
LispWorks ORB

Developing
Component Software
with CORBA®

Version 6.0

Copyright and Trademarks
Developing Component Software with CORBA

Version 6.0

September 2009

Copyright © 2009 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be construed as a
commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or inaccuracies that may appear in this
publication. The software described in this book is furnished under license and may only be used or copied in accordance with the terms of
that license.

LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the registered trade-
marks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986, 1987, 1988 Xerox
Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, pro-
vided that this copyright and permission notice appear in all copies and supporting documentation, and that the name of M.I.T. not be used
in advertising or publicity pertaining to distribution of the software without specific, written prior permission. M.I.T. makes no representa-
tion about the suitability of this software for any purpose. It is provided “as is” without express or implied warranty. M.I.T. disclaims all war-
ranties with regard to this software, including all implied warranties of merchantability and fitness. In no event shall M.I.T. be liable for any
special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of con-
tract, negligence or other tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of ICU software obtained from http://source.icu-project.org and which bears the following copyright and permis-
sion notice:
ICU License - ICU 1.8.1 and later
COPYRIGHT AND PERMISSION NOTICE
Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Soft-
ware"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright
notice(s) and this permission notice appear in all copies of the Software and that both the above copyright notice(s) and this permission
notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIM-
ITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF
THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or
other dealings in this Software without prior written authorization of the copyright holder. All trademarks and registered trademarks men-
tioned herein are the property of their respective owners.

US Government Restricted Rights
The LispWorks Software is a commercial computer software program developed at private expense and is provided with restricted rights.
The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth in the accompanying End User
License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR 12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14
Alt III, as applicable. Rights reserved under the copyright laws of the United States.

Address

LispWorks Ltd
St. John’s Innovation Centre
Cowley Road
Cambridge
CB4 0WS
England

Telephone

From North America: 877 759 8839
(toll-free)

From elsewhere: +44 1223 421860

Fax
From North America: 617 812 8283
From elsewhere: +44 870 2206189

www.lispworks.com

http://www.lispworks.com

Contents
Preface v

 1 Common Lisp and CORBA 1

About CORBA 1
About the LispWorks ORB 2
Features of the LispWorks ORB 4
CORBA examples 4

 2 Quick Start Tutorial 5

A CORBA-based Hello World 5
Complete source code for the Hello World example 12

 3 Setting up the Bank Example 15

About the bank example 15
Where to find the example code 16
Building the bank client and server 16
Running the server and client 17

 4 Writing and Compiling IDL 19

Designing the IDL 19
Compiling IDL for a CORBA application 23
Mapping IDL to Common Lisp 24

iii

Contents

iv
 5 The Bank Client 27

The client 27
The client’s perspective 27
Implementing the bank client’s GUI 28
Defining the interfaces 29

 6 The Bank Server 41

The server 41
Implementing CORBA objects on the server 42
The server’s perspective 44
Implementing the bank server 45

 7 The LispWorks ORB 53

The CORBA modules 53
Parsing IDL into stubs and skeletons 53
Configuring a name service and an interface repository 54
Error handling in user code called by the server 55
Multi-threading 56
Object URLs 56
Specifying the port 56
Specifying the host name in IORs 57

Appendix A Common Lisp IDL Binding 59

Introduction to IDL 59
How IDL is used 60
Mapping summary 60
Mapping in more detail 61
Mapping pseudo-objects to Lisp 83
The mapping of IDL into Common Lisp servants 85

Index 89

Preface
Product

Lispworks Ltd’s Common Lisp Object Request Broker™ (ORB™) supports the
Common Object Request Broker Architecture (CORBA®) defined by Object
Management Group®, Inc. (OMG™).

The LispWorks ORB and supporting tools provide CORBA architecture func-
tionality to Common Lisp programmers, combining standardized distributed
system development with a state-of-the-art dynamic object-oriented language.

Parts

The CORBA components included in The LispWorks ORB are:

1. Several fasls that are placed in the library directory, and which may be
required into the image:

corba-support The client side of the ORB runtime plus the IDL parser.

corba-orb The server side, the actual LispWorks ORB, which loads
corba-support if it is not present.

corba-tools Graphical tools.

corba Convenience module which simply requires corba-orb
and corba-tools.
v

Preface

vi
2. Some example Common Lisp code including the subfolders:
hello-world

bank

of lib/6-0-0-0/examples/corba in the LispWorks installation.

3. This manual.

Audience

This manual is intended for use by application programmers who wish to
build CORBA applications using Common Lisp. The guide assumes that the
reader is familiar with both the Common Lisp programming language and
with building distributed applications using CORBA.

Standards compliance

The LispWorks ORB conforms to the CORBA 2.0 specification with some ele-
ments of CORBA 2.2, most notably the Portable Object Adapter (POA).

Further reading

Many resources exist for those who want to learn about CORBA and distrib-
uted software development. The OMG maintains a great starting point for
beginners at:

http://www.omg.org/gettingstarted

(This address may change.)

Some recommended highlights are:

• CORBA Web pages like “A CORBA overview” at

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/arch2.htm#4468
64

(This address may change.)

• Related books and magazines like

Instant CORBA by R. Orfali

Published by John Wiley & Sons, 1997

Preface
ISBN 0-471-18333-4

• And mailing lists like CORBA Development

corba-dev@randomwalk.com

This list discusses building CORBA-based systems. To subscribe, send
email to corba-dev-request@randomwalk.com with
subscribe corba-dev in the body of the message.
 vii

Preface

viii

1

1 Common Lisp and CORBA
1.1 About CORBA
Object Management Group, Inc. describe their CORBA architecture as follows:

The Common Object Request Broker Architecture (CORBA), is the
Object Management Group’s answer to the need for interoperability
among the rapidly proliferating number of hardware and software prod-
ucts available today. Simply stated, CORBA allows applications to com-
municate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Manage-
ment Group (OMG) and defined the Interface Definition Language
(IDL) and the Application Programming Interfaces (API) that enable cli-
ent/server object interaction within a specific implementation of an
Object Request Broker (ORB). CORBA 2.0, adopted in December of 1994,
defines true interoperability by specifying how ORBs from different ven-
dors can interoperate.

The ORB is the middleware that establishes the client-server relation-
ships between objects. Using an ORB, a client can transparently invoke a
method on a server object, which can be on the same machine or across a
network. The ORB intercepts the call and is responsible for finding an
object that can implement the request, pass it the parameters, invoke its
method, and return the results. The client does not have to be aware of
1

1 Common Lisp and CORBA

2

where the object is located, its programming language, its operating sys-
tem, or any other system aspects that are not part of an object's interface.
In so doing, the ORB provides interoperability between applications on
different machines in heterogeneous distributed environments and
seamlessly interconnects multiple object systems.

In fielding typical client/server applications, developers use their own
design or a recognized standard to define the protocol to be used
between the devices. Protocol definition depends on the implementation
language, network transport and a dozen other factors. ORBs simplify
this process. With an ORB, the protocol is defined through the applica-
tion interfaces via a single implementation language-independent speci-
fication, the IDL. And ORBs provide flexibility. They let programmers
choose the most appropriate operating system, execution environment
and even programming language to use for each component of a system
under construction. More importantly, they allow the integration of
existing components. In an ORB-based solution, developers simply
model the legacy component using the same IDL they use for creating
new objects, then write “wrapper” code that translates between the stan-
dardized bus and the legacy interfaces.

CORBA is a signal step on the road to object-oriented standardization
and interoperability. With CORBA, users gain access to information
transparently, without them having to know what software or hardware
platform it resides on or where it is located on an enterprise’s network.
The communications heart of object-oriented systems, CORBA brings
true interoperability to today's computing environment.

At the time of writing, the text above was available at:

http://www.omg.org/corba/whatiscorba.html

It has been reproduced with permission.

1.2 About the LispWorks ORB
Lispworks Ltd has written a CORBA-compliant, native-IIOP ORB in Common
Lisp.

1.2 About the LispWorks ORB
The LispWorks ORB will let you build and run distributed applications in
Common Lisp, straight out of the box. When combined with a database inter-
face, you are able to build three-tier, client-server applications completely in
Common Lisp.

However, the raison d’etre of CORBA is interoperability. Hence, the choice of
IIOP provides immediate interoperation with any other ORB you may be
using. For example, given a Java ORB you could write GUI clients in AWT
that communicate with servers written in Common Lisp. Conversely, given a
C++ ORB you can build CAPI clients that talk to C++ servers.

The advantages of building an ORB in Common Lisp (apart from proving that
Common Lisp can tackle another complex domain) are:

• ORB-vendor independence – The LispWorks ORB can be married to any
existing ORB infrastructure, or introduced first without affecting later
ORB procurement decisions.

• “Batteries included” – No need to purchase a separate ORB to get a full
system. The LispWorks ORB provides “instant CORBA” to get distrib-
uted Common Lisp applications up and running without additional
procurement or installation.

• Lower impedance mismatch – No need to trampoline from Common
Lisp to IIOP via another language binding or via a non–Common Lisp
IIOP engine API.

• CORBA expertise – A deeper understanding of CORBA inside Lisp-
works Ltd, which can be shared with our customers via technical sup-
port.

• CORBA customization – Lispworks Ltd likes to offer a high level of cus-
tomization support and consulting to both internal and external cus-
tomers which it could not do with a third-party product written in a
more primitive language. This also means faster fixes for basic bugs.

• 100% pure Common Lisp – Providing users with enhanced debugging
and interaction facilities available in a homogeneous implementation
model.
 3

1 Common Lisp and CORBA

4

1.3 Features of the LispWorks ORB
The following features are supported:

• CORBA 2.0 with parts of CORBA 2.2 (notably the POA)

• Internet Inter-ORB Protocol (IIOP) 1.0 (GIOP 1.0)

• Portable Object Adapter (POA)

• Dynamic Invocation Interface (DII)

• Dynamic Skeleton Interface (DSI)

• Common Lisp Language Binding

1.4 CORBA examples
The LispWorks ORB includes two example applications to help you start writ-
ing client/server applications in CORBA. We study these applications later in
this guide.

Hello World A client/server implementation of the standard Hello
World application.

Bank A three-tier client/server implementation of a banking
application.

This manual walks you through these examples, which are ready to build and
run straight out of the box.

2

2 Quick Start Tutorial
In this chapter, we develop a very basic CORBA application, designed to dem-
onstrate some of the key concepts for using Common Lisp for distributed
objects.

The chapter aims to show you the sort of coding involved in using CORBA
with Common Lisp, and to get a client/server application up and running
quickly. It is not concerned so much with explaining how things work. Subse-
quent chapters go into more detail, using a deeper example, and explaining
the approach we have taken to implementing the CORBA architecture for
Common Lisp.

In this example application, a client program asks a server program for a
string and prints it to standard output. This chapter is going to take you
through the basic steps needed to create the application.

2.1 A CORBA-based Hello World
This chapter’s example is an implementation of the standard Hello World
application, using Common Lisp and CORBA. In this version of Hello World,
a client application asks a server application for a string. When the client
receives the string, it prints it to the standard output, and then exits.
5

2 Quick Start Tutorial

6

We will take these basic steps to create the application:

1. Define the interface.

We define the interface to the server using OMG’s Interface Definition
Language (IDL).

2. Implement the client.

3. Implement the server.

4. Build and test the application.

The complete Hello World application can be found in the
examples/corba/hello-world folder. (For instance, in a default LispWorks 6.0
installation on Microsoft Windows, the location is C:\Program Files\Lisp-
Works\lib\6-0-0-0\examples\corba\hello-world.)

2.1.1 Defining the interface

We first need to define the interface of the Hello World server object. The
client and server will communicate across this interface. The interface is
defined using IDL in a single file that must have the extension .idl.

1. Create a file called hello-world.idl.

2. Enter the IDL declaration below into the hello-world.idl file.

module HelloWorld {
interface world {

string hello();
};

};

This IDL declaration says that there are CORBA objects of a kind called world,
and that there is an operation called hello on world objects that takes no argu-
ments and returns a string. Servers implement world, and clients call hello on
instances of world.

Now that we have written the IDL, we can run the IDL parser over it to pro-
duce stub and skeleton code for the client and server parts of the application.

2.1 A CORBA-based Hello World
2.1.2 Generating the stub and skeleton code from IDL

We need the IDL parser to parse the IDL to generate appropriate stubs and
skeletons. We do this by including the IDL file in the defsystem that defines
the code we are writing. For Hello World, the relevant defsystem is:

(defsystem hello-world-corba-object ()
:members (

("hello-world" :type :idl-file)))

The defsystem utility has been extended to correctly handle a file of type idl-
file. In this case, the fasl corresponding to the IDL file contains the compiled
stubs and skeletons for the given IDL and is generated when we compile the
system.

To create a defsystem file for the Hello World application:

1. Create a defsystem file called defsys.lisp.

2. Enter the following Lisp code into the defsys.lisp file:

(in-package "CL-USER")

(require "corba-orb")

(defsystem hello-world-corba-object ()
:members (

("hello-world" :type :idl-file)
))

:rules ((:in-order-to :compile :all
(:requires (:load :previous)))))

3. Save and close the defsystem file.

When it comes time to run the application, stubs and skeletons will be gener-
ated.

2.1.3 Defining utilities for sharing an object reference

Now we will define some utilities for communicating an object reference from
the server to the client by converting the object reference into a string using
ORB-supplied functions and writing it to a shared file. The client can then
read the string from the shared file and convert it back into an object reference.
Note that a real application would probably use a higher level service such as
a Name Service for passing object references between applications.
 7

2 Quick Start Tutorial

8

1. Create a file called shared.lisp.

2. Enter the following Common Lisp code into the shared.lisp file:

(in-package "CL-USER")

(defparameter *hello-world-ior-file*
#+mswindows "c:/temp/hello.ior"
#-mswindows "/tmp/hello.ior")

(defun object-to-file (orb object)
(with-open-file (st *hello-world-ior-file* :direction :output

:if-exists :supersede)
(prin1 (op:object_to_string orb object) st)))

(defun file-to-object (orb)
(with-open-file (st *hello-world-ior-file*)

(op:string_to_object orb (read st))))

This code does the following:

• object-to-file opens the shared file and uses the
op:object_to_string function to convert the object reference into a
string, which is then written into the file

• file-to-object performs the inverse operation: it reads the string from
the file and uses op:string_to_object to convert the string back into a
client-side proxy object

3. Save and close the shared.lisp file.

4. Add shared.lisp to the defsystem by adding one line of code to the
defsys.lisp file, which should then look like this:

(in-package "CL-USER")

(require "corba-orb")

(defsystem hello-world-corba-object ()
:members (

("hello-world" :type :idl-file)
"shared"
))

2.1 A CORBA-based Hello World
:rules ((:in-order-to :compile :all
(:requires (:load :previous)))))

2.1.4 Implementing the client

Now we will implement the client side of the Hello World application. We
create a file hello-world-client.lisp and add it to the defsystem. (You can
implement this as you wish, but here is one possible implementation.)

1. Create a file called hello-world-client.lisp.

2. Enter the following Common Lisp code into the
hello-world-client.lisp file:

(in-package "CL-USER")

(defun run-client ()
 (let ((orb (op:orb_init nil "LispWorks ORB")))
 (let ((world (op:narrow 'HelloWorld:world (file-to-object
 orb))))
 (format t "~S~%" (op:hello world)))))

This code does the following:

• gets a world object from somewhere

• invokes op:hello on the object to get a string

• writes out the string and a new line to the standard output stream

The elided details are not important at this stage, they involve getting an
object reference from somewhere. In the full source at the end of this chapter
(Section 2.2) you can see that a shared file is used to pass a stringified object
reference.

3. Save and close the hello-world-client.lisp file.

4. Add hello-world-client to the defsystem by adding one line of code to
the defsys.lisp file, which should then look like this:

(in-package "CL-USER")

(require "corba-orb")
 9

2 Quick Start Tutorial

10
(defsystem hello-world-corba-object ()
:members (

("hello-world" :type :idl-file)
"shared"
"hello-world-client"
))

:rules ((:in-order-to :compile :all
(:requires (:load :previous)))))

2.1.5 Implementing the server

Implementing the server is also easy. We create a file
hello-world-server.lisp.

In the server the main function is less interesting because it is concerned with
the administrative details of writing out a stringified form of the object refer-
ence into the shared file and initializing the server. The actual core of the
application implementation is:

(defclass world-implementation (HelloWorld:world-servant) ())

(corba:define-method op:hello ((self world-implementation))
(declare (ignore self))
"Hello World!")

This subclasses a special generated class on the server side called a servant,
and then implements a method on op:hello that actually returns the desired
string.

1. Create a file called hello-world-server.lisp.

2. Enter the following code into hello-world-server.lisp:

(in-package "CL-USER")

(defclass world-implementation (HelloWorld:world-servant) ())

(corba:define-method op:hello ((self world-implementation))
 (declare (ignore self))
 "Hello World!")

2.1 A CORBA-based Hello World
(defun server-startup ()
 (let* ((orb (op:orb_init nil "LispWorks ORB"))
 (poa (op:resolve_initial_references orb "RootPOA"))
 (impl (make-instance 'world-implementation))
 (world (op:narrow 'HelloWorld:world
 (op:servant_to_reference poa impl))))
 (object-to-file orb world)
 (let ((manager (op:the_poamanager poa)))
 (op:activate manager))))

3. Add hello-world-server to the defsystem by adding one line of code to
the defsys.lisp file, which should then look like this:

(in-package "CL-USER")

(require "corba-orb")

(defsystem hello-world-corba-object ()
:members (

("hello-world" :type :idl-file)
"shared"
"hello-world-server"
"hello-world-client"
))

:rules ((:in-order-to :compile :all
(:requires (:load :previous)))))

2.1.6 Building and testing the application

To build and test this distributed Hello World application, you must copy the
rest of the source code from Section 2.2 on page 12 into the respective files.
The code can also be found in the corba/hello-world subdirectory of the
standard examples directory.

After supplementing your files with the complete source code, perform the
following steps in the Listener to run the example:

1. Load the defsystem file by entering:

(load (example-file "corba/hello-world/defsys"))
(compile-system "HELLO-WORLD-CORBA-OBJECT"
 :t-dir (get-temp-directory)
 :load t)

Now, you can run the application to test that it works.
 11

2 Quick Start Tutorial

12
2. If you are using LispWorks on a UNIX platform and not running with
multiprocessing enabled, then call:

(mp:initialize-multiprocessing)

You need to run the server first so that it is waiting and ready to receive calls
from the client.

3. Enter the command:

(cl-user::server-startup)

4. You can then run the client using:

(cl-user::run-client)

Note that you do not have to be running the client and the server in the same
Lisp image (although you can if desired). In the simple example we have just
implemented, they must be running on the same machine (to allow the object
reference to be shared using a single file), but we have true location transpar-
ency in the way the client can be written with no regard for the location of the
server process.

2.2 Complete source code for the Hello World example
The complete source code for the Hello World application is included here for
your convenience. It can also be found in the corba/hello-world subdirec-
tory of the standard examples directory.

2.2.1 The complete interface source code

The complete code for the Hello World interface (the hello-world.idl file),
written in IDL, is:

module HelloWorld {
 interface world {
 string hello();
 };
};

2.2.2 The complete defsystem source code

The complete code for the Hello World defsystem (the defsys.lisp file) is:

2.2 Complete source code for the Hello World example
(in-package "CL-USER")

(require "corba-orb")

(defsystem hello-world-corba-object ()
:members (

("hello-world" :type :idl-file)
"shared"
"hello-world-server"
"hello-world-client"
)

:rules ((:in-order-to :compile :all
(:requires (:load :previous)))))

2.2.3 The complete source code for the file transfer of the IOR

The complete code for the Interoperable Object Reference (IOR) file transfer
(the shared.lisp file) is:

(in-package "CL-USER")

(defparameter *hello-world-ior-file*
#+mswindows "c:/temp/hello.ior"
#-mswindows "/tmp/hello.ior")

(defun object-to-file (orb object)
(with-open-file (st *hello-world-ior-file* :direction :output

:if-exists :supersede)
(prin1 (op:object_to_string orb object) st)))

(defun file-to-object (orb)
(with-open-file (st *hello-world-ior-file*)

(op:string_to_object orb (read st))))

2.2.4 The complete Hello World client source code

The complete code for the Hello World client (the hello-world-client.lisp
file) is:

(in-package "CL-USER")

(defun run-client ()
 (let ((orb (op:orb_init nil "LispWorks ORB")))
 (let ((world (op:narrow 'HelloWorld:world (file-to-object
 orb))))
 (format t "~S~%" (op:hello world)))))
 13

2 Quick Start Tutorial

14
2.2.5 The complete Hello World server source code

The complete code for the Hello World server (the hello-world-server.lisp
file) is:

(in-package "CL-USER")

(defclass world-implementation (HelloWorld:world-servant) ())

(corba:define-method op:hello ((self world-implementation))
 (declare (ignore self))
 "Hello World!")

(defun server-startup ()
 (let* ((orb (op:orb_init nil "LispWorks ORB"))
 (poa (op:resolve_initial_references orb "RootPOA"))
 (impl (make-instance 'world-implementation))
 (world (op:narrow 'HelloWorld:world
 (op:servant_to_reference poa impl))))
 (object-to-file orb world)
 (let ((manager (op:the_poamanager poa)))
 (op:activate manager))))

3

3 Setting up the Bank Example
Chapters 3–6 guide you through the development of a more complex client-
server application using The LispWorks ORB. This example application illus-
trates how to implement and use CORBA objects in Common Lisp.

3.1 About the bank example
The example described in this tutorial is a simple simulation of a bank. The
architecture of the bank is composed of three components:

• A database that provides persistent storage for accounts managed by
the bank. (This is simulated in the following code, but is easily replaced
by a real database backend.)

• A CORBA server that represents the bank and provides an object-ori-
ented interface to its accounts.

• A CORBA client that provides a graphical user interface to the bank.

The server provides a single CORBA object that represents the bank. This
object manages a collection of CORBA objects that represent customer
accounts. The bank has operations for opening and closing accounts, and for
retrieving existing accounts from the database. In turn, accounts support oper-
ations for querying and updating their balance.
15

3 Setting up the Bank Example

16
The client initially contacts the server by obtaining a reference to the bank
object from The LispWorks ORB. It then presents the user with a graphical
interface to the bank.

In response to user requests, the interface invokes operations on the bank,
obtaining further references to accounts created on the server. The client man-
ages separate graphical objects for the bank and each of the accounts that are
active in the server.

The user interface is implemented using the LispWorks CAPI library. Note
that this application is a typical example of a three-tier architecture compris-
ing a database access layer, a business logic layer, and a user interface layer.

3.2 Where to find the example code
The bank example code developed in this tutorial can be found in LispWorks
installation folder, under

lib/6-0-0-0/examples/corba

This folder has several subfolders.

• bank, which contains the IDL that defines the CORBA interface to the
server (the file bank.idl)

• bank/client, which contains the implementation of the client

• bank/server, which contains the implementation of the server

3.3 Building the bank client and server
We can now build the client and server applications for the demo. The client
and server implementations are available in the respective examples subdirec-
tories.

In your Common Lisp environment,

1. Build the client by running:

(load (example-file "corba/bank/client/defsys"))
(compile-system "bank-client"
 :t-dir (get-temp-directory)
 :force t
 :load t)

3.4 Running the server and client
2. Build the server by running:

(load (example-file "corba/bank/server/defsys"))
(compile-system "bank-server"
 :t-dir (get-temp-directory)
 :force t
 :load t)

The defsystem automatically invokes the IDL compiler on the file bank.idl to
generate the source code for the skeletons and stubs, which are compiled and
stored in the bank fasl file.

When compiling to a fixed directory, following the standard defsystem rules,
the IDL will only be recompiled if the fasl file is out of date. (bank.idl will
always be recompiled by the example form above, because it specifies a tem-
porary output directory, in order to avoid writing to a location which may not
be writable.)

3.4 Running the server and client
We can now run the bank demo for the first time. To run the server:

1. In the Listener, run:

(load (example-file "corba/bank/server/defsys"))
(compile-system "bank-server"
 :t-dir (get-temp-directory)
 :force t
 :load t)
(cl-user::bank-server)

After performing some initialization, the application presents an information
dialog to indicate that the server is ready. This dialog has a single Stop server
button to shut down the server.

After the server’s dialog has appeared:

2. Run the following commands in a separate invocation of Common Lisp
(in another image):
 17

3 Setting up the Bank Example

18
(load (example-file "corba/bank/client/defsys"))
(compile-system "bank-client"
 :t-dir (get-temp-directory)
 :force t
 :load t)
(cl-user::bank-client)

A single Corba Bank window appears, presenting a GUI to the bank. You can
now interact with the bank using the Action menu to create new accounts,
deposit amounts, and so on.

Once you have finished interacting with the bank, close the Corba Bank
window to exit the client application. Then click the Stop server button in the
server’s dialog to exit the server.

4

4 Writing and Compiling IDL
4.1 Designing the IDL
The first step in developing a CORBA application is to define the interfaces to
its distributed application objects. We can define these interfaces using the
CORBA Interface Definition Language (IDL).

Essentially, the IDL specification of an interface lists the names and types of
operations that:

• any CORBA object, satisfying that interface, must support

• any CORBA client, targeting such an object, may request

Our application manages three types of CORBA object, representing accounts,
checking accounts, and banks. We declare the interfaces to all three objects
within the same CORBA module, BankingDemo:

module BankingDemo {
interface account {

// details follow
};

interface checkingAccount : account {
// details follow

};
19

4 Writing and Compiling IDL

20
interface bank {
// details follow

};
};

The following subsections describe the IDL declarations for each of the three
interfaces. You can find the complete IDL description for the bank demo in the
examples folder, under

examples/corba/bank/bank.idl

4.1.1 IDL for the account interface

We begin with the IDL definition of the interface to an account object.

// in module BankingDemo
interface account {

readonly attribute string name;

readonly attribute long balance;

void credit (in unsigned long amount);

exception refusal {string reason;};
void debit (in long amount)

raises (refusal);
};

The name of an account is recorded in its name attribute. The state of an
account is recorded in its balance attribute. To keep things simple, we use
CORBA long values to represent monetary amounts.

To prevent clients from directly altering the account’s name or balance, these
attributes are declared as readonly attributes. The operations credit and
debit are provided to allow updates to an account’s balance attribute.

The operation credit adds a non-negative amount to the current account bal-
ance.

Next comes an exception declaration:

exception refusal {string reason;};

4.1 Designing the IDL
This declares a named exception, refusal, that the debit operation uses to
signal errors. The refusal exception is declared to contain a reason field that
documents the reason for failure in the form of a string.

The operation debit subtracts a given amount from the current balance, pro-
vided doing so does not make the account balance negative. Qualifying debit
by the phrase

raises (refusal)

declares that invoking this operation may raise the exception refusal.
Although a CORBA operation may raise any CORBA system exception, its
declaration must specify any additional user-defined CORBA exceptions that
it might raise.

This completes the IDL declaration of the account interface.

4.1.2 IDL for the checkingAccount interface

The bank application also manages another sort of account called a checking
account. While an ordinary account must maintain a positive balance, a
checkingAccount may be overdrawn up to an agreed limit.

We use IDL’s notion of interface inheritance to capture the intuition that a
checking account is a special form of account:

// in module BankingDemo
interface checkingAccount : account {
 readonly attribute long limit;
};

The declaration checkingAccount : account specifies that the interface
checkingAccount inherits all the operations and attributes declared in the
account interface. The body of the definition states that a checkingAccount
also supports the additional limit attribute.

The fact that checkingAccount inherits some operations from account does
not imply that the methods implementing those operations need to be inher-
ited too. We will exploit this flexibility to provide a specialized debit method
for checkingAccounts.
 21

4 Writing and Compiling IDL

22
4.1.3 IDL for the bank interface

We can now design the interface of a bank object. The intention is that a bank
associates customer names with accounts, with each name identifying at most
one account. A client is able to open accounts for new customers and to
retrieve both accounts and checking accounts for existing customers from the
persistent store. If the client attempts to open a second account under the
same name, the bank should refuse the request by raising an exception. Simi-
larly, if the client attempts to retrieve an account for an unknown customer,
the bank should reject the request by raising an exception.

The IDL definition of the bank interface captures some of these requirements:

// in module BankingDemo
interface bank {

readonly attribute string name;

exception duplicateAccount{};

account openAccount (in string name)
raises (duplicateAccount);

checkingAccount openCheckingAccount(in string name,
in long limit)

raises (duplicateAccount);

exception nonExistentAccount{};

account retrieveAccount(in string name)
raises (nonExistentAccount);

void closeAccount (in account account);
};

The name of a bank is recorded in its name attribute.

The operation openAccount is declared to take a CORBA string and return an
account. Because account is defined as an interface, and not a type, this
means that the operation will return a reference to an account object. This illus-
trates an important distinction between ordinary values and objects in
CORBA: while members of basic and constructed types are passed by value,
objects are passed by reference.

4.2 Compiling IDL for a CORBA application
The qualification raises (duplicateAccount) specifies that openAccount can
raise the user-defined exception duplicateAccount, instead of returning an
account. (The exception duplicateAccount has no fields.)

The operation openCheckingAccount is similar to openAccount, but takes an
additional argument, limit, which represents the account’s overdraft limit.

The operation retrieveAccount looks up the account (or checking account), if
any, associated with a customer name, returning an object reference of
interface account. The operation may raise the exception
nonExistentAccount to indicate that there is no account under the supplied
name.

The last operation, closeAccount, closes an account by deleting it from the
bank’s records.

Because checkingAccount inherits from account, a checkingAccount object
may be used wherever an account object is expected, whether as the actual
argument, or the result, of an operation. For instance, this means that we can
use closeAccount to close checking accounts as well as accounts; and to use
retrieveAccount to fetch checking accounts as well as accounts.

The complete IDL definition for the bank can be found in file bank.idl.

4.2 Compiling IDL for a CORBA application
The LispWorks ORB product includes an IDL compiler that it uses to check
and compile IDL files into Common Lisp fasl files. When the IDL file is pro-
cessed by the preprocessor, it maps the IDL into Common Lisp. Appendix A,
“Common Lisp IDL Binding” provides a specification for a standard mapping
from CORBA IDL to Common Lisp.

According to this specification:

• CORBA types are mapped to Common Lisp types and classes

• CORBA interfaces are mapped to Common Lisp classes

• CORBA interface inheritance is mapped to Common Lisp class inherit-
ance

• CORBA attributes are mapped to Common Lisp getter and setter func-
tions
 23

4 Writing and Compiling IDL

24
• CORBA operations are mapped to Common Lisp generic functions

• CORBA exceptions are mapped to Common Lisp conditions

By including the IDL file in the defsystem, the application can access these
mappings.

4.3 Mapping IDL to Common Lisp
To provide a better understanding of the IDL to Common Lisp mapping, we
can take a look at the result of applying the mapping to the file bank.idl.

Parsing the IDL defines a package BANKINGDEMO.

As an example of the mapping scheme, the following subsections examine the
Common Lisp counterparts of some of the more representative IDL declara-
tions from the file bank.idl.

4.3.1 Mapping for basic types

The IDL types string, long, and unsigned long are mapped to the Common
Lisp types corba:string, corba:long, and corba:ulong, which are typedefs
for the types string, integer, and integer.

4.3.2 Mapping for interfaces

The IDL interfaces account, checkingAccount, and bank map to the Common
Lisp classes BankingDemo:account, BankingDemo:checkingAccount, and
BankingDemo:bank.

Notice how IDL interface inheritance (checkingAccount: account) maps nat-
urally onto Common Lisp class inheritance: the class
BankingDemo:checkingAccount is defined as a subclass of
BankingDemo:account.

4.3.3 Mapping for attributes

The read-only balance attribute of an IDL account gives rise to the Common
Lisp generic functions:

op:balance

4.3 Mapping IDL to Common Lisp
If we had omitted the readonly keyword from the definition of the balance
attribute, the mapping would have introduced an additional generic setter
function:

(setf op:balance)

4.3.4 Mapping for operations

The IDL operation credit is mapped to the Common Lisp generic function:

op:credit

In IDL, the credit operation is defined within the account interface, declaring
it to be an operation on account objects. The Common Lisp language binding
adopts the convention that an operation’s target object should be passed as
the first argument of the corresponding Common Lisp generic function. Thus
the first parameter of the generic function op:credit is an object of type
BankingDemo:account.

The operation’s in and inout arguments become the remaining parameters of
the corresponding Common Lisp generic function. In this case, the credit
operation specifies a single in parameter, in unsigned long amount, that
determines the second and only other parameter, amount, of the op:credit
generic function.

The operation’s result type, and any other parameters declared as out or
inout, become results of the corresponding Common Lisp generic function. In
this case, because the result type of credit is void, and the operation has no
out or inout parameters, op:credit has an empty result list.

4.3.5 Mapping for exceptions

The IDL exception refusal maps onto the Common Lisp class
BankingDemo:account/refusal. Its member, reason string;, maps onto a
slot reason of type string.

Note that BankingDemo:account/refusal is a subclass of
CORBA:userexception and, by inheritance, of Common Lisp condition. This
means that CORBA user exceptions can be raised on the server, and handled
in the client, using the standard Common Lisp condition mechanism.
 25

4 Writing and Compiling IDL

26

5

5 The Bank Client
5.1 The client
In this section, we design and implement a CORBA client. Our client presents
a graphical user interface to a bank object and its operations. We implement
the user interface using CAPI.

Because the primary motivation for this tutorial is to illustrate the use of
CORBA, we focus less on the design of the graphical interface, and more on
the method for interacting with CORBA objects.

5.2 The client’s perspective
From the client’s perspective, the IDL definition of a bank’s interface fully
determines its functionality. This means that we need only rely on the infor-
mation in the IDL to interact with a bank object. In particular, knowing the
IDL description, we can implement the client before an implementation of a
bank object is available.

The bank fasl file, produced by the IDL compiler

• Specifies the protocol for interacting with CORBA objects that satisfy
the interfaces in the IDL file, bank.idl, and

• Provides the client-side implementation of this protocol
27

5 The Bank Client

28
This fasl should be used by any application that wants to act as a client with
respect to some CORBA object matching an interface in the bank.idl file. The
bank fasl file defines classes BankingDemo:account,
BankingDemo:checkingAccount, and BankingDemo:bank.

The class BankingDemo:checkingAccount is defined to inherit from
BankingDemo:account, matching the inheritance relationship in the IDL.
Instances of these classes act as proxies for CORBA objects on the server.

The bank fasl also defines a stub method, specialized on the appropriate proxy
class, for each protocol function stemming from an IDL attribute or operation.
When the client applies the generic function to a particular target proxy, the
stub method communicates with the ORB to invoke the corresponding opera-
tion on the actual target object in the server. If the request succeeds, the stub
method returns the result to the client. If the request fails, raising a CORBA
user or system exception, the stub method raises the corresponding Common
Lisp condition of the appropriate class. This condition can then be handled by
the client code using standard Common Lisp constructs.

5.3 Implementing the bank client’s GUI
To keep things simple, we organize the structure of the user interface to
closely match the IDL description of the bank. Each CORBA object is pre-
sented in its own interface. We define one subclass of capi:interface for each
CORBA interface.

The definition of these subclasses is derived from the declaration of their cor-
responding CORBA interfaces. In particular, we use display panes to repre-
sent IDL attributes, and buttons or menu items to invoke IDL operations. Each
interface contains a slot that contains the CORBA object it represents.

Clicking on a button of the frame triggers a callback that invokes the corre-
sponding operation on the CORBA object associated with that frame. The user
is notified of any CORBA user-exceptions that these operations raise. The
CORBA-specific code resides, to a large extent, in these callbacks.

The source code for the client’s GUI is in the file client/interfaces.lisp.

5.4 Defining the interfaces
5.4 Defining the interfaces
Note: This section assumes some basic familiarity with the CAPI library. See
the CAPI Reference Manual for details.

In this section, we define three CAPI interface classes account-interface,
checkingAccount-interface, and bank-interface. These classes are used to
present graphical interfaces to CORBA objects with the IDL interfaces
account, checkingAccount, and bank.

We begin by defining the interface class account-interface:

(capi:define-interface account-interface ()
 ((account-ref :initarg :account-ref)
 (account-name :initarg :account-name :accessor account-name)
 (bank-interface :initarg :owner))
 (:panes
 (balance-field capi:display-pane
 :title (:initarg :account-name)
 :visible-min-width '(:character 10)
 :visible-max-width nil)
 (button-panel capi:push-button-panel
 :callbacks '(credit debit)
 :items '("Credit" "Debit")
 :callback-type :interface))
 (:layouts
 (account-layout capi:column-layout '(balance-field
 button-panel)))
 (:default-initargs :auto-menus nil :max-width t))

This is how we use an instance of class account-interface. We store the
name of the customer owning this account in the title of the display pane
(using initarg :title).

The account-ref slot stores a CORBA object reference (of class
BankingDemo:account) to the corresponding CORBA account object on the
server. The bank-interface slot stores a pointer to the bank interface for this
object.

The pane balance-field reports the state of the CORBA object’s balance
attribute as a readonly text field. We delegate the initialization of this field
value to an initialize-instance after method specialized on
account-interface. The value needs to be updated after each invocation of a
CORBA debit or credit operation.
 29

5 The Bank Client

30
The button panel button-panel defines buttons to activate callbacks
debit-callback and credit-callback. These callbacks prompt the user for
amounts and then invoke the corresponding CORBA operations debit and
credit on the object reference stored in the account-ref field. We will imple-
ment these callbacks in a moment.

The buttons are laid out in a column layout account-layout. Mirroring the
fact that the IDL interface checkingAccount inherits from account, we define
the Common Lisp frame class checking-account-interface as a subclass of
account-interface:

(capi:define-interface checking-account-interface
 (account-interface) ()
 (:panes
 (limit-field capi:display-pane
 :visible-min-width '(:character 10)
 :visible-max-width nil))
 (:layouts
 (checking-account-layout capi:column-layout
 '(account-layout limit-field))))

The pane limit-field reports the state of the CORBA object’s limit attribute
as a readonly text field. Again, we can delegate the initialization of this field’s
value to an initialize instance after method specialized on
checking-account-interface.

The layout checking-account-layout simply lays out the inherited layout
account-layout, containing the account’s balance, together with the addi-
tional limit-field.

The definition of bank-interface class follows the same pattern:

5.4 Defining the interfaces
(capi:define-interface bank-interface ()
 ((bank-ref :initarg :bank-ref))
 (:menu-bar open-actions)
 (:menus
 (open-actions
 "Action"
 (("Open Account" :callback 'open-account-callback)
 ("Open Checking Account" :callback
 'open-checking-account-callback)
 ("Retrieve Account" :callback 'retrieve-account-callback)
 ("Close Account" :callback 'close-account-callback))
 :callback-type :interface))
 (:layouts
 (accounts-area capi:row-layout ()
 :accessor accounts-area
 :horizontal-scroll t))
 (:default-initargs :auto-menus nil :best-width 400))

The accounts-area layout keeps track of the account-interfaces created by
the bank interface as the result of invoking operations on the CORBA bank
object. This list is maintained to prevent the user from obtaining more than
one interface to the same account. We need to update it whenever an account
interface is exited.

The interface menu items Open Account, Open Checking Account, Retrieve
Account, and Close Account activate callbacks open-Account-callback,
open-Checking-Account-callback, retrieve-Account-callback, and
close-Account-callback.

These callbacks prompt the user for appropriate arguments and then invoke
the corresponding CORBA operations openAccount, openCheckingAccount,
retrieveAccount, and closeAccount on the object reference stored in the
bank-ref slot. We will see the implementation of these callbacks in a moment.

5.4.1 Initializing and exiting account frames

Each time we make a new account interface we want to ensure two things:

• The account interface is registered in the bank interface that spawned it

• Its balance pane displays the correct value
 31

5 The Bank Client

32
An easy way to do this is to add an initialize-instance after method
specialized on account-interface. (In Common Lisp, each call to make an
instance of a given class is automatically followed by a call to initialize that
instance; you are free to specialize the initialize-instance generic function
on particular classes.)

(defmethod initialize-instance :after ((self account-interface)
&key)

(with-slots (account-ref balance-field) self
(when account-ref

(setf (capi:display-pane-text balance-field)
(format nil "~A" (op:balance account-ref))))))

Here, we encounter our first example of invoking a CORBA operation on a
CORBA object. The Common Lisp variable account-ref, of class
BankingDemo:account, contains a proxy for a CORBA account object on the
server. The application (op:balance account-ref) invokes a stub method
specialized on the proxy’s class. The stub method forwards the request across
the ORB to the actual object on the server.

The request is executed on the object in the server and the result passed back
across the ORB to the stub method, which returns the value to the client as a
corba:long. This value is then used to set the initial value of the balance field.

We can initialize the interface for a checking account in a similar way:

(defmethod initialize-instance :after (
 (self checking-account-interface) &key)

(with-slots (account-ref limit-field) self
(when account-ref

(setf (capi:display-pane-text limit-field)
(format nil "~A" (op:limit account-ref))))))

Inheritance ensures that the method on account-interface is called which
registers the interface and sets up its balance field; a call to the op:limit stub
determines the initial value of its limit field.

For convenience, we define a generic function make-account-frame that
makes the correct class of frame for a given account object reference:

5.4 Defining the interfaces
(defmethod make-account-frame ((self BankingDemo:account)
&key bank-interface title)

(push-new-item bank-interface
title
(make-instance 'account-interface

:account-ref self
:account-name title
:owner bank-interface)))

(defmethod make-account-frame ((self BankingDemo:checkingAccount)
&key bank-interface title)

(push-new-item bank-interface
title
(make-instance 'checking-account-interface

:account-ref self
:account-name title
:owner bank-interface)))

These methods simply dispatch on the class of the object reference to make an
account-interface or checkingAccount-interface as appropriate.

5.4.2 Defining the callbacks

Defining the callbacks attached to each button is straightforward. Recall that
in CAPI, because we stated that the button callback type was :interface, the
argument passed to a callback is the interface whose activation triggered that
callback.

The credit-callback is activated by the Credit button of some account inter-
face:

(defun credit (self)
(with-slots (balance-field account-ref) self

(let ((amount (capi:prompt-for-integer "Amount?" :min 0)))
(when amount
(op:credit account-ref amount)
(setf (capi:display-pane-text balance-field)

(format nil "~A" (op:balance account-ref)))))))

The callback is passed the account interface. It then extracts the CORBA object
reference stored in the frame’s account-ref slot and prompts the user for an
amount. The function capi:prompt-for-integer queries the user for an inte-
ger and returns nil if the user cancels the dialog. If the amount is valid, the
callback invokes the stub method op:credit on the CORBA object reference
with the specified absolute value of the amount (recall that the credit opera-
 33

5 The Bank Client

34
tion expects an unsigned long as its argument). Finally, it updates the balance
field of the frame with the current value of the object’s balance attribute,
obtained by invoking the stub method op:balance.

The definition of debit-callback is very similar to the definition of
credit-callback:

(defun debit (self)
(with-slots (balance-field account-ref) self

(let ((amount (capi:prompt-for-integer "Amount?" :min 0)))
(when amount
(handler-case

(progn
(op:debit account-ref amount)
(setf (capi:display-pane-text balance-field)

(format nil "~A" (op:balance account-ref))))
(BankingDemo:account/refusal
(xx)
(capi:display-message "Debit returned refusal with

string: <~A>"
(op:reason xx))))))))

The only difference is that debit-callback must deal with the additional pos-
sibility that the debit operation, when invoked on the target object, may fail,
raising the IDL exception refusal. If the object raises this exception, the
op:debit stub method signals it as a Common Lisp condition of class
BankingDemo:account/refusal.

The exception can then be caught and handled in any of the standard
Common Lisp ways. Here, we simply place the invocation in the body of a
handler-case statement with an appropriate exception clause to handle the
condition.

The open-account-callback is activated by the openAccount-button of some
bank frame:

5.4 Defining the interfaces
(defun open-account-callback (self)
(with-slots (bank-ref) self

(let ((name (capi:prompt-for-string "Name?")))
(when name
(handler-case

(let ((account-ref
(op:openaccount bank-ref name)))

(make-account-frame account-ref
:bank-interface self :title name))

(Bankingdemo:Bank/DuplicateAccount
()
(capi:display-message "Cannot create account for

~A" name)))))))

The callback extracts the CORBA object reference stored in the interface’s
bank-ref slot. The function capi:prompt-for-string queries the user for the
new customer’s name returning a string (or nil if the user cancels the dialog).
If the dialog has not been cancelled, the callback invokes the stub method
op:openAccount on the target object reference bank, passing the argument
name. If successful, the invocation returns an object reference, of class
BankingDemo:account, to an IDL account object, which is then used to make
and start a new account-interface, via a call to make-account-frame.

Recall that the IDL operation openAccount may fail, raising the IDL user
exception duplicateAccount. As in the definition of debit-callback, we
cater for this eventuality by placing the invocation in the body of a
handler-case statement and install a handler on the corresponding Common
Lisp condition of class BankingDemo:bank/duplicateAccount. This handler
simply informs the user of the exception using the CAPI function
display-message to create and display a simple alert dialog box.

The definition of open-checking-account-callback is similar to the defini-
tion of openAccount-callback but prompts the user for an additional integer
to pass as the overdraft limit of the new checking account:
 35

5 The Bank Client

36
(defun open-checking-account-callback (self)
 (with-slots (bank-ref) self
 (let ((name (capi:prompt-for-string "Name?")))
 (when name
 (let ((limit (capi:prompt-for-integer "Limit?")))
 (when limit
 (handler-case
 (let ((account-ref
 (op:opencheckingaccount bank-ref

name limit)))
 (make-account-frame account-ref

:bank-interface self :title name))
 (Bankingdemo:Bank/DuplicateAccount
 ()
 (capi:display-message "Cannot create another

account for ~A" name)))))))))

While openAccount and openCheckingAccount create accounts for new cus-
tomers, the retrieveAccount operation is simply meant to look up the
account of an existing customer:

(defun retrieve-account-callback (self)
 (with-slots (bank-ref) self
 (let ((name (capi:prompt-for-string "Name?")))
 (when name
 (if (find-named-frame self name)
 (capi:display-message "Already viewing it...")
 (handler-case
 (let ((account-ref
 (op:retrieveaccount bank-ref name)))
 (when (op:Is_a account-ref (op:id

Bankingdemo:_Tc_Checkingaccount))
 (setf account-ref
 (op:narrow 'Bankingdemo:Checkingaccount

account-ref)))
 (make-account-frame account-ref

:bank-interface self :title name))
 (Bankingdemo:Bank/NonExistentAccount
 ()
 (capi:display-message "No account exists for

name ~A" name))))))))

This callback incorporates a test that prevents the user from being presented
with more than one interface to the same account. It invokes the stub method
op:retrieveAccount only if the account under that name is not already on

5.4 Defining the interfaces
display. Because of IDL inheritance, the server implementing the IDL
retrieveAccount operation may return any object reference whose interface
inherits from the IDL account interface.

In particular, the server may return an IDL checkingAccount as a special
instance of an IDL account. In Common Lisp terms, this means that the stub
method Op:retrieveAccount may return an object reference of class
BankingDemo:checkingAccount as a special instance of
BankingDemo:account. The call to make-account-frame dispatches on the
actual, or most derived, class of the resulting object reference, making an
account-interface or checking-account-interface as appropriate.

The definition of the close-account-callback is straightforward:

(defun close-account-callback (self)
 (with-slots (bank-ref) self
 (let ((name (capi:prompt-with-list (all-frame-names self)
 "Choose account")))
 (when name
 (op:closeaccount bank-ref
 (with-slots (account-ref)
 (find-named-frame self name)
 account-ref))
 (remove-account-frame self name)))))

The function prompt-with-list presents a dialog asking the user to select a
name from the list of available account frames (indexed by their
account-name), returning nil if the user decides to cancel the dialog. Given a
valid selection, the callback invokes the stub method op:closeAccount on the
target object reference, bank-ref, passing the name of the selected account.
Finally, the account interface is removed from the bank interface.

5.4.3 Initializing the ORB and obtaining the first object reference

A client can only communicate with a CORBA object if it possesses a reference
to that object. This raises the question of how the client obtains its initial object
reference. The fact that some IDL operation may return an object reference is
of no help here: without a reference to specify as its target, there is no way to
invoke this operation.

In more detail, before a client can enter the CORBA environment, it must first:

• Be initialized into the ORB
 37

5 The Bank Client

38
• Get a reference to the ORB pseudo-object for use in future ORB opera-
tions

• Get an initial reference to an actual object on the server

CORBA provides a standard set of operations, specified in pseudo IDL (PIDL),
to initialize applications and obtain the appropriate object references.

Operations providing access to the ORB reside in the CORBA module. (Like an
IDL interface declaration, a (P)IDL module declaration defines a new
namespace for the body of declarations it encloses. What it does not do is
define a new type of CORBA object.) Operations providing access to an Object
Adapter, Interface Repository, Naming Service, and other Object Services
reside in the ORB interface defined within the CORBA module.

To provide some flavor of PIDL, here is a fragment of the PIDL specification of
CORBA that we rely on in our implementation of the bank client.

module CORBA {
interface Object {

boolean is_a (in string logical_type_id);
...
};
interface ORB {

string object_to_string (in Object obj);
Object string_to_object (in string str);

...
};

...

typedef string ORBid;
typedef sequence <string> arg_list;
ORB ORB_init (inout arg_list argv, in ORBid orb_identifier);

};

The Object interface is implicitly inherited by all IDL interfaces, much as
every Common Lisp class inherits from the class standard-object.

The is_a operation provides a test for inheritance (the logical_type_id is a
string representation of an interface identifier). The operation returns true if
the object is an instance of that interface, including if that interface is an ances-
tor of the most derived interface of that object.

The ORB operations object_to_string and string_to_object provide an
invertible mapping from object references to their representations as strings.

5.4 Defining the interfaces
Notice that the CORBA operation ORB_init is defined outside the scope of
any interface, providing a means of bootstrapping into the CORBA world.
Calling ORB_init initializes the ORB, returning an ORB pseudo-object that can
be used as the target for further ORB operations.

Like most other language bindings, the Common Lisp binding adopts the
pseudo-objects approach in which these CORBA and ORB operations are
accessed by applying the binding’s normal IDL mapping rules to the PIDL
specification.

In this tutorial, we use a very simple technique to obtain the initial object ref-
erence. The client assumes that the server has published a reference to its
implementation of the bank object, encoded as a string, in a shared file. After
starting up, the client reads the file, decodes the string as an object reference,
and then uses this reference as the target of further operations.

Here is the remaining Common Lisp code that completes the implementation
of the client:

(defun bank-client ()
 (let ((orb (op:orb_init nil "LispWorks ORB")))
 (let ((bank-ref (op:narrow 'BankingDemo:bank
 (file-to-object orb))))
 (capi:display (make-instance 'bank-interface
 :bank-ref bank-ref
 :title "Corba Bank")))))

The defparameter *bank-ior-file* is the name of the shared file used to pass
the reference of the bank object from the server to the client.

The method file-as-string reads a file’s contents.

The top-level let statement first initializes The LispWorks ORB by calling the
Common Lisp generic function op:ORB_init corresponding to the PIDL
ORB_init operation. The first argument to this call is an empty list. Passing an
empty sequence instructs the op:ORB_init function to ignore this argument
and use the application’s command line arguments (if any) instead. The value
of the second argument, "LispWorks ORB", merely identifies the ORB to use.

Invoking op:string_to_object on this ORB, passing the string read from the
shared file, reconstitutes the string as an unspecific object reference of class
CORBA:Object. Calling the op:narrow method on this object reference narrows
 39

5 The Bank Client

40
(that is, coerces) it to a more specific object reference of class
BankingDemo:bank. (The op:narrow method employs an implicit call to the
object’s is_a operation to check that the desired coercion is safe.)

Finally, the resulting object reference bank-ref, of class BankingDemo:bank, is
used to make and start a new bank interface, displaying the initial GUI to the
user. The implementation of the client is now complete.

6

6 The Bank Server
6.1 The server
In this chapter, we use Common Lisp to design and implement a CORBA
server using the LispWorks ORB.

Our server presents an object-oriented interface to a bank object and its
accounts. Because we want the bank’s account records to persist beyond the
lifetime of the server, we would store the account records in a database. This
database could be manipulated by the server using an SQL interface, such as
that currently available with the LispWorks product.

Since the primary motivation for this tutorial is to illustrate the use of CORBA,
we simply simulate the database using a hash table. It would be fairly easy to
replace this implementation with code that manipulates a real database.

The hash table simply uses a structure instance for each row:

(defstruct database-row name balance limit)

In the case of an account that does not allow an overdraft, limit will be nil.
41

6 The Bank Server

42
6.2 Implementing CORBA objects on the server
A CORBA server has to provide an implementation object, called a servant,
for each of the proxy objects manipulated by the client. Our server needs to
implement the initial bank servant, and then create new servants for each of
the account objects created in response to openAccount, openCheckingAccount
and retrieveAccount requests.

Each of these servants needs to be registered in the CORBA environment and
assigned an object reference, so that the ORB can direct incoming requests to
the appropriate servant.

In CORBA, the primary means for an object implementation to access ORB
services such as object reference generation is via an object adapter. The object
adapter is responsible for the following functions:

• Generation and interpretation of object references

• Registration of servants

• Mapping object references to the corresponding servants

• IDL method invocations, mediated by skeleton methods

• Servant activation and deactivation

The LispWorks ORB provides an implementation of the Portable Object
Adapter (POA). This object adapter forms part of the CORBA standard and,
like the ORB, has an interface that is specified in pseudo IDL (PIDL). The
Common Lisp interface to the POA conforms closely to the interface obtained
by applying the Common Lisp mapping rules to the POA’s PIDL specification.

A POA object manages the implementation of a collection of objects, associat-
ing object references with specific servants. While the ORB is an abstraction
visible to both the client and server, POA objects are visible only to the server.

User-supplied object implementations are registered with a POA and assigned
object references.When a client issues a request to perform an operation on
such an object reference, the ORB and POA cooperate to determine the servant
on which the operation should be invoked, and perform the invocation as an
upcall through a skeleton method.

6.2 Implementing CORBA objects on the server
The POA allows several ways of using servants although it does not deal with
the issue of starting the server process. Once started, however, there can be a
servant started and ended for a single method call, a separate servant for each
object, or a shared servant for all instances of a particular object type. It allows
for groups of objects to be associated by means of being registered with differ-
ent instances of the POA object and allows implementations to specify their
own activation techniques. If the implementation is not active when an invo-
cation is performed, the POA can start one.

Unfortunately, the flexibility afforded by the POA means that its interface is
complex and somewhat difficult to use. The example in this tutorial makes
only elementary use of the POA.

Here is the PIDL specification of the facilities of the POA that the bank tutorial
uses:

module PortableServer {
 native Servant;
 interface POAManager {
 exception AdapterInactive{};
 void activate() raises (...);
 ...
 };
 interface POA {
 exception WrongAdapter {};
 readonly attribute POAManager the_POAManager;
 Object servant_to_reference(in Servant p_servant)
 raises (...);
 Servant reference_to_servant(in Object reference)
 raises (WrongAdapter, ...);
 ...
 };
...
};

The POA-related interfaces are defined in a module separate from the CORBA
module, called the PortableServer module. It declares several interfaces, of
which only the POA and POAManager are shown here.

The PortableServer module specifies the type Servant. Values of type
Servant represent language-specific implementations of CORBA interfaces.
Since this type can only be determined by the programming language in ques-
tion, it is merely declared as a native type in the PIDL.
 43

6 The Bank Server

44
In the Common Lisp mapping, the Servant type maps to the abstract class
PortableServer:Servantbase. User defined Common Lisp classes that are
meant to implement CORBA objects and be registered with a POA must
inherit from this class.

Each POA object has an associated POAManager object. A POA manager encap-
sulates the processing state of the POA it is associated with. Using operations
on the POA manager, an application can cause requests for a POA to be
queued or discarded, and can cause the POA to be deactivated.

A POA manager has two main processing states, holding and active, that
determine the capabilities of the associated POA and the handling of ORB
requests received by that POA. Both the POA manager and its associated POA
are initially in the holding state.

When a POA is in the holding state, it simply queues requests received from
the ORB without dispatching them to their implementation objects. In the
active state, the POA receives and processes requests. Invoking the POA Man-
ager’s activate operation causes it, and its associated POAs, to enter the
active state.

A POA object provides two useful operations that map between object refer-
ences and servants. The servant_to_reference operation has two behaviors.
If the given servant is not already active in the POA, then the POA generates a
new object reference for that servant, records the association in the POA, and
returns the reference. If the servant is already active in the POA, then the oper-
ation merely returns its associated object reference.

The reference_to_servant operation returns the servant associated with a
given object reference in the POA. If the object reference was not created by
this POA, the operation raises the WrongAdapter exception.

6.3 The server’s perspective
The bank fasl file corresponding to the bank.idl file (produced when compil-
ing the defsystem) defines a servant class for each of the protocol classes cor-
responding to an IDL interface. Each of these classes inherits from the abstract
class PortableServer:ServantBase, allowing instances of these classes to be
registered with a POA.

6.4 Implementing the bank server
The user provides an implementation of a servant class by defining a subclass
of that class, called an implementation class, and defining methods, specialized
on this implementation class, for each of the protocol functions corresponding
to an IDL attribute or operation.

The bank fasl file defines a concrete skeleton method, specialized on the
appropriate servant class, for each protocol function stemming from an IDL
attribute or operation. When the POA receives a request from a client through
the ORB it looks up the servant targeted by that request, and invokes the cor-
responding skeleton method on that servant. The skeleton method performs
an upcall to the method that implements the protocol function for the imple-
mentation class of the servant. If the upcall succeeds, the skeleton method
sends the result to the client. If the method raises a Common Lisp condition
corresponding to a CORBA user or system exception, the skeleton method
sends the CORBA exception back to client.

6.4 Implementing the bank server

6.4.1 Implementing the servant classes

The bank fasl file defines three abstract servant classes
BankingDemo:account-servant,
BankingDemo:checkingAccount-servant, and
BankingDemo:bank-servant corresponding to the IDL interfaces account,
checkingAccount, and bank. The class
BankingDemo:checkingAccount-servant is defined to inherit from
BankingDemo:account-servant, matching the inheritance relationship in the
IDL.

Note that each class inherits from the abstract class
PortableServer:ServantBase, allowing instances of the class to be registered
with a POA.

In our implementation of the bank server, these servant classes are imple-
mented by the subclasses

• bank-implementation,

• account-implementation, and
 45

6 The Bank Server

46
• checkingAccount-implementation

The bank-implementation class implements BankingDemo:bank-servant by
representing a bank as a connection to a database:

(defclass bank-implementation (BankingDemo:Bank-servant)
 ((connection :initarg :connection)
 (poa :initarg :poa)
 (account-impls :initform nil)))

We have included the poa slot to record the POA in which the bank servant is
active, so that servants representing accounts at the bank can be registered in
the same POA. A slot op:name corresponding to the attribute name defined in
the IDL is inherited from the Bank-servant, as are definitions of accessor
functions for this slot.

The account-implementation class implements
BankingDemo:account-servant:

(defclass account-implementation (BankingDemo:Account-servant)
 ((bank :initarg :bank)))

An instance of this class represents an account. The bank slot provides a con-
nection to the database that holds the account’s record. Slots op:name and
op:balance, corresponding to attributes defined in the IDL, are inherited from
account-servant. The name slot identifies the record in the database.

Finally, the checkingAccount-implementation class implements
BankingDemo:checkingAccount-servant simply by inheriting from
account-implementation:

(defclass checkingaccount-implementation
(Bankingdemo:Checkingaccount-servant account-implementation)

())

A slot op:limit, corresponding to the attribute limit defined in the IDL, is
inherited from checkingaccount-servant.

6.4.2 Implementing the servant methods

The next step in implementing the server is to define methods, specialized on
the implementation classes, for each of the protocol functions corresponding
to an IDL attribute or operation.

6.4 Implementing the bank server
Implementing a protocol function boils down to defining a concrete method
for that function that specializes on the implementation class of its target
object. Recall that the target object of a protocol function is the first parameter
to that function.

We can now present the implementations of the protocol functions. The
op:name method corresponding to the name attribute is automatically gener-
ated by the IDL compiler to reference a slot op:name in the class that takes the
initarg :name to initialize it. The same rules apply to op:balance.

The op:credit method on an Account increments the record’s balance field by
executing a database update statement:

(corba:define-method op:credit ((self account-implementation)
amount)
 (with-slots (op:name bank op:balance) self
 (with-slots (connection) bank
 (let ((old-balance (lookup-row-value op:name

connection :balance)))
 (update-database-row op:name connection
 :balance (setf op:balance

(+ old-balance amount)))))))

The op:debit method on an Account executes a database update statement
that decrements the record’s balance field, provided the balance exceeds the
desired amount:

(corba:define-method op:debit ((self account-implementation)
amount)
 (with-slots (op:name bank op:balance) self
 (with-slots (connection) bank
 (let ((old-balance op:balance))
 (if (< old-balance amount)
 (error 'BankingDemo:Account/Refusal
 :reason (format nil
 "Can't debit ~A because the

balance is ~A."
 amount old-balance))
 (update-database-row

op:name connection
:balance (setf op:balance (-

old-balance amount))))))))

The op:limit method is automatically generated, as it is also an attribute.
 47

6 The Bank Server

48
Because we defined checkingAccount-servant to inherit from
account-servant, there is no need to re-implement the op:credit method for
this implementation class. However, we do want to define a specialized
op:debit method on checkingAccount, to reflect that a checking account can
be overdrawn up to its limit:

(corba:define-method op:debit (
(self checkingAccount-implementation) amount)

 (with-slots (op:name bank op:balance) self
 (with-slots (connection) bank
 (let ((old-balance (lookup-row-value op:name

connection :balance))
 (limit (lookup-row-value op:name connection :limit)))
 (if (< (+ old-balance limit) amount)
 (error 'BankingDemo:Account/Refusal
 :reason (format nil "Can't debit ~A because the

balance is ~A (limit is ~A)."
 amount old-balance limit))
 (update-database-row op:name connection
 :balance (setf op:balance (-

old-balance amount))))))))

The BankingDemo bank op:name method returns the value of the bank’s
op:name slot and is automatically generated.

The op:openAccount method on Bank illustrates the raising of CORBA user
exceptions:

(corba:define-method op:openAccount ((self bank-implementation)
name)

 (with-slots (connection poa account-impls) self
 (when (find-database-row name connection)
 (error 'Bankingdemo:Bank/Duplicateaccount))
 (create-database-row name connection)
 (update-database-row name connection :balance 0)
 (let ((new-account (make-instance 'account-implementation
 :name name
 :bank self
 :balance 0)))
 (push new-account account-impls)
 (op:narrow 'BankingDemo:Account
 (op:servant_to_reference poa new-account)))))

If the (find-database-row name connection) test succeeds, the call to
(error 'Bankingdemo:Bank/Duplicateaccount) raises a Common Lisp
condition. (We omit the definition of find-database-row, which can be found

6.4 Implementing the bank server
in the source.) Recall that the condition class
BankingDemo:bank/duplicateAccount corresponds to the IDL
duplicateAccount exception. The POA that invoked this method in response
to a client’s request will catch the condition and send the duplicateAccount
exception back to the client. If there is no existing account for the supplied
name, the op:openAccount method creates a new record in the database.

Finally, the method makes a new servant of class account-implementation,
registers it with the bank’s POA with a call to op:servant_to_reference, and
narrows the resulting object reference to the more specific class
BankingDemo:account, the class of object references to account objects.

The op:openCheckingAccount method is similar, except that it initializes the
op:limit field of the new account record with the desired overdraft limit and
registers a new servant of class checkingAccount-implementation, returning
an object reference of class BankingDemo:checkingAccount:

(corba:define-method op:openCheckingAccount (
(self bank-implementation) name limit)

 (with-slots (connection poa account-impls) self
 (when (find-database-row name connection)
 (error 'Bankingdemo:Bank/Duplicateaccount))
 (create-database-row name connection)
 (update-database-row name connection :balance 0 :limit limit)
 (let ((new-account (make-instance

'checkingaccount-implementation
 :name name
 :bank self
 :balance 0
 :limit limit)))
 (push new-account account-impls)
 (op:narrow 'Bankingdemo:Checkingaccount
 (op:servant_to_reference poa new-account)))))

The op:retrieveAccount method uses the name parameter to find a database
row of the given name. If the query returns nil, indicating that there is no
record with that name, the method raises the CORBA user exception
nonExistentAccount by signalling the corresponding Common Lisp error.

Otherwise, the method uses the value of the op:limit field to distinguish
whether the account is an account or a current account, creating a new servant
of the appropriate class:
 49

6 The Bank Server

50
(corba:define-method op:retrieveAccount ((self
bank-implementation) name)

 (with-slots (connection poa account-impls) self
 (unless (find-database-row name connection)
 (error 'Bankingdemo:Bank/NonExistentAccount))
 (let ((limit (lookup-row-value name connection :limit))
 (balance (lookup-row-value name connection :balance)))
 (if (not limit)
 (let ((account (make-instance 'account-implementation

:name name :bank self :balance balance)))
 (push account account-impls)
 (op:narrow 'BankingDemo:Account
 (op:servant_to_reference
 poa
 account)))
 (let ((account (make-instance

'checkingaccount-implementation
 :name name
 :bank self
 :balance balance
 :limit limit)))
 (push account account-impls)
 (op:narrow 'Bankingdemo:Checkingaccount
 (op:servant_to_reference
 poa
 account)))))))

Finally, the closeAccount removes the record of an account from the database
by executing delete-database-row call:

(corba:define-method op:closeaccount
((self bank-implementation) account)

(with-slots (connection poa account-impls) self
(let ((servant (op:reference_to_servant poa account)))

(op:deactivate_object poa (op:reference_to_id poa account))
(removef account-impls servant)
(with-slots (op:name) servant

(delete-database-row op:name connection))))

Note that we need to de-reference the object reference account that is passed
in as the parameter of the op:closeAccount operation, using a call to the
op:reference_to_servant operation of the POA.

Here, we make implicit use of our knowledge that, in our application, the
server only encounters object references registered with its local POA. This
assumption is not true in general.

6.4 Implementing the bank server
6.4.3 Obtaining the initial POA object and registering the first object
reference

To complete the implementation of the server we need to write the code that
enters it into the CORBA environment. In detail, we need to:

• Initialize the server’s ORB

• Get a reference to the ORB pseudo-object for use in future ORB opera-
tions

• Get a reference to the root POA pseudo-object for use in future POA
operations

• Make a bank servant and register it with the POA

• Make the object reference of the bank servant available to the client

• Activate the POA to start processing incoming requests

To do this, we need to make use of some additional operations specified in the
CORBA module:

module CORBA {
...
interface ORB {

...
typedef string ObjectId;
exception InvalidName {};
Object resolve_initial_references (in ObjectId identifier)

raises (InvalidName);
void shutdown(in boolean wait_for_completion);

}
}

The CORBA standard specifies the ORB operation
resolve_initial_references. This operation provides a portable method for
applications to obtain initial references to a small set of standard objects
(objects other than the initial ORB). These objects are identified by a mne-
monic name, using a string known as an ObjectId. For instance, the ObjectID
for an initial POA object is RootPOA. (References to a select few other objects,
such as the InterfaceRepository and NamingService, can also be obtained in
this manner.)
 51

6 The Bank Server

52
The ORB operation resolve_initial_references returns the object associ-
ated with an ObjectId, raising the exception InvalidName for an unrecog-
nized ObjectID.

Meanwhile, the shutdown operation instructs the ORB, and its object adapters,
to shut down. If the wait_for_completion parameter is TRUE, the operation
blocks until all pending ORB processing has completed, otherwise it simply
shuts down the ORB immediately.

(defun bank-server ()
 (let* ((orb (op:orb_init nil "LispWorks ORB"))
 (rootPOA (op:resolve_initial_references orb "RootPOA")))
 (let ((bank-impl (make-instance 'bank-implementation
 :connection (connect-to-database)
 :poa rootPOA)))
 (let ((bank-ref (op:servant_to_reference rootPOA

bank-impl)))
 (object-to-file orb bank-ref)
 (capi:display (make-instance 'server-controller
 :bank-poa rootPOA
 :bank-ref bank-ref)))
 (op:activate (op:the_poamanager rootPOA)))))

The top-level function first initializes the LispWorks ORB by calling the
Common Lisp generic function op:ORB_init, just as we initialized the ORB in
the client.

The call returns an ORB pseudo-object. Invoking
op:resolve_initial_references on this ORB, passing the
ObjectID RootPOA, returns a POA object of class PortableServer:POA. This is
the CORBA standard method for obtaining the initial POA object. Note that
root POA is initially in the holding state.

Next, we connect to the database and use the connection to make a bank ser-
vant. We register the servant with the POA, RootPOA, and publish the resulting
object reference, encoded as a string, in the shared file.

We then obtain the POA Manager for the POA using the POA operation
op:the_POAManager. The call to op:activate moves the POA out of the hold-
ing state, into the active state, ready to receive and process incoming requests.

This completes the description of our implementation of the server.

7

7 The LispWorks ORB
7.1 The CORBA modules
The Common Lisp CORBA product is made up of the following modules,
which can be loaded into the image using require.

corba-support The client side of the ORB runtime plus the IDL parser.

corba-orb The server side, the actual LispWorks ORB, which loads
corba-support if it is not present.

corba Graphical tools.

7.2 Parsing IDL into stubs and skeletons
The interface to the IDL parser is currently via defsystem. Once the
corba-support module has been loaded, defsystem will have been extended
with the following extra types:

:idl-file
:idl-client-definition
:idl-server-definition
53

7 The LispWorks ORB

54
The :idl-file type instructs the IDL parser to generate code for both the
client-side stubs and the server-side skeletons. The :idl-client-definition
type instructs the IDL parser to generate code only for the client-side stubs.
The :idl-server-definition type instructs the IDL parser to generate code
only for the server-side skeletons.

For example, a typical use would be something like:

(defsystem server-side ()
 :members (
 ("grid" :type :idl-file)
 "grid-impl"
)
 :rules
 ((:in-order-to :compile :all
 (:requires (:load :previous)))))

(defsystem client-side ()
 :members (
 ("grid" :type :idl-client-definition)))

7.3 Configuring a name service and an interface repository
The LispWorks ORB is not supplied with an interface repository or a naming
service, but it is possible to configure the ORB to present these services in
response to calls of op:list_initial_services and
op:resolve_initial_references. Configuration can either be via initial ref-
erences or stored persistently.

7.3.1 Configuring via initial references

The ORB initargs -ORBInitRef and -ORBDefaultInitRef are processed as
defined by the CORBA specification, available from OMG.

For example, with an application lwcorba:

lwcorba -ORBInitRef
NameService=corbaloc::www.wherever.com:80/Dev/NameService

will configure the name service to contact the machine specified by the
corbaloc URL.

7.4 Error handling in user code called by the server
7.3.2 Persistent configuration

The function corba:set-pluggable-module-details can be used for this pur-
pose. For example,

(corba:set-pluggable-module-details "InterfaceRepository"
:ior-string "IOR:000000000000002149444c...")

(corba:set-pluggable-module-details "NameService"
:ior-string "IOR:000000000000002149444c...")

would direct the ORB to use the given IOR-described CORBA object as an
interface repository or name service, respectively. Values set in this manner
are persistent. The code

(corba:get-pluggable-module-details orb "InterfaceRepository"
:ior-string)

returns a list of two values. The first is the object reference of the given service
if it is contactable (nil if it is not). The second is the value that has been set
using corba:set-pluggable-module-details. Note the the standardized
function op:resolve_initial_references should be used in application
code to obtain the reference, not corba:get-pluggable-module-details.

Type information corresponding to IDL parsed by the IDL compiler is not
added to the interface repository until the information is needed in response
to a call to op:get_interface from a client.

7.4 Error handling in user code called by the server
Error handlers are wrapped around user code called by the POA in response
to incoming CORBA requests. By default, an error is handled and a CORBA
exception is returned to the client.

If the variable corba:*orb-status-output* is set to a non-nil value, a back-
trace is printed to the given stream designator.

If the variable corba:*poa-break-on-error-in-server* is set to a non-nil
value, the debugger will be entered. When the user opts to continue, a
CORBA exception will be returned to the client. Note that while debugging is
going on, a synchronous call from a client will be hanging, waiting for a
response.
 55

7 The LispWorks ORB

56
7.5 Multi-threading
The :thread-policy keyword argument of op:create_poa controls the
number of threads created. The value can be one of:

:single-thread-model

Use the same thread for all requests.

:orb-ctrl-model

Use an ORB specific number of threads.

An integer n Use n threads.

Currently the "ORB specific number of threads" is 1, so this is the same as
:single-thread-model.

See the Portable Object Adapter specification, available from OMG.

7.6 Object URLs
Object URLs are supported using the corbaloc and corbaname schemes. For
corbaloc URLs, the iiop and rir protocols are supported.

In addition, a file scheme is supported, with the absolute file name following
the colon, for example file:/etc/orbroot.

7.7 Specifying the port
By default the LispWorks ORB uses port 3672.

To specify a known other port, pass it via the ORB initarg -ORBport on the
command line, for example:

my-corba-server -ORBport 12345

To allow the system to choose a port, pass the special value 0:

my-corba-server -ORBport 0

The ORB initarg -IIOPport is an alias for -ORBport.

Note: it is possible to run only one ORB instance at a time in LispWorks. So for
concurrent LispWorks ORBs, you will need to run multiple images.

7.8 Specifying the host name in IORs
7.8 Specifying the host name in IORs
When an IOR is made by the LispWorks ORB, it contains a host name that will
be used by the client to contact the ORB. By default, this name is generated by
calling the C function gethostbyname() with the result of calling (machine-
instance), which is often the FQDN of the machine.

If this is not sufficient, you can control the name that is placed in IORs by
using the -IIOPhost and -IIOPnumeric ORB initialization options.

When you supply -IIOPhost name, then name specifies the host name directly.
Otherwise, if you supply -IIOPnumeric, then the name is the numeric IP
address obtained by reverse lookup of the result of (machine-instance).

You can supply ORB initialization options on the LispWorks command line or
in the call to op:orb_init.

For example, on the command line:

lispworks-corba-server -IIOPnumeric
lispworks-corba-server -IIOPhost 192.168.1.9
lispworks-corba-server -IIOPhost my-fqdn.lispworks.com

For example, during ORB initialization:

(op:orb_init :lispworks-orb '("-IIOPnumeric"))
(op:orb_init :lispworks-orb '("-IIOPhost" "192.168.1.9"))
(op:orb_init :lispworks-orb
 '("-IIOPhost" "my-fqdn.lispworks.com"))

The ORB initargs -ORBhost and -ORBnumeric are aliases for -IIOPhost and
-IIOPnumeric respectively.
 57

7 The LispWorks ORB

58

Appendix A

A Common Lisp IDL Binding
Version 1.0 (The RFP for the IDL Common Lisp mapping was agreed by the
ORBOS and PTC committees at the OMG meeting in Washington on
99/01/14.)

This chapter briefly reviews some concepts of IDL and defines the notion of a
language mapping. A summary of the IDL/Common Lisp mapping is pre-
sented.

A.1 Introduction to IDL
IDL, or Interface Definition Language, is a language defined by the Object
Management Group. The key data type in IDL is the interface, which
describes the behavior of objects that implement that interface. The IDL defi-
nition for an interface describes all of the operations to which an object that
implements that interface can respond. For each such operation, it describes
the allowed types of the parameters to the operation and the allowed type of
the value returned by the operation.

IDL allows types other than interfaces to be expressed. For example, primitive
types such as boolean, several signed and unsigned integer types, and some
floating point types may be defined.
59

60
Constructed types analogous to the C struct or Pascal record type may be
defined, and some simple type aliasing is possible in a way analogous to the C
typedef construct. Arrays and sequences may also be defined.

A.2 How IDL is used
IDL is typically used in the following manner. A server process wishes to
make some of its functionality available for invocation by clients. These clients
may not be in the same process, on the same machine, or even written in the
same language.

The server publishes the IDL definitions that define the interfaces of the
objects that it implements. A client can use those definitions to invoke opera-
tions on objects that reside within the server process.

The syntax used by the client to invoke a method on an object defined in IDL,
and the relationship between the data types specified in IDL and the native
datatypes of the language in which the client is implemented is defined by the
mapping of IDL into that language.

This document describes a mapping from IDL into Common Lisp.

A.3 Mapping summary
The main points of the mapping from IDL to Common Lisp are as follows:

• Primitive data types are mapped to corresponding primitive data types
in Lisp.

• Struct and union are mapped to classes. Each member of the struct or
union can be accessed using a regular syntax.

• Arrays map to arrays.

• Sequences can map either to lists or to vectors; that is, sequences map to
sequences.

• Exceptions are mapped to conditions.

• Interfaces are mapped to classes, and interfaces that inherit map to
classes that inherit.

• Operations on interfaces map to methods on a generic function. This
generic function discriminates only on its first argument, which is then
interpreted as the receiver of the operation.

• The module in which an IDL entity is declared is mapped to the pack-
age name of the corresponding symbol. The name of the symbol is
formed from the rest of the scope of the module.

A.4 Mapping in more detail
This section describes the mapping of IDL into the Lisp language. In most
cases examples of the mapping are provided. It should be noted that the
examples are code fragments that try to illustrate only the language construct
being described.

A.4.1 Mapping concepts

By an IDL entity we mean an element defined in some IDL file. For example,
consider the code fragment:

module A {
interface B {

void op1(in long bar);
};

}

The IDL entities are the module named A, the interface named B, the operation
named op1, the formal parameter named bar, and the primitive data types
void and long.

Our mapping will associate a corresponding Lisp entity to each IDL entity
declared in a an IDL specification. The Lisp entity corresponding to a given
IDL entity will be said to be generated from the IDL entity.

If the IDL entity has a name, then the corresponding Lisp entity will also have
a name. Whereas IDL entities are named by strings (in other words, identifi-
ers), Lisp entities are named by symbols.

This chapter specifies, for each IDL construct, the Lisp entity, and the name of
that entity, that is generated by the mapping.
 61

62
A.4.2 Semantics of type mapping

The statement that an IDL type I is mapped to a Lisp type L indicates that if V
is a Lisp value whose corresponding IDL type is I, then the consequences are
not specified if the value of V is not a member of the type L. For example, if V
is passed as a parameter to an IDL operation or if V is returned from an IDL
operation, then a conforming implementation may reasonably perform any of
the following actions if V is not of the type L.

• If V may be coerced to L, then V may be replaced by the result of coerc-
ing V to the type L.

• If V cannot be coerced to L, then an error may be signalled. If the error
occurs during marshalling or unmarshalling, corba:marshal should be
signaled.

A.4.3 Mapping for basic types

The following table shows the basic mapping. The first column contains the
IDL name of the IDL type to be mapped. Each IDL type denotes a set of IDL
abstract values.

The set of values denoted by an entry in the first column is mapped, under the
mapping described in this document, to a set of Lisp values. That set of Lisp
values is described in two ways:

IDL Type Name of Lisp Type Lisp Type Specifier

boolean corba:boolean boolean

char corba:char character

octet corba:octet (unsigned-byte 8)

string corba:string string

short corba:short (signed-byte 16)

unsigned short corba:ushort (unsigned-byte 16)

long corba:long (signed-byte 32)

Table A.1

For example:

(typep -3 'corba:short)
> T
(typep "A string" 'corba:string)
> T

A.4.3.1 boolean

The IDL boolean constants TRUE and FALSE are mapped to the corresponding
Lisp boolean literals t and nil. The type specifier corba:boolean specifies
this type.

A.4.3.2 char

IDL char maps to the Lisp type character. The type specifier corba:char
specifies this type.

For example:

(typep #\x corba:char)
> T
(typep "x" 'corba:char)
> nil

A.4.3.3 octet

The IDL type octet, an 8-bit quantity, is mapped as an unsigned quantity to
the type corba:octet. The type specifier corba:octet denotes the set of inte-
gers between 0 and 255, inclusive. This set can also be denoted by the type
specifier (unsigned-byte 8).

For example:

unsigned long corba:ulong (unsigned-byte 32)

float corba:float see text

double corba:double see text

IDL Type Name of Lisp Type Lisp Type Specifier

Table A.1
 63

64
(typep 255 'corba:octet)
> T
(typep -1 'corba:octet)
> nil

A.4.3.4 string

The IDL string, both bounded and unbounded variants, are mapped to
string. Range checking for characters in the string as well as bounds checking
of the string shall be done at marshal time. The type specifier corba:string
denotes the set of Lisp strings.

For example:

(typep "A string" 'corba:string)
> T
(typep nil 'corba:string)
> nil

A.4.3.5 Integer types

The integer types each map to the Lisp integer type. Each IDL integer type
has a corresponding type specifier that denotes the range of integers to which
it corresponds.

The names of the type specifiers are corba:long, corba:short, corba:ulong,
and corba:ushort.

A.4.3.6 Floating point types

The floating point types float and double map to Lisp types named
corba:float and corba:double, respectively. These types must be subtypes
of the type real. They must allow representation of all numbers specified by
the corresponding CORBA types.

A.4.4 Introduction to named types

We now discuss the mapping of types that are named. We begin with a discus-
sion of terminological issues.

A.4.4.1 IDL naming terminology

Notation for naming can be confusing, so some care is needed. Our specifica-
tion is not formally rigorous, but we have tried to illustrate enough points
with examples so that situations likely to arise in practice can be handled.

IDL Naming Terminology

By “the IDL name of an IDL entity”, we mean the string that is the simple
name of that entity. An IDL entity can be declared at the top-level or nested
inside some other IDL entity. We say that the outer IDL entity encloses the
inner one. We will sometimes elide the quotation marks in describing the
names of IDL (and other entities) when no confusion is likely to result.

Here is an IDL example:

module A{
 interface B{
 struct c {long foo;};};}

The name of the struct is the string c. The name of the interface is the string
B. The name of the module is the string A. The name of the struct member is
the string foo. The innermost enclosing IDL entity of the struct is the inter-
face named B. The innermost enclosing module of the struct is the module
named A.

Lisp Naming Terminology

The name of a symbol is a string used to identify the symbol. Packages are col-
lections of symbols. A symbol has a home package, which also has a name. A
package can be named by a symbol or a string. We sometimes loosely say “the
package x” when we mean “the package named by x”.

A package may have nicknames, and we will consider that the nicknames of a
package name the package. Unless otherwise stated, we will assume that dis-
tinct package names refer to distinct packages.

The notation for symbols consists of three concatenated parts: the name of the
home package of the symbol, followed by the character “:”, followed by the
name of the symbol. Case is not significant when this notation is used. Thus,
all symbols generated by this mapping are external symbols of their home
package.
 65

66
A symbol can name a function, a package, a class, a type, a slot, or a variable.
These namespaces are disjoint. All alphabetic characters in the names of sym-
bols used in this document are upper-case unless otherwise stated.

Thus, the names notated here are implicitly converted to uppercase when they
name a symbol. For example, when we write the symbol named
hello-goodbye or the symbol hello-goodbye, we actually mean the symbol
whose name is the string HELLO-GOODBYE.

A.4.5 Distinguished packages

This document will refer to two kinds of packages:

• The first kind are those packages defined explicitly by this specification
(this Appendix).

• The second kind consists of those packages created as a result of com-
piling user IDL code.

The first kind of package consists of these three distinct packages: the root
package, the corba package, and the operation package.

The names of these packages are described below. The name of the root pack-
age is the string "OMG.ORG/ROOT". The name of the corba package is
"OMG.ORG/CORBA". The name of the operation package is the string
"OMG.ORG/OPERATION".

The precise semantics of these three packages is described below. Informally,
the root package is the package in which Common Lisp names corresponding
to IDL definitions not contained in a top-level module are interned. The corba
package is the package in which Common Lisp names corresponding to IDL
definitions and pseudo-IDL definitions in the CORBA module are interned.
The operation package is the package into which names of Common Lisp
functions corresponding to IDL operations are interned.

In addition, this specification makes use of the standard Common Lisp pack-
ages named KEYWORD and COMMON-LISP.

A.4.5.1 Nicknames for distinguished packages

An implementation is expected to support the addition of nicknames for a
package via the standard Common Lisp nicknames facility. An ORB should
support the following default nicknames:

• For the package OMG.ORG/CORBA, the default nickname shall be CORBA.

• For the package OMG.ORG/OPERATION, the default nickname shall be OP.

This document will use these nicknames without comment.

A.4.6 Scoped names and scoped symbols

Many of the Common Lisp entities we consider will be named according to
the scoped naming convention described in this section. In particular, the fol-
lowing entities will be mapped according to this naming convention:

• interface

• union

• enum

• struct

• exception

• const

• typedef

A scoped symbol will be associated with the IDL entity, and it is this scoped
symbol that names the Lisp value generated by the given IDL entity.

A.4.6.1 Definitions

For any named IDL entity I there is a Lisp symbol S called the scoped symbol
of I. The scoping separator is the string "/".

If I is a top-level module, then the name of S is the name of I.
 67

68
If I is a module nested within another module J, then the name of S is the con-
catenation of the name of the scoped symbol of J, the scoping separator, and
the name of I. The home package of the scoped symbol of a module is
:keyword.

Suppose I is a named IDL entity that is not a module. The name of the scoping
symbol S of I is determined as follows. If the declaration of I is enclosed inside
another IDL entity J that is not a module, then the name of S is the concatena-
tion of the name of the scoping symbol for J, the scoping separator, and the
name of I. Otherwise the name of S is the name of I.

If I is enclosed in a module M, then the home package of S is named by the
scoped symbol for M. Otherwise the home package for S is the root package.

A.4.6.2 Examples of scoping symbols

First we consider a simple example:

module a { interface foo {};}

The scoped symbol of the module is :a. Thus, the home package of this
symbol is :keyword and the name of the symbol is the string A. The scoped
symbol of the interface is the symbol a:foo. Thus, the name of the symbol is
the string FOO, and the home package of the symbol is the package whose
name is the string A.

module a {
 interface outer {
 struct inner {
 in long member;
 };
 };
}

Here the scoped symbol for the module is :a, the scoped symbol for the inter-
face is a:outer, and the scoped symbol for struct is a:outer/inner.

module a{
 module b{
 interface c{
 struct d{
 long foo;
 };
 };
 };
}

The scoped symbol for the struct is a/b:c/d. The scoped symbol for the
struct member is a/b:c/d/foo.

A.4.7 The package_prefix pragma

A package_prefix pragma has the form:

#pragma package_prefix string

where string is an IDL string literal. For example, #pragma package_prefix
COM.LISPWORKS.

A package_prefix pragma affects the mapping of all top-level modules
whose definition textually follows that pragma in the IDL file. The name of
the scoping symbol for such a top-level module is the concatenation of the
given package_prefix with the name of the module.

#pragma package_prefix COM/LISPWORKS

module a{
 module b{
 interface c{};
 };
};

The scoped symbol for the interface is COM/LISPWORKS/A/B:C.

A.4.8 Mapping for interface

An IDL interface is mapped to a Lisp class. The name of this class is the
scoped symbol for the interface. The direct superclasses of a generated Lisp
class are determined as follows.
 69

70
If the given IDL interface has no declared base interfaces, the generated class
has the single direct superclass named corba:object. Otherwise, the gener-
ated Lisp class has direct superclasses that are the generated classes corre-
sponding to the declared base interfaces of the given interface. The Lisp value
nil can be passed wherever an object reference is expected.

An IDL interface is also mapped into server-side classes. The server classes are
described in Section A.6 on page 85.

For example, in IDL:

module example{
 interface foo {};
 interface bar {};
 interface fum : foo,bar {};
}

And in generated Lisp:

(defclass example:foo(corba:object)())
(defclass example:bar(corba:object)())
(defclass example:fum (example:foo example:bar)())

A.4.9 Mapping for operation

This section discusses only how the user is to invoke mapped operations, not
how the user is to implement them. The implementation of operations is dis-
cussed in Section A.6 on page 85.

An IDL operation is mapped to a Lisp function named by the symbol whose
print-name is given by the name of the operation interned in the operation
package.

We will assume that all operation names have been appropriately imported
into the current package in the examples.

Thus, when an example is given in which there is a reference to the symbol
naming the mapped function corresponding to an IDL operation, the package
of that symbol will be assumed to be the operation package. Common Lisp
provides a number of facilities for the implementation of this functionality
and for handling name conflicts.

A.4.9.1 Parameter passing modes

The function defined by the IDL operation expects actual arguments corre-
sponding to each formal argument that is declared in or inout, in the order in
which they are declared in the IDL definition of the operation.

A.4.9.2 Return values

The function defined by the IDL operation returns multiple values. The first
value returned is that value corresponding to the declared return value, unless
the declared return value is void. Following the value corresponding to the
declared return value, if any, the succeeding returned values correspond to the
parameters that were declared out and inout, in the order in which those
parameters were declared in the IDL declaration.

Note that this implies that generated functions corresponding to operations
declared void, which have neither out nor inout formal parameters, return
zero values.

A.4.9.3 oneway

Operations declared oneway are mapped according to the above rules.

A.4.9.4 Efficiency optimization: Using macros instead of functions

A conforming implementation may map an operation to a macro whose name
and invocation syntax are consistent with the above mapping. For the sake of
terminological simplicity, however, this document will continue to refer to
mapped operations as “functions”.

A.4.9.5 exception

An invocation of a function corresponding to a given IDL operation may
result in the certain conditions being signalled, including the conditions gen-
erated by the exceptions declared in the raises clause of the operation, if any.
Such conditions are signalled in the dynamic environment of the caller.

An invocation of a function may also result in the signalling of conditions cor-
responding to system exceptions.
 71

72
A.4.9.6 context

If the operation is specified to take a context (using the IDL context clause),
the generated operation takes an extra optional parameter corresponding to a
context object generated using the normal IDL context manipulation opera-
tions.

For example, in IDL:

module example {
 interface face {
 long sample_method (in long arg);
 void voidmethod();
 void voidmethod2(out short arg);
 string method3 (out short arg1,inout string arg2,in boolean
arg3);
 };
}

In generated Lisp:

(defpackage :example)
(defclass example:face (corba:object)())
...

And in use:

; Suppose x is bound to a value of class example:face.
(sample_method x 3)
> 24

(voidmethod x)
> ; No values returned

(voidmethod2 x)
> 905 ; This is the value corresponding to the out arg

(method3 x "Argument corresponding to arg2" T)
> "The values returned" -23 "New arg2 value"

; The Lisp construct multiple-value-bind can also be used
; to recover these values.
(multiple-value-bind (result arg1 arg2)
 (method3 x "Argument corresponding to arg2" T)
(list result arg1 arg2))
> ("The values returned" -23 "New arg2 value")

A.4.10 Mapping for attribute

An attribute is mapped using a naming convention similar to that for opera-
tion.

A.4.10.1 readonly attribute

An attribute that is declared with the readonly modifier is mapped to a
method whose name is the name of the given attribute and whose home pack-
age is the operation package.

This method is specialized on the class corresponding to the IDL interface in
which the attribute is defined.

A.4.10.2 normal attribute

Attributes that are not declared readonly are mapped to a pair of methods
that follow the convention used for default slot accessors generated by
defclass. Specifically, a reader-method is defined whose name follows the con-
vention for readonly attributes. A writer is defined whose name is (setf
name) where name is the name of the defined reader-method.

For example, in IDL:

module example{
interface attributes {

attribute string attr1;
readonly attribute long attr2;};}

And in use:

;; Assume x is bound to an object of class example:attributes
(attr2 x)
> 40001

(attr1 x)
> "Sample"

(setf (attr1 x) "New value")
> "New value"

(attr1 x)
> "New value"
 73

74
A.4.11 Mapping of module

An IDL module is mapped to a Lisp package whose name is the name of the
scoped symbol for that module.

For example, in IDL:

interface outer_interface {};
module example {
 interface inner_interface {};
 module nested_inner_example {...
 interface nested_inner_interface{};
 module doubly_nested_inner_example{...};
 };
}

And in generated Lisp:

(defpackage :example)
(defpackage :example/nested_inner_example)
(defpackage

:example/nested_inner_example/doubly_nested_inner_example)
(defclass omg.root:outer_interface...)
(defclass example:inner_interface ...)
(defclass example/nested_inner_example:nested_inner_interface…)

A.4.12 Mapping for enum

An IDL enum is mapped to a Lisp type whose name is the corresponding
scoped symbol.

Each member of the enum is mapped to a symbol with the same name as that
member whose home package is the keyword package.

For example, in IDL:

module example{
 enum foo {hello, goodbye, farewell};
};

In generated Lisp:

(defpackage :example)
(deftype example:foo ()
'(member :hello :goodbye :farewell))

And in use:

(typep :goodbye 'example:foo)
> T

(typep :not-a-member 'example:foo)
> nil

A.4.13 Mapping for struct

An IDL struct is mapped to a Lisp type whose name is the corresponding
scoped symbol. Each member of the struct is mapped to an initialization key-
word, a reader, and a writer. The initialization keyword is a symbol whose
name is the name of the member and whose package is the keyword package.

The reader is named by a symbol that follows the conventions for attribute
accessors. In the case of a reader, its package is the operation package, and its
name is the name of the member. The writer is formed by using setf on the
generalized place named by the reader.

The type corba:struct is supertype of all such generated types.

An IDL struct has a corresponding constructor whose name is the same as
the name of the mapped Lisp type. This constructor takes keyword arguments
whose package is the keyword package and whose name equals the name of
the corresponding member.

For example, in IDL:

module structmodule{
 struct struct_type {
 long field1;
 string field2;
 };
};

In generated Lisp:

(defpackage :structmodule)
(defstruct structmodule:struct_type ...)

And a usage example:

(setq struct (structmodule:struct_type
:field1 100000
:field2 "The value of field2"))
 75

76
(op:field1 struct)
> 100000

(setf (op:field1 struct) -500)
> -500

(op:field1 struct)
> -500

A.4.14 Mapping for union

An IDL union is mapped to a Lisp type named by the corresponding scoped
symbol. This type is a subtype of corba:union.

The value of the discriminator can be accessed using the accessor function
named union-discriminator whose home package is the operation package
and using an initialization argument named :union-discriminator.

The value can be accessed using the accessor function named union-value in
the operation package with initialization argument :union-value.

An IDL union has a corresponding constructor whose name is the same as the
name of the type. This constructor takes two constructors whose names are
:union-value and :union-discriminator.

A.4.14.1 Member accessors

Each union member has an associated constructor and accessor.

The symbol-name of the name of the constructor corresponding to a particular
member is the concatenation of the name of the union constructor to the scop-
ing separator to the name of the member. The home package of the name of
the constructor corresponding to a particular member is the home package of
the name of the union constructor. A constructor corresponding to a member
takes a single argument, the value of the union. The discriminator is set to the
value of the first case label corresponding to that member.

It is an error if a member reader is invoked on a union whose discriminator
value is not legal for that member. The member writer sets the discriminator
value to the first case label corresponding to that member.

The default member is treated as if it were a member named default whose
case labels include all legal case labels that are not case labels of other mem-
bers in the union.

For example, in IDL:

module example {
 enum enum_type {first,second,third,fourth,fifth};
 union union_type switch (enum_type) {
 case first: long win;
 case second: short place;
 case third:
 case fourth: octet show;
 default: boolean other;
 };
};

In generated Lisp:

(defpackage :example)
(defstruct (example:union_type ...))

And in use:

(setq union
(example:union_type

:union-discriminator :first
:union-value -100000))

(op:union-value union)
> -100000

(op:union-discriminator union)
> :FIRST

(setq same-union (example:union_type/win -100000))

(op:union-discriminator same-union)
> :FIRST

(setf (op:show same-union) 3)
> 3

(op:union-discriminator same-union)
> :THIRD

(op:show same-union)
> 3
 77

78
(setf (op:default same-union) nil)
> nil

(op:union-discriminator same-union)
> :FIFTH

A.4.15 Mapping for const

An IDL const is mapped to a Lisp constant whose name is the scoped symbol
corresponding to that const and whose value is the mapped version of the cor-
responding value.

For example, in IDL:

module example {
 const long constant = 321;
};

And in generated Lisp:

(defpackage :example)
(defconstant example:constant 321)

A.4.16 Mapping for array

An IDL array is mapped to a Lisp array of the same rank. The element type
of the mapped array must be a supertype of the Lisp type into which the ele-
ment type of the IDL array is mapped.

Multidimensional IDL arrays are mapped to multidimensional Lisp arrays of
the same dimensions.

For example, in IDL:

module example {
 typedef short array1[2];
 interface array_interface{
 array1 op();
 }
}

In generated Lisp:

(defpackage :example)
(deftype example:array1 () '(array t (2)))

;; mapping for the interface...
(defclass example:array_interface...)

And in use:

(setq a2 (op x)) ; Get an array

(aref a2 1) ; Access an element
> 3 ; Just an example, could be any value that is a short

A.4.17 Mapping for sequence

An IDL sequence is mapped to a Lisp sequence. Bounds checking shall be
done on bounded sequences when they are marshaled as parameters to IDL
operations. An implementation is free to specify the type of the mapped list
more specifically.

Suppose foo is an IDL data type and let L be the corresponding Lisp type. This
means that anywhere a parameter of type sequence<foo> is expected, either a
vector (all of whose elements are of type L) or a list (all of whose elements are
of type L) may be passed.

Conversely, when such a sequence is returned from an operation invocation,
the LispWorks ORB will always return a value of type vector.

For example, in IDL:

module example {
 typedef sequence< long > unbounded_data;
 interface seq{
 boolean param_is_valid(in unbounded_data arg);
 };
}

And in generated Lisp:

(defpackage :example)
(defun unbounded_data_p (sequence)
 (and (typep sequence 'sequence)
 (every #'(lambda(elt)
 (typep elt 'corba:long)))))

(deftype example:unbounded_data()
'(satisfies unbounded_data-p))
 79

80
; Let x be an object of type example:seq
(param_is_valid x '(-2 3))
> T

(param_is_valid x #(-200 33))
>T

A.4.18 Mapping for exception

Each IDL exception is mapped to a Lisp condition whose name is the scoped
symbol for that exception. User exceptions inherit from a condition named
corba:userexception. And exception is a subclass of serious-condition.

System exceptions inherit from a condition named corba:systemexception.

Both corba:userexception and corba:systemexception inherit from the
condition corba:exception.

A.4.19 User exception

The reader functions and initialization arguments for a condition generated
by an IDL exception follow the convention for the mapping of IDL structs. For
example:

module example {
 exception ex1 { string reason; };
};

; generated Lisp
(defpackage :example)
(define-condition example:ex1 (corba:userexception)

((reason :initarg :reason ...)))

; Usage example
(error (example:ex1 :reason "Example of condition"))

A.4.20 System exception

The standard IDL system exceptions are mapped to Lisp conditions that are
subclasses of corba:systemexception. Such generated conditions have
reader-functions and initargs consistent with the IDL definition of these
exceptions.

A.4.21 Mapping for typedef

IDL typedef is mapped to a Lisp type whose name is the scoped symbol cor-
responding to that typedef. This name of this type denotes the set of Lisp
values that correspond to the Lisp type that is generated by the mapping of
the IDL type to which the typedef corresponds.

However, it is not required to perform recursive checking of the contents of
constructed types like array, sequence, and struct.

For example, in IDL:

module example{
 typedef unsigned long foo;
 typedef string bar;
};

In generated Lisp:

(defpackage :example)
(deftype example:foo () 'corba:ulong)
(deftype example:bar() 'corba:string)

And in use:

(typep -3 'example:foo)
> nil
(typep 6000 'example:bar)
> nil
(typep "hello" 'example:bar)
>T

A.4.22 Mapping for “any”

The IDL type any represents an IDL entity with an associated typecode and
value. It is mapped to the type corba:any, which encompasses all Lisp values
with a corresponding typecode.

A.4.23 Constructors

The constructor corba:any takes two keyword arguments named any-value
and any-typecode. If any-typecode is specified, then any-value must be spec-
ified. If any-value and any-typecode are each specified, then any-value must
be a member of the type denoted by any-typecode.
 81

82
An any may also be created with the invocation:

(corba:any :any-typecode val :any-value type)

A.4.24 The deduced typecode

The actual typecode of a Lisp value v is defined as follows:

• If the value is an integer, then corba:_tc_long.

• If the value is a typecode, then corba:_tc_typecode.

• If the value is of type corba:object, then the typecode of the corba
object reference.

• If the value is a single-float, then corba:_tc_float.

• If the value is a double-float, then corba:_tc_double.

• If the value is a symbol of type nil or t, then corba:_tc_boolean.

• If the value is a character, then corba:_tc_char.

• If the value is an any, then corba:_tc_any.

• If the value is a structure, exception, or union, then the relevant type
from the IDL.

• If the value is a string, then corba:_tc_string (an unbounded string).

A.4.25 Mapping overview

The detailed mapping guidelines for specific types is designed to conform to a
small set of uniform principles.

A.4.25.1 Rule 1: How names of types are formed

If an IDL identifier I names a type at the top level of some module named M,
then the corresponding Lisp type is named M:I, that is, the symbol in package
M whose name is the string "I".

Nested types are separated by the character “/”. Thus, if there is another type
J defined within the scope of the type named by I, the corresponding Lisp
symbol is M:I/J. This retains consistency with the way in which repository
IDs are formed.

A.4.25.2 Rule 2: How names of operations are formed

The rule for operation package mapping is simpler: all symbols that corre-
spond to Lisp functions that correspond to IDL operations are interned in a
single package. This package can be denoted by "OP". Thus, op:foo denotes
the operation named foo.

A.4.25.3 Rule 3: Lisp functions corresponding to IDL types

IDL defines many kinds of types: unions, structs, interfaces, and exceptions.
We can think of each of these types, informally, as denoting entities with
named slots. For example, the named slots of a struct, union, or exception are
its members; the named slots of an interface are its attributes.

For each IDL type, there is an associated constructor function that creates a
value of that type and there are accessors for each member.

The constructor Function

The constructor function corresponding to a type is identical to the (fully
scoped) name of the type. It takes keyword initialization arguments whose
names are the names of the named members of that type; these initialize the
given members.

Accessing the Members

Each named slot defines two functions: a reader and a writer. The reader has
the same name as the named slot. The writer uses the standard (setf name)
convention familiar to Lisp users. Of course, the home package of the reader
is, as for all such function names, the package OP.

Note: In applying Rule 3, remember that not all of the associated functions
make sense for all of the types. For example, there is obviously no constructor
function defined for an interface, nor are there writer functions defined for
attributes declared readonly.

A.5 Mapping pseudo-objects to Lisp
Pseudo-objects are constructs whose definition is usually specified in IDL, but
whose mapping is language specified. A pseudo-object is not (usually) a regu-
lar CORBA object.
 83

84
A pseudo-object differs from a regular CORBA object in the following ways:

• It is not represented in the Interface Repository.

• It may not be passed as a parameter to an operation expecting a CORBA
object.

• It may not be returned as a CORBA Object.

• It may not be stored in an any.

• If it is represented as a class, it may not be safely subclassed by user
code.

We have chosen the option allowed in the IDL specification to define status
as void and have eliminated it for the convenience of Lisp programmers.

Each of the standard IDL pseudo-objects is mapped according to the transla-
tion rules just defined.

A.5.1 Narrowing

In line with the other language binding, we define an operation for narrowing
an object reference. The code:

(op:narrow class-symbol object-refence)

attempts to narrow the given object reference into an object of the named
client-side class.

For example, to narrow an client-side value stored in account-ref, into an
object of type Bankingdemo:Checkingaccount:

(when (op:Is_a account-ref
(op:id Bankingdemo:_Tc_Checkingaccount))

(setf account-ref
(op:narrow 'Bankingdemo:Checkingaccount account-ref)))

A.5.2 Typecodes for parsed IDL

Parameters holding the typecode value are generated for all parsed IDL types.
If the IDL parser generates a Lisp type of name A:B, then the typecode of the
given type is available in the parameter A:_TC_B.

For example, the IDL code

module example { interface array_interface{}};

leads to the definition of a parameter

example:_tc_array_interface

with

(op:kind example:_tc_array_interface)
> :tk_objref

A.6 The mapping of IDL into Common Lisp servants
This section discusses how implementations create and register objects with
the ORB runtime.

A.6.1 Mapping of native types

Specifically, the native type PortableServer::Servant is mapped to the Lisp
class named PortableServer:ServantBase. The native type
PortableServer::ServantLocator::Cookie can take any lisp value.

A.6.2 Implementation objects

An interface corresponding to a class named by a Lisp symbol s with package
p and name n may be implemented by extending the class named by the
symbol whose package is p and whose name is the concatenation of n to the
string "-SERVANT".

If the interface has no base interfaces, then the associated skeleton class has as
direct superclasses the class corresponding to the class named
portableserver:ServantBase.

Otherwise, if the interface has base interfaces named A, B, C, and so forth,
then its associated servant class has as direct superclasses the class corre-
sponding to the servant classes corresponding to A, B, C, and so forth.

Attributes in an interface generate slots of the corresponding name in the OP
package, together with server-side accessor methods.
 85

86
A.6.3 Defining methods

The only portable way to implement an operation on a servant class is to use
the corba:define-method macro. The syntax of corba:define-method is
intended to follow the syntax of the Lisp defmethod macro as closely as possi-
ble.

The syntax of corba:define-method is as follows:

corba:define-method function-name {method-qualifier}* lambda-list
form*

function-name::= {operation-name | (setf operation-name)}
operation-name:: symbol
method-qualifier::={:before | :after | :around}
corba-specialized-lambda-list ::= setf-lambda-list

| normal-lambda-list
setf-lambda-list ::= (argument-specifier receiver-specifier)
normal-lambda-list ::= (receiver-specifier {parameter-specifer}*
context-identifier)
context-identifier ::= symbol
receiver-specifer ::= (receiver-name receiver-class)
receiver-name ::= symbol
receiver-class ::= symbol
parameter-specifier ::= symbol

This corba:define-method macro is used to implement an operation on an
interface. operation-name is a symbol whose name is the name either of an
operation or of an attribute declared in an IDL interface implemented by the
class named by the symbol receiver-class.

The number of parameter-specifiers listed in the normal-lambda-list
must equal the combined number of in and inout parameters declared in the
signature of the operation denoted by the function-name, or 0 if the operation
is an attribute. If the function-name is a list whose car is setf, the corre-
sponding operation-name should name an attribute that is not readonly.

If function-name denotes an operation, then the effect of
corba:define-method is to inform the ORB that requests for the operation on
instances of the class receiver-class should return the value or values
returned by the body forms of the define-method macro, executed in a new
lexical environment in which each parameter-specifier is bound to the
actual parameters and in which the context-identifer is bound to the value
of the corresponding context.

The operation of corba:define-method in the case in which function-name
names an attribute is analogous. The behavior of auxiliary specifiers and of
dispatch is the same as their corresponding action under defmethod. Attribute
accessors will be generated automatically and inherited by subclasses of the
servant classes; the methods can be overridden by user definitions.

Note that the syntax of corba:define-method is a strict subset of that of
defmethod: every legal corba:define-method invocation is also a legal
defmethod invocation. The main difference between them is that
corba:define-method only allows specialization on the first argument. An
implementation is free to extend the syntax of corba:define-method, for
example, to allow type-checking, interlocking, or multiple dispatch.

A.6.3.1 Examples

A Named Grid Example

The first example shows how one might encapsulate a named grid, which is a
grid of strings.

This is the IDL of the interface to a named grid of strings:

module example{
 interface named_grid{
 readonly attribute string name;
 string get_value (in unsigned short row,
 in unsigned short column);
 void set_value (in unsigned short row,
 in unsigned short column,
 in string value);
 }
}

The IDL compiler might generate a class corresponding to the
example::named_grid interface using code something like this:

(defpackage :example)
(defclass example:named_grid(corba:object)())

Servant Class Examples

In order to implement the IDL interface, the user would extend the class
example:named_grid-servant.
 87

88
;;Sample implementation of named_grid
(defclass grid-implementation (example:named_grid-servant)

((grid :initarg :grid
:initform (make-array '(2 3) :initial-element "Init")))

The attribute in the IDL will cause the class to have a slot op:name with the
appropriate accessors specializing on the class.

A.6.3.2 Implementation of the IDL operations

The corba:define-method macro is used to define the methods that imple-
ment each of the operations defined in the IDL interface. These implementa-
tions do not perform any of the argument or range checking that a production
system would, of course, perform.

The implementation is free to define other methods on the class, including
print-object methods and auxiliary methods for initialize-instance.

(corba:define-method get_value ((the-grid grid-implementation)
row column)

(aref (slot-value the-grid 'grid) row column))

(corba:define-method set_value ((the-grid grid-implementation)
row column value))

(setf (aref the-grid row column) value))

Index
A
account frames

initializing and exiting 31
account interface 20
any 81
applications

building and testing 11
array 78
attribute 73
attributes

mapping for 24
readonly 73

B
bank client 27
Bank example

about 15
location of source code 16

bank interface 22
bank server 41

implementing 45
basic types 62
boolean 63
building and testing applications 11
building the bank client and server 16

C
callbacks

defining 33
char 63

checkingAccount interface 21
Common Lisp

mapping IDL to 24
compiling IDL for CORBA applications 23
configuring

interface repository 54
name service 54

const 78
constructors 81
context 72
CORBA

examples 4
modules 53
overview 1

D
debugging 55
deduced typecode 82
defining

callbacks 33
interfaces 6, 29
methods 86
utilities for sharing an object reference 7

definitions 67
defsystem

Hello World source code 12
designing IDL 19
distinguished packages 66, 67

E
efficiency optimization

using macros instead of functions 71
enum 74
error handling

user code called by the server 55

89

Index

90
example of a named grid 87
examples of scoping symbols 68
exception 71
exception 80
exceptions

mapping for 25
exiting account frames 31

F
first object reference

obtaining initial POA object and
registering 51

floating point types 64

G
generating

stub and skeleton code from IDL 7
GUI

implementing bank client’s 28

H
Hello World 5–12

complete source code 12
host name in IORs 57
how IDL is used 60

I
IDL
account interface 20
bank interface 22
checkingAccount interface 21
designing 19
generating stub and skeleton code 7
how it is used 60
introduction 59
parsing into stubs and skeletons 53
terminology 65

IDL operations
implementation 88

IDL types
corresponding Lisp functions 83

implementation objects 85
implementation of IDL operations 88
implementing

bank client GUI 28
bank server 45
CORBA objects on the server 42
hello world client 9
hello world server 10
servant classes 45
servant methods 46
Initial References 54
initializing

account frames 31
the ORB 37

integer types 64
interface 69
interface repository

configuring 54
interfaces

defining 6, 29
mapping for 24

IOR file 7, 13
IOR hostname 57

L
Lisp functions

corresponding to IDL types 83
LispWorks ORB

about 2
features 4

location
of Bank example code 16
of Hello World example code 12

M
mapping
any 81
array 78
attribute 73
attributes 24
basic types 24, 62
const 78
details 61
enum 74
exception 80
exceptions 25
how names of operations are formed 83
how names of types are formed 82
IDL into Common Lisp servants 85
IDL to Common Lisp 24
interface 69
interfaces 24
Lisp functions corresponding to IDL

types 83
module 74
native types 85
operation 70
operations 25
overview 82
pseudo-objects to Lisp 83
sequence 79

Index
struct 75
summary 60
typedef 81
union 76

member accessors 76
methods

defining 86
module 74
modules

CORBA 53
Multi-threading 56

N
name service

configuring 54
named types 64
names

scoped 67
narrowing an object reference 84
native types

mapping 85
nicknames for distinguished packages 67

O
object reference

defining utilities for sharing 7
narrowing 84
obtaining first 37

Object URL 56
octet 63
oneway 71
operation 70
operations 25
ORB

initializing 37
ORB initargs

-IIOPhost 57
-IIOPnumeric 57
-IIOPport 56
-ORBDefaultInitRef 54
-ORBhost 57
-ORBInitRef 54
-ORBnumeric 57
-ORBport 56

P
package_prefix pragma 69
packages

distinguished 66
parameter passing modes 71
parsing IDL into stubs and skeletons 53

PIDL 42
POA object

Multi-threading 56
obtaining initial 51

port
specifying 56

Portable Object Adapter (POA) 42
pseudo IDL (PIDL) 42
pseudo-objects

mapping 83

R
readonly attributes 73
registering

first object reference 51
return values 71
running server and client 17

S
scoped names and scoped symbols 67
scoping symbols

examples 68
semantics of type mapping 62
sequence 79
servant classes

implementing 45
servant methods

implementing 46
servants

IDL into Common Lisp 85
server

bank 41
implementing 10
implementing CORBA objects 42
multiple servers 56
running 17

sharing an object reference 7
skeleton code

generating from IDL 7
skeletons

parsing IDL into 53
source code

Bank example 16
Hello World example 12

string 64
struct 75
stub code

generating from IDL 7
stubs

parsing IDL into 53
symbols
 91

Index

92
examples of scoping 68
scoped 67

system exception 80

T
terminology

IDL 65
type mapping

semantics 62
typecode

deduced 82
typecodes for parsed IDL 84
typedef 81
types

basic types 24
integer 64
named types 64
native types 85

U
union 76
user exceptions 80
utilities

for sharing an object reference 7

	LispWorks ORB Developing Component Software with CORBA®
	Copyright and Trademarks
	Preface
	1 Common Lisp and CORBA
	1.1 About CORBA
	1.2 About the LispWorks ORB
	1.3 Features of the LispWorks ORB
	1.4 CORBA examples

	2 Quick Start Tutorial
	2.1 A CORBA-based Hello World
	2.1.1 Defining the interface
	2.1.2 Generating the stub and skeleton code from IDL
	2.1.3 Defining utilities for sharing an object reference
	2.1.4 Implementing the client
	2.1.5 Implementing the server
	2.1.6 Building and testing the application

	2.2 Complete source code for the Hello World example
	2.2.1 The complete interface source code
	2.2.2 The complete defsystem source code
	2.2.3 The complete source code for the file transfer of the IOR
	2.2.4 The complete Hello World client source code
	2.2.5 The complete Hello World server source code

	3 Setting up the Bank Example
	3.1 About the bank example
	3.2 Where to find the example code
	3.3 Building the bank client and server
	3.4 Running the server and client

	4 Writing and Compiling IDL
	4.1 Designing the IDL
	4.1.1 IDL for the account interface
	4.1.2 IDL for the checkingAccount interface
	4.1.3 IDL for the bank interface

	4.2 Compiling IDL for a CORBA application
	4.3 Mapping IDL to Common Lisp
	4.3.1 Mapping for basic types
	4.3.2 Mapping for interfaces
	4.3.3 Mapping for attributes
	4.3.4 Mapping for operations
	4.3.5 Mapping for exceptions

	5 The Bank Client
	5.1 The client
	5.2 The client’s perspective
	5.3 Implementing the bank client’s GUI
	5.4 Defining the interfaces
	5.4.1 Initializing and exiting account frames
	5.4.2 Defining the callbacks
	5.4.3 Initializing the ORB and obtaining the first object reference

	6 The Bank Server
	6.1 The server
	6.2 Implementing CORBA objects on the server
	6.3 The server’s perspective
	6.4 Implementing the bank server
	6.4.1 Implementing the servant classes
	6.4.2 Implementing the servant methods
	6.4.3 Obtaining the initial POA object and registering the first object �reference

	7 The LispWorks ORB
	7.1 The CORBA modules
	7.2 Parsing IDL into stubs and skeletons
	7.3 Configuring a name service and an interface repository
	7.3.1 Configuring via initial references
	7.3.2 Persistent configuration

	7.4 Error handling in user code called by the server
	7.5 Multi-threading
	7.6 Object URLs
	7.7 Specifying the port
	7.8 Specifying the host name in IORs

	A Common Lisp IDL Binding
	A.1 Introduction to IDL
	A.2 How IDL is used
	A.3 Mapping summary
	A.4 Mapping in more detail
	A.4.1 Mapping concepts
	A.4.2 Semantics of type mapping
	A.4.3 Mapping for basic types
	A.4.4 Introduction to named types
	A.4.5 Distinguished packages
	A.4.6 Scoped names and scoped symbols
	A.4.7 The package_prefix pragma
	A.4.8 Mapping for interface
	A.4.9 Mapping for operation
	A.4.10 Mapping for attribute
	A.4.11 Mapping of module
	A.4.12 Mapping for enum
	A.4.13 Mapping for struct
	A.4.14 Mapping for union
	A.4.15 Mapping for const
	A.4.16 Mapping for array
	A.4.17 Mapping for sequence
	A.4.18 Mapping for exception
	A.4.19 User exception
	A.4.20 System exception
	A.4.21 Mapping for typedef
	A.4.22 Mapping for “any”
	A.4.23 Constructors
	A.4.24 The deduced typecode
	A.4.25 Mapping overview

	A.5 Mapping pseudo-objects to Lisp
	A.5.1 Narrowing
	A.5.2 Typecodes for parsed IDL

	A.6 The mapping of IDL into Common Lisp servants
	A.6.1 Mapping of native types
	A.6.2 Implementation objects
	A.6.3 Defining methods

	Index

