
LispWorks®

Release Notes and
Installation Guide
Version 5.1

Copyright and Trademarks
LispWorks Release Notes and Installation Guide

Version 5.1

March 2008

Copyright © 2008 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be construed as a
commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or inaccuracies that may appear in this
publication. The software described in this book is furnished under license and may only be used or copied in accordance with the terms of
that license.

LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the registered trade-
marks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986, 1987, 1988 Xerox
Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, pro-
vided that this copyright and permission notice appear in all copies and supporting documentation, and that the name of M.I.T. not be used
in advertising or publicity pertaining to distribution of the software without specific, written prior permission. M.I.T. makes no representa-
tion about the suitability of this software for any purpose. It is provided “as is” without express or implied warranty. M.I.T. disclaims all war-
ranties with regard to this software, including all implied warranties of merchantability and fitness. In no event shall M.I.T. be liable for any
special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of con-
tract, negligence or other tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of ICU software obtained from http://source.icu-project.org and which bears the following copyright and permis-
sion notice:
ICU License - ICU 1.8.1 and later
COPYRIGHT AND PERMISSION NOTICE
Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Soft-
ware"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright
notice(s) and this permission notice appear in all copies of the Software and that both the above copyright notice(s) and this permission
notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIM-
ITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF
THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or
other dealings in this Software without prior written authorization of the copyright holder. All trademarks and registered trademarks men-
tioned herein are the property of their respective owners.

US Government Restricted Rights
The LispWorks Software is a commercial computer software program developed at private expense and is provided with restricted rights.
The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth in the accompanying End User
License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR 12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14
Alt III, as applicable. Rights reserved under the copyright laws of the United States.

Address

LispWorks Ltd
St. John’s Innovation Centre
Cowley Road
Cambridge
CB4 0WS
England

Telephone

From North America: 877 759 8839
(toll-free)

From elsewhere: +44 1223 421860

Fax
From North America: 305 468 5262
From elsewhere: +44 870 2206189

www.lispworks.com

http://www.lispworks.com

Contents
1 Introduction 1

LispWorks Editions 1
LispWorks for UNIX 2
Further details 3
About this Guide 3

2 Installation on Mac OS X 5

Choosing the Graphical User Interface 5
Documentation 5
Software and hardware requirements 6
Installing LispWorks for Macintosh 7
Starting LispWorks for Macintosh 11
Upgrading to LispWorks Enterprise Edition 13

3 Installation on Windows 15

Documentation 15
Installing LispWorks for Windows 16
Upgrading to LispWorks Enterprise Edition 18

4 Installation on Linux 19

Software and hardware requirements 19
License agreement 21
Software on the CD-ROM 21
Installing LispWorks for Linux 22
LispWorks looks for a license key 28
Running LispWorks 28
Configuring the image 29
Printable LispWorks documentation 29
Uninstalling LispWorks for Linux 29
Upgrading to LispWorks Enterprise Edition 30

5 Installation on FreeBSD 31

Software and hardware requirements 31
License agreement 32
Software on the CD-ROM 33
Installing LispWorks for FreeBSD 33
LispWorks looks for a license key 35
Running LispWorks 36
Configuring the image 37
Printable LispWorks documentation 37
Uninstalling LispWorks for FreeBSD 37
Upgrading to LispWorks Enterprise Edition 37

6 Installation on UNIX 39

Introduction 39
Extracting software from the CD-ROM 39
Moving the LispWorks image and library 41
Obtaining and Installing your license keys 42
Configuring the LispWorks image 43
Using the Documentation 45
Using Layered Products on HP PA or Sun Sparc (32-bit) 45

7 Configuration Details on Mac OS X 47

Introduction 47

License keys 48
Configuring your LispWorks installation 48
Saving and testing the configured image 50
Initializing LispWorks 52
Loading CLIM 2.0 53
The Common SQL interface 54
Common Prolog and KnowledgeWorks 56

8 Configuration Details on Windows 57

Introduction 57
License keys 58
Configuring your LispWorks installation 58
Saving and testing the configured image 59
Initializing LispWorks 61
Loading CLIM 2.0 62
The Common SQL interface 63
Common Prolog and KnowledgeWorks 63

9 Configuration Details on Linux and FreeBSD 65

Introduction 65
License keys 66
Configuring your LispWorks installation 66
Saving and testing the configured image 68
Initializing LispWorks 69
Loading CLIM 2.0 70
The Common SQL interface 71
Common Prolog and KnowledgeWorks 72
Documentation for LispWorks for FreeBSD 72

10 Configuration Details on UNIX 73

Disk requirements 73
Software Requirements 73
The CD-ROM 73
Installing LispWorks 75
Components of the LispWorks distribution 79

Printing copies of the LispWorks documentation 81
Configuring your LispWorks installation 81
LispWorks initialization arguments 85

11 Troubleshooting, Patches and Reporting Bugs 87

Troubleshooting 87
Troubleshooting on Mac OS X 89
Troubleshooting on Linux 90
Troubleshooting on FreeBSD 92
Troubleshooting on UNIX 93
Troubleshooting on X11/Motif 94
Updating with patches 96
Reporting bugs 98

12 Release Notes 105

Additional support for 64-bit on Macintosh 105
Running on 64-bit machines 106
New CAPI features 106
Other CAPI changes 110
New graphics ports features 110
More new features 111
IDE changes 115
Editor changes 120
Foreign Language interface changes 123
COM/Automation changes 125
Common SQL changes 125
Application delivery changes 126
CLOS/MOP changes 127
CLIM changes 128
Other changes 128
Documentation changes 134
Binary Incompatibilty 134
Known Problems 134
Recyclable packaging 137

Index 139

1

1 Introduction
1.1 LispWorks Editions
LispWorks is available in three product editions on the Mac OS X, Windows,
Linux and FreeBSD platforms.

The main differences between the editions are outlined below. Further
information about the LispWorks Editions can be found at
www.lispworks.com/products

Note: on Solaris and HP-UX LispWorks is licensed differently to other
platforms, as detailed in “LispWorks for UNIX” on page 2.

1.1.1 Personal Edition

LispWorks Personal Edition allows you to explore a fully enabled Common
Lisp programming environment and to develop small- to medium-scale
programs for personal and academic use. It includes:

• Native graphical IDE

• Full Common Lisp compiler

• COM/Automation API on Microsoft Windows

LispWorks Personal Edition has several limitations designed to prevent
commercial exploitation of this free product. These are:
1

http://www.lispworks.com/products

1 Introduction

2

• A heap size limit

• A time limit of 5 hours for each session.

• The functions save-image, deliver, and load-all-patches are not
available.

• Initialization files are not available.

• Professional and Enterprise Edition module loading is not included.

LispWorks 5.1 Personal Edition has no license fee. Download it from

www.lispworks.com/downloads.

1.1.2 Professional Edition

LispWorks 5.1 Professional Edition includes:

• Fully supported commercial product

• Delivery of commercial end-user applications and libraries

• CLIM 2.0 on X11/Motif and Windows

• 30-day free “Getting Started” technical support

1.1.3 Enterprise Edition

LispWorks 5.1 Enterprise Edition provides further support for the software
needs of the modern enterprise, including:

• All the features of the Professional Edition

• Database access through the Common SQL interface

• Portable distributed computing through CORBA

• Expert systems programming through KnowledgeWorks and
embedded Prolog compiler

1.2 LispWorks for UNIX
On Solaris and HP-UX the Edition model described above does not apply.

http://www.lispworks.com/downloads

1.3 Further details
LispWorks for UNIX 5.1 is available with a basic developer license, and the
add-on products CLIM, KnowledgeWorks, LispWorks ORB and Application
Delivery are each separately available.

1.3 Further details
For further information about LispWorks products visit

www.lispworks.com

To purchase LispWorks please follow the instructions at:

www.lispworks.com/buy

1.4 About this Guide
This document is an installation guide and release notes for LispWorks 5.1 on
Mac OS X, Windows, Linux, FreeBSD and UNIX platforms. It also explains
how to configure LispWorks to best suit your local conditions and needs.

This guide provides instructions for installing and loading the modules
included with each Edition or add-on product.

1.4.1 Installation and Configuration

The next four chapters explain in brief and sufficient terms how to complete a
LispWorks installation on Mac OS X, Windows, Linux or UNIX. Choose the
chapter for your platform: Chapter 2, “Installation on Mac OS X”, Chapter 3,
“Installation on Windows” or Chapter 4, “Installation on Linux” or Chapter 6,
“Installation on UNIX”.

The following four chapters explain in detail everything necessary to config-
ure, run, and test LispWorks 5.1. Choose the chapter for your platform:
Chapter 7, “Configuration Details on Mac OS X”, Chapter 8, “Configuration
Details on Windows”, Chapter 9, “Configuration Details on Linux and
FreeBSD” or Chapter 10, “Configuration Details on UNIX”. This also includes
sections on initializing LispWorks and loading some of the modules. You
should have no difficulty configuring, running, and testing LispWorks using
these instructions if you have a basic familiarity with your operating system
and Common Lisp.
 3

http://www.lispworks.com/buy
http://www.lispworks.com

1 Introduction

4

1.4.2 Troubleshooting

Chapter 11, “Troubleshooting, Patches and Reporting Bugs”, discusses other
issues that may arise when installing and configuring LispWorks. It includes a
section that provides answers to problems you may have encountered,
sections on the LispWorks patching system (used to allow bug fixes and pri-
vate patch changes between releases of LispWorks), and details of how to
report any bugs you encounter.

1.4.3 Release Notes

Chapter 12, “Release Notes”, highlights what is new in this release and special
issues for the user’s consideration.

2

2 Installation on Mac OS X
This chapter is an installation guide for LispWorks 5.1 for Macintosh. Chapter
7 discusses post-installation and configuration in detail, but this chapter
presents the instructions necessary to get LispWorks up and running on your
system.

2.1 Choosing the Graphical User Interface
LispWorks for Macintosh supports two different graphical interfaces. Most
users choose the native Mac OS X GUI, but you can use the Motif GUI instead.

Different executables and supporting files are supplied for the two options.
You need to decide at installation time which of the GUIs you will be using, or
decide to install support for both. If you install just one GUI option and later
decide to install the other GUI option, you can simply run the installer again.

LispWorks for Macintosh Personal Edition supports only the native Mac OS X
GUI.

2.2 Documentation
The LispWorks documentation set is included in two electronic forms: HTML
and PDF. You can chose whether to install it as described in Section 2.4,
“Installing LispWorks for Macintosh”.
5

2 Installation on Mac OS X

6

The HTML version can be used from within the LispWorks environment via
the Help menu. You will need a suitable web browser installed. You can also
reach the HTML documentation at the page manual/online/intro.htm in the
LispWorks library. If you choose not to install the documentation, you will not
be able to access the HTML Documentation from the LispWorks Help menu.

The PDF version is suitable for printing. Each manual in the documentation
set is presented in a separate PDF file in the LispWorks library under
manual/offline/pdf. To view and print these files, you will need a PDF
viewer such as Adobe® Reader®. This can be downloaded from the Adobe
website at www.adobe.com.

2.3 Software and hardware requirements
LispWorks 5.1 is a universal binary, which supports Macintosh computers
containing either PowerPC or Intel CPUs.

An overview of system requirements is provided in Table 2.1. The sections
that follow discuss any relevant details.

Product Hardware Requirements Software Requirements

LispWorks (32-bit)
for Macintosh

Intel or G3/G4/G5 processor.
32MB of memory, preferably
64MB.
200MB of disk space
including documentation.

Mac OS X version 10.3.x,
10.4.x or 10.5.x.

OpenMotif 2.3 if you want to
run the X11/Motif GUI.

LispWorks (64-bit)
for Macintosh

Intel or G5 processor.
64MB of memory, preferably
128MB.
140MB of disk space
including documentation

Mac OS X version 10.5.x.

OpenMotif 2.3 if you want to
run the X11/Motif GUI.

Table 2.1

http://www.adobe.com

2.4 Installing LispWorks for Macintosh
2.4 Installing LispWorks for Macintosh

2.4.1 Main installation and patches

LispWorks Professional and Enterprise Editions are supplied as an installer
containing version 5.1. There may be a downloadable patch bundle which
upgrades LispWorks to version 5.1.x. You need to complete the main
installation before adding patches. The installer for 32-bit LispWorks contains
both Professional and Enterprise Editions.

LispWorks Personal Edition is supplied as an installer containing version 5.1.

2.4.2 Information for Beta testers

Users of LispWorks 5.1 Beta should completely uninstall it (including any
patches added to the initial beta installation) before installing LispWorks 5.1.
You can run the Beta installer and select the Uninstall option (and then remove
any patches) or simply drag the LispWorks 5.1 folder to the trash.

2.4.3 Information for users of previous versions

You can install LispWorks 5.1 in the same location as LispWorks 5.0 or previ-
ous versions. If you always choose the default install location, a new Lisp-
Works 5.1 folder will be created alongside the other versions.

Similarly LispWorks Personal Edition 5.1 can be installed in the same location
as previous versions.

2.4.4 Use an adminstrator account

To install LispWorks in the default installation location under /Applications
you must log on as an administrator.

However, a non-administrator may install LispWorks elsewhere.

2.4.5 Launch the LispWorks installer

If you have downloaded LispWorks, you may need to mount the disk image
containing the installer. This is called LispWorks-5.1.dmg or
LispWorks64bit-5.1.dmg — simply double-click on the .dmg file to mount it.
 7

2 Installation on Mac OS X

8

If you have received LispWorks on a CD-ROM, insert the disk in a drive and
double-click on the disk icon to mount it.

To install LispWorks (32-bit) for Macintosh, open the macos folder and double-
click on the LispWorks_Installer application to launch it.

To install LispWorks (64-bit) for Macintosh, open the macos64 folder and dou-
ble-click on the LispWorks64bit_Installer application to launch it.

Note: the names of the installer and downloadable file will vary slightly for
the Personal Edition.

2.4.6 The Read Me

The Read Me presented next by the installer is a plain text version of this
LispWorks Release Notes and Installation Guide.

2.4.7 The License Agreement

Check the license agreement. You need to actually read this to the end, then
click Continue. You will be asked if you agree to the license terms. Click the
Accept button only if you accept the terms of the license. If you click Disagree,
then the installer will not proceed.

2.4.8 Select Destination

All the files installed with LispWorks are placed in the LispWorks folder,
which is named LispWorks 5.1, LispWorks 5.1 (64-bit) or LispWorks Per-
sonal 5.1 depending on which edition you are installing. By default, the
LispWorks folder is placed in the main Applications folder but you can
choose an alternative location during installation by clicking the Select
Folder... button.

Click Continue after selecting a folder.

Note: The Applications folder may display in the Finder with a name
localized for your language version of Mac OS X.

2.4 Installing LispWorks for Macintosh
2.4.9 Choose your installation type

2.4.9.1 The native Mac OS X GUI

If you simply want to install LispWorks for the native Mac OS X GUI with
Aqua look and feel, and to install the documentation, choose Easy Install.

2.4.9.2 The X11/Motif GUI

If you want to install LispWorks with the X11/Motif GUI, choose Custom
Install and select the option "LispWorks with X11/Motif IDE".

Note: to run LispWorks with the X11/Motif GUI, you will need both of these
installed:

• An X server such as Apple’s X11.app, available at www.apple.com.

• OpenMotif 2.3. For availability see “Obtaining OpenMotif” on page 10.

Neither X11 or Motif are required at the time you install LispWorks, however.

The X11/Motif GUI is not available for the Personal Edition.

2.4.9.3 The Documentation

If you use Easy Install the documentation will be installed.

If you do not wish to install the documentation, use Custom Install and
uncheck the "LispWorks Documentation" option.

2.4.10 Installing

Now click Install.

2.4.11 Enter License Data

Enter your serial number and license key when the installer asks for these
details.

If you have received LispWorks on a CD-ROM then your license key is sup-
plied on a label inside the CD-ROM case. If you have downloaded the product
then your license key will be supplied to you in email from Lisp Support.
 9

http://www.apple.com

2 Installation on Mac OS X

10
If you have problems with your LispWorks license key, send it to lisp-
keys@lispworks.com, describing what happens after you enter it.

2.4.12 Add LispWorks to the Dock

If you are installing the native Mac OS X LispWorks GUI, the installer asks if
you wish to add LispWorks to the Mac OS X Dock. Click OK if you anticipate
launching LispWorks frequently, or choose not to add LispWorks to the Dock
by clicking Cancel.

Note: On Mac OS X 10.4 and 10.5, LispWorks may not be visible in the Dock
until you restart the computer or log out and then log back in.

2.4.13 Finishing up

You should now see a message confirming that installation of LispWorks was
successful. Click the Quit button.

Note: LispWorks needs to be able find its library at runtime and therefore the
LispWorks installation should not be moved around piecemeal. If you must
move it, move the entire LispWorks installation folder. If you simply want to
run LispWorks from somewhere more convenient, then consider adding a
shortcut.

2.4.14 Installing Patches

After completing the main installation of the Professional or Enterprise Edi-
tion, ensure you install the latest patches which are available for download at
www.lispworks.com/downloads/patch-selection.html. Patch installation
instructions are in the README file accompanying the patch download.

2.4.15 Obtaining OpenMotif

LispWorks 5.1 for Macintosh on X11/Motif requires Open Motif 2.3.

The library for 32-bit LispWorks is /usr/local/lib/libXm.4.dylib. You can
can build a PowerPC or Intel binary from the sources at www.motifzone.net.

Apple do not currently support a 64-bit X11 installation. Contact Lisp Support
if you need a library suitable for 64-bit LispWorks.

http://www.lispworks.com/downloads/patch-selection.html#lwm
http://www.motifzone.net/

2.5 Starting LispWorks for Macintosh
2.5 Starting LispWorks for Macintosh

2.5.1 Start the native Mac OS X LispWorks GUI

Assuming you have installed this option, you can now start LispWorks with
the native Mac OS X GUI by double-clicking on the LispWorks icon in the
LispWorks folder.

Note: The LispWorks folder is described in “Select Destination” on page 8.

If you added LispWorks to the Dock during installation, you can also start
LispWorks from the Dock. If you did not add LispWorks to the Dock during
installation, you can add it simply by dragging the LispWorks icon from the
Finder to the Dock.

If you want to create a LispWorks image which does not start the GUI
automatically, you should use a configuration script that calls

(save-image ... :environment nil)

and pass it to the supplied lispworks-5-1-0-macos-universal image.

See Section 7.3, “Configuring your LispWorks installation” for more
information about configuring your LispWorks image for your own needs.

Note: for the Personal Edition, the folder name and icon name are LispWorks
Personal, the image is lispworks-personal-5-1-0-macos-universal, and
save-image is not available.

2.5.2 Start the X11/Motif LispWorks GUI

Assuming you have installed this option, and that you have X11 running and
Motif installed, you can now start LispWorks with the X11/Motif GUI.

Note that the supplied image does not start its GUI automatically by default.
There are three alternate ways to make the GUI start:

1. Call the function env:start-environment

Follow this session in the X11 terminal (xterm by default):
 11

2 Installation on Mac OS X

12
xterm% cd "/Applications/LispWorks 5.1"
xterm% ./lispworks-5-1-0-macos-universal-motif
LispWorks(R): The Common Lisp Programming Environment
Copyright (C) 1987-2008 LispWorks Ltd. All rights reserved.
Version 5.1.0
Saved by LispWorks as lispworks-5-1-0-darwin-motif, at 29 Feb
2008 14:37
User dubya on octane
; Loading text file /Applications/LispWorks 5.1/Library/lib/5-1-
0-0/config/siteinit.lisp
; Loading text file /Applications/LispWorks 5.1/Library/lib/5-1-
0-0/private-patches/load.lisp
; Loading text file /u/ldisk/dubya/.lispworks

CL-USER 1 > (env:start-environment)

The LispWorks X11/Motif IDE and Lisp Monitor window should
appear.

You may put the call to env:start-environment at the end of your
initialization file, if desired.

2. Pass the -env command line argument

The -env command line argument causes the function
env:start-environment to be called.

Follow this session in the X11 terminal:

xterm% cd "/Applications/LispWorks 5.1"
xterm% ./lispworks-5-1-0-macos-universal-motif -env

The LispWorks X11/Motif IDE and Lisp Monitor window should
appear.

3. Create an image which starts the GUI automatically

If you want to create a LispWorks image which starts the GUI
automatically, you should make a configuration script that calls
(save-image ... :environment t)

and pass it to the supplied lispworks-5-1-0-macos-universal-motif
image. Note: This will create a non-universal binary, containing only the
architecture on which you call save-image.

2.6 Upgrading to LispWorks Enterprise Edition
See Section 7.3, “Configuring your LispWorks installation” for more
information about configuring your LispWorks image for your own
needs.

2.6 Upgrading to LispWorks Enterprise Edition
You can upgrade from LispWorks Professional Edition by Help > Register... and
enter an Enterprise license key.
 13

2 Installation on Mac OS X

14

3

3 Installation on Windows
This chapter is an installation guide for LispWorks 5.1 for Windows and Lisp-
Works 5.1 (64-bit) for Windows. Chapter 8 discusses post-installation and con-
figuration in detail, but this chapter presents the instructions necessary to get
LispWorks up and running on your system.

3.1 Documentation
The LispWorks documentation set is available in two electronic forms: HTML
and PDF. You can choose whether to install either of these.

If you install the HTML documentation, then it can be used from within the
Common LispWorks environment via the Help menu. It is also available from
the Start menu under Start > All Programs > LispWorks 5.1 > HTML Documenta-
tion.

The PDF version is suitable for printing. Each manual in the documentation
set is presented in a separate PDF file, available from the Start menu under
Start > All Programs > LispWorks 5.1 > PDF Documentation. To view and print
these files, you will need a PDF viewer such as Adobe® Reader®. If you do not
already have this, it can be downloaded from the Adobe website.
15

3 Installation on Windows

16
3.2 Installing LispWorks for Windows

3.2.1 Main installation and patches

LispWorks Professional and Enterprise Editions are supplied as an installer
containing version 5.1. There may be a downloadable patch bundle which
upgrades LispWorks to version 5.1.x. You need to complete the main installa-
tion before adding patches. The installer for 32-bit LispWorks contains both
Professional and Enterprise Editions.

LispWorks Personal Edition is supplied as an installer containing version 5.1.

3.2.2 Visual Studio runtime components and Windows Installer

On systems where this is not present, installing LispWorks will automatically
install a copy of the Microsoft.VC80.CRT component, which contains the
Microsoft Visual Studio runtime DLLs needed by LispWorks.

It will also automatically install Windows Installer 3.1 when needed (for
example on Windows 2000).

3.2.3 Installing over previous versions

You can install LispWorks 5.1 in the same location as LispWorks 5.0 or Lisp-
Works 4.4.5. This is the default installation location.

You can also install LispWorks 5.1 without uninstalling older versions such as
Xanalys LispWorks 4.4 or Xanalys LispWorks 4.3 provided that the chosen
installation directory is different.

The LispWorks Personal Edition installation behaves in the same way.

3.2.4 Information for Beta testers

Users of LispWorks 5.1 Beta should completely uninstall it before installing
LispWorks 5.1. Remember to remove any patches added since the initial beta
release.

3.2 Installing LispWorks for Windows
3.2.5 To install LispWorks

To install LispWorks (32-bit) for Windows run
x86-win32\LispWorks_Installer.exe.

To install LispWorks (64-bit) for Windows run
x64-windows\LispWorks64bit_Installer.exe.

Follow the instructions on screen and read the remainder of this section.

3.2.5.1 Entering the License Data

Enter your serial number and license key when the installer asks for these
details in the Customer Information screen.

If you have received LispWorks on a CD-ROM then your license key is
supplied on a label inside the CD-ROM case. If you have downloaded the
product then your license key will be supplied to you in email from Lisp
Support.

If you have problems with your LispWorks license key, send it to lisp-
keys@lispworks.com, describing what happens after you enter it.

3.2.5.2 Installation location

By default LispWorks installs in all users space in
C:\Program Files\LispWorks\

To install LispWorks in a non-default location (for example, to ensure it is
accesible only by the licensed user on a multi-user system such as a login
server (remote desktop)), select Custom setup in the Setup Type screen. Then
click Change... in the Custom Setup screen and choose the desired location in
the Change Current Destination Folder dialog. Do not simply move the
LispWorks folder later, as this will break the installation.

3.2.5.3 Installing the Documentation

By default all the documentation is installed.

If you do not want to install the HTML Documentation, select Custom setup in
the Setup Type screen and select This feature will not be available in the HTML
Documentation feature in the Custom Setup screen.
 17

3 Installation on Windows

18
You can also choose not to install the PDF Documentation, in a similar way.

You can add the HTML Documentation and the PDF Documentation later, by
re-running the installer. The documentation is also available at www.lisp-
works.com/documentation.

3.2.5.4 Installing Patches

After completing the main installation of the Professional or Enterprise
Edition, ensure you install the latest patches which are available for download
at www.lispworks.com/downloads/patch-selection.html.

Patch installation instructions are in the README file accompanying the
patch download.

3.2.5.5 Starting LispWorks

When the installation is complete, you can start LispWorks by choosing Start >
All Programs > LispWorks 5.1 > LispWorks.

Note: After installation you must not move or copy the LispWorks folder,
since the system records the installation location. Moreover LispWorks needs
to be able find its library at runtime and therefore the LispWorks installation
should not be moved around piecemeal. If you simply want to run LispWorks
from somewhere more convenient, then consider adding a shortcut.

3.3 Upgrading to LispWorks Enterprise Edition
You can upgrade from LispWorks Professional Edition by Help > Register... and
enter an Enterprise license key.

http://www.lispworks.com/downloads/patch-selection.html#lww
http://www.lispworks.com/documentation
http://www.lispworks.com/documentation

4

4 Installation on Linux
This chapter is an installation guide for LispWorks 5.1 for Linux and Lisp-
Works 5.1 (64-bit) for Linux. Chapter 9, discusses post-installation and config-
uration in detail, but this chapter presents the instructions necessary to get
LispWorks up and running on your system.

4.1 Software and hardware requirements
An overview of system requirements is provided in Table 4.1. The sections
that follow discuss any relevant details.

Hardware
Requirements

Software Requirements

32MB of memory,
preferably 64MB

RedHat Linux (version 9 or
later) or a distribution with
kernel version 2.4 or later
that supports NPTL and
glibc 2.3.2 or later.

Table 4.1
19

4 Installation on Linux

20
4.1.1 Motif libraries

LispWorks 5.1 for Linux requires that the X11 release 6 (or higher) and Open-
Motif (version 2.2 or higher) are installed on your machine. Download and
install Open Motif 2.2.x from your Linux distribution or from www.motif-
zone.net. Your systems administrator may be able to help if you do not know
how to do this.

Note: In order for the LispWorks IDE to run “out of the box”, OpenMotif must
be installed on the target machine.

Note: You should be able to run LispWorks 5.1 and LispWorks 5.0 simulta-
neously with OpenMotif installed.

4.1.2 Disk requirements during installation

LispWorks requires about 30MB for 32-bit and 50MB for 64-bit to install with-
out documentation and optional modules. Installing the documentation adds
about 110MB and the optional modules about 15MB. A full installation of the
64-bit Enterprise Edition with all documentation and optional modules
requires about 175MB.

The Professional/Enterprise documentation includes printable PDF format
manuals. You may delete any of these that you do not need. They are available
at www.lispworks.com/documentation in any case, and the same manuals are
also available there in PostScript format.

155MB of disk space for
Enterprise Edition (32-bit)
plus documentation

OpenMotif 2.2.x

175MB of disk space for
Enterprise Edition (64-bit)
plus documentation

Netscape, Mozilla, FireFox
or Opera Web browser for
viewing on-line
documentation

Hardware
Requirements

Software Requirements

Table 4.1

http://www.lispworks.com/documentation
http://www.motifzone.net/
http://www.motifzone.net/

4.2 License agreement
4.2 License agreement
Before installing, you must read and agree to the license terms. To do this,
mount the CD-ROM on your CD-ROM drive and cd to the directory contain-
ing the product you wish to install.

For LispWorks (32-bit) for Linux the directory is x86-linux.

For LispWorks (64-bit) for Linux the directory is amd64-linux.

Now run the one of following scripts.

Note: You must run this script as the same user that later performs the instal-
lation. In particular, if you are going to install LispWorks from the RPM file,
you must run the license script while logged on as root.

• For the Professional and Enterprise Editions, run

sh lwl-license.sh

• For the Personal Edition, run:

sh lwlper-license.sh

Enter “yes” if you agree to the license terms.

4.3 Software on the CD-ROM
LispWorks 5.1 for Linux is supplied on a CD-ROM in two different formats:
RedHat Package Management (RPM) files and tar files. RPM is a utility like
tar, except it can actually install products after unpacking them. See
Section 4.4.3 for more information. Both formats are in the x86-linux and
amd64-linux directories on your CD-ROM.

4.3.1 Professional and Enterprise Edition distributions

The CD-ROM contains all of the relevant modules. The separately installable
modules installed with LispWorks are: CLIM 2.0, KnowledgeWorks, Lisp-
Works ORB, and Common SQL. Section 1.1 provides Edition details.

The RPM package name for the Professional/Enterprise Edition is lispworks.

For the Professional Edition the separately installable packages are:
 21

4 Installation on Linux

22
lispworks-clim

and for the Enterprise Edition the separately installable packages are:

lispworks-clim
lispworks-kw
lispworks-corba
lispworks-sql

The installation instructions provide the names of the individual distribution
files.

The package name for the Personal Edition is lispworks-personal.

4.4 Installing LispWorks for Linux

4.4.1 Main installation and patches

LispWorks Professional and Enterprise Editions are supplied as an installer
containing version 5.1. There may be a downloadable patch bundle which
upgrades LispWorks to version 5.1.x. You need to complete the main installa-
tion before adding patches. The installer for 32-bit LispWorks contains both
Professional and Enterprise Editions.

LispWorks Personal Edition is supplied as an installer containing version 5.1.

4.4.2 Information for Beta testers

Users of LispWorks 5.1 Beta should completely uninstall it (including any
patches added to the initial beta installation) before installing LispWorks 5.1.

See “Uninstalling LispWorks for Linux” on page 29 for instructions.

4.4.3 Installation from the binary RPM file

We recommend that you use RPM 4.3 or later (however see below for prob-
lems with --prefix argument with some versions of RPM). The distribution
files are also provided in tar format in case you do not have a suitable version
of RPM or are using another distribution of Linux.

If you already have LispWorks 5.1 Beta installed, please uninstall it before
installing this product. See Section 4.9, “Uninstalling LispWorks for Linux”.

4.4 Installing LispWorks for Linux
Some versions of RPM may cause problems (eg. RPM 3.0). If you get the fol-
lowing message when using the --prefix argument:

rpm: only one of --prefix or --relocate may be used

try upgrading to RPM 3.0.2 or greater.

Installation of LispWorks for Linux from the RPM file must be done while you
are logged on as root.

4.4.3.1 Installation directories

By default 32-bit LispWorks is installed in /usr/lib/LispWorks and a sym-
bolic link to the executable is placed in /usr/bin/lispworks-5-1-0-x86-
linux. Similarly, 64-bit LispWorks is installed in /usr/lib64/LispWorks and a
symbolic link to the executable is placed in /usr/bin/lispworks-5-1-0-
amd64-linux. However, the RPM is relocatable, and the --prefix option can
be used to allow the installation of LispWorks in a non-default directory. The
default prefix is /usr.

Note: RPM version 4.2 has bug which can hinder secondary installations
(CLIM, Common SQL, LispWorks ORB or KnowledgeWorks) in a user-
specified directory. See “RPM_INSTALL_PREFIX not set” on page 91 for a
workaround.

Note: the Personal Edition installs by default in
/usr/lib/LispWorksPersonal. Do not attempt to to install different editions
in the same location, since some filenames coincide and uninstallation may
break.

4.4.3.2 Selecting the correct RPM files

The main RPM file in the LispWorks distribution is named using the following
pattern

lispworks-5.1-n.arch.rpm

The integer n denotes a build number and will be same in all files in your dis-
tribution. The string arch will be either i386 for 32-bit LispWorks or x86_64 for
64-bit LispWorks. The text below assumes 32-bit LispWorks.
 23

4 Installation on Linux

24
Note: For the Personal Edition, use lispworks-personal-5.1-*.i386.rpm
wherever lispworks-5.1-*.i386.rpm is mentioned in this document. See
Section 1.1.1, “Personal Edition” for more information specific to the Personal
Edition.

4.4.3.3 Installing or upgrading LispWorks for Linux

To install or upgrade LispWorks from the RPM file, perform the following
steps as root:

1. Locate the RPM installation file lispworks-5.1-n.i386.rpm.

2. Install or upgrade LispWorks in the standard RPM way, for example:

rpm --install lispworks-5.1-n.i386.rpm

This command installs LispWorks in /usr/lib/LispWorks. A command
line of the form

rpm --install --prefix <directory> lispworks-5.1-n.i386.rpm

installs LispWorks in <directory>.

The directory name must be an absolute pathname. Relative pathnames and
pathnames including shell-expanded characters such as . and ~ do not work.

Note: LispWorks needs to be able find its library at runtime and therefore the
LispWorks installation should not be moved around piecemeal. If you simply
want to run LispWorks from somewhere more convenient, then consider add-
ing a symbolic link.

See Section 4.6 for instructions on entering your license details.

4.4 Installing LispWorks for Linux
4.4.3.4 Installing CLIM 2.0

The following module is packaged as a separate RPM file for installation after
the main lispworks package. It is available in all LispWorks Editions except
the Personal Edition.

Install this module if required by substituting the above filename into the
same commands you used to install the LispWorks package (Section 4.4.3.3).

If you used a --prefix argument when installing LispWorks, then use the
same prefix for this module.

4.4.3.5 Installing loadable Enterprise Edition modules

The following modules are packaged as separate RPM files for installation
after the main lispworks package.

Install these modules as described in Section 4.4.3.4.

File Distribution Layered Product

lispworks-clim-5.1-n.i386.rpm CLIM 2.0

Table 4.2 File distributions for layered products in all Editions other than
Personal

File Distribution Layered Product

lispworks-clim-5.1-n.i386.rpm CLIM 2.0

lispworks-kw-5.1-n.i386.rpm KnowledgeWorks

lispworks-corba-5.1-n.i386.rpm LispWorks ORB

lispworks-sql-5.1-n.i386.rpm Common SQL

Table 4.3 File distributions for layered products in the Enterprise Edition
 25

4 Installation on Linux

26
4.4.3.6 Documentation and saving space

Documentation in HTML and PDF format is provided with all editions. Post-
Script format is available to download. To obtain copies of the printable man-
uals, see Section 4.8, “Printable LispWorks documentation”.

Documentation is installed by default in the lib/5-1-0-0/manual sub-direc-
tory of the LispWorks installation directory.

Using RPM, you can save space by choosing not to install the documentation.
For example, use the following command (all on one line):

rpm --install --excludedocs --prefix <directory>
lispworks-5.1-n.i386.rpm

To install the documentation at a later stage, you need to use the
--replacepkgs option:

rpm --install --prefix <directory> --replacepkgs
lispworks-5.1-n.i386.rpm

4.4.3.7 Installing Patches

After completing the main RPM installation of the Professional or Enterprise
Edition and any modules, ensure you install the latest patches from the RPM
file available for download at www.lispworks.com/downloads/patch-selec-
tion.html. Patch installation instructions are in the README file accompany-
ing the patch download.

4.4.4 Installation from the tar files

The LispWorks distribution is also provided as tar files compressed using
gzip for use if you do not have an appropriate version of RPM to unpack the
RPM binary file. The gzipped files for 32-bit LispWorks are as follows:

Table 4.4 Files for 32-bit Professional and Enterprise Editions

lw51-x86-linux.tar.gz 32-bit LispWorks image, modules
and examples

http://www.lispworks.com/downloads/patch-selection.html#lwl
http://www.lispworks.com/downloads/patch-selection.html#lwl

4.4 Installing LispWorks for Linux
Note: The gzipped files for LispWorks Personal Edition and LispWorks (64-
bit) Enterprise Edition have similar names.

To install from these files:

1. Follow the instructions under Section 4.2, “License agreement”.

2. Use cd to change directory to the location of the tar files before running
the installation script.

3. Run the installation script lwl-install.sh (or lwlper-install.sh for
the Personal Edition).

This script takes --prefix and --excludedocs arguments like rpm to control
the installation directory and amount of documentation installed.

For example, to install the 32-bit Professional Edition in /usr/lisp-
works, without documentation, from a CD-ROM mounted on
/mnt/cdrom1 you would use:

cd /mnt/cdrom1/x86-linux
sh lwl-install.sh --excludedocs --prefix /usr/lispworks

Note: the default location under /usr/local is appropriate for this
unmanaged (non-RPM) installation.

See Section 4.6 for how to enter your license details.

4.4.4.1 Installing Patches

After completing the main tar installation of the Professional or Enterprise
Edition, ensure you install the latest patches from the tar archive available for
download at www.lispworks.com/downloads/patch-selection.html. Patch
installation instructions are in the README file accompanying the patch
download.

lwdoc51-x86-linux.tar.gz Documentation in HTML and PDF
formats
 27

http://www.lispworks.com/downloads/patch-selection.html#lwl

4 Installation on Linux

28
4.5 LispWorks looks for a license key
If you installed the Professional or Enterprise Edition of LispWorks, the image
looks for a valid license key. If you try to run these LispWorks Editions with-
out a valid key, a message prints reporting that no valid key was found.

For instructions on entering your license key, see Section 4.6.1, “Entering the
license data” below.

For more information about license keys, see Section 9.2, “License keys”.

4.6 Running LispWorks
The LispWorks executable is located in /usr/lib/LispWorks or
/usr/lib64/LispWorks directory of the installation (assuming the default pre-
fix of /usr) and should not be moved without being resaved because it needs
to be able to locate the corresponding library directory on startup. There is
also a symbolic link from the /usr/bin directory.

The LispWorks executable is named as shown here:.

When you run LispWorks, the Lisp Monitor and splashscreen should appear,
followed by the LispWorks Podium and a Listener. See “Troubleshooting” on
page 87 for details if this does not happen.

4.6.1 Entering the license data

When you run the LispWorks Professional/Enterprise Edition for the first
time, you will need to enter your license details. This should be done as fol-
lows (all on one line):

lispworks-5-1-0-x86-linux --lwlicenseserial SERIALNUMBER
--lwlicensekey LICENSEKEY

lispworks-personal-5-1-0-x86-linux Personal Edition

lispworks-5-1-0-x86-linux 32-bit Professional or Enterprise
Edition

lispworks-5-1-0-amd64-linux 64-bit Enterprise Edition

4.7 Configuring the image
where SERIALNUMBER and LICENSEKEY are the strings supplied with Lisp-
Works. A message

LispWorks license installed successfully.

should be printed and thereafter you can run LispWorks without those
command line arguments.

If you have received LispWorks on a CD-ROM then your license key is sup-
plied on a label inside the CD-ROM case. If you have downloaded the product
then your license key will be supplied to you in email from Lisp Support.

If you have problems with your LispWorks license key, send it to lisp-
keys@lispworks.com, describing what happens after you enter it.

4.7 Configuring the image
If you installed the Professional or Enterprise Edition of LispWorks, you can
now configure your LispWorks image to suit your needs and load the Profes-
sional or Enterprise Edition modules as necessary. For instructions, see
Chapter 9, “Configuration Details on Linux and FreeBSD”.

4.8 Printable LispWorks documentation
In a default Professional/Enterprise installation, the lib/5-1-0-0/man-
ual/offline directory contains PDF format versions of the manuals.

In the Personal Edition, these files are omitted to reduce installer download
time, but may be freely downloaded if required from
www.lispworks.com/documentation.

PostScript format versions of the manuals are also available for download.

4.9 Uninstalling LispWorks for Linux
A RPM installation of LispWorks can be uninstalled in the usual way, for
example by executing:

rpm --erase lispworks-5.1
 29

http://www.lispworks.com/documentation

4 Installation on Linux

30
If patches have been added via RPM, then you will first need to uninstall that
package, which will be named lispworks-patches5.1. The same applies to
additional RPM packages such as lispworks-corba.

If patches have been added from a tar archive, you will need to remove them
by hand.

If you installed LispWorks from the tar archives, simply do

rm -rf /usr/local/lib/LispWorks

4.10 Upgrading to LispWorks Enterprise Edition
You can upgrade from LispWorks Professional Edition by Help > Register... and
enter an Enterprise license key.

5

5 Installation on FreeBSD
This chapter is an installation guide for LispWorks 5.1 for FreeBSD. Chapter 9,
discusses post-installation and configuration in detail, but this chapter pre-
sents the instructions necessary to get LispWorks up and running on your sys-
tem.

5.1 Software and hardware requirements
An overview of system requirements is provided in Table 5.1. The sections
that follow discuss any relevant details.

Hardware
Requirements

Software Requirements

32MB of memory,
preferably 64MB

FreeBSD 5.4 or later, or
FreeBSD 6.0 or later with
compat5x

160MB of disk space for
Enterprise Edition plus
documentation

OpenMotif 2.2.x

Table 5.1
31

5 Installation on FreeBSD

32
5.1.1 Motif libraries

LispWorks 5.1 for FreeBSD requires that the X11 release 6 (or higher) OpenMo-
tif (version 2.2 or higher) are installed on your machine. Install Open Motif
2.2.x from the FreeBSD ports tree. Your systems administrator may be able to
help if you do not know how to do this.

Note: In order for the LispWorks IDE to run “out of the box”, Motif must be
installed on the target machine.

5.1.2 Disk requirements during installation

LispWorks requires about 50MB to install without documentation. Installing
the documentation adds about 110MB to this. A full installation of the
Enterprise Edition with all documentation requires about 160MB.

The documentation includes printable PDF format manuals. You may delete
any of these that you do not need. They are available at www.lisp-
works.com/documentation in any case, and the same manuals are also avail-
able there in PostScript format.

5.2 License agreement
Before installing, you must read and agree to the license terms. To do this,
mount the CD-ROM on your CD-ROM drive and locate the LispWorks for
FreeBSD files in the x86-freebsd directory. Run the one of following scripts.

You must run this script as the same user that later performs the installation.

• For the Professional and Enterprise Editions, run

Netscape, Mozilla, FireFox
or Opera Web browser for
viewing on-line
documentation

Hardware
Requirements

Software Requirements

Table 5.1

http://www.lispworks.com/documentation
http://www.lispworks.com/documentation

5.3 Software on the CD-ROM
sh lwf-license.sh

• For the Personal Edition, run:

sh lwfper-license.sh

Enter “yes” if you agree to the license terms.

5.3 Software on the CD-ROM
LispWorks 5.1 for FreeBSD is supplied as a standard package file in the x86-
freebsd directory on your CD-ROM.

5.3.1 Professional and Enterprise Edition distributions

All of the LispWorks modules are contained in a single package file. Your
license key will control which modules can be used.

5.4 Installing LispWorks for FreeBSD

5.4.1 Main installation and patches

LispWorks Professional and Enterprise Editions are supplied as a standard
software package file containing version 5.1. There may be a downloadable
patch bundle which upgrades LispWorks to version 5.1.x. You need to com-
plete the main installation before adding patches. The installer for 32-bit Lisp-
Works contains both Professional and Enterprise Editions.

5.4.2 Information for Beta testers

Users of LispWorks 5.1 Beta should completely uninstall it (including any
patches added to the initial beta installation) before installing LispWorks 5.1.

See “Uninstalling LispWorks for FreeBSD” on page 37 for instructions.

5.4.3 Installation software package file

If you already have LispWorks 5.1 Beta installed, please uninstall it before
installing this product. See Section 5.9, “Uninstalling LispWorks for FreeBSD”.
 33

5 Installation on FreeBSD

34
5.4.3.1 Installation directories

By default LispWorks is installed in /usr/local/lib/LispWorks and a sym-
bolic link to the executable is placed in /usr/local/bin/lispworks-5-1-0-
x86-freebsd. However, the software package is relocatable, and the -p option
can be used to allow the installation of LispWorks in a user-specified directory.
The default prefix is /usr/local.

Note: the Personal Edition by default installs in
/usr/lib/LispWorksPersonal. Do not attempt to to install different editions
in the same location, since some filenames coincide and uninstallation may
break.

5.4.3.2 Selecting the correct software package file

The LispWorks Professional/Enterprise software package file is called

lispworks-5.1.tgz

and can be found in the x86-freebsd directory of the LispWorks 5.1 CD-ROM.

The Personal Edition software package file is called

lispworks-personal-5.1.tgz

5.4.3.3 Installing LispWorks for FreeBSD

To install LispWorks, perform the following steps as root:

1. Locate the software package file.

2. Install or upgrade LispWorks in the standard way, for example:

pkg_add lispworks-5.1.tgz

This command installs LispWorks in /usr/local/lib/LispWorks. A
command line of the form

pkg_add -p <directory> lispworks-5.1.tgz

installs LispWorks in <directory>.

The directory name must be an absolute pathname. Relative pathnames and
pathnames including shell-expanded characters such as . and ~ do not work.

5.5 LispWorks looks for a license key
Note: LispWorks needs to be able find its library at runtime and therefore the
LispWorks installation should not be moved around piecemeal. If you simply
want to run LispWorks from somewhere more convenient, then consider add-
ing a symbolic link.

See Section 5.6 for instructions on entering your license details.

5.4.3.4 Installation by non-root users

Non-root users should use the above installation procedure, but must specify
the -p option to set a prefix a directory that is writable and also the -R option
to prevent the package manager from attempting to update the package data-
base.

Thus, a typical installation command for a non-root user is:

pkg_add -p installation-directory -R lispworks-5.1.tgz

All directory names must be absolute pathnames. Relative pathnames and
pathnames including shell-expanded characters such as . and ~ do not work.

5.4.3.5 Installing Patches

After completing the main installation of the Professional or Enterprise Edi-
tion, ensure you install the latest patches from the package file available for
download at www.lispworks.com/downloads/patch-selection.html. Patch
installation instructions are in the README file accompanying the patch
download.

5.5 LispWorks looks for a license key
If you installed the Professional or Enterprise Edition of LispWorks, the image
looks for a valid license key. If you try to run these LispWorks Editions with-
out a valid key, a message prints reporting that no valid key was found.

For instructions on entering your license key, see Section 5.6.1, “Entering the
license data” below.

For more information about license keys, see Section 9.2, “License keys”.
 35

www.lispworks.com/downloads/patch-selection.html#lwf

5 Installation on FreeBSD

36
5.6 Running LispWorks
The LispWorks executable is located in /usr/local/lib/LispWorks directory
of the installation (assuming the default prefix of /usr/local) and should not
be moved without being resaved because it needs to be able to locate the cor-
responding library directory on startup. There is also a symbolic link from the
/usr/local/bin directory.

The LispWorks executable is named as shown here:.

When you run LispWorks, the Lisp Monitor and splashscreen should appear,
followed by the LispWorks Podium and a Listener. See “Troubleshooting” on
page 87 for details if this does not happen.

5.6.1 Entering the license data

When you run the LispWorks Professional/Enterprise Edition for the first
time, you will need to enter your license details. This should be done as fol-
lows (all on one line):

lispworks-5-1-0-x86-freebsd --lwlicenseserial SERIALNUMBER
--lwlicensekey LICENSEKEY

where SERIALNUMBER and LICENSEKEY are the strings supplied with Lisp-
Works. A message

LispWorks license installed successfully.

should be printed and thereafter you can run LispWorks without those
command line arguments.

If you have received LispWorks on a CD-ROM then your license key is sup-
plied on a label inside the CD-ROM case. If you have downloaded the product
then your license key will be supplied to you in email from Lisp Support.

If you have problems with your LispWorks license key, send it to lisp-
keys@lispworks.com, describing what happens after you enter it.

lispworks-personal-5-1-0-x86-freebsd Personal Edition

lispworks-5-1-0-x86-freebsd Professional or Enterprise
Edition

5.7 Configuring the image
5.7 Configuring the image
If you installed the Professional or Enterprise Edition of LispWorks, you can
now configure your LispWorks image to suit your needs and load the Profes-
sional or Enterprise Edition modules as necessary. For instructions, see
Chapter 9, “Configuration Details on Linux and FreeBSD”.

5.8 Printable LispWorks documentation
In a default Professional/Enterprise installation, the lib/5-1-0-0/man-
ual/offline directory contains PDF format versions of the manuals.

PostScript format versions of the manuals are also available for download.

5.9 Uninstalling LispWorks for FreeBSD
A software package containing LispWorks can be uninstalled in the usual
way, for example by executing:

pkg_delete lispworks-5.1

If patches have been installed, then you will first need to uninstall that pack-
age, which will be named lispworks-patches5.1.

5.10 Upgrading to LispWorks Enterprise Edition
You can upgrade from LispWorks Professional Edition by Help > Register... and
enter an Enterprise license key.
 37

5 Installation on FreeBSD

38

6

6 Installation on UNIX
6.1 Introduction
This chapter is a brief installation guide for UNIX LispWorks 5.1. Chapter 10
discusses installation and configuration in detail, but this chapter presents the
minmum instructions necessary to get LispWorks up and running on your
system. If you have difficulties installing LispWorks from these instructions,
refer to the main guide, starting at Chapter 10, “Configuration Details on
UNIX”.

6.2 Extracting software from the CD-ROM
UNIX LispWorks 5.1 is supplied on a CD-ROM with the associated products
CLIM 2.0, KnowledgeWorks, and LispWorks ORB. You will need root access
while installing these products.
39

6 Installation on UNIX

40
6.2.1 Finding out which CD-ROM files you need

The following table shows the platforms upon which LispWorks is supported:

For HP PA (HP-UX 11x) you need the files named lw51-hp-pa.tar and
lwdoc51-unix.tar.

For Sun Sparc (32-bit) you need the files named lw51-sparc.tar and
lwdoc51-unix.tar.

For Sun Sparc (64-bit) you need the files named lw51-sparc64.tar and
lwdoc51-sparc64.tar.

In each case the first archive contains the LispWorks image, libraries and
examples and the layered products KnowledgeWorks, LispWorks ORB and
CLIM. The second archive contains the documentation for Common Lisp,
LispWorks and the layered products.

6.2.2 Unpacking the CD-ROM files

To unpack the CD-ROM files:

1. Mount the CD-ROM in your drive.

2. Search the subdirectories of the mount point to find the tar files.

3. Change directory to your installation directory (we recommend
/usr/lib/lispworks/, which you may need to create) and decide which
tar files you need.

4. Use the following command to unpack each tar file:

Platform Hardware code OS code

HP PA (HP-UX 11x) hp-pa hp-pa11

Sun Sparc (32-bit, Solaris 2.8 &
later)

sparc sparc-solaris

Sun Sparc (64-bit, Solaris 2.8 &
later)

sparc64 sparc64-solaris

Table 6.1 Platforms and associated codes

6.3 Moving the LispWorks image and library
% tar -xof filename

The LispWorks image file can be found at top level in the installation
directory, named according to the operating system, platform, and LispWorks
version number, as follows:

lispworks-<version number>-<OS code>

Thus, an image named lispworks-5-1-0-hp-pa11 would be a LispWorks 5.1
image for use on an HP PA machine running HP-UX 11.

6.3 Moving the LispWorks image and library
The LispWorks image must be able to find its library. The default library
location is contained in the Lisp variable *lispworks-directory*, but if that
does not locate the library, LispWorks also can locate its library by a fallback
mechanism which detects a numbered subdirectory lib/5-1-0-0 alongside
the image.

There are three distinct ways to arrange your LispWorks files. Choose 1, 2 or 3,
of which 1 and 2 are the simplest options:

1. Put the LispWorks distribution in /usr/lib/lispworks. You will then
have the LispWorks image at top-level in the /usr/lib/lispworks direc-
tory, and subdirectories /usr/lib/lispworks/lib/5-1-0-0.

You can move the LispWorks image wherever you prefer, because the
value of *lispworks-directory* in the supplied image is the pathname
#P"/usr/lib/lispworks/".

2. Keep the LispWorks installation intact, as unpacked from the archive
supplied. You can move it, but only move the entire installation as a
whole. Then LispWorks will find its library by the fallback mechanism
mentioned above. In this case again you do not need to change *lisp-
works-directory*.

Note: this only works if you do not move the image away from the top-
level of the installation directory.

3. Put the library elsewhere than /usr/lib/lispworks/ (call it
/path/to/lwlibrary/) and move the LispWorks image file away from
the top-level of the installation directory.
 41

6 Installation on UNIX

42
In this case you need to take action to allow LispWorks to find its library.
You should either make a symbolic link /usr/lib/lispworks/lib, or
configure the LispWorks image with:
(setf *lispworks-directory* #P"/path/to/lwlibrary/")

See Section 6.5 below for more information about configuring
LispWorks. You will need to install your license key first.

6.4 Obtaining and Installing your license keys

6.4.1 Keyfiles and the license server for HP PA and Sun Sparc (32-bit)

This section applies to platforms hp-pa11 and sparc-solaris only.

LispWorks requires a license key in order to run. To make a key available to
LispWorks, you must use either the keyfile system, or the License Server.

Most users use a keyfile. The License Server is more suitable for large sites
with many LispWorks users.

6.4.1.1 If you are using the keyfile system

You will need a valid key, placed in a keyfile, for LispWorks to run. Note that
keys and licenses issued for use with LispWorks version 4.x do not work for
LispWorks 5.1.

To get a key for your copy of LispWorks, contact Lisp Support. You need to
supply the machine ID. You can find this out by starting the LispWorks image
up—the ID will be printed in the keyfile error message produced.

Send this information by e-mail to the following address:

lisp-keys@lispworks.com

Other queries should be sent to

lisp-support@lispworks.com

although please be sure to check Section 11.8, “Reporting bugs” for instruc-
tions before sending us a bug report. If you do not have e-mail access, you can
contact Lisp Support by telephone or ordinary postal mail. Contact details are
in Section 11.8.8, “Send the bug report”.

mailto:lisp-keys@lispworks.com
mailto:lisp-support@lispworks.com

6.5 Configuring the LispWorks image
Once you have your key, put it in a file in one of the following locations:

• keyfile.hostname in the current working directory, where hostname is
the name of the host machine on which LispWorks is to run

• keyfile in the current working directory

• lib/5-1-0-0/config/keyfile.hostname, where hostname is the name of
the host machine on which LispWorks is to run. The lib directory is
expected by default to be located at /usr/lib/lispworks/lib (see Sec-
tion 6.3 above)

• lib/5-1-0-0/config/keyfile, where the lib directory is as above.

If there is more than one key in the keyfile, make sure each one is on a separate
line in the file and that there is no leading space before it.

For more details, see “How to obtain keys” on page 79.

6.4.1.2 If you are using the License Server

You will need to obtain permission codes from Lisp Support before you can
get LispWorks up and running. Consult the Lispworks Guide to the License
Server.

6.5 Configuring the LispWorks image
Now you can configure the LispWorks image to your taste. In the distribution
directory config there are two files that have been preloaded into the Lisp-
Works image:

• config/configure.lisp

• config/a-dot-lispworks.lisp

Take a look at the settings in configure.lisp to see if there is anything you
want to change. In particular, you must change the value of
lispworks-directory if you have chosen a location for the library which is
different to that in the supplied image and moved the image away from the
top-level of the installation directory.

If you already have a .lispworks personal initialization file in your home
directory, examine the supplied example a-dot-lispworks.lisp file for new
settings which you may wish to add. Otherwise, make a copy of
 43

6 Installation on UNIX

44
a-dot-lispworks.lisp in your home directory, naming it .lispworks. This
file is loaded into LispWorks when you start it up, allowing you to make per-
sonal customizations to LispWorks not in the image your fellow users see.

6.5.1 Saving a configured image

Make a copy of config/configure.lisp called
/tmp/my-configuration.lisp. When you have made any desired changes in
my-configuration.lisp you can save a new LispWorks image, creating a
local version.

1. Create a configuration and saving script /tmp/config.lisp, containing:

(load-all-patches)
(load "/tmp/my-configuration.lisp")
(save-image "/usr/local/bin/lispworks")

2. Change directory to the top-level of the LispWorks installation directory,
for example:

% cd /usr/lib/lispworks

3. Start the supplied image using the configuration script as the build file.
For example:

% lispworks-5-1-0-sparc-solaris -siteinit - -build
/tmp/config.lisp

If the image will not run at this stage, it is probably not finding a valid key. See
“Obtaining and Installing your license keys” on page 42

The siteinit.lisp is also suppressed because this will be loaded automati-
cally when you start the configured image. Saving the image takes some time.

You can now use the new image by starting it just as you did the supplied
image. Saving a new image over the old one is not recommended. Use a
unique name.

6.6 Using the Documentation
6.5.2 Testing the newly saved image

The following steps provide a basic test of your installation.

1. Change directory to /tmp.

2. Verify that your DISPLAY environment variable is correctly set and that
your machine has permission to connect to the display.

3. Start up the new image.

4. Test the load-on-demand system:
CL-USER 1 > (inspect 1)

The inspector is a load-on-demand feature, so if the installation is correct
you will see messages reporting that the inspector is being loaded.

5. Test the X interface:
CL-USER 2 > (env:start-environment :display <display>)

where <display> is the name of the machine running the X server, for
example "cantor:0".

6.6 Using the Documentation
Documentation in HTML and PDF formats is provided in a separate archive
on the CD-ROM. If you want to access the documentation, you should unpack
the appropriate archive named “Finding out which CD-ROM files you need”
on page 40.

HTML documentation is installed in the lib/5-1-0-0/manual/online sub-
directory of the LispWorks library, and can be accessed via the Help menu in
the Common LispWorks IDE.

The PDF format manuals are installed in the lib/5-1-0-0/man-
ual/offline/pdf subdirectory of the LispWorks library.

6.7 Using Layered Products on HP PA or Sun Sparc (32-bit)
To use each of Delivery, LispWorks ORB, CLIM 2.0 and KnowledgeWorks you
must obtain the required key and put in your keyfile. See “Keyfiles and the
license server for HP PA and Sun Sparc (32-bit)” on page 42.
 45

6 Installation on UNIX

46
Then you need to load the layered product module. This is done by (require
"delivery") or (require "corba") or (require "clim") or (require "kw").
You could consider configuring an image with the module pre-loaded, by
using a config.lisp file similar to that in “Saving a configured image” on
page 44.

Note: There is no additional licensing requirement for Common SQL on these
platforms.

7

7 Configuration Details on Mac
OS X
7.1 Introduction
This chapter explains how to get your LispWorks Professional or Enterprise
Edition up and running, having already installed the files from the CD-ROM
into an appropriate folder. If you have not done this, refer to Chapter 2,
“Installation on Mac OS X”.

It is more useful to have an image customized to suit your particular
environment and work needs. You can do this—setting useful pathnames,
loading libraries, and so on—and then save the image to create another that
will be configured as you require whenever you start it up.

This chapter covers the following topics:

• “License keys”

• “Configuring your LispWorks installation”

• “Saving and testing the configured image”

• “Initializing LispWorks”

• “Loading CLIM 2.0”

• “Loading Common SQL”

• “Common Prolog and KnowledgeWorks”
47

7 Configuration Details on Mac OS X

48
7.2 License keys
LispWorks is protected against unauthorized copying and use by a simple key
mechanism. LispWorks will not start up until it finds a file containing a valid
key.

The image looks for a valid license key in the following places, in order:

• in the current working directory (folder)

• in the directory containing the LispWorks executable

• in the Library/lib/5-1-0-0/config subdirectory of the LispWorks
installation directory

When the file lwlicense is found, it must contain a valid key for the current
machine. If you try to run LispWorks without a valid key, a message will be
printed to the console reporting that no valid key was found.

7.3 Configuring your LispWorks installation
Once you have successfully installed and run LispWorks, you can configure it
to suit your local conditions and needs, producing an image that is set up the
way you want it to be every time you start it up.

7.3.1 Levels of configuration

There are two levels of configuration:

• configuring and resaving the image, thereby creating a new image that
is exactly as you want it at startup

• configuring certain aspects of LispWorks as it starts up.

These two levels are available for good reason: while some configuration
details may be of use to all LispWorks users on your machine (for instance,
having a particular library built into the image where before it was only load-
on-demand) others may be a matter of personal preference (for instance how
many editor windows are allowed on-screen, or the colors of tool windows).

In the first case, you use edited copies of files in the config folder to achieve
your aims.

7.3 Configuring your LispWorks installation
In the second case, you make entries in your initialization file. This is a file
read every time LispWorks starts up, and it can contain any valid Common
Lisp code. (Most of the configurable settings in LispWorks can be controlled
from Common Lisp.) By default the file is called .lispworks and is in your
home directory. Your initialization file can be changed via
LispWorks > Preferences... from the LispWorks IDE.

7.3.2 Configuring images for the different GUIs

If you have installed both the LispWorks images, for native Mac OS X and for
X11/Motif, you will want to configure two images.

If necessary your Lisp configuration and initialization files can run code for
one image or the other by conditionalization on the feature :cocoa. The native
Mac OS X LispWorks image has :cocoa on *features* while the X11/Motif
LispWorks image does not.

7.3.3 Configuration files available

There are four sample configuration files in LispWorks library containing set-
tings you can change in order to configure images:

• config/configure.lisp

• config/siteinit.lisp

• private-patches/load.lisp

• config/a-dot-lispworks.lisp

config/configure.lisp is preloaded into the image before it is shipped. It
contains settings governing fundamental issues like where to find the Lisp-
Works runtime folder structure, and so on. You can override these settings in
your saved image or in your initialization file. You should read through
configure.lisp .

config/siteinit.lisp contains any forms that are appropriate to the whole
site but which are to be loaded afresh each time the image is started. The sam-
ple siteinit.lisp file distributed with LispWorks contains only the form:

(load-all-patches)
 49

7 Configuration Details on Mac OS X

50
On startup, the image loads siteinit.lisp and your initialization file, in that
order. The command line options -siteinit and -init can be used to specify
loading of different files or to suppress them altogether. See the example in
Section 7.4, below, and Section 7.5, “Initializing LispWorks” for further details.

private-patches/load.lisp is loaded by load-all-patches, and should
contain forms to load any private (named) patches that Lisp Support might
send you.

config/a-dot-lispworks.lisp is a sample personal initialization file. You
might like to copy this into a file ~/.lispworks in your home directory and
edit it to create your own initialization file.

Both configure.lisp and a-dot-lispworks.lisp are preloaded into the
image before it is shipped, so if you are happy with the settings in these files,
you need not change them. See the example in Section 7.4, below, and
Section 7.5, “Initializing LispWorks” for further details.

7.4 Saving and testing the configured image
Make a copy of config/configure.lisp called
/tmp/my-configuration.lisp. When you have made the desired changes in
my-configuration.lisp you can save a new LispWorks image. To do this, fol-
low the instructions below.

1. Create a configuration and saving script /tmp/save-config.lisp con-
taining:

(load-all-patches)
(load "/tmp/my-configuration.lisp")
#+:cocoa
(compile-file-if-needed
 (sys:example-file "configuration/macos-application-bundle")
 :load t)
(save-image #+:cocoa
 (write-macos-application-bundle
 "/Applications/LispWorks 5.1/My LispWorks.app")
 #-:cocoa
 "my-lispworks-motif")

Note 1: The use of example code supplied with LispWorks which creates
a Mac OS X application bundle. This code is in the example file
examples/configuration/macos-application-bundle.lisp

7.4 Saving and testing the configured image
Note 2: This will create a non-universal binary, containing only the archi-
tecture on which you call save-image.

2. Change directory to the directory containing the LispWorks image to
configure. For the native Mac OS X/Cocoa LispWorks image:

% cd "/Applications/LispWorks 5.1/LispWorks.app/Contents/MacOS"

or for the X11/Motif LispWorks image:

% cd "/Applications/LispWorks 5.1"

3. Start the supplied image passing the configuration script the build file.
For example enter one of the following commands (on one line of input):

% lispworks-5-1-0-macos-universal -siteinit - -build
/tmp/save-config.lisp

or

% lispworks-5-1-0-macos-universal-motif -siteinit - -build
/tmp/save-config.lisp

If the image will not run at this stage, it is probably not finding a valid
key.

Note that the command line also suppresses the siteinit because this
will be loaded automatically when you start the configured image.

Saving the image takes some time.

You can now use the new My LispWorks.app application bundle or the
my-lispworks-motif image by starting it just as you did the supplied Lisp-
Works. The supplied LispWorks is not required after the configuration process
has been successfully completed.

Do not try to save a new image over an image that is currently running.
Instead, save an image under a unique name, and then, if necessary, replace
the new image with the old one after the call to save-image has returned.

7.4.1 Testing the newly saved image

You should now test the new LispWorks image. To test a configured Lisp-
Works, do the following:

1. If you are using an X11/Motif image, change directory to /tmp.
 51

7 Configuration Details on Mac OS X

52
2. When using X11, verify that your DISPLAY environment variable is cor-
rectly set and that your machine has permission to connect to the dis-
play.

3. Start up the new image, by entering the path of the X11/Motif execut-
able or by double-clicking on the LispWorks icon in the Mac OS X
Finder.

The window-based environment should now initialize—during initial-
ization a window displaying a copyright notice will appear on the
screen.

You may wish to work through some of the examples in the LispWorks
User Guide, to further check that the configured image has been success-
fully built.

4. Test the load-on-demand system. In the Listener, type:

CL-USER 1 > (inspect 1)

Before information about the fixnum 1 is printed, the system should load
the inspector from the load-on-demand Library directory.

7.4.2 Saving a non-windowing image

For some purposes such as scripting it is convenient to have a LispWorks
image that does not start the graphical programming environment.

To save an image which does not automatically start the GUI, use a script as
described in “Saving and testing the configured image” on page 50 but pass
the :environment argument to save-image. For example:

(save-image "my-tty-lispworks" :environment nil)

7.5 Initializing LispWorks
When LispWorks starts up, it looks for an initialization file to load. The name
of the file is held in *init-file-name*, and is ~/.lispworks by default. The
’~’ denotes your home directory, indicated as Home in the Finder. The
initialization file may contain any valid Lisp code.

You can load a different initialization file using the option -init in the com-
mand line, for example:

7.6 Loading CLIM 2.0
% "/Applications/LispWorks 5.1/LispWorks.app/Contents/MacOS/lispw
orks-5-1-0-macos-universal" -init my-lisp-init

(where % denotes the Unix shell prompt) would make LispWorks load my-
lisp-init.lisp as the initialization file instead of that named by *init-
file-name*.

The loading of the siteinit file (located by default at config/siteinit.lisp) is
similarly controlled by the -siteinit command line argument or
site-init-file-name.

You can start an image without loading any personal or site initialization file
by passing a hyphen to the -init and -siteinit arguments instead of a file-
name:

% "/Applications/LispWorks 5.1/LispWorks.app/Contents/MacOS/lispw
orks-5-1-0-macos-universal" -init - -siteinit -

This starts the LispWorks image without loading any initialization file. It is
often useful to start the image in this way when trying to repeat a suspected
bug. You should always start the image without the default initialization files
if you are intending to resave it.

In all cases, if the filename is present, and is not a hyphen, LispWorks tries to
load it as a normal file by calling load. If the load fails, LispWorks prints an
error report.

7.6 Loading CLIM 2.0
Load CLIM 2.0 into a LispWorks for X11/Motif image with

(require "clim")

and the CLIM demos with

(require "clim-demo")

A configuration file to save an image with CLIM 2.0 preloaded would look
something like this:

(load-all-patches)
(require "clim")
(save-image "<destination>/clim-lispworks")

To run the demo software, enter the following in a listener:
 53

7 Configuration Details on Mac OS X

54
(require "clim-demo")
(clim-demo:start-demo)

Note: CLIM is not supported by the LispWorks native Mac OS X image and
cannot be loaded into it.

Note: Do not attempt to load CLIM via the clim loader files in the clim distri-
bution. This will cause CLIM patches to not be loaded. Use (require
"clim").

7.7 The Common SQL interface
The Common SQL interface requires ODBC or one of the supported database
types listed in section "Supported Databases" of the LispWorks User Guide.

7.7.1 Loading Common SQL

To load Common SQL enter, for example:

(require "odbc")

or

(require "oracle")

Initialize the database type at runtime, for example:

(sql:initialize-database-type :database-type :odbc)

or

(sql:initialize-database-type :database-type :oracle)

See the LispWorks User Guide for further information.

7.7.2 Supported databases

Common SQL on Mac OS X has been tested with DBMS Postgres 7.2.1,
MySQL 5.0.18, Oracle Instant Client 10.1.0.3, ODBC driver PSQLODBC devel-
opment code, and IODBC as supplied with Mac OS X.

7.7 The Common SQL interface
7.7.3 Special considerations when using Common SQL

7.7.3.1 Location of .odbc.ini

The current release of Mac OS X comes with an ODBC driver manager from
IODBC, including a GUI interface. IODBC attempts to put the file .odbc.ini
file in a non-standard location. This causes problems at least with the
PSQLODBC driver for PostgreSQL, because PSQLODBC expects to find
.odbc.ini in either the users’s home directory or the current directory. There
may be similar problems with other drivers. Therefore the file .odbc.ini
should be placed in its standard place ~/.odbc.ini. The IODBC driver man-
ager looks there too, so it will work.

7.7.3.2 Errors using PSQLODBC

The PSQLODBC driver, when it does not find any of the Servername,
Database or Username in .odbc.ini, returns the wrong error code. This tells
the calling function that the user cancelled the login dialog.

Therefore, if Common SQL reports that the user cancelled when trying to con-
nect, you need to check that you have got Servername, Database and User-
name, with the correct case, in the section for the datasource in the .odbc.ini
file.

Note: Username may alternatively be given in the connect string.

7.7.3.3 PSQLODBC version

Common SQL was tested with the development version of psqlodbc (that is
downloaded from CVS, with the version changed to 3. Contact Lisp Support if
you need help using Common SQL with PSQLODBC.

7.7.3.4 Locating the Oracle, MySQL or PostgreSQL client libraries

For database-type :oracle, :mysql and :postgresql, if the client library is not
installed in a standard place, its directory must be added to the environment
variable DYLD_LIBRARY_PATH (see the OS manual entry for dyld).
 55

7 Configuration Details on Mac OS X

56
7.8 Common Prolog and KnowledgeWorks
Common Prolog is bundled with KnowledgeWorks rather than with Lisp-
Works. KnowledgeWorks is loaded by using:

(require "kw")

See the KnowledgeWorks and Prolog User Guide for further instructions.

8

8 Configuration Details on
Windows
8.1 Introduction
This chapter explains how to get your LispWorks Professional or Enterprise
Edition up and running, having already installed the files from the CD-ROM
into an appropriate directory. If you have not done this, refer to Chapter 3,
“Installation on Windows”.

It is more useful to have an image customized to suit your particular
environment and work needs. You can do this—setting useful pathnames,
loading libraries, and so on—and then save the image to create another that
will be configured as you require whenever you start it up.

This chapter covers the following topics:

• “License keys”

• “Configuring your LispWorks installation”

• “Saving and testing the configured image”

• “Initializing LispWorks”

• “Loading CLIM 2.0”

• “The Common SQL interface”

• “Common Prolog and KnowledgeWorks”
57

8 Configuration Details on Windows

58
8.2 License keys
LispWorks is protected against unauthorized copying and use by a simple key
protection mechanism. LispWorks will not start up until it finds a valid key.

The image looks for a valid license key in the Windows registry.

If you try to run LispWorks without a valid key, it will prompt for a serial
number and key.

8.3 Configuring your LispWorks installation
Once you have successfully installed and run LispWorks, you can configure it
to suit your local conditions and needs, producing an image that is set up the
way you want it to be every time you start it up.

8.3.1 Levels of configuration

There are two levels of configuration: configuring and resaving the image,
thereby creating a new image that is exactly as you want it at startup, and con-
figuring certain aspects of LispWorks as it starts up.

These two levels are available for good reason: while some configuration
details may be of use to all LispWorks users on your site (for instance, having
a particular library built in to the image where before it was only load-on-
demand) others may be a matter of personal preference (for instance how
many editor windows are allowed on-screen, or the colors of tool windows).

In the first case, you use edited copies of files in the config folder to achieve
your aims.

In the second case, you make entries in your initialization file. This is a file
read every time LispWorks starts up, and it can contain any valid Common
Lisp code. (Most of the configurable settings in LispWorks can be controlled
from Common Lisp.) Your initialization file can be changed via Tools > Glo-
bal Preferences... in the Common LispWorks IDE.

8.3.2 Configuration files available

There are four sample configuration files in LispWorks library containing set-
tings you can change in order to configure images:

8.4 Saving and testing the configured image
• config/configure.lisp

• config/siteinit.lisp

• private-patches/load.lisp

• config/a-dot-lispworks.lisp

config/configure.lisp is preloaded into the image before it is shipped. It
contains settings governing fundamental issues like where to find the Lisp-
Works runtime folder structure, and so on. You can override these settings in
your saved image or in your initialization file. You should read through
configure.lisp .

config/siteinit.lisp contains any forms that are appropriate to the whole
site but which are to be loaded afresh each time the image is started. The sam-
ple siteinit.lisp file distributed with LispWorks contains only the form:

(load-all-patches)

On startup, the image loads siteinit.lisp and your initialization file, in that
order. The command line options -siteinit and -init can be used to specify
loading of different files or to suppress them altogether. See the example in
Section 8.4, below, and Section 8.5, “Initializing LispWorks” for further details.

private-patches/load.lisp is loaded by load-all-patches, and should
contain forms to load any private (named) patches that Lisp Support might
send you.

config/a-dot-lispworks.lisp is a sample personal initialization file. You
might like to copy this somewhere convenient and edit it to create your own
initialization file.

Both configure.lisp and a-dot-lispworks.lisp are preloaded into the
image before it is shipped, so if you are happy with the settings in these files,
you need not change them. See the example in Section 8.4, below, and
Section 8.5, “Initializing LispWorks” for further details.

8.4 Saving and testing the configured image
Make a copy of config\configure.lisp called C:\temp\my-configura-
tion.lisp. When you have made any desired changes in my-configura-
 59

8 Configuration Details on Windows

60
tion.lisp you can save a new LispWorks image. To do this, follow the
instructions below.

1. Create a configuration and saving script C:\temp\save-config.lisp,
containing:

(load-all-patches)
(load "C:/temp/my-configuration.lisp")
(save-image "my-lispworks")

2. Change directory to the LispWorks installation directory, for example:

C:

cd C:\Program Files\LispWorks

3. Start the supplied image using the configuration script as the build file.
For example:

C:\Program Files\LispWorks>lispworks-5-1-0-x86-win32.exe
-siteinit - -build C:\temp\save-config.lisp

If the image will not run at this stage, it is probably not finding a valid key.

Note that the command line also suppresses the siteinit because this will be
loaded automatically when you start the configured image.

Saving the image takes some time.

You can now use the new my-lispworks.exe image from the Windows
Explorer, or you may choose to add a shortcut. The supplied image is not
required after the configuration process has been successfully completed.

Do not try to save a new image over an image that is currently running.
Instead, save an image under a unique name, and then, if necessary, replace
the new image with the old one after the call to save-image has returned.

8.4.1 Testing the newly saved image

You should now test the new LispWorks image. To test a configured version of
LispWorks, do the following:

1. Start up the new image.

8.5 Initializing LispWorks
The window-based environment should now initialize—during initial-
ization a window displaying a copyright notice will appear on the
screen.

You may wish to work through some of the examples in the LispWorks
User Guide, to further check that the configured image has been success-
fully built.

2. Test the load-on-demand system. In the Listener, type:

CL-USER 1 > (inspect 1)

Before information about the fixnum 1 is printed, the system should load
the inspector from the load-on-demand directory.

8.4.2 Saving a non-windowing image

For some purposes such as scripting it is convenient to have a LispWorks
image that does not start the graphical programming environment.

To save an image which does not automatically start the GUI, use a script as
described in “Saving and testing the configured image” on page 59 but pass
the :environment argument to save-image. For example:

(save-image "my-tty-lispworks" :environment nil)

8.5 Initializing LispWorks
When LispWorks starts up, it looks for an initialization file to load. The name
of the file is held in *init-file-name*, and is ~/.lispworks by default. You
can use parse-namestring to see the expansion of this path. The file may con-
tain any valid Lisp code.

You can load a different initialization file using the option -init in the com-
mand line, for example (all on one line):

C:\Program Files\LispWorks>lispworks-5-1-0-x86-win32.exe -init
my-lisp-init

would make LispWorks load my-lisp-init.lisp as the initialization file
instead of that named by *init-file-name*.
 61

8 Configuration Details on Windows

62
The loading of the siteinit file (located by default at config\siteinit.lisp) is
similarly controlled by the -siteinit command line argument or
site-init-file-name.

You can start an image without loading any personal or site initialization file
by passing a hyphen to the -init and -siteinit arguments instead of a file-
name:

C:\Program Files\LispWorks>lispworks-5-1-0-x86-win32.exe -init -
-siteinit -

This starts the LispWorks image without loading any initialization file. It is
often useful to start the image in this way when trying to repeat a suspected
bug. You should always start the image without the default initialization files
if you are intending to resave it.

In all cases, if the filename is present, and is not a hyphen, LispWorks tries to
load it as a normal file by calling load. If the load fails, LispWorks prints an
error report.

8.6 Loading CLIM 2.0
Load CLIM 2.0 into LispWorks 5.1 with

(require "clim")

and the CLIM demos with

(require "clim-demo")

rather than the clim loader files in the clim distribution (which were the entry
points in LispWorks 3).

A configuration file to save an image with CLIM 2.0 preloaded would look
something like this:

(load-all-patches)
(require "clim")
(save-image "<destination>/clim-lispworks")

8.6.1 Running the CLIM demos

To run the demo software, enter the following in a listener:

8.7 The Common SQL interface
(require "clim-demo")
(clim-demo:start-demo)

This displays a menu listing all the demos. Choose the demo you wish to see.
More information about the demos is in section "The CLIM demos" of the
Common Lisp Interface Manager 2.0 User’s Guide

8.7 The Common SQL interface
The Common SQL interface requires ODBC or one of the supported database
types listed in section "Supported databases" of the LispWorks User Guide.

8.7.1 Loading the Common SQL interface

To load the Common SQL interface to use ODBC enter:

(require "odbc")

and at runtime call:

(sql:initialize-database-type :database-type :odbc)

and then you can connect to any installed ODBC datasource.

To load the Common SQL interface to use MySQL, enter:

(require "mysql")

and at runtime call:

(sql:initialize-database-type :database-type :mysql)

See the LispWorks User Guide for further information.

8.8 Common Prolog and KnowledgeWorks
Common Prolog is bundled with KnowledgeWorks rather than with Lisp-
Works. KnowledgeWorks is loaded by using:

(require "kw")

See the KnowledgeWorks and Prolog User Guide for further instructions.
 63

8 Configuration Details on Windows

64

9

9 Configuration Details on
Linux and FreeBSD
9.1 Introduction
This chapter explains how to get your LispWorks Professional or Enterprise
Edition up and running on Linux or FreeBSD, having already installed the
files from the CD-ROM into an appropriate directory. If you have not done
this, refer to Chapter 4, Installation on Linux or Chapter 5, Installation on
FreeBSD.

It is more useful to have an image customized to suit your particular
environment and work needs. You can do this—setting useful pathnames,
loading libraries, and so on—and then save the image to create another that
will be configured as you require whenever you start it up.

This chapter covers the following topics:

• “License keys”

• “Configuring your LispWorks installation”

• “Saving and testing the configured image”

• “Initializing LispWorks”

• “Loading CLIM 2.0”

• “The Common SQL interface”
65

9 Configuration Details on Linux and FreeBSD

66
• “Common Prolog and KnowledgeWorks”

9.2 License keys
LispWorks is protected against unauthorized copying and use by a simple key
protection mechanism. LispWorks will not start up until it finds a file contain-
ing a valid key.

The image looks for a valid license key in the following places, in order:

• in the current working directory

• in the directory containing the LispWorks executable

• in the lib/5-1-0-0/config subdirectory of the LispWorks installation
directory

When the file lwlicense is found, it must contain a valid key for the current
machine. If you try to run LispWorks without a valid key, a message will be
printed reporting that no valid key was found.

9.3 Configuring your LispWorks installation
Once you have successfully installed and run LispWorks, you can configure it
to suit your local conditions and needs, producing an image that is set up the
way you want it to be every time you start it up.

9.3.1 Levels of configuration

There are two levels of configuration: configuring and resaving the image,
thereby creating a new image that is exactly as you want it at startup, and con-
figuring certain aspects of LispWorks as it starts up.

These two levels are available for good reason: while some configuration
details may be of use to all LispWorks users on your site (for instance, having
a particular library built in to the image where before it was only load-on-
demand) others may be a matter of personal preference (for instance how
many editor windows are allowed on-screen, or the colors of tool windows).

In the first case, you use edited copies of files in the config directory to
achieve your aims.

9.3 Configuring your LispWorks installation
In the second case, you make entries in your initialization file. This is a file
read every time LispWorks starts up, and it can contain any valid Common
Lisp code. (Most of the configurable settings in LispWorks can be controlled
from Common Lisp.) By default the file is called .lispworks and is in your
home directory. Your initialization file can be changed via Tools > Global
Preferences... in the Common LispWorks IDE.

9.3.2 Configuration files available

There are four sample configuration files in LispWorks library containing set-
tings you can change in order to configure images:

• config/configure.lisp

• config/siteinit.lisp

• private-patches/load.lisp

• config/a-dot-lispworks.lisp

config/configure.lisp is preloaded into the image before it is shipped. It
contains settings governing fundamental issues like where to find the Lisp-
Works runtime folder structure, and so on. You can override these settings in
your saved image or in your initialization file. You should read through con-
figure.lisp .

config/siteinit.lisp contains any forms that are appropriate to the whole
site but which are to be loaded afresh each time the image is started. The sam-
ple siteinit.lisp file distributed with LispWorks contains only the form:

(load-all-patches)

On startup, the image loads siteinit.lisp and your initialization file, in that
order. The command line options -siteinit and -init can be used to specify
loading of different files or to suppress them altogether. See the example in
Section 9.4, below, and Section 9.5, “Initializing LispWorks” for further details.

private-patches/load.lisp is loaded by load-all-patches, and should
contain forms to load any private (named) patches that Lisp Support might
send you.

config/a-dot-lispworks.lisp is a sample personal initialization file. You
might like to copy this into a file ~/.lispworks in your home directory and
edit it to create your own initialization file.
 67

9 Configuration Details on Linux and FreeBSD

68
Both configure.lisp and a-dot-lispworks.lisp are preloaded into the
image before it is shipped, so if you are happy with the settings in these files,
you need not change them. See the example in Section 9.4, below, and
Section 9.5, “Initializing LispWorks” for further details.

9.4 Saving and testing the configured image
Make a copy of config/configure.lisp called /tmp/my-configura-
tion.lisp. When you have made any desired changes in my-configura-
tion.lisp you can save a new LispWorks image. To do this, follow the
instructions below.

1. Create a configuration and saving script /tmp/save-config.lisp, con-
taining:

(load-all-patches)
(load "/tmp/my-configuration.lisp")
(save-image "my-lispworks")

2. Change directory to the LispWorks installation directory, for example:

% cd /usr/local/lib/LispWorks

3. Start the supplied image using the configuration script as the build file.
For example:

% lispworks-5-1-0-x86-linux -siteinit - -build
/tmp/save-config.lisp

If the image will not run at this stage, it is probably not finding a valid key.

Note that the command line also suppresses the siteinit because this will be
loaded automatically when you start the configured image.

Saving the image takes some time.

You can now use the new my-lispworks image by starting it just as you did
the supplied image. The supplied image is not required after the configuration
process has been successfully completed.

Do not try to save a new image over an image that is currently running.
Instead, save an image under a unique name, and then, if necessary, replace
the new image with the old one after the call to save-image has returned.

9.5 Initializing LispWorks
9.4.1 Testing the newly saved image

You should now test the new LispWorks image. To test a configured version of
LispWorks, do the following:

1. Change directory to /tmp.

2. Verify that your DISPLAY environment variable is correctly set and that
your machine has permission to connect to the display.

3. Start up the new image.

The window-based environment should now initialize—during initial-
ization a window displaying a copyright notice will appear on the
screen.

You may wish to work through some of the examples in the LispWorks
User Guide, to further check that the configured image has been success-
fully built.

4. Test the load-on-demand system. In the Listener, type:

CL-USER 1 > (inspect 1)

Before information about the fixnum 1 is printed, the system should load
the inspector from the load-on-demand directory.

9.4.2 Saving a non-windowing image

For some purposes such as scripting it is convenient to have a LispWorks
image that does not start the graphical programming environment.

To save an image which does not automatically start the GUI, use a script as
described in “Saving and testing the configured image” on page 68 but pass
the :environment argument to save-image. For example:

(save-image "my-tty-lispworks" :environment nil)

9.5 Initializing LispWorks
When LispWorks starts up, it looks for an initialization file to load. The name
of the file is held in *init-file-name*, and is ~/.lispworks by default. ~
denotes your home directory. The file may contain any valid Lisp code.
 69

9 Configuration Details on Linux and FreeBSD

70
You can load a different initialization file using the option -init in the com-
mand line, for example:

% lispworks-5-1-0-x86-linux -init my-lisp-init

would make LispWorks load my-lisp-init.lisp as the initialization file
instead of that named by *init-file-name*.

The loading of the siteinit file (located by default at config/siteinit.lisp) is
similarly controlled by the -siteinit command line argument or
site-init-file-name.

You can start an image without loading any personal or site initialization file
by passing a hyphen to the -init and -siteinit arguments instead of a file-
name:

% lispworks-5-1-0-x86-linux -init - -siteinit -

This starts the LispWorks image without loading any initialization file. It is
often useful to start the image in this way when trying to repeat a suspected
bug. You should always start the image without the default initialization files
if you are intending to resave it.

In all cases, if the filename is present, and is not a hyphen, LispWorks tries to
load it as a normal file by calling load. If the load fails, LispWorks prints an
error report.

9.6 Loading CLIM 2.0
Load CLIM 2.0 into LispWorks 5.1 with

(require "clim")

and the CLIM demos with

(require "clim-demo")

rather than the clim loader files in the clim distribution (which were the entry
points in LispWorks 3).

A configuration file to save an image with CLIM 2.0 preloaded would look
something like this:

9.7 The Common SQL interface
(load-all-patches)
(require "clim")
(save-image "<destination>/clim-lispworks")

9.6.1 Running the CLIM demos

To run the demo software, enter the following in a listener:

(require "clim-demo")
(clim-demo:start-demo)

This displays a menu listing all the demos. Choose the demo you wish to see.
More information about the demos is in section "The CLIM demos" of the
Common Lisp Interface Manager 2.0 User’s Guide

9.7 The Common SQL interface
The Common SQL interface requires ODBC or one of the supported database
types listed in section "Supported databases" of the LispWorks User Guide.

9.7.1 Loading the Common SQL interface

To load the Common SQL interface to use ODBC enter:

(require "odbc")

and at runtime call:

(sql:initialize-database-type :database-type :odbc)

and then you can connect to any installed ODBC datasource.

To load the Common SQL interface to use MySQL, enter:

(require "mysql")

and at runtime call:

(sql:initialize-database-type :database-type :mysql)

See the LispWorks User Guide for further information.
 71

9 Configuration Details on Linux and FreeBSD

72
9.8 Common Prolog and KnowledgeWorks
Common Prolog is bundled with KnowledgeWorks rather than with Lisp-
Works. KnowledgeWorks is loaded by using:

(require "kw")

See the KnowledgeWorks and Prolog User Guide for further instructions.

9.9 Documentation for LispWorks for FreeBSD
Except where explicitly mentioned, information stated as specific to Lisp-
Works for Linux applies just the same to LispWorks for FreeBSD.

10

10 Configuration Details on
UNIX
10.1 Disk requirements
The LispWorks software requires up to 53MB of diskspace, depending on the
platform.

Installing the documentation adds up to 66MB to this. You can delete some of
these files if you wish, for example you might not need the PDF manuals in
lib/5-1-0-0/manual/offline/pdf (28Mb). You can download these PDF for-
mat manuals from www.lispworks.com/documentation at any time, and the
same manuals are also available there in PostScript format. However, note
that the Help menu commands will not work if you corrupt the lib/5-1-0-0/
manual/online directory of the LispWorks library.

10.2 Software Requirements
The LispWorks for UNIX GUI requires X11 release 5 or above, and Motif ver-
sion 2.

10.3 The CD-ROM
This section explains the organization of the LispWorks 5.1 CD-ROM which
contains the LispWorks products you have bought, and how to mount it.
73

http://www.lispworks.com/documentation

10 Configuration Details on UNIX

74
10.3.1 The LispWorks 5.1 CD-ROM

The CD-ROM contains images for LispWorks 5.1 and associated products on
your platform or platforms.

10.3.1.1 CD-ROM format

The files on the CD-ROM were created with the UNIX tar command.

10.3.2 Unpacking LispWorks products

There are two basic steps in unpacking a LispWorks product from the CD-
ROM:

1. Mount the CD-ROM so that it can be accessed as part of your UNIX file-
system. This is described in “Mounting the CD-ROM” on page 74.

2. Extract the product files from the tar file containing them. This is
described in “Installing LispWorks” on page 75.

10.3.3 Mounting the CD-ROM

Before you can access the files on the CD-ROM, it has to be mounted onto
your UNIX filesystem. You may need root access on your machine to do this.

On some platforms, the CD-ROM will be mounted automatically when you
place it in the drive. On most, however, you will have to run a mounting pro-
gram to mount it. You may also have to create a directory on your machine to
serve as the mount point. (The mount point is the point in your filesystem at
which the CD-ROM directory structure will be found.)

When you have mounted the CD-ROM and can see the tar files on your
UNIX filesystem, you are ready to unpack them. Once you are finished with
the tar files on the CD-ROM, you can remove it from your drive, but only
after you have performed an “unmount” operation.

When unmounting it is necessary that no process has the CD-ROM mount
point as the current directory, and again, root access is necessary. Pushing the
eject button on the drive may not do anything until the volume has been
unmounted.

10.4 Installing LispWorks
The basic syntax of the mounting and unmounting operations on each sup-
ported platform is given in each of the platform-specific sections below.

10.3.3.1 HP UX (HP Precision Architecture)

To mount:

mount -F cdfs -o cdcase /dev/dsk/c0t4d0 /mount-point

where mount-point is the directory over which you wish to mount the CD-
ROM. The device designation /dev/dsk/c0t4d0 may vary.

To unmount:

umount /dev/dsk/c0t4d0

Again, use the appropriate device designation for your hardware.

10.3.3.2 Solaris (Sun Sparc)

To mount: Solaris provides an automounting daemon. Place the CD-ROM in
the drive and it will be automatically mounted to:

/cdrom/lw_51/

To unmount:

umount /cdrom/lw_51/

10.4 Installing LispWorks
This section explains how to install LispWorks, having already mounted the
CD-ROM. If you have not done this, refer to Section 10.3, “The CD-ROM”. It
also describes how you obtain keys to run LispWorks 5.1.

10.4.1 Unpacking the TAR files

Once the CD-ROM is mounted, you can begin to unpack the tar files for the
products you have purchased. You will need root access to do this.

There are subsections below explaining the process for each supported plat-
form.
 75

10 Configuration Details on UNIX

76
10.4.1.1 Considerations to be made before extracting product files

When you extract files made with the tar command, they are written into the
current directory, and if there are any directories packed up in the tar file, they
will be written to the current directory too. For this reason it is best to cd to the
correct directory before extracting anything.

Consider who is going to use LispWorks before you decide where to put the
extracted files. Once installed and configured, the executable Lisp image
should be somewhere in the UNIX file system likely to be on its users’ search
path. A suitable place might be /usr/local/bin/lispworks.

The run time directory structure (basically, everything except the image file)
should be somewhere publicly readable: /usr/lib/lispworks, by default. If
there is not enough room in any of the normal publicly accessible locations,
you could put a symbolic link there pointing to an installation directory in a
partition with more disk space.

10.4.1.2 Keeping your old LispWorks installation

You can install LispWorks 5.1 in the same directory as previous versions of
LispWorks such as LispWorks 5.0. This is because all the 5.1 files are stored in
a subdirectory called lib/5-1-0-0.

You must recompile all your code with the LispWorks 5.1 compiler.

Binaries produced by compile-file in previous versions of LispWorks such
as LispWorks 5.0 do not load into a LispWorks 5.1 image.

10.4.1.3 How to extract the product files from the tar container files

To extract the product files from the tar container files, the basic form of the
call to tar is:

tar -xof /mount-point/filename

The flag x means extract files from tar-formatted data, and f specifies that the
source of the data will be a file.

mount-point is the point in the UNIX filesystem at which the CD-ROM is
mounted, while filename is the name of the tar file containing the product
files.

10.4 Installing LispWorks
For example, to extract the files for LispWorks (32-bit) on Solaris, with the CD-
ROM mounted at /cdrom/lw_51/, you would type

tar -xof /cdrom/lw_51/lw51-sparc.tar

10.4.1.4 HP UX (HP Precision Architecture)

The files you need to unpack for LispWorks on HP UX are lw51-hp-pa.tar
and lwdoc51-unix.tar.

The LispWorks image is

./lispworks-5-1-0-hp-pa11

10.4.1.5 Solaris (LispWorks 32-bit)

The files you need to unpack for LispWorks (32-bit) on Solaris are lw51-
sparc.tar and lwdoc51-unix.tar.

The LispWorks image is

./lispworks-5-1-0-sparc-solaris

10.4.1.6 Solaris (LispWorks 64-bit)

The files you need to unpack for LispWorks (64-bit) on Solaris are lw51-
sparc64.tar and lwdoc51-sparc64.tar.

The LispWorks image is

./lispworks-5-1-0-sparc64-solaris

10.4.2 Keyfiles and how to obtain them

This section applies only to HP PA and Sun Sparc (32-bit).

LispWorks is protected against unauthorized copying and use by a simple key
protection mechanism. LispWorks will not start up until it finds a file contain-
ing a valid key.

10.4.2.1 Where LispWorks looks for keyfiles

The image looks for a valid keyfile in the following places, in order:
 77

10 Configuration Details on UNIX

78
• keyfile.hostname in the current working directory, where hostname is the
name of the host.

• keyfile in the current working directory, where hostname is the name of
the host.

• config/keyfile.hostname, where hostname is the name of the host on
which the image is to execute. The config directory is expected by
default to be located at /usr/lib/lispworks/lib/5-1-0-0/config (see
“If you are using the keyfile system” on page 42.

• config/keyfile, where the config directory is as above.

The directory config is an indirect subdirectory of the directory specified by
the LispWorks variable *lispworks-directory*. Note that until you have
configured and saved your image, as described later in this section, this vari-
able is set to /usr/lib/lispworks. When starting the generic image, you must
therefore ensure that the keyfile is either in your current directory or in /usr/
lib/lispworks/lib/5-1-0-0/config.

If you try to run LispWorks without a valid key, a message will be printed
reporting that no valid key was found.

10.4.2.2 The contents of a keyfile

Keyfiles contain one or more keys. A key is a sequence of 28 ASCII upper case
letters and digits between 2 and 9, inclusive.

Each key should be placed on a separate line in the file. There should be no
leading white space on a line before the start of a key. Characters after the key
but on the same line as it are ignored, so may be used for comments. Indeed it
is helpful to comment each line with the name of the product that key enables.

Key files for more than one host can exist in the same keyfile.

A single key allows you to use a particular major version of LispWorks (in this
case 5), on one host machine, until the expiry date of one license, where rele-
vant. To run LispWorks on a different machine you will need another key.

Delivery, KnowledgeWorks, LispWorks ORB and CLIM 2.0 each need their
own keys.

10.5 Components of the LispWorks distribution
10.4.2.3 How to obtain keys

To obtain your keys, contact Lisp Support.

You can get your key by phone, fax or email. Every key is unique: in order to
generate keys, we need to know the unique ID of the machine on which you
intend to run LispWorks.

To find out your machine’s ID, try to start up the LispWorks image. LispWorks
spots that there is no valid key available, and prints a message saying so,
along with the ID you need to let us know. In any case, Lisp Support will be
able to provide assistance in determining the identifier of a specific machine.
We will also retain a copy of the key supplied.

Send email containing the message printed to lisp-keys@lispworks.com. Or
contact Lisp Support as described in “Reporting bugs” on page 98.

Once you have the key, write it into a file in one of the places listed in Section
10.4.2.1, and start up the LispWorks image.

10.4.3 The License Server

This section applies only to HP PA and Sun Sparc (32-bit). There is no license
server for LispWorks (64-bit) for Solaris.

If you prefer, you can run LispWorks using the License Server instead of the
keyfile system. This system will control license allocation across your LAN,
and you may find it more convenient.

See the Lispworks Guide to the License Server for full details.

As with the keyfile system, you will need to contact Lisp Support to obtain the
necessary permissions.

10.5 Components of the LispWorks distribution
For the purposes of installation the LispWorks system can be thought of as
two discrete components: the basic executable Lisp image and the directories
holding files consulted at runtime.
 79

mailto:lisp-keys@lispworks.com

10 Configuration Details on UNIX

80
10.5.1 The LispWorks image

The supplied LispWorks image is named according to the operating system
and platform for which it is built, and the LispWorks version number. The for-
mat is:

lispworks-<version number>-<OS code>

Thus, an image named lispworks-5-1-0-sparc-solaris is the LispWorks 5.1
image for use on Sun Sparc (32-bit) Solaris machines.

There may be several images on the CD-ROM, one for each of the architec-
tures LispWorks can run on.

As noted in Section 10.4.1.1 on page 76, once installed, the basic executable
Lisp image can be placed somewhere in the UNIX file system likely to be on
its users’ search path. A suitable place might be /usr/local/bin/lispworks.

10.5.2 The LispWorks library

The runtime directory structure (basically, everything except the image file)
should be somewhere publicly readable: /usr/lib/lispworks, by default. If
there is not enough room in any of the normal publicly accessible locations,
you could put a symbolic link there pointing to the installation directory in a
partition with more disk space. The installation directory must contain a sub-
directory called lib/5-1-0-0/.

Among the directories on this subdirectory are the following:

• config — various files that can be adjusted in order to customize the
image (see Section 10.7 on page 81).

• app-defaults — X/Motif resources for LispWorks and the Lisp Moni-
tor.

• postscript — printer descriptions for the CAPI printing interface.

• etc — the executable for the Lisp Monitor.

• load-on-demand — Lisp library code that is loaded into a running
LispWorks system as and when required.

• patches — numbered patches to LispWorks and layered products.

10.6 Printing copies of the LispWorks documentation
• private-patches — the location to place private (named) patches that
Lisp support may send to you.

• examples — directories containing various code examples, including
most of the code printed in the user documentation.

• translations — the place for logical pathname translations settings

• src — source code supplied with LispWorks

The following directory also resides here, but comes from the documentation
archive:

• manual — has two subdirectories: online and offline. The directory
online contains the online documentation. The directory offline/pdf
contains the PDF versions of the complete LispWorks manual set.

By default, all these directories are assumed to reside beneath /usr/lib/
lispworks/lib/5-1-0-0/, although you may place the lib directory some-
where else.

For products which support the License Server, there is also a subdirectory of
the installation directory called hqn_ls.

10.6 Printing copies of the LispWorks documentation
LispWorks documentation is not supplied in printed form. If you own a Lisp-
Works license, you may print extra copies of the manuals found in the Lisp-
Works distribution, provided that each copy includes the complete copyright
notice.

The offline/pdf directory contains PDF versions of each manual.

10.7 Configuring your LispWorks installation
Once you have successfully installed and run LispWorks, you can configure it
to suit your local conditions and needs, producing an image that is set up the
way you want it to be every time you start it up.

There are two levels of configuration: configuring and resaving the image,
thereby creating a new image that is exactly as you want it at startup, and con-
figuring certain aspects of LispWorks as it starts up.
 81

10 Configuration Details on UNIX

82
These two levels are available for good reason: while some configuration
details may be of use to all LispWorks users on your site (for instance, having
a particular library built in to the image where before it was only load-on-
demand) others may be a matter of personal preference (for instance how
many editor windows are allowed on-screen, or the colors of tool windows).

In the first case, you alter the global LispWorks image and global settings files
in the config directory to achieve your aims.

In the second case, you make entries in a file in your home directory called
.lispworks. This is a file read every time LispWorks starts up, and it can con-
tain any valid Common Lisp code. (Most of the configurable settings in
LispWorks can be controlled from Common Lisp.)

10.7.1 Multiple-platform installations

You can install copies of LispWorks for more than one platform in the same
directory hierarchy. All platform-specific files are supplied with platform-spe-
cific names.

10.7.2 Configuration files available

There are four files in the LispWorks library containing settings you can
change in order to configure images:

• config/configure.lisp

• config/siteinit.lisp

• private-patches/load.lisp

• config/a-dot-lispworks.lisp

config/configure.lisp contains settings governing fundamental issues like
where to find the LispWorks runtime directory structure, and so on. You
should read through configure.lisp and check that you are happy with all
the settings therein. The most common change required is to
lispworks-directory, which points to the root of the installation hierarchy.

config/siteinit.lisp contains any forms that are appropriate to the whole
site but which are to be loaded afresh each time the image is started. The sam-
ple siteinit file distributed with LispWorks contains only the form:

10.7 Configuring your LispWorks installation
(load-all-patches)

private-patches/load.lisp is loaded by load-all-patches, and should
contain forms to load any private (named) patches that Lisp Support might
send you.

config/a-dot-lispworks.lisp is a sample .lispworks file. You might like to
copy this into your home directory and use it as a basis for your own .lisp-
works file.

Both configure.lisp and a-dot-lispworks.lisp are preloaded into the
image before it is shipped, so if you are happy with the settings in these files,
you need not change them.

On startup, the image loads siteinit.lisp and your .lispworks file, in that
order. The command line options -siteinit and -init can be used to specify
loading of different files or to suppress them altogether. See the example in
Section 10.7.3 below, and see also Section 10.8, “LispWorks initialization argu-
ments” for further details.

10.7.3 Saving and testing the configured image

Make a copy of config/configure.lisp called /tmp/my-configura-
tion.lisp. When you have made any desired changes in my-configura-
tion.lisp you can save a new LispWorks image. To do this, follow the
instructions below.

1. Change directory to the installation directory, for example:

unix% cd /usr/lib/lispworks

2. Start the supplied image, without loading any initialization files. For
example:

unix% lispworks-5-1-0-sparc-solaris -init - -siteinit -

If the image will not run at this stage, it is probably not finding a valid
key. See “Keyfiles and how to obtain them” on page 77.

3. Wait for the prompt. Load your local configuration file:

CL-USER 1 > (load "/tmp/my-configuration.lisp")

Now load all current patches:
 83

10 Configuration Details on UNIX

84
CL-USER 2 > (load-all-patches)

4. Save the new version of the image. For example:

CL-USER 3 > (save-image "/usr/local/bin/lispworks")

Saving the image takes some time.

You can now use the new image by starting it just as you did the generic
image. The generic image will not be required after the installation process
has been completed successfully.

Do not try to save a new image over an image that is currently running.
Instead, save an image under a unique name, and then, if necessary, replace
the new image with the old one after the call to save-image has returned.

10.7.3.1 Testing the newly saved image

You should now test the new LispWorks image. To test a configured version of
LispWorks, do the following:

1. Change directory out of the installation directory.

2. Run the new image.

3. Test the load-on-demand system. Type:

CL-USER 1 > (inspect 1)

Before information about the fixnum 1 is printed, the system should load
the inspector from the load-on-demand directory.

4. Next, test the ability of the system to interface to a local X server. If nec-
essary, start an X server either on the local machine or on a machine net-
worked to it. Type:

CL-USER 2 > (env:start-environment :display "serverhostname")

Where serverhostname is the name of the machine running the X server. The
window-based environment should now initialize—during initialization an X
window displaying a copyright notice will appear on the screen.

You can work through some of the examples in the LispWorks User Guide to
check further that the configured image has successfully built.

10.8 LispWorks initialization arguments
10.8 LispWorks initialization arguments
When LispWorks starts up, it looks for an initialization file to load. The name
of the file is held in *init-file-name*, and is "~/.lispworks" by default. The
file may contain any valid Lisp code.

You can load a different initialization file using the option -init in the com-
mand line, for example:

unix% lispworks -init my-lisp-init

would make LispWorks load my-lisp-init.lisp as the initialization file instead
of that named by *init-file-name*.

Alternatively, an initialization file may be specified by setting the UNIX envi-
ronment variable LW_INIT. If set, the specified file will be used instead of that
named by *init-file-name*.

The loading of the siteinit file (located by default at config/siteinit.lisp)
may similarly be controlled either by the -siteinit command line argument,
or the LW_SITE_INIT variable and *site-init-file-name*.

You can start an image without loading any personal or site initialization file
by passing a hyphen to the -init and -siteinit arguments instead of a file-
name:

unix% lispworks -init - -siteinit -

This starts the LispWorks image without loading any initialization file. It is
often useful to start the image in this way when trying to repeat a suspected
bug. You should always start the image without initialization if you are
intending to resave it.

In all cases, if the filename is non-nil, and is not a hyphen, LispWorks tries to
load it as a normal file by calling load. If the load fails, LispWorks prints an
error report.
 85

10 Configuration Details on UNIX

86

11

11 Troubleshooting, Patches and
Reporting Bugs
This chapter discusses other issues that arise when installing and configuring
LispWorks. It provides solutions for possible problems you may encounter,
and it discusses the patch mechanism and the procedure for reporting bugs.

11.1 Troubleshooting
This section describes some of the most common problems that can occur on
any platform during installation or configuration.

11.1.1 License key errors in the Professional and Enterprise Editions

LispWorks looks for a valid license key when it is started up. If a problem
occurs at this point, LispWorks exits

These are the possible problems:

• LispWorks cannot find or read the key.

• The key is incorrect.

• Your license has expired, making the key no longer valid.

On Linux and FreeBSD, this is also a possible cause of the problem:

• The machine name has changed since LispWorks was installed.
87

11 Troubleshooting, Patches and Reporting Bugs

88
On Mac OS X, Linux and FreeBSD, the key is expected to be stored in a keyfile,
and an appropriate error message is printed at the terminal for each case. If
this message does not help you to resolve the problem, report it to Lisp Sup-
port and include the terminal output.

On Windows, the key is expected to be stored in the Windows registry. If you
cannot resolve the problem, export your HKEY_LOCAL_MACHINE\SOFT-
WARE\LispWorks registry tree and include this with your report to Lisp Sup-
port.

11.1.2 Failure of the load-on-demand system

Module files are in the modules directory lib/5-1-0-0/load-on-demand
under *lispworks-directory*.

If loading files on demand fails to work correctly, check that the modules
directory is present. If it is not, perhaps your LispWorks installation is cor-
rupted.

Do not remove any files from the modules directory unless you are really cer-
tain they will never be required.

The supplied image contains a trigger which causes *lispworks-directory*
to be set on startup and hence you should not need to change its value.
Subsequently saved images do not have this trigger.

11.1.3 Memory requirements

To run the full LispWorks system, with its GUI, you will need around 20MB of
swap space for the image and whatever else is necessary to accommodate
your application.

When running a large image, you may occasionally see

<**> Failed to enlarge memory

printed to the standard output.

The message means that the LispWorks image attempted to expand one of the
GC generations, but there was not enough swap space to accommodate the
resulting growth in image size. When this happens, the garbage collector is
invoked, and it will usually manage to free the required space.

11.2 Troubleshooting on Mac OS X
Check the size of the image, both by cl:room and by OS facilities (such ps or
top on *nix, Task Manager on Windows) to see if all the sizes are as expected.
If there are large discrepencies, check them.

Occasionally, however, continued demand for additional memory will end up
exhausting resources. You will then see the message above repeatedly, and
there will be little or no other activity apparent in the image. At this point you
should restart the image, or increase swap space. In cases where external
libraries are mapped above LispWorks and inhibit its growth, you may be able
to relocate LispWorks, as described under "Startup relocation" in the Lisp-
Works User Guide.

11.2 Troubleshooting on Mac OS X
This section describes some of the most common problems that can occur dur-
ing installation or configuration of LispWorks for Macintosh.

If you’re using the LispWorks image with the X11/Motif GUI, see also
Section 11.6, “Troubleshooting on X11/Motif” below for issues specific to
X11/Motif.

11.2.1 Default installation requires administrator on Mac OS X

To install LispWorks in the default installation location under /Applications
you must log on as an administrator. So it is usually best to run
LispWorks_Installer as an administrator - the account you created when set-
ting up your Macintosh is an administrator, for instance.

However, a non-administrator may install LispWorks elsewhere.

11.2.2 Failure to start when disconnected from the Internet

By default MacOS X machines have different names when connected and
when not connected. After changing the connection state, the 64-bit Lisp-
Works license check will fail, because the data is encoded with the machine
name.

The machine name is configured by the line

HOSTNAME=-AUTOMATIC-
 89

11 Troubleshooting, Patches and Reporting Bugs

90
in /etc/hostconfig.

The recommended fix is to edit /etc/hostconfig to give your machine a fixed
hostname, then reset the license file if necessary by running in Terminal.app:

$./lispworks-5-1-0-macos64-universal --lwlicenseserial
SERIALNUMBER --lwlicensekey LICENSEKEY

where SERIALNUMBER and LICENSEKEY are the strings supplied with Lisp-
Works. Then the LispWorks license check will always lookup the expected
hostname.

Note: this section does not apply to 32-bit LispWorks for Macintosh.

11.2.3 Text displayed incorrectly in the editor on Mac OS X

The LispWorks editor currently relies on integral font sizes. Some Mac OS X
fonts have non-integral size and will be displayed incorrectly in the Editor
and Listener tools and other uses of capi:editor-pane.

The solution is to use a font with integral size. The following are known to
work: Monaco 10, Monaco 15, Monaco 20.

Select the font in an Editor or Listener tool by Window > Window Preferences... >
Font.

11.3 Troubleshooting on Linux
This section describes some of the most common problems that can occur dur-
ing installation or configuration of LispWorks for Linux.

See also “Troubleshooting on X11/Motif” on page 94 below for issues specific
to X11/Motif.

11.3.1 Processes hanging

Some versions of Linux have a broken pthreads library. To workaround this
set the environment variable LD_ASSUME_KERNEL=2.4.19 before running
LispWorks.

LD_ASSUME_KERNEL allows using older versions of pthreads, some of
which do not work.

11.3 Troubleshooting on Linux
LispWorks 5.1 supports kernel versions 2.4.20 and later.

11.3.2 RPM_INSTALL_PREFIX not set

On Linux, during installation of CLIM, Common SQL, LispWorks ORB or
KnowledgeWorks from a secondary rpm file you may see a message similar to
this:

rpm --install tmp/lispworks-clim-5.1-1.i386.rpm
Environment variable RPM_INSTALL_PREFIX not set, setting it to
/usr
LispWorks installation not found in /usr.
error: %pre(lispworks-clim-5.1-1) scriptlet failed, exit status 1
error: install: %pre scriptlet failed (2), skipping lispworks-
clim-5.1-1
#

This is only a problem when LispWorks itself was installed in a non-default
location (that is, using the --prefix RPM option). You would then want to
supply that same --prefix value when installing the secondary rpm. A bug
in RPM means that a required environment variable RPM_INSTALL_PREFIX is
not set automically to the supplied value. We have seen this bug in RPM ver-
sion 4.2, as distributed with RedHat 8 and 9.

The workaround is to set this environment variable explicitly before installing
the secondary rpm. For example, if LispWorks was installed like this:

rpm --install --prefix /usr/lisp lispworks-5.1-1.i386.rpm

then you would add CLIM like this (in C shell):

setenv RPM_INSTALL_PREFIX /usr/lisp
rpm --install --prefix /usr/lisp lispworks-clim-5.1-1.i386.rpm

11.3.3 Using multiple versions of Motif on Linux

The version of OpenMotif required by LispWorks 5.1 may not be compatible
with other applications (including LispWorks 4.2). It is however compatible
with LispWorks 5.0, LispWorks 4.4 and 4.3, so you for example you should be
able to run LispWorks 5.1, LispWorks 5.0 and LispWorks 4.4 simultaneously
with either OpenMotif installed.
 91

11 Troubleshooting, Patches and Reporting Bugs

92
Whilst it is not supported for LispWorks 5.1, you can still use LessTif for
LispWorks 5.0 and earlier - see the Installation Guide for that version for
details.

You may wish to maintain multiple versions of the Motif/LessTif libraries in
order to run various applications simultaneously. However, because the
filenames of the libraries can conflict, this can only be done by installing
libraries in non-standard locations.

When a library has been installed in a non-standard location, you can set the
environment variable LD_LIBRARY_PATH to allow an application to find that
library. Specifically, if <motiflibdir> denotes the directory containing the Motif
2.2 file libXm.so then set LD_LIBRARY_PATH to include <motiflibdir>.

Note: to find out which version of libXm your LispWorks 5.1 image is actually
using, look in the bug form. See “Generate a bug report template” on page 99
for instructions on generating the bug form.

11.3.4 Using LispWorks for Linux on FreeBSD

LispWorks for Linux relies on FreeBSD's Linux compatibility libraries. There-
fore to use external libraries with LispWorks for Linux, such as Motif, you will
need to install Linux versions of these.

LispWorks for FreeBSD is now available, however.

11.4 Troubleshooting on FreeBSD
This section describes some of the most common problems that can occur dur-
ing installation or configuration of LispWorks for FreeBSD.

See also “Troubleshooting on X11/Motif” on page 94 below for issues specific
to X11/Motif.

11.4.1 Poor latency when using multiple threads

When running on FreeBSD 6.0, you may get better latency when running with
threads by setting the environment variable LIBPTHREAD_SYSTEM_SCOPE to 1
before starting LispWorks.

11.5 Troubleshooting on UNIX
11.5 Troubleshooting on UNIX
This section describes some of the most common problems that can occur dur-
ing installation or configuration of LispWorks for UNIX (not including Linux).

See also “Troubleshooting on X11/Motif” on page 94 for issues specific to
X11/Motif.

11.5.1 Problems with CD-ROM file system

Some operating systems provide tools which can mount a CD-ROM incor-
rectly. If your LispWorks CD-ROM appears to contain files named like this:

lwdoc51-unix.tar;1

then check the mount command used (“Mounting the CD-ROM” on page 74).

11.5.2 License key errors

LispWorks looks for a keyfile containing a valid license key when it is started
up. If a problem occurs at this point, LispWorks exits, after first printing a
keyfile error message.

There are three possible problems:

• LispWorks cannot find or read the key file.

• The key in the keyfile is incorrect.

• Your license has expired, making the key no longer valid.

An appropriate error message will appear for each case.

An unconfigured image must either be installed in the default location
(library hierarchy under /usr/lib/lispworks/lib/5-1-0-0) or be executed
in the same directory as the keyfile. If the image has been configured, check
that the keyfile is in the right place and that the value of
lispworks-directory is correct.

If the key is incorrect, check it against the one Lisp Support supplied. It should
consist only of numerals and upper case letters (A–Z). If the key has expired,
contact Lisp Support—you may be allowed to extend the key.
 93

11 Troubleshooting, Patches and Reporting Bugs

94
11.6 Troubleshooting on X11/Motif
This section describes some of the most common problems that can occur
using the LispWorks X11/Motif GUI, which is available on Linux, FreeBSD,
Mac OS X and UNIX.

11.6.1 Problems with the X server

Running under X11/Motif, LispWorks may print a message saying that it is
unable to connect to the X server. Check that the server is running, and that
the machine the image is running on is authorized to connect to it. (See the
manual entry for command xhost(1).)

On Mac OS X, if you attempt to start the LispWorks X11/Motif GUI in Termi-
nal.app, an error message Failed to open display NIL is printed. Instead,
run LispWorks in X11.app.

11.6.2 Problems with fonts

Running under X11, LispWorks may print a message saying that it is unable to
open a font and is using a default instead. The environment will still run but it
may not always use the right font.

LispWorks comes configured with the fonts most commonly found with the
target machine type. However the fonts supplied vary between implementa-
tions and installations. The fonts available on a particular server can be deter-
mined by using the xlsfonts(1) command. Fonts are chosen based on the
X11 resources. See “X11 resources” on page 95 for more information.

It may be necessary to change the fonts used by LispWorks.

11.6.3 Problems with colors

Running under X11, on starting up the environment, or any tool within it,
LispWorks may print a message saying that a particular color could not be
allocated.

This problem can occur if your X color map is full. If this is the case,
LispWorks cannot allocate all the colors that are specified in the X11 resources.

11.6 Troubleshooting on X11/Motif
This may happen if you have many different colors on your screen, for
instance when displaying a picture in the root window of your display.

Colors are chosen based on the X11 resources. See “X11 resources” on page 95
for more information.

To remove the problem, you can then change the resources (for example, by
editing the file mentioned in “X11 resources” on page 95) to reduce the num-
ber of colors LispWorks allocates.

11.6.4 Mnemonics and Alt

Motif hardwires its mnemonic processing to use mod1, so we disable
mnemonics if that is Lisp's Meta modifier to allow the Emacs-style editor to
work. (The accelerator code uses the same keyboard mapping check as the
mnemonics so Alt accelerators would also get disabled if you had them.)

11.6.5 Non-standard X11 key bindings

When using X11/Motif, if you want Emacs-style keys Ctrl-n, Ctrl-p in
LispWorks list panels, such as the Editor’s buffers view, add the following to
the X11 resources (see Section 11.6.6):

!
! Enable Ctrl-n, Ctrl-p in list panels
Lispworks*XmList.translations: #override\n\

Ctrl<Key>p : ListPrevItem()\n\
Ctrl<Key>n : ListNextItem()

!

11.6.6 X11 resources

When using X11/Motif, LispWorks reads X11 resources in the normal way,
using the application class Lispworks. The file app-defaults/Lispworks is
used to supply fallback resources. You can copy parts of this file to ~/Lisp-
works or some other configuration-specific location if you wish to change
these defaults, and similarly for app-defaults/GcMonitor.
 95

11 Troubleshooting, Patches and Reporting Bugs

96
11.6.7 Motif installation on Mac OS X

When attempting to starting the LispWorks X11/Motif GUI when the required
version of Motif is not installed, LispWorks prints the error message:

Error: Could not register handle for external module X-
UTILITIES::CAPIX11:
dyld: /Applications/LispWorks 5.1/lispworks-5-1-0-macos-
universal-motif can’t open library:
/usr/local/lib/libXm.4.dylib (No such file or directory, errno
= 2)
.

Ensure you install Motif as described in Section 2.4.9.2, “The X11/Motif GUI”.
Restart X11.app and LispWorks after installation of Motif.

11.7 Updating with patches
We sometimes issue patches to the Professional and Enterprise Editions of
LispWorks and LispWorks for UNIX by email or ftp.

11.7.1 Extracting simple patches

Save the email attachment to your disk.

See Section 11.7.3.2, “Private patches” below about location of your private
patches.

11.7.2 If you cannot receive electronic mail

If your site has neither electronic mail nor ftp access, and you want to receive
patches, you should contact Lisp Support to discuss a suitable medium for
their transmission.

11.7.3 Different types of patch

There are two types of patch sent out by Lisp Support, and they have to be
dealt with in different ways.

11.7 Updating with patches
11.7.3.1 Public patches

Public patches are general patches made available to all LispWorks customers.
These are typically released in bundles of multiple different patch files; each
file has a number as its name. For example,

patches/system/0001/0001.nfasl (for PowerPC Mac OS X)
patches\system\0001\0001.ofasl (for x86 Windows)
patches/system/0001/0001.ufasl (for x86 Linux)
patches/system/0001/0001.ffasl (for x86 FreeBSD)
patches/system/0001/0001.64nfasl (for PowerPC64 Mac OS X)
patches/system\0001\0001.64ofasl (for x64 Windows)
patches/system/0001/0001.64ufasl (for amd64 Linux)
patches/system/0001/0001.pfasl (for HP-PA)
patches/system/0001/0001.wfasl (for SPARC)
patches/system/0001/0001.64wfasl (for SPARC 64 bit)

On receipt of a new patch bundle your system manager should update each
local installation according to the installation instructions supplied with the
patch bundle. This will add files to the patches subdirectory and increment
the version number displayed by LispWorks.

You should consider saving a new image with the latest patches pre-loaded, as
described in Section 7.4, “Saving and testing the configured image” (Mac OS
X), Section 8.4, “Saving and testing the configured image” (Windows) or
Section 9.4, “Saving and testing the configured image” (Linux), or
Section 10.7.3, “Saving and testing the configured image” (non-Linux UNIX).

11.7.3.2 Private patches

LispWorks patches are generally released in cumulative bundles. Occasionally
Lisp Support may send you individual patch binaries named e.g. my-patch to
address a problem or implement a new feature in advance of bundled ('pub-
lic') patch releases. Such patches have real names, rather than numbers, and
must be loaded once they have been saved to disk. You will need to ensure
that LispWorks will load your private patches on startup, after public patches
have been loaded.

There is a default location for private patches, and patch loading instructions
sent to you will assume this location. Therefore, on receipt of a private patch
my-patch.ufasl, the simplest approach is to place it here. For example, on
Mac OS X:
 97

11 Troubleshooting, Patches and Reporting Bugs

98
<install>/LispWorks 5.1/Library/lib/5-1-0-0/private-
patches/my-patch.nfasl

On Windows:

<install>\lib\5-1-0-0\private-patches\my-patch.ofasl

On Linux:

<install>/lib/5-1-0-0/private-patches/my-patch.ufasl

On UNIX:

<install>/lib/5-1-0-0/private-patches/my-patch.pfasl (for HP-PA)
<install>/lib/5-1-0-0/private-patches/my-patch.wfasl (for SPARC)

You will receive a Lisp form needed to load such a patch, such as

 (LOAD-ONE-PRIVATE-PATCH "my-patch" :SYSTEM)

This form should be added in the file:

private-patches/load.lisp

like the example there. load-all-patches loads this file, and hence all the
private patches listed therein.

You may choose to save a reconfigured image with the new patch loaded - for
details see the instructions in Section 7.4, “Saving and testing the configured
image” (Mac OS X), Section 8.4, “Saving and testing the configured image”
(Windows), Section 9.4, “Saving and testing the configured image” (Linux), or
Section 10.7.3, “Saving and testing the configured image” (non-Linux UNIX).
You can alternatively choose to load the patch file on startup. The option you
choose will depend on how many people at your site will need access to the
new patch, and how many will need access to an image without the patch
loaded.

11.8 Reporting bugs
If you discover a bug, in either the software or the documentation, you can
submit a bug report by any of the following routes.

• email

• fax

11.8 Reporting bugs
• paper mail (post)

• telephone

The addresses are listed in Section 11.8.8. Please note that we much prefer
email.

11.8.1 Check for existing fixes

Before reporting a bug, please ensure that you have the latest patches installed
and loaded. Visit www.lispworks.com/downloads/patch-selection.html for
the latest patch release.

If the bug persists, check the Lisp Knowledgebase at
www.lispworks.com/support/ for information about the problem - we may
already have fixed it or found workarounds.

If you need informal advice or tips, try joining the LispWorks users’ mailing
list. Details are at www.lispworks.com/support/lisp-hug.html.

11.8.2 Performance Issues

If the problem is poor performance, you should use room, extended-time and
profile to check what actually happens. See the LispWorks Reference Manual
for details of these diagnostic functions and macros.

If this does not help you to resolve the problem, submit a report to Lisp Sup-
port (see next section) and attach the output of the diagnostics.

11.8.3 Generate a bug report template

Whatever method you want to use to contact us, choose Help > Report Bug
from any tool, or use the command Meta+X Report Bug, or at a Lisp prompt,
use :bug-form, for example:

:bug-form "foo is broken" :filename "bug-report-about-foo.txt"

All three methods produce a report template you can fill in. In the GUI envi-
ronment we prefer you use the Report Bug command - do this from within the
debugger if an error has been signalled.
 99

http://www.lispworks.com/downloads/patch-selection.html
http://www.lispworks.com/support/
http://www.lispworks.com/support/lisp-hug.html

11 Troubleshooting, Patches and Reporting Bugs

100
The bug report template captures details of the Operating System and Lisp
you are running, as well as a stack backtrace if your Lisp is in the debugger.
There may be delays if you do not provide this essential information.

If the issue you are reporting does not signal an error, or for some other reason
you are not able to supply a backtrace, we still want to see the bug report
template generated from the relevant LispWorks image.

11.8.4 Add details to your bug report

Under 'Urgency' tell us how urgent the issue is for you. We classify reports as
follows:

ASAP A bug or missing feature that is stopping progress.
Probably needs a private patch, possibly under a sup-
port contract, unless a workaround can be found.

Current Release Either a fix in the next patch bundle or as a private
patch, possibly under a support contract.

Next Release A fix would be nice in the next minor release.

Future Release An item for our wishlist.

None Probably not a bug or feature request.

Tell us if the bug is repeatable. Add instructions on how to reproduce it to the
'Description' field of the bug report form.

Include any other information you think might be relevant. This might be
your code which triggers the bug. In this case, please send us a self-contained
piece of code which demonstrates the problem (this is much more useful than
code fragments).

Include the output of the Lisp image. In general it is not useful to edit the out-
put, so please send it as-is. Where output files are very large (> 2MB) and
repetitive, the first and last 200 lines might be adequate.

If the problem depends on a source or resource file, please include that file
with the bug report.

If the bug report falls into one of the categories below, please also include the
results of a backtrace after carrying out the extra steps requested:

11.8 Reporting bugs
• If the problem seems to be compiler-related, set
compiler-break-on-error to t, and try again.

• If the problem seems to be related to error or conditions or related
functionality, trace error and conditions::coerce-to-condition, and
try again.

• If the problem is in the Common LispWorks IDE, and you are receiving
too many notifiers, set dbg::*full-windowing-debugging* to nil and
try again. This will cause the console version of debugger to be used
instead.

• If the problem occurs when compiling or loading a large system, call
(toggle-source-debugging nil) and try again.

• If you ever receive any unexpected terminal output starting with the
characters <**>, please send all of the output—however much there is
of it.

Note: terminal output is that written to *terminal-io*. Normally this is
not visible when running the Mac OS X native GUI or the Windows GUI,
though it is displayed in a Terminal.app or MS-DOS window if neces-
sary.

11.8.5 Reporting crashes

Very occasionally, there are circumstances where it is not possible to generate
a bug report form from the running Lisp which has the bug. For example, a
delivered image may lack the debugger, or the bug may cause lisp to crash
completely. In such circumstances:

1. It is still useful for us to see a bug report form from your lisp image so
that we can see your system details. Generate the form before your code
is loaded or a broken call is made, and attach it to your report.

2. Create a file init.lisp which loads your code that leads to the crash.

3. Run LispWorks with init.lisp as the initialization file and with output
redirected to a file. For example, on Mac OS X:

% "/Applications/LispWorks 5.1/LispWorks.app/Contents/MacOS/lispw
orks-5-1-0-macos-universal" -init init.lisp > lw.out
 101

11 Troubleshooting, Patches and Reporting Bugs

102
where % denotes a Unix shell prompt.

On Windows:

C:\> "Program Files\LispWorks\lispworks-5-1-0-x86-
win32.exe" -init init.lisp > lw.out

where C:\> denotes the prompt in a MS-DOS command window.

On Linux:

% /usr/bin/lispworks-5-1-0-x86-linux -init init.lisp > lw.out

where % denotes a Unix shell prompt.

On UNIX (SPARC in this example):

% /usr/lib/lispworks/lib/5-1-0-0/config/lispworks-5-1-0-sparc-
solaris -init init.lisp > lw.out

4. Attach the lw.out file to your report. In general it is not useful to edit the
output of your Lisp image, so please send it as-is. Where output files are
very large (> 2MB) and repetitive, the first and last 200 lines might be
adequate.

11.8.6 Log Files

If your application writes a log file, add this to your report. If your application
does not write a log file, consider adding it, since a log is always useful. The
log should record what the program is doing, and include the output of
(room) periodically, say every five minutes.

11.8.7 Reporting bugs in delivered images

Some delivered executables lack the debugger. It is still useful for us to see a
bug report template from your Lisp image that was used to build the deliv-
ered executable. If possible, load your code and call (require "delivery")
then generate the template.

For bugs in delivered LispWorks images, the best approach is to start with a
very simple call to deliver, at level 0 and with the minimum of delivery key-
words (:interface :capi and :multiprocessing t at most). Then deliver at
increasingly severe levels. Add delivery keywords to address specific prob-
lems you find (see the LispWorks Delivery User Guide.for details. However,

11.8 Reporting bugs
please note that you are not expected to need to add more than 6 or so deliv-
ery keywords: do contact us if you are adding more than this.)

11.8.8 Send the bug report

Email is usually the best way. Send your report to

lisp-support@lispworks.com

When we receive a bug report, we will send an automated acknowledgment,
and the bug will be entered into the LispWorks bug management system. The
automated reply has a subject line containing for example

(Lisp Support Call #12345)

Please be sure to include that cookie in the subject line of all subsequent mes-
sages concerning your report, to allow Lisp Support to track it.

If you cannot use email, please either:

• Fax to +44 870 2206189

• Post to Lisp Support, LispWorks Ltd, St John's Innovation Centre, Cow-
ley Road, Cambridge, CB4 0WS, England

• Telephone: +44 1223 421860

Note: It is very important that you include a stack backtrace in your bug report
wherever applicable. See “Generate a bug report template” on page 99 for
details. You can always get a backtrace from within the debugger by entering
:bb at the debugger prompt

11.8.9 Sending large files

Note: Please check with Lisp Support in advance if you are intending to send
very large (> 2MB) files via email.

11.8.10 Information for Personal Edition users

We appreciate feedback from users of LispWorks Personal Edition, and often
we are able to provide advice or workarounds if you run into problems. How-
ever please bear in mind that this free product is unsupported. For informal
 103

11 Troubleshooting, Patches and Reporting Bugs

104
advice and tips, try joining the LispWorks users mailing list. Details are at
www.lispworks.com/support/lisp-hug.html.

http://www.lispworks.com/support/lisp-hug.html

12

12 Release Notes
12.1 Additional support for 64-bit on Macintosh

12.1.1 64-bit Cocoa GUI

LispWorks 5.1 (64-bit) for Macintosh runs only on Mac OS X 10.5, and sup-
ports a Cocoa-based GUI. The alternative X11/Motif GUI is still available.

Choose at install time to install just one, or both, of these GUI options.

12.1.2 Universal binaries on Macintosh

The supplied LispWorks (64-bit) for Macintosh images are now universal
binaries which run the correct native architecture on PowerPC and Intel-based
Macintosh computers by default. This was already true for LispWorks 5.0 (32-
bit) for Macintosh but was not possible at the time of the initial LispWorks 5.0
(64-bit) for Macintosh release.

A running Lisp image only supports one architecture, chosen when the image
was started. On a PowerPC based Macintosh, this is always the PowerPC
architecture. On an Intel-based Macintosh, for 32-bit LispWorks it can be
either the native Intel architecture or the PowerPC architecture (using
Rosetta), while for 64-bit LispWorks it is always the Intel architecture.
105

12 Release Notes

106
Functions such as save-image and deliver create an image containing only
the running architecture and functions that operate on fasl files such as com-
pile-file and load only support the running architecture.

12.2 Running on 64-bit machines
As far as we know each of the 32-bit LispWorks implementations runs
correctly in the 32-bit subsystem of the corresponding 64-bit platform.

12.3 New CAPI features
See the LispWorks CAPI Reference Manual for more details of these.

12.3.1 OLE embedding

LispWorks for Windows CAPI applications can now operate as ActiveX con-
trols. See capi:define-ole-control-component and capi:ole-control-com-
ponent.

In LispWorks 5.0 and previous versions, it is possible to embed an ActiveX
control in a CAPI window, but not vice versa.

12.3.2 Drag and drop

CAPI now supports drag and drop for text and files on Windows and Cocoa.

Initiate dragging by calling capi:drag-pane-object. Provide a
:drop-callback (as documented under capi:simple-pane) and use
capi:drop-... functions to control dropping behavior.

12.3.3 "metafile" support on Cocoa

LispWorks 5.1 for Macintosh supports the metafile APIs capi:draw-metafile,
capi:with-external-metafile and so on.

There are some restrictions on the bounds parameter - see the LispWorks CAPI
Reference Manual for details.

12.3 New CAPI features
12.3.4 Keyboard shortcuts on Cocoa

By default the standard shortcut Command+Shift+P now invokes a Page
Setup... menu command in CAPI interfaces.

Return now invokes the action-callack of a capi:list-panel and of a
capi:tree-view.

Typing now searches for an item in a capi:list-panel.

12.3.5 The Mac OS X Dock menu

You can control your LispWorks for Macintosh application’s Dock menu using
the new :dock-menu initarg of capi:cocoa-default-application-interface.

12.3.6 The Application Services menu

The LispWorks > Services menu in LispWorks for Macintosh now has support
for standard Cocoa controls (but not capi:output-pane or capi:editor-
pane).

12.3.7 Vista icons

capi:load-icon-image now supports 256x256 icons on Windows Vista. PNG
compressed icons are supported.

12.3.8 New class supports filtering

The new class capi:filtering-layout adds a text pane allowing the user to
filter the displayed data (such as items of a list) and to control how the filter
operates.

12.3.9 Color in list items on Windows

capi:list-panel now supports color in the list items on Microsoft Windows.
To use this you supply a suitable value for the new :color-function initarg.
 107

12 Release Notes

108
12.3.10 Automatic resizing of pinboard objects

You can now specify that a pinboard object should resize itself automatically
when its pinboard layout is resized. Set the various resize parameters for each
object using capi:set-object-automatic-resize.

12.3.11 Better control over size of tab and switchable layouts

capi:tab-layout now allows you to specify that the initial size depends on
the constraints of all the tabs, which can prevent unexpected resizing later
when switching tabs.

Similarly capi:switchable-layout allows you to specify that the initial size
depends on the constraints of the child panes.

For details see the new initarg :combine-child-constraints.

12.3.12 Browsing for application bundles

On Cocoa capi:prompt-for-file now supports selection of application
bundle (.app folders) as files, if they match the filter.

12.3.13 editor-pane change callback

capi:editor-pane now supports a change callback via its new
:change-callback initarg. See the example in
lib/5-1-0-0/examples/capi/editor/change-callback.lisp.

12.3.14 editor-pane input callbacks

capi:editor-pane now supports input callbacks via new initargs
:before-input-callback and :after-input-callback.

These callbacks are called when capi:call-editor is called.

12.3.15 New ways to control line wrapping in editor-pane

capi:editor-pane now supports three new initargs controlling line wrapping
of the text it displays:

12.3 New CAPI features
:line-wrap-marker specifies the marker to display at the end of a line that is
wrapped.

:line-wrap-face specifies the text style to use to display the marker.

:wrap-style allows you to control whether long lines are wrapped normally
(that is, splitting words), or wrapped at spaces so that whole words are
displayed, or simply truncated.

Compatibility Note: The :wrap-style initarg supersedes
editor:set-window-split-on-space, which is deprecated.

12.3.16 Help button for text input panes

capi:text-input-pane now supports a help toolbar button, with control over
how help is presented to the user.

12.3.17 Finding the active interface

The new function capi:screen-active-interface returns the currently
active interface on a given screen or (on Windows) a MDI document container.

12.3.18 Controlling window titles

New functions allow more control over the titles of CAPI interface windows.
For an overview see the section "Window titles" in the LispWorks CAPI User
Guide.

12.3.19 Avoiding updates on a destroyed interface

The new function capi:execute-with-interface-if-alive is useful for
automatic updating of interfaces that may be destroyed by the user, where the
update is redundant if the interface is not alive.

12.3.20 OpenGL example updated

The OpenGL/CAPI example now supports OpenGL version 2.1. Also the
code in loader.lisp has been simplified for Linux and now also works on all
LispWorks platforms, including FreeBSD, Solaris and HP-UX.
 109

12 Release Notes

110
The example code is in lib/5-1-0-0/examples/opengl. Follow the
instructions in doc.txt to define capi:opengl-pane.

You may wish to add more FLI definitions for use by your application.

12.4 Other CAPI changes

12.4.1 Passing initargs to interface components

Passing initargs down to the panes, layouts and menus of a capi:interface
via initargs to the interface itself is now fully documented. See capi:define-
interface in the LispWorks CAPI Reference Manual.

12.4.2 Reselection of single selection choice items

Choices such as capi:list-panel and capi:option-pane with interaction
:single-selection now always call their selection callback when the user
selects the selected item, regardless of whether that item is already selected.

In LispWorks 5.0 and previous versions, the selection callback is not called in
the reselection case.

12.4.3 tree-view-update-an-item

capi:tree-view-update-an-item is deprecated.

Please use capi:tree-view-update-item instead, which behaves in just the
same way.

12.5 New graphics ports features
For details see the Graphics Ports chapters in the LispWorks CAPI Reference
Manual and the LispWorks CAPI User Guide.

12.5.1 Finding all available font names

The new function gp:list-all-font-names returns a list of partially-
specified font description objects for each available font.

12.6 More new features
12.5.2 Transparency on X11/Motif

Some image formats with transparency are now supported on X11.

When using gp:draw-image on X11, graphical images loaded from files (for
example some GIFs and some TIFFs) are now drawn using the transparency
mask from the image.

In LispWorks 5.0 and previous versions, this only worked on Cocoa and
Microsoft Windows.

12.6 More new features
For details of these, see the documentation in the LispWorks Reference Manual,
unless a manual is referenced explicitly.

12.6.1 LispWorks as a dynamic library

You can now save or deliver 32-bit LispWorks as a dynamic library (.so or
.dylib files) on Intel Macintosh, Linux and FreeBSD, and you can save or
deliver 64-bit LispWorks as a dynamic library on Intel Macintosh and Linux.

This functionality was already available (creating .dll files) in LispWorks 5.0
for Windows and earlier versions.

For details of creating a LispWorks dynamic library see the :dll-exports and
:dll-added-files arguments to save-image and deliver. For a description
of the behavior and the API provided see the section "LispWorks as a dynamic
library" in the LispWorks User Guide.

12.6.2 Relocation improvements

The interface allowing most LispWorks implementations to be relocated with
a different base address has been extended to include LispWorks dynamic
libraries.

For relocation of an executable, the argument --relocate-image is no longer
required to be the first command line argument.

It is now also possible to specify a different reserved range when relocating
the image on most platforms.
 111

12 Release Notes

112
See "Startup relocation" in the LispWorks User Guide for details.

12.6.3 Larger heaps in LispWorks (32-bit) for Windows

When growing large (more than the initially reserved 0.5GB) LispWorks 5.1
(32-bit) for Windows "skips" over address space occupied by DLLs which it
cannot use. This allows it to grow above the libraries and thus achieve a larger
maximum heap. The size depends on the mapping of the libraries.

LispWorks 5.0 (32-bit) for Windows and previous versions requires a
contiguous heap and thus its heap is limited in practise to less than 1GB.

For more information about the memory layout of LispWorks see "Startup
relocation" in the LispWorks User Guide.

12.6.4 Stream locking

LispWorks now has "cooperative" stream locking. "Cooperative" here means
that the lock is not explicitly claimed by the stream I/O functions, so the lock-
ing takes effect only when your code uses the locking interface explicitly
("cooperates").

Stream locking makes it possible to write atomically with respect to code that
runs in another thread, providing that the code running in the other thread
also uses the locks. The same functionality can be achieved by using a mp:lock
around I/O calls, but stream locking saves you from keeping a mp:lock object
for each stream.

Stream locking is an experimental feature and is not documented in the
manuals supplied. For more information please contact Lisp Support.

12.6.5 Telling LispWorks about your own defining forms

You can now extend the Dspec system to know about new dspec classes and
their defining forms.This allows commands such as Find Source and Undefine
to operate correctly on your definitions.

See "Dspec classes" in the LispWorks User Guide.

12.6 More new features
12.6.6 Windows registry API

LispWorks for Windows now supports functions for accessing, creating and
deleting registry entries. For an introduction see the Operating Environment
chapter in the LispWorks User Guide.

Compatibility Note: Mostly we have simply documented functionality that
exists (undocumented) in LispWorks 5.0. However two functions have
changed, as follows:

In win32:create-registry-key the access parameter (was security) now
supports integer values. key parameter has been renamed handle to avoid
ambiguity with subkey which is a string.

win32:close-registry-key now has an errorp argument and expected-type
:string handler for :environment-string to return the raw string.

12.6.7 Optimize your code with compiler explanations

The :explain declaration controls messages printed by the compiler while it
is processing forms, helping you to optimize your code.

Various keywords allows you to see information about compiler
transformations depending on type information, allocation of floats and
bignums, floating point variables, function calls, argument types and so on.
See the section "Optimizing your code" in the LispWorks User Guide.

12.6.8 Extended profiling API

A new profiler mode allows programmatic control of profiling, including
control over which processes are profiled. See the section "Running the
profiler" in the LispWorks User Guide.

Extensions to hcl:set-up-profiler add more control over profiling and the
output.

There are also new APIs to print profile call trees, see hcl:profiler-tree-
from-function and hcl:profiler-tree-to-function.
 113

12 Release Notes

114
12.6.9 External format converters

Utilities for converting between a Lisp string and an encoded byte vector are
improved and documented. See ef:encode-lisp-string and ef:decode-
external-string.

12.6.10 Chinese encoding supported

Chinese Simplified (GBK) encoding is now supported. Use external-format
:gbk when calling cl:open or using strings with the Foreign Language Inter-
face.

12.6.11 OpenSSL interface extended

See comm:set-verification-mode, comm:get-verification-mode,
comm:openssl-version in the LispWorks Reference Manual and various direct
FLI definitions for OpenSSL listed in the LispWorks User Guide.

12.6.12 SO_KEEPALIVE and TCP_NODELAY

The socket stream interface now supports setting of SO_KEEPALIVE and
TCP_NODELAY on the socket. See comm:open-tcp-stream and comm:start-
up-server.

12.6.13 Memory management helper after loading

hcl:finish-heavy-allocation is a new function which may be useful after
your application creates many long-lived objects, for example after loading
large amounts of code or data.

hcl:with-heavy-allocation is now implemented in 64-bit LispWorks.

12.6.14 64-bit memory management API extended

system:set-memory-check and system:set-memory-exhausted-callback are
new in 64-bit LispWorks.

12.7 IDE changes
12.6.15 Accessing symbol value cells across processes

A new function mp:symeval-in-process gets (or with setf, sets) the value of
symbol which is dynamically bound in a given process.

12.6.16 Inspector command to display the rest of the current object.

The new inspector command :dr displays the rest of the current object. It is
useful when you already used :dm to display a limited number of slots and
then decide to display all the remaining slots of the object. See the Debugger
chapter in the LispWorks User Guide.

12.7 IDE changes
See the Common LispWorks User Guide for details of the features mentioned.

12.7.1 Compilation output highlights warnings and errors

Warnings and errors signalled during compilation are now highlighted in the
Output tab of the Editor and System Browser tools. Pressing the Return key
allows you to view these conditions in a Compilation Conditions Browser
tool.

You can use the editor command Edit Recognized Source (key Ctrl-x , in
Emacs emulation) or the context menu to jump to the source when the cursor
is inside the highlighted region.

12.7.2 Compilation Conditions Browser improved

The Compilation Conditions Browser tool is simplified and easier to use.

The Conditions tree shows the conditions signalled in each file along with any
compiler explanations obtained via the :explain declaration. Also, the tool is
easy to reach from the Editor or System Browser tool’s Output tab as
described in “Compilation output highlights warnings and errors” on page
115.
 115

12 Release Notes

116
12.7.3 Dragging files to the Editor

On Cocoa, you can now drag a file from another application (such as the
Finder) and drop it into the LispWorks Editor tool.

On Microsoft Windows, you can drag a file from another application (such as
the Windows Explorer) and drop it into the LispWorks Editor tool. To enable
this, you need to switch on the option Tools > Global Preferences.... > Respond
to drag and drop.

12.7.4 Control of prompting on exit

By default, the LispWorks IDE prompts for confirmation on exiting. You can
control this behavior so that it never prompts, or prompts only when there are
unsaved editor buffers, by setting the Confirm Before Exiting option as described in
the Common LispWorks User Guide.

The option is effective when you quit LispWorks by any UI gesture, including
the Emacs key Ctrl+X Ctrl+C, the Windows key Alt+F4, the Macintosh key
Command+Q, or menu commands like LispWorks > Quit, File > Exit, Works > Exit
> LispWorks.

12.7.5 Controlling the floating toolbar on Cocoa

On Cocoa, by default a floating window offers one-click access to the various
IDE tools.

If you do not want to see this, you can now switch it off by deselecting the
option LispWorks > Preferences... > Show the tools on a floating toolbar.

12.7.6 Hiding toolbars

You can now choose whether IDE tools display a toolbar containing buttons
for commonly-used operations.

If you do not want to see the toolbar for a particular tool, switch it off by
deselecting the option Tools > Preferences... > General > Show Toolbar.

12.7 IDE changes
12.7.7 Recent Files menu

The File menu now has a Recent Files submenu which lists the last 10 files
visited via the File > Open... and File > Save As... commands.

12.7.8 Listener File menu commands

The Listener tool now offers File > Save As... menu command, which prompts
for a path and saves the Listener buffer’s contents.

Also, File > Open... now remembers the last path after program restart.

12.7.9 Accelerator keys for tools

Commonly-used tools in the IDE now have accelerators, which are available
in some editor emulations. For details see "Displaying tools using the key-
board" in the Common LispWorks User Guide.

12.7.10 In-place completion in text input panes

Text input panes such as the Class: pane of the Class Browser now support in-
place completion allowing faster selection from a list of possible inputs. This
behaves as in the editor, described under “In-place completion” on page 120.

12.7.11 Controlling completion behavior

In-place completion is enabled by default in the IDE.

If you prefer a modal dialog style of completion, deselect the Use in-place com-
pletion option. You can find this option on Microsoft Windows and Motif by
Tools > Global Preferences... and on Cocoa by LispWorks > Preferences....

12.7.12 Improved filtering of lists

The Filter area of tools which display lists has been improved.

The items in the list are now filtered as soon as you type in the filter box and
there is no need to make a separate confirmation gesture. Therefore the
confirm button (with a green tick image) has been removed.
 117

12 Release Notes

118
The filter modes button now indicates which of the three independent filter
modes Regexp Search, Exclude Matches and Case Sensitive are in effect, and
new keyboard gestures allow switching these modes. The keys are
Ctrl+Shift+R, Ctrl+Shift+E and Ctrl+Shift+C.

Similar filter functionality is also available in completion lists.

12.7.13 Debugger display of frames and arguments

The Debugger tool can now display the frames and the arguments of the
current frame in two list panels, rather than the default view, which is a tree.
Raise the Debugger’s Preferences... dialog to change this option.

12.7.14 Pasting Clipboard objects

Edit > Paste in an editor-pane-based tool now pastes the printed representation
of a Clipboard object.

12.7.15 Defining Stepper breakpoints

The Conditional and Printing breakpoint forms are now read in the package
where the stepped function was defined. This package is displayed in the Con-
ditional and Printing tabs of the Edit breakpoints dialog.

12.7.16 Colors in the Symbol Browser

On Microsoft Windows the Symbol Browser tool now uses color to indicate
the types of definitions on the symbols it finds. See the Common LispWorks
User Guide for details.

12.7.17 Hiding accessors in the Class Browser

A new option Include Accessors in the Functions view of the Class Browser
allows you to control whether it includes or excludes accessor methods in the
list of functions displayed.

12.7 IDE changes
12.7.18 System Browser graph menus

The System Browser tool’s graph context menu is now dependent on the
selection. If a system is selected, system operations such as Concatenate and
Search Files are shown. If a file is selected, file operations such as Browse Par-
ent System and the Recent Files submenu are shown, and the system opera-
tions are on the Systems submenu.

This context menu no longer offers an Edit submenu because it was not useful
and inconsistent with most other tools.

12.7.19 Preferences keyboard shortcut

On Cocoa the standard shortcut Command+, for the application Preferences...
dialog is now supported.

12.7.20 Native editor emulation improvements

12.7.20.1 Cursor width

The Editor tool’s cursor is now just one pixel wide in Microsoft Windows and
Macintosh editor emulations.

12.7.20.2 Highlighting of Lisp forms

Highlighting of Lisp forms has been improved to take account of cursor
behavior on scroll in native emulations. See “Matching parentheses are both
highlighted” on page 122.

12.7.20.3 KDE/Gnome keys

Native emulation on Motif now gives KDE/Gnome editor keys including for
example:

Control+W Delete Window

Control+Q Save all Files and Exit
 119

12 Release Notes

120
12.7.20.4 Enter key evaluates on Macintosh

This is a new key defined in Macintosh editor emulation:

Kp-Enter Evaluate Defun

12.8 Editor changes
See the LispWorks Editor User Guide for details of these changes.

12.8.1 Locking changed

The editor now uses fine-grained locking rather than process-level locking
using mp:without-interrupts and mp:without-preemption. If you
implement editor extensions, you should now use the macros editor:with-
buffer-locked and editor:with-point-locked to get locking.

12.8.2 Undo changed

The implementation of undo functionality has changed significantly. If you
implement editor extensions based on the supplied source code, you should
review these by comparing with the editor source code supplied with Lisp-
Works 5.1. In particular, use editor:collect-undo rather than recording-
for-undo and *dont-undo*.

12.8.3 In-place completion

Editor commands which help you to complete what you are typing, such as
Complete Symbol (key Alt+Ctrl+I in Emacs emulation) and Complete Input
(key Tab in the echo area) now display a window listing possible completions
which does not grab the input focus.

While this in-place completion window is displayed, most keyboard input is
still processed by the editor as normal, so you can simply continue typing to
reduce the number of possible completions displayed.

A few keyboard gestures are handled by the completion window to allow you
to select an item from the list of possibilities. These are Up, Down, PageUp, Page-
Down and Return, while Escape cancels the in-place window.

12.8 Editor changes
Occasionally you may want to filter the completions list. Ctrl+Return
adds/removes this filter. Ctrl+Shift+Return redirects input to the filter.
Ctrl+Shift+R, Ctrl+Shift+E and Ctrl+Shift+C change the filter mode.

In-place completion allows faster completion, when you get used to it! If you
prefer modal completion dialogs instead (as in LispWorks 5.0 and earlier ver-
sions) change the Use in-place completion setting as described in “Controlling
completion behavior” on page 117.

12.8.4 New completion command

The new editor command Abbreviated Complete Symbol is bound to
Meta+Shift+I in Emacs emulation. Enter for example w-o-f and complete to
with-open-file.

Abbreviated Complete Symbol uses the in-place completion UI.

12.8.5 New location commands

The new editor commands Go Back and Select Go Back allow you to return
to previously recorded locations in editor buffers. They are bound to Ctrl+X C
and Ctrl+X M in Emacs emulation.

Locations are recorded automatically by the editor for most commands that
take you to a different buffer or where you might lose your place within the
current buffer. They are designed to be a more comprehensive form of the
mark ring, but without the interaction with the selected region.

12.8.6 Feedback on key bindings for commands

The editor now tells you about command key bindings that you do not use.
When you invoke an editor command via Extended Command and key bind-
ings exist for that command, a message is displayed in the echo area listing the
available keys.

You use Extended Command when you do Meta+X command name in Emacs
emulation.
 121

12 Release Notes

122
12.8.7 Editor defaults to Code Page encoding

On Windows files are now written using the Code Page encoding when when
an encoding is not specified (for instance by setting the Editor File Encodings
Output preference to DEFAULT). Files are read using the Code Page when an
encoding is not specified. In LispWorks 5.0 and earlier, Latin-1 was used but
this does not handle non base characters such as the Trademark symbol.

12.8.8 Encoding for writing files

The editor variable Output-Format-Default now has initial value nil. In
LispWorks 5.0 and earlier versions it was a Latin-1 encoding, which does not
support certain characters obtained from other applications. Now the encod-
ing to use when first saving a file is chosen essentially as if by calling open,
although on Microsoft Windows code pages similar to Latin-1 are never
mapped to Latin-1.

The main effect of this change is that, with the default configuration of open
on Windows, buffers containing non-Latin-1 characters that are in the system
code page can be saved to file without the need to specify an external format.

Set the value of Output-Format-Default if you want a default encoding for
writing files in the editor.

12.8.9 Encoding for reading files

Now the encoding used when reading a file (for example by File > Open... or
Ctrl+X Ctrl+F) is chosen essentially as if by calling open.

The main effect of this change is that, with the default configuration of open
on Windows, files which do not somehow specify an encoding will be read in
the system code page encoding.

Set the value of Input-Format-Default if you want a default encoding for
reading files in the editor.

12.8.10 Matching parentheses are both highlighted

In Lisp mode, both parentheses delimiting a form are highlighted when the
cursor is at one of them. The new behavior is particularly useful in Microsoft

12.9 Foreign Language interface changes
Windows emulation and Macintosh editor emulation, because the cursor can
be outside the visible region. In LispWorks 5.0 and previous versions only the
parenthesis opposite the cursor position is highlighted.

The highlight uses a light green background by default. Its appearance is
controlled by the Editor Style preference named "Show Point".

12.8.11 Highlighting of the selected region is removed after scrolling

In Emacs emulation the selection now becomes unhighlighted when the
cursor moves due to scrolling (that is, the cursor would have moved out of the
visible region and thus gets moved automatically). In LispWorks 5.0 the
altered highlight is confusing to some users, and is rarely useful.

12.8.12 Editor filling and autofilling of comments in Lisp mode

The Fill Paragraph command in Lisp Mode (Alt+Q) now correctly detects
comments (lines starting with more or more semicolon) and fills them using
the same number of semicolons as the fill prefix.

Filling of comments triggered in Auto Fill Mode now uses the spaces
surrounding the comment characters for each subsequent filled line as well.

12.8.13 Syntax of editor variable names

Editor variable names are now symbols rather than strings. For example,
where you previously used:

(editor:variable-value "Add Newline At Eof On Writing File")

you should now use:

(editor:variable-value 'editor:add-newline-at-eof-on-writing-
file)

12.9 Foreign Language interface changes
See the LispWorks Foreign Language Interface User Guide and Reference Manual
for details of these changes.
 123

12 Release Notes

124
12.9.1 Accessing 64-bit integer types

In 64-bit LispWorks fli:foreign-typed-aref now supports (signed-byte
64) and (unsigned-byte 64).

12.9.2 Slots in nested structures

You can now access slots inside nested foreign structures, by passing a list slot-
name argument to functions like fli:foreign-slot-value.

12.9.3 More options for dynamic foreign objects

fli:with-dynamic-foreign-objects now allows you to allocate arrays of
objects, and also allows more complex initialization of objects. See the descrip-
tion of its bindings argument.

12.9.4 Dereferencing null pointer is an error

In LispWorks 5.0 and previous versions, calling fli:dereference with a null
pointer would return nil. In LispWorks 5.1 it now signals an error. You can
use fli:null-pointer-p to detect null pointers.

This change does not affect (setf fli:dereference) which has always sig-
naled an error with a null pointer.

12.9.5 Defining opaque pointers

The new macro fli:define-opaque-pointer defines a foreign pointer type
and structure type where there is no structure description, as in

typedef struct structure-type *pointer-type;

It is useful for automatic type checking of foreign pointers returned and
passed to another foreign function.

12.9.6 Byte packing

Byte packing for C structures from Lisp is now documented. See fli:define-
c-struct.

12.10 COM/Automation changes
12.9.7 Protected dynamic foreign execution

The new macro fli:with-dynamic-foreign-objects-with-cleanups com-
bines the effects of fli:with-dynamic-foreign-objects and unwind-pro-
tect.

12.10 COM/Automation changes
This section applies only to Windows platforms. See the LispWorks COM/Auto-
mation User Guide and Reference Manual for details.

12.10.1 Calling property getters

com:call-dispatch-method and com:invoke-dispatch-method can now be
used with property getters. For details see the "Calling Automation methods"
section of the manual.

12.10.2 Implementing COM interfaces not in the type library

The :extra-interfaces class option of com:define-automation-component
allows you to specify COM interfaces that the object will implement in
addition to the interfaces implied by the :coclass option. This allows the
object to implement other interfaces not mentioned in the type library.

12.10.3 New function com-object-from-pointer

com:com-object-from-pointer returns the COM object that implements a
particular COM interface pointer.

12.11 Common SQL changes

12.11.1 Setting Oracle connection parameters

There are improved default prefetch values for Oracle database connections,
and control over the amount to prefetch. See "Setting connection parameters"
in the LispWorks User Guide.
 125

12 Release Notes

126
12.11.2 Calling SQL infix operators

Calling infix operators via Common SQL is now documented. See the pseudo
operators sql-operator and sql-boolean-operator under sql:sql-opera-
tion in the LispWorks Reference Manual.

12.11.3 Better handling of LIKE

Unnecessary checks in the processing of the SQL operator LIKE via Common
SQL have been removed. It now accepts arbitrary functions.

12.12 Application delivery changes
See the LispWorks Delivery User Guide.

12.12.1 Dynamic libraries

You can now deliver a dynamic library (.so or .dylib) as described in “Lisp-
Works as a dynamic library” on page 111.

12.12.2 Default location of target application bundle

When using the configuration/save-macos-application.lisp example
code to deliver a Cocoa application (or simply to save a new image), the new
application bundle is now written into the user's home directory.

In LispWorks 5.0 the default location was alongside the LispWorks application
bundle, a location which may not be writable.

To write your application bundle in another location, use executable-appli-
cation-bundle-directory as illustrated in configuration/save-macos-
application.lisp.

12.12.3 Vista icons

The deliver keyword :icon-file now supports 256x256 icons on Windows
Vista. PNG compressed icons are supported.

12.13 CLOS/MOP changes
12.12.4 Save modified buffers action removed

The action item "Save modified buffers" no longer exists. Therefore you
should no longer call

(lw:undefine-action "Confirm when quitting image" "Save modified
buffers")

12.12.5 Command line for delivery

The use of -init command line argument to run LispWorks with a deliver
script is deprecated. Use -build instead, or use the Application Builder tool in
the LispWorks IDE.

12.12.6 Quitting LispWorks DLLs

You can now make a LispWorks DLL quit gracefully so that its main applica-
tion can unload it.

See the section "Delivering a DLL" in the LispWorks Delivery User Guide.

12.12.7 Runtime generation for universities and colleges

LispWorks Academic Site Edition is no longer built as a separate product.
Academic site license customers will be upgraded to LispWorks 5.1 licenses
with all the functionality of LispWorks 5.0 Academic Site Edition plus
application delivery (that is, generation of runtimes).

12.13 CLOS/MOP changes

12.13.1 Forward referenced class and type predicates

Type predicates typep and subtypep now work when passed names of
forward referenced classes. In LispWorks 5.0 and previous versions, this
would signal an error. Thanks to Pascal Costanza for pointing out that ANSI
Common Lisp 4.3.7 and AMOP both state that forward reference classes have
proper names.
 127

12 Release Notes

128
12.13.2 slot-definition changes for AMOP compatibility

clos:slot-definition now records a supplied allocation initarg. clos:slot-
definition-allocation is now a normal accessor function.

clos:slot-definition now contains the documention slot. This was defined
only in its subclass clos:standard-slot-definition in LispWorks 5.0 and
previous versions.

12.14 CLIM changes

12.14.1 accepting-values bug fix

A bug causing an error when ther user clicks a button created by accept-val-
ues-command-button inside accepting-values is fixed.

12.15 Other changes

12.15.1 Changes in *features*

cl:*features* contains :lispworks5.1 and :lispworks5. It no longer con-
tains :lispworks5.0.

For a full description including information about the features used to
distinguish new LispWorks implementations and platforms, see the entry for
cl:*features* in the LispWorks Reference Manual.

12.15.2 New fasl filename extension

The default fasl filename extension in 64-bit LispWorks for Macintosh is
64nfasl on the PowerPC architecture and 64xfasl on Intel.

Fasl file types for the various LispWorks platforms are documented under
compile-file in the LispWorks Reference Manual.

12.15 Other changes
12.15.3 Loading old data files

Binary files created with hcl:dump-forms-to-file or hcl:with-output-to-
fasl-file in LispWorks 5.0, LispWorks 4.4 or LispWorks 4.3 can be loaded
into LispWorks 5.1 using sys:load-data-file.

Note: because the default fasl extensions have changed on some platforms
since LispWorks 4.4 you may need to do something like this to load old bina-
ries:

(let ((sys:*binary-file-type* "fsl"))
 (sys:load-data-file "C:/lww44.fsl"))

12.15.4 Loading logical pathnames

When load is given a logical pathname, it now uses the translated pathname
when determining whether the file is source code or a fasl. That is, if

(translate-logical-pathname "HOST:FOO;bar.BIN")
=>
#P"W:\\Development\\foo\\bar.nfasl"

then load will treat "HOST:FOO;bar.BIN" as a fasl on platforms where nfasl is
fasl extension.

In LispWorks 4.4 and previous versions, load can incorrectly load it as a text
file because .BIN was not recognised as a binary file type.

12.15.5 Changes to cl:directory

cl:directory now works correctly when the directory component of its path-
spec argument contains :wild-inferiors followed by further directories.
Such a pathspec can be constructed by parsing namestrings like
"**/foo/*.lisp".

Also, cl:directory can now match the file-namestring of its directory
argument as a ’flat’ string, rather than a name and type. To get this behavior
supply a true value for the new keyword argument :flat-file-namestring.
 129

12 Release Notes

130
12.15.6 get-folder-path and get-user-profile-directory changed

sys:get-folder-path and sys:get-user-profile-directory now return a
directory pathname object that represents the directory. In LispWorks 5.0 and
previous versions they both return a string. This change makes it easier to
construct a pathname for a file in the directory, for example:

(make-pathname :name "foo"
 :type "lisp"
 :defaults (sys:get-folder-path :my-documents))

12.15.7 Reader handles Unicode BOM

A Unicode (UCS-2 encoded) file beginning with the Byte Order Mark (BOM,
Lisp character #\U+FEFF, also known as Zero-Width-No-Break-Space) can now
be read by the Lisp reader. The standard lisp readtable now treats this charac-
ter as whitespace.

This character is written at the start of a UCS-2 encoded file by some programs
including Microsoft Notepad and the LispWorks editor. This change allows
read to work on such files without specially ignoring the BOM.

12.15.8 Array constant values

array-total-size-limit is now correctly set to be the smallest limit for any
element type as per the ANSI Common Lisp standard. Its value is 2^26 in 32-
bit LispWorks, and 2^29 -1 in 64-bit LispWorks.

array-dimension-limit is also set to be the smallest limit for any element
type. Its value is almost 2^26 in 32-bit LispWorks, and 2^29 - 1 in 64-bit Lisp-
Works.

12.15.9 Accuracy and correctness of floating-point format directives

There are various fixes to the floating-point format directives ~F, ~E, ~G and
~$.

~E and ~G now print the number as accurately as ~F.

Exponential notation prints the correct number of digits before the decimal
point for all exact powers of 10 and when rounding from 9 to 10 causes the
number of digits to change.

12.15 Other changes
~E prints the exponent in decimal regardless of *print-base*.

~F, ~E, ~G and ~S print negative zero with a leading minus sign.

12.15.10 Parsing floats

The function parse-float is now documented. It parses a floating-point
number from a string and returns a float object. See the LispWorks Reference
Manual for details.

12.15.11 define-modify-macro more strict

The macro define-modify-macro now signals an error if the function argu-
ment is not a symbol, as specified by the ANSI Common Lisp standard.

12.15.12 Setting file times

The function system:set-file-dates which sets the modification and access
times of a file is now documented in the LispWorks Reference Manual.

12.15.13 Implementing cl:file-position for user-defined stream classes

The generic function stream:stream-file-position is now documented in
the LispWorks Reference Manual.

12.15.14 File encoding guesser improved

sys:guess-external-format (called by open for character file streams) no
longer overrides any specified external format name that it is given (via the
:external-format argument to open).

Also sys:merge-ef-specs has been changed to merge the parameters only in
cases where it can guarantee correctness.

See the LispWorks Reference Manual for details of both these functions.
 131

12 Release Notes

132
12.15.15 Command line for save-image scripts

The use of -init command line argument to run LispWorks with a save-
image script is deprecated. Use -build instead, or use the Application Builder
tool in the LispWorks IDE.

12.15.16 setup-for-alien-threads removed

The function system:setup-for-alien-threads no longer exists. LispWorks
for Windows now automatically performs the operations that are needed to
cope with foreign callbacks from unknown threads.

12.15.17 add-special-free-action accepts function designators

The function argument to hcl:add-special-free-action can be any function
designator, not only a symbol.

12.15.18 Data Execution Protection and LispWorks DLLs

LispWorks for Windows DLLs now run when the Data Execution Protection
(DEP) is set at the highest level. The DEP feature was introduced in Windows
XP sp2/Windows Server 2003 sp1.

DLLs built with LispWorks 5.0 and previous versions fail to run at this setting,
requiring the application to be added to the list of allowed applications.

Note: LispWorks for Windows executables run regardless of the DEP setting.

12.15.19 Multiprocessing API changes

The :lock-name argument to mp:make-mailbox is deprecated and should no
longer be used. mp:make-lock has been revised while mp:lock-lock and
mp:lock-count are no longer supported.

The functions mp:claim-lock and mp:release-lock are no longer available.
Use mp:process-lock and mp:process-unlock instead.

The function mp:process-read-event is deprecated. Please use the new
documented function mp:process-wait-for-event instead.

12.15 Other changes
The function mp:schedule-named-event is deprecated and no longer
exported. Please use mp:make-timer and mp:schedule-timer-relative
instead.

The functions mp:process-stop and mp:process-unstop have been revised;
mp:process-stopped-p and mp:process-continue are new.

Use of (setf mp:process-arrest-reasons) is deprecated and its behavior
differs from LispWorks 5.0 and previous versions. Please use mp:process-
stop instead.

mp:get-process and mp:get-current-process are new.

12.15.20 IDE tool icons removed

The tool-specific icons for Listener, Editor and Inspector windows in
LispWorks for Windows have been removed.

12.15.21 LessTif no longer supported

LispWorks for Linux no longer supports LessTif. Use OpenMotif as described
in the Installation Guide.

12.15.22 DDE error class

win32::dde-error now inherits from cl:error.

In LispWorks 5.0 and previous versions, it inherited from cl:condition.

12.15.23 debugger :trap in 64-bit LispWorks

The debugger :trap command now works on 64-bit platforms. It was
previously only implemented for 32-bit LispWorks.

12.15.24 Objective-C protocols

It is not possible to define new protocols entirely in Lisp on Mac OS X 10.5, but
objc:define-objc-protocol can be used to declare existing protocols.
 133

12 Release Notes

134
12.16 Documentation changes
The MP package is now better documented in the LispWorks Reference Manual.

There are no printed manuals available for LispWorks 5.1. Printable versions
of all the manuals are available at www.lispworks.com/documentation/.

12.17 Binary Incompatibilty
If you have binaries (fasl files) which were compiled using LispWorks 5.0 or
previous versions, please note that these are not compatible with this release.
Please recompile all your code with LispWorks 5.1

12.18 Known Problems

12.18.1 Runtime library requirement on Windows

LispWorks for Windows requires the Microsoft Visual Studio runtime library
msvcr80.dll. The LispWorks installer installs this DLL if it is not present.

Applications that you build with LispWorks for Windows also require this
DLL, so you must ensure it is available on target machines. It is part of
Windows Vista, but for earlier Windows operating systems you should use
the Microsoft redistributable mentioned below.

At the time of writing, the redistributable vcredist_x86.exe for use with for
LispWorks (32-bit) applications is freely available at

http://www.microsoft.com/downloads/details.aspx?familyid=32BC1BEE
-A3F9-4C13-9C99-220B62A191EE&displaylang=en

The redistributable vcredist_x64.exe for use with LispWorks (64-bit) appli-
cations is freely available at

http://www.microsoft.com/downloads/details.aspx?FamilyID=90548130
-4468-4bbc-9673-d6acabd5d13b&DisplayLang=en

Run the redistributable from your application’s installer, or tell your users to
run it directly themselves before running your application.

Note that Windows Installer 3.0 or later is also needed on the target machine
for Windows 2000 or XP.

http://www.lispworks.com/documentation/
http://www.microsoft.com/downloads/details.aspx?familyid=32BC1BEE-A3F9-4C13-9C99-220B62A191EE&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=90548130-4468-4bbc-9673-d6acabd5d13b&DisplayLang=en

12.18 Known Problems
12.18.2 Problems with LispWorks for Macintosh

The Motif GUI doesn't work "out of the box" with Fink because LispWorks
does not look for libXm etc in /sw/lib/.

Functions run by mp:process-run-function have their standard streams
connected to *terminal-io* (which is not normally visible). Possibly when
the IDE is running, output should be connected to the Background Output
buffer.

Reading from *terminal-io*, closing Terminal.app and then reading again
gets end of file.

12.18.3 Problems with the LispWorks IDE on Cocoa

Multithreading in the CAPI is different from other platforms. In particular, all
windows run in a single thread, whereas on other platforms there is a thread
per window.

The debugger currently doesn't work for errors in Cocoa Event Loop or Editor
Command Loop threads. However, there is a Get Backtrace button so you can
obtain a backtrace and also a Debug Snapshot button which aborts from the
error but displays a debugger with a copy (snapshot) of the stack where the
error occurred.

The online documentation interface currently starts a new browser window
each time.

Setting *enter-debugger-directly* to t can allow the undebuggable
processes to enter the debugger, resulting in the UI freezing.

Inspecting a long list (for example, 1000 items) via the Listener's Inspect Star
editor command prompts you about truncation in a random window. If you
cancel, the inspect is still displayed.

The editor's Help about help (Control+H Control+H) dialog is messy because
it assumed that a fixed width font is being used.

It is impossible to interrupt loops in the Cocoa Event Loop process.

The Definitions > Compile and Definitions > Evaluate menu options cause
multiple "Press space to continue" messages to be displayed and happen
interleaved rather than sequentially.
 135

12 Release Notes

136
The Buffers > Compile and Buffers > Evaluate menu options cause multiple
"Press space to continue" messages to be displayed and happen interleaved
rather than sequentially.

12.18.4 Problems with CAPI and Graphics Ports on Cocoa

Some graphics state parameters are ignored, in particular operation, stipple,
pattern, fill-style and mask (other than a rectangle).

LispWorks ignores the System Preferences setting for the smallest font size to
smooth.

There is no support for state images or checkboxes in capi:tree-view.

capi:with-page does not work, because Cocoa tries to control page printing.

The :help-callback initarg is only implemented for the :tooltip value of
the type argument.

The :visible-border initarg only works for scrolling panes.

Programmatic scrolling of capi:list-panel etc is not implemented.

Caret movement and selection setting in capi:text-input-pane is
implemented, but note that it works only for the focussed pane.

capi:docking-layout doesn't support (un)docking.

There is no meta key in the input-model of capi:output-pane. Note that, in
the editor when using Emacs emulation, the Escape key can be used as a
prefix.

There has been no testing with 256 color displays.

There is no visual feedback for dead-key processing, for example Option+n is
the tidle dead-key.

The graph pane's plan mode rectangle doesn't redraw when moved or resized.

Some pinboard code uses :operation boole-xor which is not implemented.

All menu items are disabled when a dialog is on the screen. However, the
Command+X, Command+C and Command+V shortcuts work within text panes

There is no way to make the close icon on a window show the "modified" state
(NSWindow:setDocumentEdited).

12.19 Recyclable packaging
capi:editor-pane will only work with fonts whose widths are (almost) inte-
gral for example Monaco 10, 15, 20 pt etc but not Monaco 12 pt. The nearest
good size is used instead.

The default menu bar is visible when the current window has no menu bar.

capi:tree-view is slow for a large number (thousands) of items.

The editor displays decomposed characters as separate glyphs.

The :gap option is not supported for the columns of capi:multi-column-
list-panel.

capi:display-dialog ignores the specified :x and :y coords of the dialog (for
drop-down sheets the coords are not relevant and for dialogs which are sepa-
rate windows Cocoa forces the window to be in the top-center of the screen).

12.19 Recyclable packaging
If you have received LispWorks 5.1 on a CD-ROM, please note that the
packaging is 100% paper-recyclable and biodegradable. Please recycle the
LispWorks CD-ROM case when you are done with it.
 137

12 Release Notes

138

Index
A
accepting-values macro 128
accessors
slot-definition-allocation 128

ActiveX 106
add-special-free-action function 132
:after-input-callback initarg 108
array-dimension-limit constant 130
array-total-size-limit constant 130

B
:before-input-callback initarg 108

C
call-dispatch-method macro 125
call-editor generic function 108
CD-ROM case

biodegradable 137
recyclable 137

CD-ROM digipack
biodegradable 137
recyclable 137

:change-callback initarg 108
classes
cocoa-default-application-inter-

face 107
docking-layout 136
editor-pane 108, 137
filtering-layout 107
interface 110

list-panel 107, 110, 136
multi-column-list-panel 137
ole-control-component 106
opengl-pane 110
option-pane 110
output-pane 136
simple-pane 106
slot-definition 128
standard-slot-definition 128
switchable-layout 108
tab-layout 108
text-input-pane 109, 136
tree-view 107, 136, 137

close-registry-key function 113
cocoa-default-application-interface

class 107
collect-undo macro 120
color

in list items 107
in the Symbol Browser 118

:color-function initarg 107
:combine-child-constraints initarg 108
command line arguments
-build 127
-init 127
--relocate-image 111

com-object-from-pointer function 125
compile-file function 106
Confirm Before Exiting 116
constants
array-dimension-limit 130
array-total-size-limit 130

create-registry-key function 113

139

Index

140
D
Data Execution Protection 132
decode-external-string function 114
define-automation-component macro

125
define-c-struct macro 124
define-interface macro 110
define-modify-macro macro 131
define-objc-protocol macro 133
define-ole-control-component macro

106
define-opaque-pointer macro 124
deliver function 106, 111, 126, 127
DEP 132
dereference function 124
directory function 129
display-dialog function 137
docking-layout class 136
:dock-menu initarg 107
drag and drop 106, 116
drag-pane-object function 106
draw-image function 111
draw-metafile function 106
:drop-callback initarg 106
dump-forms-to-file function 129

E
editor-pane class 108, 137
encode-lisp-string function 114
enter-debugger-directly variable 135
execute-with-interface-if-alive

function 109
exit

IDE behavior 116
:explain declaration 113, 115
extended-time macro 99

F
Failed to enlarge memory 88
dont-undo variable 120
features variable 128
filtering lists

in CAPI windows 107
in completion windows 121
in tools 117

filtering-layout class 107
finish-heavy-allocation function 114
foreign callbacks 132
foreign-slot-value function 124
foreign-typed-aref function 124
format directives 130
format function 130
functions
add-special-free-action 132
close-registry-key 113
com-object-from-pointer 125
compile-file 106
create-registry-key 113
decode-external-string 114
deliver 106, 111, 126, 127
dereference 124
directory 129
display-dialog 137
drag-pane-object 106
draw-image 111
draw-metafile 106
dump-forms-to-file 129
encode-lisp-string 114
execute-with-interface-if-alive

109
finish-heavy-allocation 114
foreign-slot-value 124
foreign-typed-aref 124
format 130
get-current-process 133
get-folder-path 130
get-process 133
get-user-profile-directory 130
get-verification-mode 114
guess-external-format 131
invoke-dispatch-method 125
list-all-font-names 110
load 106, 129
load-data-file 129
load-icon-image 107
make-lock 132
make-mailbox 132
make-timer 133
merge-ef-specs 131
null-pointer-p 124
open 114, 122
openssl-version 114
open-tcp-stream 114
parse-float 131
process-arrest-reasons 133
process-continue 133
process-lock 132
process-read-event 132
process-run-function 135
process-stop 133
process-stopped-p 133
process-unlock 132
process-unstop 133

Index
process-wait-for-event 132
profiler-tree-from-function 113
profiler-tree-to-function 113
prompt-for-file 108
read 130
room 99
save-image 12, 106, 111, 132
schedule-named-event 133
schedule-timer-relative 133
screen-active-interface 109
set-file-dates 131
set-memory-check 114
set-memory-exhausted-callback 114
set-object-automatic-resize 108
setup-for-alien-threads 132
set-up-profiler 113
set-verification-mode 114
set-window-split-on-space 109
sql-operation 126
start-environment 11, 84
start-up-server 114
subtypep 127
symeval-in-process 115
translate-logical-pathname 129
tree-view-update-an-item 110
tree-view-update-item 110
typep 127

G
Garbage Collector message 88
Garbage Collector output 88
GC message 88
GC output 88
generic functions
call-editor 108
stream-file-position 131

get-current-process function 133
get-folder-path function 130
get-process function 133
get-user-profile-directory function

130
get-verification-mode function 114
guess-external-format function 131

I
IDE tools

accelerator keys 117
Class Browser 118
Compilation Conditions Browser 115
Debugger 117, 118
Editor 116

filtering lists in 117
floating toolbar 116
hiding the toolbar 116
Listener 117
Preferences dialog 119
Stepper 118
Symbol Browser 118
System Browser 119

in-place completion 117
interface class 110
invoke-dispatch-method function 125

L
LIKE SQL operator 126
:line-wrap-face initarg 109
:line-wrap-marker initarg 109
LispWorks as ActiveX control 106
list-all-font-names function 110
list-panel class 107, 110, 136
load function 106, 129
load-data-file function 129
load-icon-image function 107

M
macros
accepting-values 128
call-dispatch-method 125
collect-undo 120
define-automation-component 125
define-c-struct 124
define-interface 110
define-modify-macro 131
define-objc-protocol 133
define-ole-control-component 106
define-opaque-pointer 124
extended-time 99
profile 99
recording-for-undo 120
with-buffer-locked 120
with-dynamic-foreign-objects 124
with-dynamic-foreign-objects-

with-cleanups 125
with-external-metafile 106
with-heavy-allocation 114
without-interrupts 120
without-preemption 120
with-output-to-fasl-file 129
with-page 136
with-point-locked 120

make-lock function 132
make-mailbox function 132
 141

Index

142
make-timer function 133
merge-ef-specs function 131
multi-column-list-panel class 137

N
null-pointer-p function 124

O
OLE control 106
OLE embedding 106
ole-control-component class 106
open function 114, 122
OpenGL 109
opengl-pane class 110
openssl-version function 114
open-tcp-stream function 114
option-pane class 110
output-pane class 136

P
packaging

biodegradable 137
recyclable 137

parse-float function 131
poor performance 99
print-base variable 131
process-arrest-reasons function 133
process-continue function 133
process-lock function 132
process-read-event function 132
process-run-function function 135
process-stop function 133
process-stopped-p function 133
process-unlock function 132
process-unstop function 133
process-wait-for-event function 132
profile macro 99
profiler-tree-from-function function

113
profiler-tree-to-function function 113
prompt-for-file function 108

Q
quit

IDE behavior 116

R
read function 130
recording-for-undo macro 120
room function 99
S
Save modified buffers

action item 127
save-image function 12, 106, 111, 132
schedule-named-event function 133
schedule-timer-relative function 133
screen-active-interface function 109
set-file-dates function 131
set-memory-check function 114
set-memory-exhausted-callback func-

tion 114
set-object-automatic-resize function

108
setup-for-alien-threads function 132
set-up-profiler function 113
set-verification-mode function 114
set-window-split-on-space function 109
simple-pane class 106
slot-definition class 128
slot-definition-allocation accessor

128
SQL operators
LIKE 126

SQL pseudo operators
sql-boolean-operator 126
sql-operator 126

sql-boolean-operator SQL pseudo oper-
ator 126

sql-operation function 126
sql-operator SQL pseudo operator 126
standard-slot-definition class 128
start-environment function 11, 84
start-up-server function 114
stream-file-position generic function

131
subtypep function 127
switchable-layout class 108
Symbol Browser 118
symeval-in-process function 115

T
tab-layout class 108
terminal-io variable 135
text-input-pane class 109, 136
translate-logical-pathname function

129
tree-view class 107, 136, 137
tree-view-update-an-item function 110
tree-view-update-item function 110
typep function 127

Index
V
variables
dont-undo 120
enter-debugger-directly 135
features 128
print-base 131
terminal-io 135

W
with-buffer-locked macro 120
with-dynamic-foreign-objects macro

124
with-dynamic-foreign-objects-with-

cleanups macro 125
with-external-metafile macro 106
with-heavy-allocation macro 114
without-interrupts macro 120
without-preemption macro 120
with-output-to-fasl-file macro 129
with-page macro 136
with-point-locked macro 120
:wrap-style initarg 109

 143

Index

144

	LispWorks® Release Notes and Installation Guide
	Copyright and Trademarks
	Contents
	1 Introduction
	1.1 LispWorks Editions
	1.1.1 Personal Edition
	1.1.2 Professional Edition
	1.1.3 Enterprise Edition

	1.2 LispWorks for UNIX
	1.3 Further details
	1.4 About this Guide
	1.4.1 Installation and Configuration
	1.4.2 Troubleshooting
	1.4.3 Release Notes

	2 Installation on Mac OS X
	2.1 Choosing the Graphical User Interface
	2.2 Documentation
	2.3 Software and hardware requirements
	2.4 Installing LispWorks for Macintosh
	2.4.1 Main installation and patches
	2.4.2 Information for Beta testers
	2.4.3 Information for users of previous versions
	2.4.4 Use an adminstrator account
	2.4.5 Launch the LispWorks installer
	2.4.6 The Read Me
	2.4.7 The License Agreement
	2.4.8 Select Destination
	2.4.9 Choose your installation type
	2.4.10 Installing
	2.4.11 Enter License Data
	2.4.12 Add LispWorks to the Dock
	2.4.13 Finishing up
	2.4.14 Installing Patches
	2.4.15 Obtaining OpenMotif

	2.5 Starting LispWorks for Macintosh
	2.5.1 Start the native Mac OS X LispWorks GUI
	2.5.2 Start the X11/Motif LispWorks GUI

	2.6 Upgrading to LispWorks Enterprise Edition

	3 Installation on Windows
	3.1 Documentation
	3.2 Installing LispWorks for Windows
	3.2.1 Main installation and patches
	3.2.2 Visual Studio runtime components and Windows Installer
	3.2.3 Installing over previous versions
	3.2.4 Information for Beta testers
	3.2.5 To install LispWorks

	3.3 Upgrading to LispWorks Enterprise Edition

	4 Installation on Linux
	4.1 Software and hardware requirements
	4.1.1 Motif libraries
	4.1.2 Disk requirements during installation

	4.2 License agreement
	4.3 Software on the CD-ROM
	4.3.1 Professional and Enterprise Edition distributions

	4.4 Installing LispWorks for Linux
	4.4.1 Main installation and patches
	4.4.2 Information for Beta testers
	4.4.3 Installation from the binary RPM file
	4.4.4 Installation from the tar files

	4.5 LispWorks looks for a license key
	4.6 Running LispWorks
	4.6.1 Entering the license data

	4.7 Configuring the image
	4.8 Printable LispWorks documentation
	4.9 Uninstalling LispWorks for Linux
	4.10 Upgrading to LispWorks Enterprise Edition

	5 Installation on FreeBSD
	5.1 Software and hardware requirements
	5.1.1 Motif libraries
	5.1.2 Disk requirements during installation

	5.2 License agreement
	5.3 Software on the CD-ROM
	5.3.1 Professional and Enterprise Edition distributions

	5.4 Installing LispWorks for FreeBSD
	5.4.1 Main installation and patches
	5.4.2 Information for Beta testers
	5.4.3 Installation software package file

	5.5 LispWorks looks for a license key
	5.6 Running LispWorks
	5.6.1 Entering the license data

	5.7 Configuring the image
	5.8 Printable LispWorks documentation
	5.9 Uninstalling LispWorks for FreeBSD
	5.10 Upgrading to LispWorks Enterprise Edition

	6 Installation on UNIX
	6.1 Introduction
	6.2 Extracting software from the CD-ROM
	6.2.1 Finding out which CD-ROM files you need
	6.2.2 Unpacking the CD-ROM files

	6.3 Moving the LispWorks image and library
	6.4 Obtaining and Installing your license keys
	6.4.1 Keyfiles and the license server for HP PA and Sun Sparc (32-bit)

	6.5 Configuring the LispWorks image
	6.5.1 Saving a configured image
	6.5.2 Testing the newly saved image

	6.6 Using the Documentation
	6.7 Using Layered Products on HP PA or Sun Sparc (32-bit)

	7 Configuration Details on Mac OS X
	7.1 Introduction
	7.2 License keys
	7.3 Configuring your LispWorks installation
	7.3.1 Levels of configuration
	7.3.2 Configuring images for the different GUIs
	7.3.3 Configuration files available

	7.4 Saving and testing the configured image
	7.4.1 Testing the newly saved image
	7.4.2 Saving a non-windowing image

	7.5 Initializing LispWorks
	7.6 Loading CLIM 2.0
	7.7 The Common SQL interface
	7.7.1 Loading Common SQL
	7.7.2 Supported databases
	7.7.3 Special considerations when using Common SQL

	7.8 Common Prolog and KnowledgeWorks

	8 Configuration Details on Windows
	8.1 Introduction
	8.2 License keys
	8.3 Configuring your LispWorks installation
	8.3.1 Levels of configuration
	8.3.2 Configuration files available

	8.4 Saving and testing the configured image
	8.4.1 Testing the newly saved image
	8.4.2 Saving a non-windowing image

	8.5 Initializing LispWorks
	8.6 Loading CLIM 2.0
	8.6.1 Running the CLIM demos

	8.7 The Common SQL interface
	8.7.1 Loading the Common SQL interface

	8.8 Common Prolog and KnowledgeWorks

	9 Configuration Details on Linux and FreeBSD
	9.1 Introduction
	9.2 License keys
	9.3 Configuring your LispWorks installation
	9.3.1 Levels of configuration
	9.3.2 Configuration files available

	9.4 Saving and testing the configured image
	9.4.1 Testing the newly saved image
	9.4.2 Saving a non-windowing image

	9.5 Initializing LispWorks
	9.6 Loading CLIM 2.0
	9.6.1 Running the CLIM demos

	9.7 The Common SQL interface
	9.7.1 Loading the Common SQL interface

	9.8 Common Prolog and KnowledgeWorks
	9.9 Documentation for LispWorks for FreeBSD

	10 Configuration Details on UNIX
	10.1 Disk requirements
	10.2 Software Requirements
	10.3 The CD-ROM
	10.3.1 The LispWorks 5.1 CD-ROM
	10.3.2 Unpacking LispWorks products
	10.3.3 Mounting the CD-ROM

	10.4 Installing LispWorks
	10.4.1 Unpacking the TAR files
	10.4.2 Keyfiles and how to obtain them
	10.4.3 The License Server

	10.5 Components of the LispWorks distribution
	10.5.1 The LispWorks image
	10.5.2 The LispWorks library

	10.6 Printing copies of the LispWorks documentation
	10.7 Configuring your LispWorks installation
	10.7.1 Multiple-platform installations
	10.7.2 Configuration files available
	10.7.3 Saving and testing the configured image

	10.8 LispWorks initialization arguments

	11 Troubleshooting, Patches and Reporting Bugs
	11.1 Troubleshooting
	11.1.1 License key errors in the Professional and Enterprise Editions
	11.1.2 Failure of the load-on-demand system
	11.1.3 Memory requirements

	11.2 Troubleshooting on Mac OS X
	11.2.1 Default installation requires administrator on Mac OS X
	11.2.2 Failure to start when disconnected from the Internet
	11.2.3 Text displayed incorrectly in the editor on Mac OS X

	11.3 Troubleshooting on Linux
	11.3.1 Processes hanging
	11.3.2 RPM_INSTALL_PREFIX not set
	11.3.3 Using multiple versions of Motif on Linux
	11.3.4 Using LispWorks for Linux on FreeBSD

	11.4 Troubleshooting on FreeBSD
	11.4.1 Poor latency when using multiple threads

	11.5 Troubleshooting on UNIX
	11.5.1 Problems with CD-ROM file system
	11.5.2 License key errors

	11.6 Troubleshooting on X11/Motif
	11.6.1 Problems with the X server
	11.6.2 Problems with fonts
	11.6.3 Problems with colors
	11.6.4 Mnemonics and Alt
	11.6.5 Non-standard X11 key bindings
	11.6.6 X11 resources
	11.6.7 Motif installation on Mac OS X

	11.7 Updating with patches
	11.7.1 Extracting simple patches
	11.7.2 If you cannot receive electronic mail
	11.7.3 Different types of patch

	11.8 Reporting bugs
	11.8.1 Check for existing fixes
	11.8.2 Performance Issues
	11.8.3 Generate a bug report template
	11.8.4 Add details to your bug report
	11.8.5 Reporting crashes
	11.8.6 Log Files
	11.8.7 Reporting bugs in delivered images
	11.8.8 Send the bug report
	11.8.9 Sending large files
	11.8.10 Information for Personal Edition users

	12 Release Notes
	12.1 Additional support for 64-bit on Macintosh
	12.1.1 64-bit Cocoa GUI
	12.1.2 Universal binaries on Macintosh

	12.2 Running on 64-bit machines
	12.3 New CAPI features
	12.3.1 OLE embedding
	12.3.2 Drag and drop
	12.3.3 "metafile" support on Cocoa
	12.3.4 Keyboard shortcuts on Cocoa
	12.3.5 The Mac OS X Dock menu
	12.3.6 The Application Services menu
	12.3.7 Vista icons
	12.3.8 New class supports filtering
	12.3.9 Color in list items on Windows
	12.3.10 Automatic resizing of pinboard objects
	12.3.11 Better control over size of tab and switchable layouts
	12.3.12 Browsing for application bundles
	12.3.13 editor-pane change callback
	12.3.14 editor-pane input callbacks
	12.3.15 New ways to control line wrapping in editor-pane
	12.3.16 Help button for text input panes
	12.3.17 Finding the active interface
	12.3.18 Controlling window titles
	12.3.19 Avoiding updates on a destroyed interface
	12.3.20 OpenGL example updated

	12.4 Other CAPI changes
	12.4.1 Passing initargs to interface components
	12.4.2 Reselection of single selection choice items
	12.4.3 tree-view-update-an-item

	12.5 New graphics ports features
	12.5.1 Finding all available font names
	12.5.2 Transparency on X11/Motif

	12.6 More new features
	12.6.1 LispWorks as a dynamic library
	12.6.2 Relocation improvements
	12.6.3 Larger heaps in LispWorks (32-bit) for Windows
	12.6.4 Stream locking
	12.6.5 Telling LispWorks about your own defining forms
	12.6.6 Windows registry API
	12.6.7 Optimize your code with compiler explanations
	12.6.8 Extended profiling API
	12.6.9 External format converters
	12.6.10 Chinese encoding supported
	12.6.11 OpenSSL interface extended
	12.6.12 SO_KEEPALIVE and TCP_NODELAY
	12.6.13 Memory management helper after loading
	12.6.14 64-bit memory management API extended
	12.6.15 Accessing symbol value cells across processes
	12.6.16 Inspector command to display the rest of the current object.

	12.7 IDE changes
	12.7.1 Compilation output highlights warnings and errors
	12.7.2 Compilation Conditions Browser improved
	12.7.3 Dragging files to the Editor
	12.7.4 Control of prompting on exit
	12.7.5 Controlling the floating toolbar on Cocoa
	12.7.6 Hiding toolbars
	12.7.7 Recent Files menu
	12.7.8 Listener File menu commands
	12.7.9 Accelerator keys for tools
	12.7.10 In-place completion in text input panes
	12.7.11 Controlling completion behavior
	12.7.12 Improved filtering of lists
	12.7.13 Debugger display of frames and arguments
	12.7.14 Pasting Clipboard objects
	12.7.15 Defining Stepper breakpoints
	12.7.16 Colors in the Symbol Browser
	12.7.17 Hiding accessors in the Class Browser
	12.7.18 System Browser graph menus
	12.7.19 Preferences keyboard shortcut
	12.7.20 Native editor emulation improvements

	12.8 Editor changes
	12.8.1 Locking changed
	12.8.2 Undo changed
	12.8.3 In-place completion
	12.8.4 New completion command
	12.8.5 New location commands
	12.8.6 Feedback on key bindings for commands
	12.8.7 Editor defaults to Code Page encoding
	12.8.8 Encoding for writing files
	12.8.9 Encoding for reading files
	12.8.10 Matching parentheses are both highlighted
	12.8.11 Highlighting of the selected region is removed after scrolling
	12.8.12 Editor filling and autofilling of comments in Lisp mode
	12.8.13 Syntax of editor variable names

	12.9 Foreign Language interface changes
	12.9.1 Accessing 64-bit integer types
	12.9.2 Slots in nested structures
	12.9.3 More options for dynamic foreign objects
	12.9.4 Dereferencing null pointer is an error
	12.9.5 Defining opaque pointers
	12.9.6 Byte packing
	12.9.7 Protected dynamic foreign execution

	12.10 COM/Automation changes
	12.10.1 Calling property getters
	12.10.2 Implementing COM interfaces not in the type library
	12.10.3 New function com-object-from-pointer

	12.11 Common SQL changes
	12.11.1 Setting Oracle connection parameters
	12.11.2 Calling SQL infix operators
	12.11.3 Better handling of LIKE

	12.12 Application delivery changes
	12.12.1 Dynamic libraries
	12.12.2 Default location of target application bundle
	12.12.3 Vista icons
	12.12.4 Save modified buffers action removed
	12.12.5 Command line for delivery
	12.12.6 Quitting LispWorks DLLs
	12.12.7 Runtime generation for universities and colleges

	12.13 CLOS/MOP changes
	12.13.1 Forward referenced class and type predicates
	12.13.2 slot-definition changes for AMOP compatibility

	12.14 CLIM changes
	12.14.1 accepting-values bug fix

	12.15 Other changes
	12.15.1 Changes in *features*
	12.15.2 New fasl filename extension
	12.15.3 Loading old data files
	12.15.4 Loading logical pathnames
	12.15.5 Changes to cl:directory
	12.15.6 get-folder-path and get-user-profile-directory changed
	12.15.7 Reader handles Unicode BOM
	12.15.8 Array constant values
	12.15.9 Accuracy and correctness of floating-point format directives
	12.15.10 Parsing floats
	12.15.11 define-modify-macro more strict
	12.15.12 Setting file times
	12.15.13 Implementing cl:file-position for user-defined stream classes
	12.15.14 File encoding guesser improved
	12.15.15 Command line for save-image scripts
	12.15.16 setup-for-alien-threads removed
	12.15.17 add-special-free-action accepts function designators
	12.15.18 Data Execution Protection and LispWorks DLLs
	12.15.19 Multiprocessing API changes
	12.15.20 IDE tool icons removed
	12.15.21 LessTif no longer supported
	12.15.22 DDE error class
	12.15.23 debugger :trap in 64-bit LispWorks
	12.15.24 Objective-C protocols

	12.16 Documentation changes
	12.17 Binary Incompatibilty
	12.18 Known Problems
	12.18.1 Runtime library requirement on Windows
	12.18.2 Problems with LispWorks for Macintosh
	12.18.3 Problems with the LispWorks IDE on Cocoa
	12.18.4 Problems with CAPI and Graphics Ports on Cocoa

	12.19 Recyclable packaging

	Index

