into the application

	9.1.3 Delivery and the MOP
	9.1.4 Compression of CLOS metaobjects
	9.1.5 Classes, methods, and delivery
	9.1.6 Delivery and make-instance initarg checking

	9.2 Editors for delivered applications
	9.2.1 Form parsing and delivery
	9.2.2 Emulation and delivery
	9.2.3 Editor command groups

	9.3 Delivery and CAPI
	9.3.1 Interface geometry depends on Lisp symbol names

	9.4 Error handling in delivered applications
	9.4.1 Making the application handle errors
	9.4.1.1 Handling errors generated by the application
	9.4.1.2 Handling errors generated by the Lisp system
	9.4.1.3 Providing a fallback handler for uncaught errors

	9.4.2 Deleting of condition classes

	9.5 Delivery and the FLI
	9.5.1 Foreign Language Interface templates
	9.5.2 Foreign callable names

	9.6 Modules
	9.7 Symbol and package issues during delivery
	9.8 Throwing symbols and packages out of the application
	9.8.1 Deleting packages
	9.8.2 How to delete packages
	9.8.3 Smashing packages
	9.8.4 How to smash packages
	9.8.5 When to delete and smash packages

	9.9 Keeping packages and symbols in the application
	9.9.1 Ensuring that packages are kept
	9.9.2 Ensuring that symbols are kept

	9.10 Coping with intern and find-symbol at runtime
	9.11 Symbol-name comparison

	10 Troubleshooting
	10.1 Debugging errors in the delivery image
	10.2 Problems with undefined functions or variables
	10.3 Failure to find a class
	10.4 REQUIRE was called after delivery time with module ...
	10.5 Failed to reserve... error in compacted image
	10.6 Memory clashes with other software
	10.7 Possible explanations for a frozen image
	10.8 Errors when finalizing classes
	10.9 Warnings about combinations and templates
	10.10 Valid type specifier errors
	10.11 Stack frames with the name NIL in simple backtraces
	10.12 Blank or obscure lines in simple backtraces
	10.13 Nil is not of type hash-table errors
	10.14 FLI template needs to be compiled
	10.15 Failure to lookup X resources
	10.16 Reducing the size of the delivered application
	10.17 Debugging with :no-symbol-function-usage
	10.18 Interrogate-Symbols

	11 User Actions in Delivery
	11.1 General strategy for reducing the image size
	11.2 User interface to the delivery process
	delivery-value
	deliver-keywords
	delivery-shaker-cleanup
	delivery-shaker-weak-pointer

	12 Delivering CAPI Othello
	12.1 Preparing for delivery
	12.1.1 Writing a delivery script

	12.2 Delivering a standalone image
	12.3 Creating a Mac OS X application bundle
	12.3.1 Example application bundle delivery script
	12.3.2 Further Mac OS X delivery examples

	12.4 Command line applications
	12.5 Making a smaller delivered image
	12.5.1 Increasing the delivery level

	Index

