
Version 7.0
Contents

1 Introduction to the Objective-C Interface 1
 Introduction 1
 Objective-C data types 2
 Invoking Objective-C methods 3
 Defining Objective-C classes and methods 9

2 Objective-C Reference 17
 alloc-init-object 17
 autorelease 18
 can-invoke-p 18
 coerce-to-objc-class 19
 coerce-to-selector 20
 current-super 20
 define-objc-class 21
 define-objc-class-method 24
 define-objc-method 26
 define-objc-protocol 31
 define-objc-struct 32
 description 33
 ensure-objc-initialized 34
 invoke 35
 invoke-bool 39
 invoke-into 39
 make-autorelease-pool 42
 objc-at-question-mark 43
Contents

objc-bool 44
objc-c-string 44
objc-c++-bool 45
objc-class 45
objc-class-method-signature 46
objc-class-name 47
objc-object-destroyed 48
objc-object-from-pointer 48
objc-object-pointer 49
objc-object-pointer 50
objc-object-var-value 51
objc-unknown 52
release 52
retain 53
retain-count 53
sel 54
selector-name 54
standard-objc-object 55
trace-invoke 56
untrace-invoke 57
with-autorelease-pool 57

3 The Cocoa Interface 59

Introduction 59
Types 59
Observers 60
How to run Cocoa on its own 60

4 Cocoa Reference 63

add-observer 63
ns-not-found 64
ns-point 64
ns-range 65
ns-rect 65
ns-size 66
remove-observer 66
set-ns-point* 67
set-ns-range* 68
set-ns-rect* 68
set-ns-size* 69

5 Self-contained examples 71
 Example definitions 71
 Displaying Cocoa classes in CAPI windows 72
 nib file example 72

Index 73
1 Introduction to the Objective-C Interface

1.1 Introduction

Objective-C is a C-like object-oriented programming language that is used on Mac OS X to implement the Cocoa API. The LispWorks Objective-C interface is an extension to the interface described in the *LispWorks Foreign Language Interface User Guide and Reference Manual* to support calling Objective-C methods and also to provide defining forms for Objective-C classes and methods implemented in Lisp. This manual assumes that you are familiar with the LispWorks FLI, the Objective-C language and the Cocoa API where appropriate, and it uses the same notation and conventions as the *LispWorks Foreign Language Interface User Guide and Reference Manual*.

Note: the LispWorks Objective-C interface is only available on the Macintosh.

The remainder of this chapter describes the LispWorks Objective-C interface, which is generally used in conjunction with the Cocoa API (see Chapter 3, “The Cocoa Interface”). Examples in this chapter assume that the current package uses the `objc` package.

1.1.1 Initialization

Before calling any of the Objective-C interface functions, the runtime system must be initialized. This is done by calling `ensure-objc-initialized`,
optionally passing a list of foreign modules to be loaded. For example, the following will initialize and load Cocoa:

```
objc:ensure-objc-initialized
:modules
'("/System/Library/Frameworks/Foundation.framework/Versions/C/Foundation"
   "/System/Library/Frameworks/Cocoa.framework/Versions/A/Cocoa")
```

1.2 Objective-C data types

The Objective-C interface uses types in the same way as the LispWorks FLI, with a restricted set of FLI types being used to describe method arguments and results. Some types perform special conversions to hide the FLI details (see Section 1.3.3 on page 4 and Section 1.4.3.1 on page 12).

1.2.1 Objective-C pointers and pointer types

Objective-C defines its own memory management, so most interaction with its objects occurs using foreign pointers with the FLI type descriptor `objc-object-pointer`. When an Objective-C object class is implemented in Lisp, there is an additional object of type `standard-objc-object` which is associated with the foreign pointer (see “Defining Objective-C classes and methods” on page 9).

There are a few specific Objective-C pointer types that have a direct translation to FLI types:

<table>
<thead>
<tr>
<th>Objective-C type</th>
<th>FLI type descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>objc-class</td>
</tr>
<tr>
<td>SEL</td>
<td>sel</td>
</tr>
<tr>
<td>id</td>
<td>objc-object-pointer</td>
</tr>
<tr>
<td>char *</td>
<td>objc-c-string</td>
</tr>
</tbody>
</table>

Other pointer types are represented using the `:pointer` FLI type descriptor as normal.
1.3 Invoking Objective-C methods

When using pointers to struct types, the type must be defined using `define-objc-struct` rather than `fli:define-c-struct`.

1.2.2 Integer and boolean types

The various integer types in Objective-C have corresponding standard FLI types. In addition, the Objective-C type `BOOL`, which is an integer type with values `NO` and `YES`, has a corresponding FLI type `objc-bool` with values `nil` and `t`.

1.2.3 Structure types

Structures in Objective-C are like structures in the FLI, but are restricted to using other Objective-C types for the slots. The macro `define-objc-struct` must be used to define a structure type that is suitable for use as an Objective-C type.

1.3 Invoking Objective-C methods

Objective-C methods are associated with Objective-C objects or classes and are invoked by name with a specific set of arguments.

1.3.1 Simple calls to instance and class methods

The function `invoke` is used to call most methods (but see “Invoking a method that returns a boolean” on page 5, “Invoking a method that returns a structure” on page 5 and “Invoking a method that returns a string or array” on page 6 for ways of calling more complex methods). This function has two required arguments:

- the foreign pointer whose method should be invoked
- the name of the method (see “Method naming” on page 4).

The remaining arguments are passed to the method in the specified order. See “Special argument and result conversion” on page 4 for information about how the arguments are converted to FLI values.

For example, a call in Objective-C such as:

```
[window close]
```
would be written using `invoke` as:

```
(invoke window "close")
```

In addition, `invoke` can be used to call class methods for specifically named classes. This is done by passing a string naming the Objective-C class instead of the object.

For example, a class method call in Objective-C such as:

```
[NSObject alloc]
```

would be written using `invoke` as:

```
(invoke "NSObject" "alloc")
```

1.3.2 Method naming

Methods in Objective-C have compound names that describe their main name and any arguments. Functions like `invoke` that need a method name expect a string with all the name components concatenated together with no spaces.

For example, a call in Objective-C such as:

```
[box setWidth:10 height:20]
```

would be written using `invoke` as:

```
(invoke box "setWidth:height:" 10 20)
```

1.3.3 Special argument and result conversion

Since the LispWorks Objective-C interface is an extension of the FLI, most conversion of arguments and results is handled as specified in the *LispWorks Foreign Language Interface User Guide and Reference Manual*. There are a few exceptions to make it easier to invoke methods with certain commonly used Objective-C classes and structures as shown in the Table 1.2. See the specification of `invoke` for full details.

<table>
<thead>
<tr>
<th>Type</th>
<th>Special argument behavior</th>
<th>Special result behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSRect</td>
<td>Allows a vector to be passed.</td>
<td>Converts to a vector.</td>
</tr>
<tr>
<td>NSPoint</td>
<td>Allows a vector to be passed.</td>
<td>Converts to a vector.</td>
</tr>
</tbody>
</table>
1.3 Invoking Objective-C methods

1.3.4 Invoking a method that returns a boolean

When a method has return type `BOOL`, the value is converted to the integer 0 or 1 because Objective-C cannot distinguish this type from the other integer types. Often it is more convenient to receive the value as a Lisp boolean and this can be done by using the function `invoke-bool`, which returns `nil` or `t`.

For example, a call in Objective-C such as:

```
[box isSquare] ? 1 : 2
```

could be written using `invoke-bool` as:

```
(if (invoke-bool box "isSquare") 1 2)
```

1.3.5 Invoking a method that returns a structure

As mentioned in Section 1.3.3, when `invoke` is used with a method whose return type is one of the structure types listed in Table 1.2, page 4, such as `NSRect`, a vector or cons containing the fields of the structure is returned. For other structure types defined with `define-objc-struct`, the function `invoke-into` must be used to call the method. This takes the same arguments as `invoke`, except that there is an extra initial argument, `result`, which should be a pointer to a foreign structure of the appropriate type for the method. When the method returns, the value is copied into this structure.

For example, a call in Objective-C such as:

```
```
1 Introduction to the Objective-C Interface

```c
{
    NSRect rect = [box frame];
    ...
}
```

could be written using `invoke-into` as:

```lisp
(fli:with-dynamic-foreign-objects ((rect cocoa:ns-rect))
    (objc:invoke-into rect box "frame")
    ...)
```

In addition, for the structure return types mentioned in Table 1.2, page 4, an appropriately sized vector or cons can be passed as `result` and this is filled with the field values.

For example, the above call could also be written using `invoke-into` as:

```lisp
(let ((rect (make-array 4)))
    (objc:invoke-into rect box "frame")
    ...)
```

1.3.6 Invoking a method that returns a string or array

The Objective-C classes `NSString` and `NSArray` are used extensively in Cocoa to represent strings and arrays of various objects. When a method that returns these types is called with `invoke`, the result is a foreign pointer of type `objc-object-pointer` as for other classes.

In order to obtain a more useful Lisp value, `invoke-into` can be used by specifying a type as the extra initial argument. For a method that returns `NSString`, the symbol `string` can be specified to cause the foreign object to be converted to a string. For a method that returns `NSArray`, the symbol `array` can be specified and the foreign object is converted to an array of foreign pointers. Alternatively a type such as `(array string)` can be specified and the foreign object is converted to an array of strings.

For example, the form

```lisp
(invoke object "description")
```

will return a foreign pointer, whereas the form

```lisp
(invoke-into 'string object "description")
```

will return a string.
1.3.7 Invoking a method that returns values by reference

Values are returned by reference in Objective-C by passing a pointer to memory where the result should be stored, just like in the C language. The Objective-C interface in Lisp works similarly, using the standard FLI constructs for this.

For example, an Objective-C method declared as

```objective-c
-(void)getValueInto:(int *)result;
```

might be called from Objective-C like this:

```objective-c
int getResult(MyObject *object)
{
    int result;
    [object getValueInto:&result];
    return result;
}
```

The equivalent call from Lisp can be made like this:

```lisp
(defun get-result (object)
  (fli:with-dynamic-foreign-objects ((result-value :int))
    (objc:invoke object "getValueInto:" result-value)
    (fli:dereference result-value)))
```

The same technique applies to in/out arguments, but adding code to initialize the dynamic foreign object before calling the method.

1.3.8 Determining whether a method exists

In some cases, an Objective-C class might have a method that is optionally implemented and `invoke` will signal an error if the method is missing for a particular object. To determine whether a method is implemented, call the function `can-invoke-p` with the foreign object pointer or class name and the name of the method.

For example, a call in Objective-C such as:

```objective-c
[foo respondsToSelector:@selector(frame)]
```

could be written using `can-invoke-p` as:

```lisp
(can-invoke-p foo "frame")
```
1.3.9 Memory management

Objective-C uses reference counting for its memory management and also provides a mechanism for decrementing the reference count of an object when control returns to the event loop or some other well-defined point.

The following functions are direct equivalents of the memory management methods in the `NSObject` class:

<table>
<thead>
<tr>
<th>Function</th>
<th>Method in <code>NSObject</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>retain</td>
<td>retain</td>
</tr>
<tr>
<td>retain-count</td>
<td>retainCount</td>
</tr>
<tr>
<td>release</td>
<td>release</td>
</tr>
<tr>
<td>autorelease</td>
<td>autorelease</td>
</tr>
</tbody>
</table>

Table 1.3 Helper functions for memory management

In addition, the function `make-autorelease-pool` and the macro `with-autorelease-pool` can be used to make autorelease pools if the standard one in the event loop is not available.

1.3.10 Selectors

Some Objective-C methods have arguments or values of type `SEL`, which is a pointer type used to represent selectors. These can be used in Lisp as foreign pointers of type `sel`, which can be obtained from a string by calling `coerce-to-selector`. The function `selector-name` can be used to find the name of a selector.

For example, a call in Objective-C such as:

```objc
[foo respondsToSelector:@selector(frame)]
```

could be written using `can-invoke-p` as in Section 1.3.8 on page 7 or using selectors as follows:

```lisp
(invoke foo "respondsToSelector:" (coerce-to-selector "frame"))
```

If `*selector*` is bound to the result of calling

```lisp
(coerce-to-selector "frame")
```

then
(selector-name *selector*)

will return the string "frame".

1.4 Defining Objective-C classes and methods

The preceding sections covered the use of existing Objective-C classes. This section describes how to implement Objective-C classes in Lisp.

1.4.1 Objects and pointers

When an Objective-C class is implemented in Lisp, each Objective-C foreign object has an associated Lisp object that can obtained by the function \texttt{objc-object-from-pointer}. Conversely, the function \texttt{objc-object-pointer} can be used to obtain a pointer to the foreign object from its associated Lisp object.

There are two kinds of Objective-C foreign object, classes and instances, each of which is associated with a Lisp object of some class as described in the following table:

<table>
<thead>
<tr>
<th>Objective-C type</th>
<th>FLI type descriptor</th>
<th>Class of associated Lisp object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>\texttt{objc-class}</td>
<td>\texttt{standard-class}</td>
</tr>
<tr>
<td>Id</td>
<td>\texttt{objc-object-pointer}</td>
<td>subclass of \texttt{standard-objc-object}</td>
</tr>
</tbody>
</table>

The implementation of an Objective-C class in Lisp consists of a subclass of \texttt{standard-objc-object} and method definitions that become the Objective-C methods of the Objective-C class.

1.4.2 Defining an Objective-C class

An Objective-C class implemented in Lisp and its associated subclass of \texttt{standard-objc-object} should be defined using the macro \texttt{define-objc-class}. This has a syntax similar to \texttt{cl:defclass}, with additional class options including :\texttt{objc-class-name} to specify the name of the Objective-C class.
If the superclass list is empty, then `standard-objc-object` is used as the default superclass, otherwise `standard-objc-object` must be somewhere on class precedence list or included explicitly.

For example, the following form defines a Lisp class called `my-object` and an associated Objective-C class called `MyObject`.

```lisp
(define-objc-class my-object ()
  ((slot1 :initarg :slot1 :initform nil))
  (:objc-class-name "MyObject")
)
```

The class `my-object` will inherit from `standard-objc-object` and the class `MyObject` will inherit from `NSObject`. See Section 1.4.4 on page 13 for more details on inheritance.

The class returned by `(find-class 'my-object)` is associated with the Objective-C class object for `MyObject`, so

```lisp
(objc-object-pointer (find-class 'my-object))
```

and

```lisp
(coerce-to-objc-class "MyObject")
```

will return a pointer to the same foreign object.

When an instance of `my-object` is made using `make-instance`, an associated foreign Objective-C object of the class `MyObject` is allocated by calling the class’s "alloc" method and initialized by calling the instance’s "init" method. The :init-function initarg can be used to call a different initialization method.

Conversely, if the "allocWithZone:" method is called for the class `MyObject` (or a method such as "alloc" that calls "allocWithZone:"), then an associated object of type `my-object` is made.

Note: If you implement an Objective-C class in Lisp but its name is not referenced at runtime, and you deliver a runtime application, then you need to arrange for the Lisp class name to be retained during delivery. See `define-objc-class` for examples of how to do this.
1.4.3 Defining Objective-C methods

A class defined with `define-objc-class` has no methods associated with it by default, other than those inherited from its ancestor classes. New methods can be defined (or overridden) by using the macros `define-objc-method` for instance methods and `define-objc-class-method` for class methods.

Note that the Lisp method definition form is separate from the class definition, unlike in Objective-C where it is embedded in the `@implementation` block. Also, there is no Lisp equivalent of the `@interface` block: the methods of an Objective-C class are just those whose defining forms have been evaluated.

When defining a method, various things must be specified:

- The method name, which is a string as described in Section 1.3.2 on page 4.
- The return type, which is an Objective-C FLI type.
- The Lisp class for which this method applies.
- Any extra arguments and their Objective-C FLI types.

For example, a method that would be implemented in an Objective-C class as follows:

```objc
@implementation MyObject
- (unsigned int)areaOfWidth:(unsigned int)width
  height:(unsigned int)height
{
    return width*height;
}
@end
```

could be defined in Lisp for instances of the `MyObject` class from Section 1.4.2 on page 9 using the form:

```lisp
(define-objc-method (*areaOfWidth:height:* (:unsigned :int))
  ((self my-object)
   {width (:unsigned :int))
    {height (:unsigned :int))
     (* width height))
```

The variable `self` is bound to a Lisp object of type `my-object`, and `width` and `height` are bound to non-negative integers. The area is returned to the caller as a non-negative integer.

1.4.3.1 Special method argument and result conversion

For certain types of argument, there is more than one useful conversion from the FLI value to a Lisp value. To control this, the argument specification can include an `arg-style`, which describes how the argument should be converted. If the `arg-style` is specified as `:foreign` then the argument is converted using normal FLI rules, but by default certain types are converted differently:

<table>
<thead>
<tr>
<th>Argument type</th>
<th>Special argument behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>cocoa:ns-rect</td>
<td>The argument is a vector.</td>
</tr>
<tr>
<td>cocoa:ns-point</td>
<td>The argument is a vector.</td>
</tr>
<tr>
<td>cocoa:ns-size</td>
<td>The argument is a vector.</td>
</tr>
<tr>
<td>cocoa:ns-range</td>
<td>The argument is a cons.</td>
</tr>
<tr>
<td>objc-bool</td>
<td>The argument is <code>nil</code> or <code>t</code>.</td>
</tr>
<tr>
<td>objc-object-pointer</td>
<td>Depending on the Objective-C class, allows</td>
</tr>
<tr>
<td></td>
<td>automatic conversion to a string or array.</td>
</tr>
<tr>
<td>objc-c-string</td>
<td>The argument is a string.</td>
</tr>
</tbody>
</table>

Likewise, result conversion can be controlled by the `result-style` specification. If this is `:foreign` then the value is assumed to be suitable for conversion to the `result-type` using the normal FLI rules, but if `result-style` is `:lisp` then additional conversions are performed for specific values of `result-type`:

<table>
<thead>
<tr>
<th>Result type</th>
<th>Special result types supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>cocoa:ns-rect</td>
<td>The result can be a vector.</td>
</tr>
<tr>
<td>cocoa:ns-point</td>
<td>The result can be a vector.</td>
</tr>
<tr>
<td>cocoa:ns-size</td>
<td>The result can be a vector.</td>
</tr>
<tr>
<td>cocoa:ns-range</td>
<td>The result can be a cons.</td>
</tr>
<tr>
<td>objc-bool</td>
<td>The result can be <code>nil</code> or <code>t</code>.</td>
</tr>
</tbody>
</table>
1.4 Defining Objective-C classes and methods

1.4.3.2 Defining a method that returns a structure
When a the return type of a method is a structure type such as cocoa:ns-rect then the conversion specified in Table 1.6, page 12 can be used. Alternatively, and for any other structure defined with define-objc-struct, the method can specify a variable as its result-style. This variable is bound to a pointer to a foreign structure of the appropriate type and the method should set the slots in this structure to specify the result. For example, the following definitions show a method that returns a structure:

```
(define-objc-struct (pair
 (:foreign-name "_Pair")
 (:first :float)
 (:second :float))

(define-objc-method ("pair" (:struct pair) result-pair)
 ((this my-object))
 (setf (fli:foreign-slot-value result-pair :first) 1f0
 (fli:foreign-slot-value result-pair :second) 2f0))
```

1.4.4 How inheritance works
Section 1.4.2 on page 9 introduced the define-objc-class macro with the :objc-class-name class option for naming the Objective-C class. Since this macro is like cl:defclass, it can specify any number of superclasses from which the Lisp class will inherit and also provides a way for superclass of the Objective-C class to be chosen:

- If some of the Lisp classes in the class precedence list were defined with define-objc-class and given an associated Objective-C class name, then the first such class name is used. It is an error for several such classes to be in the class precedence list unless their associated Objec-
Objective-C classes are also superclasses of each other in the same order as the precedence list.

- If no superclasses have an associated Objective-C class, then the \texttt{:objc-superclass-name} class option can be used to specify the superclass explicitly.
- Otherwise \texttt{NSObject} is used as the superclass.

For example, both of these definitions define an Objective-C class that inherits from \texttt{MyObject}, via \texttt{my-object} in the case of \texttt{my-special-object} and explicitly for \texttt{my-other-object}:

\begin{verbatim}
(define-objc-class my-special-object (my-object)
 ()
 (:objc-class-name "MySpecialObject"))

(define-objc-class my-other-object ()
 ()
 (:objc-class-name "MyOtherObject"
 (:objc-superclass-name "MyObject"))
\end{verbatim}

The set of methods available for a given Objective-C class consists of those defined on the class itself as well as those inherited from its superclasses.

1.4.5 Invoking methods in the superclass

Within the body of a \texttt{define-objc-method} or \texttt{define-objc-class-method} form, the local macro \texttt{current-super} can be used to obtain a special object which will make \texttt{invoke} call the method in the superclass of the defining class. This is equivalent to using \texttt{super} in Objective-C.

For example, the Objective-C code:

\begin{verbatim}
@implementation MySpecialObject
- (unsigned int)areaOfWidth:(unsigned int)width
 height:(unsigned int)height
{
 return 4*[super areaOfWidth:width height:height];
}
@end
\end{verbatim}

could be written as follows in Lisp:
1.4 Defining Objective-C classes and methods

(define-objc-method "areaOfWidth:height:" (:unsigned :int))
 ((self my-special-object)
 (width (:unsigned :int))
 (height (:unsigned :int)))
 (* 4 (invoke (current-super) "areaOfWidth:height:"
 width height)))

1.4.6 Abstract classes

An abstract class is a normal Lisp class without an associated Objective-C class. As well as defining named Objective-C classes, define-objc-class can be used to define abstract classes by omitting the :objc-class-name class option.

The main purpose of abstract classes is to simulate multiple inheritance (Objective-C only supports single inheritance): when a Lisp class inherits from an abstract class, all the methods defined in the abstract class become methods in the inheriting class.

For example, the method "size" exists in both the Objective-C classes MyData and MyOtherData because the Lisp classes inherit it from the abstract class my-size-mixin, even though there is no common Objective-C ancestor class:

(define-objc-class my-size-mixin ()
 ()
)

(define-objc-method "size" (:unsigned :int))
 ((self my-size-mixin))
 42)

(define-objc-class my-data (my-size-mixin)
 ()
 (:objc-class-name "MyData"))

(define-objc-class my-other-data (my-size-mixin)
 ()
 (:objc-class-name "MyOtherData"))

1.4.7 Instance variables

In a few cases, for instance when using nib files created by Apple’s Interface Builder, it is necessary to add Objective-C instance variables to a class. This can be done using the :objc-instance-vars class option to define-objc-
class. For example, the following class contains two instance variables, each of which is a pointer to an Objective-C foreign object:

```
(define-objc-class my-controller ()
  ()
  (:objc-class-name "MyController")
  (:objc-instance-vars
   (*widthField* objc:objc-object-pointer)
   (*heightField* objc:objc-object-pointer)))
```

Given an instance of `my-controller`, the instance variables can be accessed using the function `objc-object-var-value`.

1.4.8 Memory management

Objective-C uses reference counting for its memory management, but the associated Lisp objects are managed by the Lisp garbage collector. When an Objective-C object is allocated, the associated Lisp object is recorded in the runtime system and cannot be removed by the garbage collector. When its reference count becomes zero, the object is removed from the runtime system and the generic function `objc-object-destroyed` is called with the object to allow cleanup methods to be implemented. After this point, the object can be removed by the garbage collector as normal.

1.4.9 Using and declaring formal protocols

Classes defined by `define-objc-class` can be made to support Objective-C formal protocols by specifying the `:objc-protocols` class option. All the standard formal protocols from Mac OS X 10.4 are predefined.

Note: It is not possible to define new protocols entirely in Lisp on Mac OS X 10.5 and later, but existing protocols can be declared using the `define-objc-protocol` macro.
alloc-init-object

Function

Summary Allocate and initializes a foreign Objective-C object.

Package objc

Signature alloc-init-object class => pointer

Arguments class A string or Objective-C class pointer.

Values pointer A foreign pointer to new Objective-C object.

Description The function alloc-init-object calls the Objective-C "alloc" class method for class and then calls the "init" instance method to return pointer. This is equivalent to doing:

```
(invoke (invoke class "alloc") "init")
```

See also invoke
autorelease

Function

Summary
Invokes the Objective-C "autorelease" method.

Package
objc

Signature
autorelease pointer => pointer

Arguments
pointer A pointer to an Objective-C foreign object.

Values
pointer The argument pointer.

Description
The function autorelease calls the Objective-C "autorelease" instance method of pointer to register it with the current autorelease pool. The pointer is returned.

See also
release
retain
make-autorelease-pool
with-autorelease-pool

can-invoke-p

Function

Summary
Checks whether a given Objective-C method can be invoked.

Package
objc

Signature
can-invoke-p class-or-object-pointer method => flag

Arguments
class-or-object-pointer A string naming an Objective-C class or a pointer to an Objective-C foreign object.

method A string naming the method to invoke.

Values
flag A boolean.
Description
The function `can-invoke-p` is used to check whether an Objective-C instance and class method can be invoked (is defined) for a given class. If `class-or-object-pointer` is a string, then it must name an Objective-C class and the class method named `method` in that class is checked. Otherwise `class-or-object-pointer` should be a foreign pointer to an Objective-C object or class and the appropriate instance or class method named `method` is checked. The value of `method` should be a concatenation of the message name and its argument names, including the colons, for example "setWidth:height:"

The return value `flag` is `nil` if the method cannot be invoked and `t` otherwise.

See also
`invoke`

coerce-to-objc-class

Function

Summary
Coerces its argument to an Objective-C class pointer.

Package
objc

Signature
`coerce-to-objc-class class => class-pointer`

Arguments
class A string or Objective-C class pointer.

Values
`class-pointer` An Objective-C class pointer.

Description
The function `coerce-to-objc-class` returns the Objective-C class pointer for the class specified by `class`. If `class` is a string, then the registered Objective-C class pointer is found. Otherwise `class` should be a foreign pointer of type `objc-class` and is returned unchanged.

This is the opposite operation to the function `objc-class-name`.
coerce-to-selector

Function

Summary

Coerces its argument to an Objective-C method selector.

Package

objc

Signature

coerce-to-selector method => selector

Arguments

method A string or selector.

Values

selector A selector.

Description

The function coerce-to-selector returns the selector named by method. If method is a string, then the registered selector is found or a new one is registered. Otherwise method should be a foreign pointer of type sel and is returned unchanged.

This is the opposite operation to the function selector-name.

See also

sel
selector-name

current-super

Local Macro

Summary

Allows Objective-C methods to invoke their superclass’s methods.

Package

objc

Signature

current-super => super-value
Values

super-value An opaque value.

Description

The local macro current-super returns a value which can be passed to invoke to call a method in the superclass of the current method definition (like super in Objective-C). When used within a define-objc-method form, instance methods in the superclass are invoked and when used within a define-objc-class-method form, class methods are invoked. The super-value has dynamic extent and it is an error to use current-super in any other contexts.

Example

See “Invoking methods in the superclass” on page 14

See also

define-objc-method
define-objc-class-method
invoke

define-objc-class

Macro

Summary

Defines a class and an Objective-C class.

Package

objc

Signature

define-objc-class name (superclass-name*) (slot-specifier*)
class-option* => name

Arguments

name A symbol naming the class to define.

superclass-name A symbol naming a superclass.

slot-specifier A slot description as used by cl:defclass.

class-option A class option as used by cl:defclass.

Values

name A symbol naming the class to define.

Description

The macro define-objc-class defines a standard-class called name which is used to implement an Objective-C class.
Normal **cl:defclass** inheritance rules apply for slots and Lisp methods.

Each *superclass-name* argument specifies a direct superclass of the new class, which can be another Objective-C implementation class or any other **standard-class**, provided that **standard-objc-object** is included somewhere in the overall class precedence list. The class **standard-objc-object** is the default superclass if no others are specified.

The *slot-specifiers* are standard **cl:defclass** slot definitions.

The *class-options* are standard **cl:defclass** class options. In addition the following options are recognized:

(:objc-class-name objc-class-name)

This option makes the Objective-C class name used for instances of *name* be the string *objc-class-name*. If none of the classes in the class precedence list of *name* have a :objc-class-name option then no Objective-C object is created.

(:objc-superclass-name objc-superclass-name)

This option makes the Objective-C superclass name of the Objective-C class defined by the :objc-class-name option be the string *objc-superclass-name*. If omitted, the *objc-superclass-name* defaults to the *objc-class-name* of the first class in the class precedence list that specifies such a name or to "NSObject" if no such class is found. It is an error to specify a *objc-superclass-name* which is different from the one that would be inherited from a superclass.

(:objc-instance-vars var-spec*)
This option allows Objective-C instance variables to be defined for this class. Each var-spec should be a list of the form

```
(ivar-name ivar-type)
```

where ivar-name is a string naming the instance variable and ivar-type is an Objective-C FLI type. The class will automatically contain all the instance variables specified by its superclasses.

```
(:objc-protocols protocol-name*)
```

This option allows Objective-C formal protocols to be registered as being implemented by the class. Each protocol-name should be a string naming a previously defined formal protocol (see define-objc-protocol). The class will automatically implement all protocols specified by its superclasses.

Notes

If name is not referenced at runtime and you deliver an application relying on your class, then you need to arrange for name to be retained during delivery. This can be achieved with the Delivery keyword :keep-symbols (see the Lisp-Works Delivery User Guide), but a more modular approach is shown in the example below.

Example

Suppose your application relies on a class defined like this:

```
(objc:define-objc-class foo ()
 ()
 (:objc-class-name "Foo"))
```

If your Lisp code does not actually reference foo at runtime then you must take care to retain your class during Delivery. The best way to achieve this is to keep its name on the plist of some other symbol like this:

```
(setf (get 'make-a-foo 'owner-class) 'foo)
```
Here `make-a-foo` is the only code that makes the `Foo` Objective-C object, so it is the best place to retain the Lisp class `foo` (that is, only if `make-a-foo` is retained).

See also
- `standard-objc-object`
- `define-objc-method`
- `define-objc-class-method`
- `define-objc-protocol`
- “Defining an Objective-C class” on page 9

define-objc-class-method

Macro

Summary
Defines an Objective-C class method for a specified class.

Package
objc

Signature

```latex
define-objc-class-method (name result-type [result-style])
(object-argspec argspec*) form*
```

Arguments

- `name` A string naming the method to define.
- `result-type` An Objective-C FLI type.
- `result-style` An optional keyword specifying the result conversion style, either `:lisp` or `:foreign`.
- `object-var` A symbol naming a variable.
- `class-name` A symbol naming a class defined with `define-objc-class`.
- `pointer-var` An optional symbol naming a variable.
- `arg-var` A symbol naming a variable.
- `arg-type` An Objective-C FLI type.
arg-style An optional symbol or list specifying the argument conversion style.
form A form.

Description

The macro `define-objc-class-method` defines the Objective-C class method `name` for the Objective-C classes associated with `class-name`. The `name` should be a concatenation of the message name and its argument names, including the colons, for example "setWidth:height:"

If the `define-objc-class` definition of `class-name` specifies the `(objc-class-name objc-class-name)` option, then the method is added to the Objective-C class `objc-class-name`. Otherwise, the method is added to the Objective-C class of every subclass of `class-name` that specifies the `objc-class-name` option, allowing a mixin class to define methods that become part of the implementation of its subclasses (see Section 1.4.6 on page 15).

When the method is invoked, each `form` is evaluated in sequence with `object-var` bound to the (sub)class of `class-name`, `pointer-var` (if specified) bound to the receiver foreign pointer to the Objective-C class and each `arg-var` bound to the corresponding method argument.

See `define-objc-method` for details of the argument and result conversion.

The `forms` can use functions such as `invoke` to invoke other class methods on the `pointer-var`. The macro `current-super` can be used to obtain an object that allows class methods in the superclass to be invoked (like `super` in Objective-C).

Example

See also

`define-objc-class`
`define-objc-method`
`current-super`
define-objc-method

Macro

Summary
Defines an Objective-C instance method for a specified class.

Package
objc

Signature
```lisp
define-objc-method (name result-type [result-style])
(object-argspec argspec*) form*
```

```lisp
object-argspec ::= (object-var class-name [pointer-var])
argspec ::= (arg-var arg-type [arg-style])
```

Arguments
- **name**: A string naming the method to define.
- **result-type**: An Objective-C FLI type.
- **result-style**: An optional keyword specifying the result conversion style, either :lisp or :foreign, or a symbol naming a variable.
- **object-var**: A symbol naming a variable.
- **class-name**: A symbol naming a class defined with define-objc-class.
- **pointer-var**: An optional symbol naming a variable.
- **arg-var**: A symbol naming a variable.
- **arg-type**: An Objective-C FLI type.
- **arg-style**: An optional symbol or list specifying the argument conversion style.
- **form**: A form.

Description
The macro define-objc-method defines the Objective-C instance method name for the Objective-C classes associated with class-name. The name should be a concatenation of the message name and its argument names, including the colons, for example "setWidth:height:"

If the define-objc-class definition of class-name specifies the (:objc-class-name objc-class-name) option, then the
method is added to the Objective-C class \textit{objc-class-name}. Otherwise, the method is added to the Objective-C class of every subclass of \textit{class-name} that specifies the \texttt{:objc-class-name} option, allowing a mixin class to define methods that become part of the implementation of its subclasses (see Section 1.4.6 on page 15).

When the method is invoked, each \textit{form} is evaluated in sequence with \textit{object-var} bound to the object of type \textit{class-name} associated with the receiver, \textit{pointer-var} (if specified) bound to the receiver foreign pointer and each \textit{arg-var} bound to the corresponding method argument.

Each argument has an \textit{arg-type} (its Objective-C FLI type) and an optional \textit{arg-style}, which specifies how the FLI value is converted to a Lisp value. If the \textit{arg-style} is \texttt{:foreign}, then the \textit{arg-var} is bound to the FLI value of the argument (typically an integer or foreign pointer). Otherwise, the \textit{arg-var} is bound to a value converted according to the \textit{arg-type}:

\begin{description}
\item[cocoa:ns-rect] If \textit{arg-style} is omitted or \texttt{:lisp} then the rectangle is converted to a vector of four elements of the form \#(\textit{x} \textit{y} \textit{width} \textit{height}). Otherwise the argument is a foreign pointer to a \texttt{cocoa:ns-rect} object.
\item[cocoa:ns-size] If \textit{arg-style} is omitted or \texttt{:lisp} then the size is converted to a vector of two elements of the form \#(\textit{width} \textit{height}). Otherwise the argument is a foreign pointer to a \texttt{cocoa:ns-size} object.
\item[cocoa:ns-point] (no description provided)
\end{description}
If *arg-style* is omitted or :lisp then the point is converted to a vector of two elements of the form #(x y). Otherwise the argument is a foreign pointer to a cocoa:ns-point object.

cocoa:ns-range

If *arg-style* is omitted or :lisp then the range is converted to a cons of the form (location length). Otherwise the argument is a foreign pointer to a cocoa:ns-range object.

objc-object-pointer

If *arg-style* is the symbol string then the argument is assumed to be a pointer to an Objective-C NSString object and is converted to a Lisp string or nil for a null pointer.

If *arg-style* is the symbol array then the argument is assumed to be a pointer to an Objective-C NSArray object and is converted to a Lisp vector or nil for a null pointer.

If *arg-style* is the a list of the form (array elt-arg-style) then the argument is assumed to be a pointer to an Objective-C NSArray object and is recursively converted to a Lisp vector using elt-arg-style for the elements or nil for a null pointer.

Otherwise, the argument remains as a foreign pointer to the Objective-C object.

objc-c-string

If *arg-style* is the symbol string then the argument is assumed to be a pointer to a foreign string and is converted to a Lisp string or nil for a null pointer.
After the last form has been evaluated, its value is converted to result-type according to result-style and becomes the result of the method.

If result-style is a non-keyword symbol and the result-type is a foreign structure type defined with define-objc-struct then the variable named by result-style is bound to a pointer to a foreign object of type result-type while the forms are evaluated. The forms must set the slots in this foreign object to specify the result.

If result-style is :foreign then the value is assumed to be suitable for conversion to result-type using the normal FLI rules.

If result-style is :lisp then additional conversions are performed for specific values of result-type:

cocoa:ns-rect

If the value is a vector of four elements of the form #(x y width height), the x, y, width and height are used to form the returned rectangle. Otherwise it is assumed to be a foreign pointer to a cocoa:ns-rect and is copied.

cocoa:ns-size

If the value is a vector of two elements of the form #(width height), the width and height are used to form the returned size. Otherwise it is assumed to be a foreign pointer to a cocoa:ns-size and is copied.

cocoa:ns-point

If the value is a vector of two elements of the form #(x y), the x and y are used to form the returned point. Otherwise it is assumed to be a foreign pointer to a cocoa:ns-point and is copied.

cocoa:ns-range
If the value is a cons of the form
\((\text{location} \cdot \text{length})\), the location and length
are used to form the returned range. Otherwise it is assumed to be a foreign pointer to
a \text{cocoa:ns-range} object and is copied.

\((:\text{signed} :\text{char})\) or \((:\text{unsigned} :\text{char})\)

If the value is \texttt{nil} then \texttt{NO} is returned. If the
value is \texttt{t} then \texttt{YES} is returned. Otherwise
the value must be an appropriate integer for
\textit{result-type}.

\textbf{objc-object-pointer}

If the value is a string then it is converted to
a newly allocated Objective-C \texttt{NSString}
object which the caller is expected to release.

If the value is a vector then it is recursively
converted to a newly allocated Objective-C
\texttt{NSArray} object which the caller is expected
to release.

If the value is \texttt{nil} then a null pointer is
returned.

Otherwise the value should be a foreign
pointer to an Objective-C object of the
appropriate class.

\textbf{objc-class}

The value is coerced to a Objective-C class
pointer as if by \texttt{coerce-to-objc-class}. In
particular, this allows strings to be returned.

The \textit{forms} can use functions such as \texttt{invoke} to invoke other
methods on the \textit{pointer-var}. The macro \texttt{current-super} can
be used to obtain an object that allows methods in the super-
class to be invoked (like \texttt{super} in Objective-C).
define-objc-protocol

Macro

Summary
Defines an Objective-C formal protocol.

Package
objc

Signature
define-objc-protocol name &key incorporated-protocols
instance-methods class-methods

Arguments
name A string naming the protocol to define.

incorporated-protocols
A list of protocol names.

instance-methods
A list of instance method specifications.

class-methods A list of class method specifications.

Description
The macro define-objc-protocol defines an Objective-C formal protocol named by name for use in the :objc-class-protocols option of define-objc-class.

If incorporated-protocols is specified, it should be a list of already defined formal protocol names. These protocols are registered as being incorporated within name. The default is for no protocols to be incorporated.

If instance-methods or class-methods are specified, they define the instance and class methods respectively in the protocol.
Each should give a list of method specifications, which are lists of the form:

\[(\text{name result-type arg-type*})\]

with components:

- **name**: A string naming the method. The name should be a concatenation of the message name and its argument names, including the colons, for example "setWidth:height:"

- **result-type**: The Objective-C FLI type that the method returns.

- **arg-type**: The Objective-C FLI type of the corresponding argument of the method.

The receiver and selector arguments should not be specified by the **arg-types**. All the standard Cocoa Foundation and Application Kit protocols from the Mac OS X 10.4 SDK are predefined by LispWorks.

Notes

It is not possible to define new protocols entirely in Lisp on Mac OS X 10.5 and later, but `define-objc-protocol` can be used to declare existing protocols.

Example

See also `define-objc-class`

define-objc-struct

Macro

Summary

Defines a foreign structure for use with Objective-C.

Package

`objc`

Signature

\[\text{define-objc-struct (name option*) slot*}\]

\[\text{option ::= (:\text{foreign-name foreign-name})}\]
typedef-name :: (typedef-name typedef-name)

slot ::= (slot-name slot-type)

Arguments

name: A symbol naming the foreign structure type.
foreign-name: A string giving the foreign structure name.
typedef-name: A symbol naming a foreign structure type alias.
slot-name: A symbol naming the foreign slot.
slot-type: An FLI type descriptor for the foreign slot.

Description

The macro `define-objc-struct` defines a foreign structure type called `(:struct name)` with the given slots. In addition, the type becomes an Objective-C type that can be used with `invoke`, `invoke-into` and `define-objc-method` or `define-objc-class-method`.

The `foreign-name` must be specified to allow the Objective-C runtime system to identify the type.

If `typedef-name` is specified, it allows that symbol to be used in place of `(:struct name)` when using the type in a `define-objc-method` or `define-objc-class-method` form.

Example

See also

invoke-into
define-objc-method
define-objc-class-method

description

Function

Summary

Calls the Objective-C "description" instance method.

Package

objc
Signature: \texttt{description pointer => string}

Arguments:
- \texttt{pointer} A pointer to an Objective-C foreign object.

Values:
- \texttt{string} A string.

Description: The function \texttt{description} calls the Objective-C "description" instance method of \texttt{pointer} and returns the description as a string.

See also

\textbf{ensure-objc-initialized}

Function

Summary: Initializes the Objective-C system if required.

Package: \texttt{objc}

Signature: \texttt{ensure-objc-initialized &key modules}

Arguments:
- \texttt{modules} A list of strings.

Description: The function \texttt{ensure-objc-initialized} must be called before any other functions in the \texttt{objc} package to initialize the Objective-C system. It is safe to use the defining macros such as \texttt{define-objc-class} and \texttt{define-objc-method} before calling \texttt{ensure-objc-initialized}.

The \texttt{modules} argument can be a list of strings specifying foreign modules to load. Typically, this needs to be the paths to the Cocoa \texttt{.dylib} files to make Objective-C work. See \texttt{fli:register-module}.
`invoke` Function

<table>
<thead>
<tr>
<th>Summary</th>
<th>Invokes an Objective-C method.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td><code>objc</code></td>
</tr>
<tr>
<td>Signature</td>
<td><code>invoke class-or-object-pointer method &rest args => value</code></td>
</tr>
<tr>
<td>Arguments</td>
<td></td>
</tr>
</tbody>
</table>
 - `class-or-object-pointer`
 A string naming an Objective-C class or a pointer to an Objective-C foreign object.
 - `method`
 A string naming the method to invoke.
 - `args`
 Arguments to the method. |
| Values |
 - `value`
 The value returned by the method. |
| Description | The function `invoke` is used to call Objective-C instance and class methods. If `class-or-object-pointer` is a string, then it must name an Objective-C class and the class method named `method` in that class is called. Otherwise `class-or-object-pointer` should be a foreign pointer to an Objective-C object or class and the appropriate instance or class method named `method` is invoked. The value of `method` should be a concatenation of the message name and its argument names, including the colons, for example "setWidth:height:".

 Each argument in `args` is converted to an appropriate FLI Objective-C value and is passed in order to the method. This conversion is done based on the signature of the method as follows:

 NSRect

 If the argument is a vector of four elements of the form `#(x y width height)`, the `x`, `y`, `width` and `height` are used to form the rectangle. Otherwise it is assumed to be a foreign pointer to a `cocoa:ns-rect` and is copied. |
NSSize

If the argument is a vector of two elements of the form #\((width\ height)\), the width and height are used to form the size. Otherwise it is assumed to be a foreign pointer to a cocoa:ns-size and is copied.

NSPoint

If the argument is a vector of two elements of the form #\((x\ y)\), the x and y are used to form the point. Otherwise it is assumed to be a foreign pointer to a cocoa:ns-point and is copied.

NSRange

If the argument is a cons of the form \((location\ .\ length)\), the location and length are used to form the range. Otherwise it is assumed to be a foreign pointer to a cocoa:ns-range object and is copied.

other structures

The argument should be a foreign pointer to the appropriate struct object and is copied.

BOOL

If the argument is nil then NO is passed, if the argument is t then YES is passed. Otherwise the argument must be an integer (due to a limitation in the Objective-C type system, this case cannot be distinguished from the signed char type).

id

If the argument is a string then it is converted to a newly allocated Objective-C NSStr ing object which is released when the function returns.
If the argument is a vector then it is recursively converted to a newly allocated Objective-C `NSArray` object which is released when the function returns.

If the argument is `nil` then a null pointer is passed.

Otherwise the argument should be a foreign pointer to an Objective-C object of the appropriate class.

Class

The argument is coerced to an Objective-C class pointer as if by `coerce-to-objc-class`. In particular, this allows strings to be passed as class arguments.

**char **

If the argument is a string then it is converted to a newly allocated foreign string which is freed when the function returns.

Otherwise the argument should be a foreign pointer.

**struct structname **

The argument should be a foreign pointer to a struct whose type is defined by `define-objc-struct` with `:foreign-name structname`.

other integer and pointer types

All other integer and pointer types are converted using the normal FLI rules.

When the method returns, its value is converted according to its type:

NSRect
A vector of four elements of the form
\((x \ y \ \text{width} \ \text{height})\) is created containing
the rectangle.

NSSize

A vector of two elements of the form
\((\text{width} \ \text{height})\) is created containing the
size.

NSPoint

A vector of two elements of the form \((x \ y)\) is created containing the point.

NSRange

A cons of the form \((\text{location} \ . \ \text{length})\) is cre-
ated containing the range.

other structures

Other structures cannot be returned by
value using `invoke`. See `invoke-into` for
how to handle these types.

BOOL

If the value is `NO` then 0 is returned, other-
wise 1 is returned. See also `invoke-bool`.

id

An object of type `objc-object-pointer` is
returned.

char *

The value is converted to a string and
returned.

other integer and pointer types

All other integer and pointer types are con-
verted using the normal FLI rules.

See also `invoke-bool`
`invoke-into`
`can-involve-p`
invoke-bool

Function

Summary Invokes an Objective-C method that returns a **BOOL**.

Package *objc*

Signature `invoke-bool class-or-object-pointer method &rest args => value`

Arguments
- `class-or-object-pointer` A string naming an Objective-C class or a pointer to an Objective-C foreign object.
- `method` A string naming the method to invoke.
- `args` Arguments to the method.

Values `value` The value returned by the method.

Description The function `invoke-bool` is used to call Objective-C instance and class methods that return the type **BOOL**. It behaves identically to `invoke`, except that if the return value is **NO** then `nil` is returned, otherwise `t` is returned.

See also `invoke`
 `invoke-into`

invoke-into

Function

Summary Invokes an Objective-C method that returns a specific type or fills a specific object.

Package *objc*

Signature `invoke-into result class-or-object-pointer method &rest args => value`
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>result</td>
<td>A symbol or list naming the return type or an object to contain the returned value.</td>
</tr>
<tr>
<td>class-or-object-pointer</td>
<td>A string naming an Objective-C class or a pointer to an Objective-C foreign object.</td>
</tr>
<tr>
<td>method</td>
<td>A string naming the method to invoke.</td>
</tr>
<tr>
<td>args</td>
<td>Arguments to the method.</td>
</tr>
</tbody>
</table>

Values

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The value returned by the method.</td>
</tr>
</tbody>
</table>

Description

The function `invoke-into` is used to call Objective-C instance and class methods that return specific types which are not supported directly by `invoke` or for methods that return values of some foreign structure type where an existing object should be filled with the value. The meaning of the `class-or-object-pointer`, `method`, and `args` is identical to `invoke`.

The value of `result` controls how the value of the method is converted and returned as follows:

- **the symbol `string`**
 - If the result type of the method is `id`, then the value is assumed to be an Objective-C object of class `NSString` and is converted to a string and returned. Otherwise no special conversion is performed.

- **the symbol `array`**
 - If the result type of the method is `id`, then the value is assumed to be an Objective-C object of class `NSArray` and is converted to a vector and returned. Otherwise no special conversion is performed.

- A list of the form `(array elt-type)`
If the result type of the method is `id`, then the value is assumed to be an Objective-C object of class `NSArray` and is recursively converted a vector and returned. The component `elt-type` should be either `string`, `array` or another list of the form `(array sub-elt-type)` and is used to control the conversion of the elements.

Otherwise no special conversion is performed.

the symbol `:pointer`

If the result type of the method is `unsigned char *`, then the value is returned as a pointer of type `objc-c-string`.

Otherwise no special conversion is performed.

a list of the form `(:pointer elt-type)`

If the result type of the method is `unsigned char *`, then the value is returned as a pointer with element type `elt-type`.

Otherwise no special conversion is performed.

a pointer to a foreign structure

If the result type of the method is a foreign structure type defined with `define-objc-struct` or a built-in structure type such as `NSRect`, the value is copied into the structure pointed to by `result` and the pointer is returned. Otherwise no special conversion is performed.

an object of type `vector`
If the result type of the method is `id`, then the value is assumed to be an Objective-C object of class `NSArray` and is converted to fill the vector, which must be at least as long as the `NSArray`. The vector is returned.

If the result type of the method is `NSRect`, `NSSize` or `NSPoint` then the first 4, 2 or 2 elements respectively of the vector are set to the corresponding components of the result. The vector is returned.

Otherwise no special conversion is performed.

an object of type `cons`

If the result type of the method is `NSRange` then the `car` of the cons is set to the `location` of the range and the `cdr` of the cons is set to the `length` of the range. The cons is returned.

Otherwise no special conversion is performed.

See also

- `invoke`
- `invoke-bool`
- `define-objc-struct`

make-autorelease-pool

Function

Summary

Makes an autorelease pool for the current thread.

Package

`objc`

Signature

`make-autorelease-pool => pool`

Values

- `pool` A foreign pointer to an autorelease pool object.
The function `make-autorelease-pool` returns a new Objective-C autorelease pool for the current thread. An autorelease pool is provided automatically for the main thread when running CAPI with Cocoa, but other threads need to allocate one if they call Objective-C methods that use `autorelease`.

See also
- `autoreleasepool`
- `with-autorelease-pool`

`objc-at-question-mark`
FLI type descriptor

Summary
A foreign type corresponding to `@?` character pair in the type encoding of a method.

Package
`objc`

Syntax
`objc-at-question-mark`

Arguments
None.

Description
`objc-at-question-mark` is a foreign type corresponding to the `@?` character pair in the type encoding of a method.

According to the documentation this is an illegal combination, but experimentally it is used by Apple. It seems to be used when the argument should be a pointer to a (Clang) block, which is the foreign type `fli:foreign-block-pointer` in LispWorks. Since this is not documented, it cannot be relied on.

Notes
At the time of writing `objc-at-question-mark` is an alias for the FLI type `:pointer`.

See also
- `objc-class-method-signature`
objc-bool

FLI type descriptor

Summary
A foreign type for the Objective-C type `BOOL`.

Package
objc

Syntax
objc-bool

Arguments
None.

Description
The FLI type `objc-bool` is a boolean type for use as the Objective-C type `BOOL`. It converts between `nil` and `NO` and between non-nil and `YES`.

See also
invoke-bool

objc-c-string

FLI type descriptor

Summary
A foreign type for the Objective-C type `char *`.

Package
objc

Syntax
objc-c-string

Arguments
None.

Description
The FLI type `objc-c-string` is a pointer type for use where the Objective-C type `char *` occurs as the argument in a method definition. It converts the argument to a string within the body of the method.

See also
define-objc-method
objc-c++-bool

FLI type descriptor

<table>
<thead>
<tr>
<th>Summary</th>
<th>A foreign type corresponding to the C++ bool or the C99 _Bool type.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>objc</td>
</tr>
<tr>
<td>Syntax</td>
<td>objc-c++-bool</td>
</tr>
<tr>
<td>Arguments</td>
<td>None.</td>
</tr>
<tr>
<td>Description</td>
<td><code>objc-c++-bool</code> is a foreign type corresponding to C++ bool or C99 _Bool type (the 'B' character in the type encoding defined by the Type Encodings section of Apple's Objective-C Runtime Programming Guide). Note that most boolean values are specified using the Objective-C BOOL type (<code>objc-bool</code> in LispWorks), so <code>objc-c++-bool</code> is not commonly used.</td>
</tr>
<tr>
<td>Notes</td>
<td>At the time of writing <code>objc-c++-bool</code> is an alias for the FLI type (<code>:boolean (:unsigned :char)</code>).</td>
</tr>
<tr>
<td>See also</td>
<td><code>objc-class-method-signature</code></td>
</tr>
</tbody>
</table>

objc-class

FLI type descriptor

<table>
<thead>
<tr>
<th>Summary</th>
<th>A foreign type for pointers to Objective-C class objects.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>objc</td>
</tr>
<tr>
<td>Syntax</td>
<td>objc-class</td>
</tr>
<tr>
<td>Arguments</td>
<td>None.</td>
</tr>
</tbody>
</table>
Description
The FLI type `objc-class` is a pointer type that is used to represent pointers to Objective-C class objects. This is like the `class` type in Objective-C.

See also `objc-object-pointer`

objc-class-method-signature
Function

Summary
Tries to find the relevant method, and returns its signature.

Package
objc

Signature
`objc-class-method-signature class-spec method-name => arg-types, result-type, type-encoding`

Arguments
- `class-spec`: A string, an `objc-object-pointer` or an `objc-class` pointer.
- `method-name`: A string.

Values
- `arg-types`: A list.
- `result-type`: A foreign type descriptor.
- `type-encoding`: A string.

Description
The function `objc-class-method-signature` tries to find the relevant method, and returns its signature.

`class-spec` needs to be a string naming a class, an `objc-object-pointer` foreign pointer (which specifies its class), or an `objc-class` pointer.

`method-name` specifies the method name. It can be either a class method or an instance method.

The first return value is a list of the argument types (that is, foreign types). Note that the first and second arguments of all Objective-C methods are the object/class and the method selector (name). These are are typed as `objc-object-`
pointer and sel, so the arg-types list always starts with these two symbols.

The second return value is the result type of the method.

The third return value is a string which is the type encoding of the signature of the method, as stored internally by the Objective-C runtime system.

If objc-class-method-signature fails to locate the method, it returns nil.

See also objc-class
objc-object-pointer
sel

objc-class-name

Function

Summary Returns the name of an Objective-C class.

Package objc

Signature objc-class-name class => name

Arguments class A pointer to an Objective-C class.

Values name A string.

Description The function objc-class-name returns the name of the Objective-C class class as a string.

This is the opposite operation to the function coerce-to-objc-class.

See also objc-class
coerce-to-objc-class
objc-object-destroyed

Generic Function

Summary
Called when an Objective-C is destroyed.

Package
objc

Signature
objc-object-destroyed object

Method signatures
objc-object-destroyed (object standard-objc-object)

Arguments
object
An object of type standard-objc-object.

Description
When an Objective-C foreign object is destroyed (when the reference count becomes zero) and its class was defined by define-objc-class, the runtime system calls objc-object-destroyed with the associated object of type standard-objc-object to allow cleanups to be done.

The built-in primary method specializing on standard-objc-object does nothing, but typically :after methods are defined to handle class-specific cleanups. This function should not be called directly.

Defining a method for objc-object-destroyed is similar to implementing "dealloc" in Objective-C code.

See also
release
standard-objc-object

objc-object-from-pointer

Function

Summary
Finds the Lisp object associated with a given Objective-C foreign pointer.

Package
objc
objc-object-from-pointer

Signature
objc-object-from-pointer \(\text{pointer} \Rightarrow \text{object} \)

Arguments
- \(\text{pointer} \) A pointer to an Objective-C foreign object.

Values
- \(\text{object} \) The Lisp object associated with \(\text{pointer} \).

Description
The function \texttt{objc-object-from-pointer} returns the Lisp object \textit{object} associated with the Objective-C foreign object referenced by \textit{pointer}. For an Objective-C instance, \textit{object} is of type \texttt{standard-objc-object} and for an Objective-C class it is the \texttt{standard-class} that was defined by \texttt{define-objc-class}.

Note that for a given returned \textit{object}, the value of the form

\[(\texttt{objc-object-pointer \ object})\]

has the same address as \textit{pointer}.

See also
- \texttt{define-objc-class}
- \texttt{standard-objc-object}
- \texttt{objc-object-pointer}

\texttt{objc-object-pointer} \(\text{FLI type descriptor} \)

Summary A foreign type for pointers to Objective-C foreign objects.

Package \texttt{objc}

Syntax \texttt{objc-object-pointer}

Arguments None.

Description The FLI type \texttt{objc-object-pointer} is a pointer type that is used to represent pointers to Objective-C foreign objects. This is like the \texttt{id} type in Objective-C.
See also
objc-object-from-pointer
objc-class

objc-object-pointer

Function

Summary
Returns the Objective-C foreign pointer associated with a given Lisp object.

Package
objc

Signature
objc-object-pointer object-or-class => pointer

Arguments
object-or-class An instance of standard-objc-object or a class defined by define-objc-class.

Values
pointer A pointer to an Objective-C foreign object or class.

Description
The function objc-object-pointer returns the Objective-C foreign pointer associated with a given Lisp object. If object is an instance of standard-objc-object then pointer will have foreign type objc-object-pointer. Otherwise, object should be a class defined by define-objc-class and the associated Objective-C class object is returned as a foreign pointer of type objc-class.

Note that for a given returned pointer, the value of the form

(objc-object-from-pointer pointer)

is object-or-class.

See also
standard-objc-object
define-objc-class
objc-object-pointer
objc-class
objc-object-from-pointer
objc-object-var-value

Summary
Accesses an Objective-C instance variable.

Package
objc

Signature
objc-object-var-value object var-name &key result-pointer => value

Signature
(setf objc-object-var-value) value object var-name => value

Arguments
- object: A object of type standard-objc-object.
- var-name: A string.
- result-pointer: A foreign pointer or nil.

Values
- value: A value.

Description
The function objc-object-var-value returns the value of the instance variable var-name in the Objective-C foreign object associated with object. The type of value depends on the declared type of the instance variable. If this type is a foreign structure type, then the result-pointer argument should be passed giving a pointer to a foreign object of the correct type that is filled with the value.

The corresponding setf function can be used to set the value.

Note that it is only possible to access instance variables that are defined in Lisp by define-objc-class, not those inherited from superclasses implemented in Objective-C.

See also
- standard-objc-object
- define-objc-class
objc-unknown

Summary
A foreign type corresponding to '?' character in the type encoding of a method.

Package
objc

Syntax
objc-unknown

Arguments
None.

Description
objc-unknown is a foreign type corresponding to '?' character in the type encoding of a method.

In general, you do not need to use this, but you may see it in the result of objc-class-method-signature.

Notes
At the time of writing objc-unknown is an alias for the FLI type :void.

See also
objc-class-method-signature

release

Summary
Invokes the Objective-C "release" method.

Package
objc

Signature
release pointer

Arguments
pointer A pointer to an Objective-C foreign object.

Description
The function release calls the Objective-C "release" instance method of pointer to decrement its retain count.
See also: retain, autorelease, retain-count

retain

Function

Summary: Invokes the Objective-C "retain" method.

Package: objc

Signature: retain pointer => pointer

Arguments: pointer A pointer to an Objective-C foreign object.

Values: pointer An argument pointer.

Description: The function retain calls the Objective-C "retain" instance method of pointer to decrement its retain count. The pointer is returned.

See also: release, autorelease, retain-count

retain-count

Function

Summary: Invokes the Objective-C "retainCount" method.

Package: objc

Signature: retain-count pointer => retain-count

Arguments: pointer A pointer to an Objective-C foreign object.

Values: retain-count An integer.
Description
The function `retain-count` calls the Objective-C "retainCount" instance method of `pointer` to return its retain count.

See also
`retain`
`release`

sel

FLI type descriptor

Summary
A foreign type for Objective-C method selectors.

Package
objc

Syntax
`s`el

Arguments
None.

Description
The FLI type `sel` is an opaque type used to represent method selectors. This is like the `SEL` type in Objective-C.

A selector can be obtained from a string by calling the function `coerce-to-selector`.

See also
`coerce-to-selector`
`define-objc-method`

selector-name

Function

Summary
Returns the name of a method selector.

Package
objc

Signature
`selector-name selector => name`

Arguments
`selector`
A string or selector.
Values

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>A string.</td>
</tr>
</tbody>
</table>

Description

The function `selector-name` returns the name of the method selector `selector`. If `selector` is a string then it is returned unchanged, otherwise it should be a foreign `sel` pointer and its name is returned.

This is the opposite operation to the function `coerce-to-selector`.

See also

- `sel`
- `coerce-to-selector`

standard-objc-object

Abstract Class

Summary

The class from which all classes that implement an Objective-C class should inherit.

Package

`objc`

Superclasses

`standard-object`

Initargs

<table>
<thead>
<tr>
<th>Initarg</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:init-function</td>
<td>An optional function that is called to initialize the Objective-C foreign object.</td>
</tr>
<tr>
<td>:pointer</td>
<td>An optional Objective-C foreign object pointer for the object.</td>
</tr>
</tbody>
</table>

Readers

`objc-object-pointer`

Description

The abstract class `standard-objc-object` provides the framework for subclasses to implement an Objective-C class. Subclasses are typically defined using `define-objc-class`, which allows the Objective-C class name to be specified. Instances of such a subclass have an associated Objective-C foreign object whose pointer can be retrieved using the `objc-`
The function `objc-object-from-pointer` can be used to obtain the object again from the Objective-C foreign pointer.

There are two ways that subclasses of `standard-objc-object` can be made:

- **Via make-instance.** In this case, the Objective-C object is allocated automatically by calling the Objective-C class’s "alloc" method. If the `init-function` initarg is not specified, the object is initialized by calling its "init" method. If the `init-function` initarg is specified, it is called during initialization with the newly allocated object and it should call the appropriate initialization method for that object and return its result. This allows a specific initialization method, such as "initWithFrame:", to be called if required.

- **Via the Objective-C class’s '"allocWithZone:" method** (or a method such as "alloc" that calls '"allocWithZone:"). In this case, an instance of the subclass of `standard-objc-object` is made with the value of the `pointer` initarg being a pointer to the newly allocated Objective-C foreign object.

See also

- `define-objc-class`
- `objc-object-destroyed`
- `objc-object-from-pointer`
- `objc-object-pointer`

trace-invoke

Function

Summary

Traces the invocation of an Objective-C method.

Package

objc

Signature

`trace-invoke method`
Arguments

method
A string.

Description
The function `trace-invoke` sets up a trace on `invoke` for calls to the Objective-C method named `method`. Use `untrace-invoke` to remove any such tracing.

See also
`invoke`
`untrace-invoke`

untrace-invoke
Function

Summary
Removes traces of the invocation of an Objective-C method.

Package
objc

Signature
`untrace-invoke method`

Arguments

method
A string.

Description
The function `untrace-invoke` removes any tracing on `invoke` for calls to the Objective-C method named `method`.

See also
`invoke`
`trace-invoke`

with-autorelease-pool
Macro

Summary
Evaluates forms in the scope of a temporary autorelease pool.

Package
objc

Signature
`with-autorelease-pool (option*) form* => values`

Arguments

option
There are currently no options.
form A form.

Values values The values returned by the last form.

Description The macro with-autorelease-pool creates a new autorelease pool and evaluates each form in sequence. The pool is released at the end, even if a non-local exit is performed by the forms. An autorelease pool is provided automatically for the main thread when running CAPI with Cocoa, but other threads need to allocate one if they call Objective-C methods that use autorelease.

Example The "description" method returns an autorelease NSString, so to make this function safe for use anywhere, the with-autorelease-pool macro is used:

(defun object-description (object)
 (with-autorelease-pool ()
 (invoke-into 'string object "description")))

See also autorelease
make-autorelease-pool
3

The Cocoa Interface

3.1 Introduction

Cocoa is an extensive Mac OS X API for access to a variety of operating system services, mostly through Objective-C classes and methods. These can be used via the Objective-C interface described in the preceding chapters, but there are a few foreign structure types and helper functions defined in the cocoa package that are useful.

3.2 Types

There are four commonly used structure types in Cocoa that have equivalents in the Objective-C interface. In addition, each one has a helper function that will set its slots.

Table 3.1 Cocoa structure types and helper functions

<table>
<thead>
<tr>
<th>Objective-C type</th>
<th>FLI type descriptor</th>
<th>Helper function to set the slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSRect</td>
<td>cocoa:ns-rect</td>
<td>cocoa:set-ns-rect*</td>
</tr>
<tr>
<td>NSPoint</td>
<td>cocoa:ns-point</td>
<td>cocoa:set-ns-point*</td>
</tr>
<tr>
<td>NSSize</td>
<td>cocoa:ns-size</td>
<td>cocoa:set-ns-size*</td>
</tr>
<tr>
<td>NSRange</td>
<td>cocoa:ns-range</td>
<td>cocoa:set-ns-range*</td>
</tr>
</tbody>
</table>
3 The Cocoa Interface

3.3 Observers

Cocoa provides a mechanism called notification centers to register observers for particular events. The helper functions `cocoa:add-observer` and `cocoa:remove-observer` can be used to add and remove observers.

3.4 How to run Cocoa on its own

This section describes how you can run LispWorks as a Cocoa application, either by saving a LispWorks development image with a suitable restart function, or by delivering a LispWorks application which uses a nib file generated by Apple’s Interface Builder.

3.4.1 LispWorks as a Cocoa application

The following startup function can be used to make LispWorks run as a Cocoa application. Typically, before calling "run" you would create an application delegate with a method on `applicationDidFinishLaunching:` to initialize the application's windows.

```lisp
(defun init-function ()
  (mp:initialize-multiprocessing
   "main thread"
   '()
   #'(lambda ()
     (objc:ensure-objc-initialized
      :modules
      '("/System/Library/Frameworks/Foundation.framework/
        Versions/C/Foundation"
        "/System/Library/Frameworks/Cocoa.framework/Versions/A/
        Cocoa")
      (objc:with-autorelease-pool ()
        (let ((app (objc:invoke "NSApplication"
                      "sharedApplication")))
          (objc:invoke app "run"))))))
```

To use this, a bundle must be created, calling `init-function` on startup. For example, the following build script will create `lw-cocoa-app.app`:
3.4 How to run Cocoa on its own

(in-package "CL-USER")
(load-all-patches)
(example-compile-file
 "configuration/macros-application-bundle.lisp" :load t)
(save-image (when (save-argument-real-p)
 (write-macos-application-bundle "lw-cocoa-app"))
 :restart-function 'init-function)

3.4.2 Using a nib file in a LispWorks application

For a complete example demonstrating how to build a standalone Cocoa application which uses a nib file, see these two files:

(example-edit-file "objc/area-calculator/area-calculator")
(example-edit-file "objc/area-calculator/deliver")

The area calculator example connects the nib file generated by Apple's Interface Builder to a Lisp implementation of an Objective-C class which acts as the MVC controller.
3 The Cocoa Interface
Cocoa Reference

add-observer

Function

Summary
Adds an observer to a notification center.

Package
cocoa

Signature
add-observer target selector &key name object center

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>target</td>
<td>A pointer to an Objective-C foreign object.</td>
</tr>
<tr>
<td>selector</td>
<td>A selector of type sel.</td>
</tr>
<tr>
<td>name</td>
<td>A string or nil.</td>
</tr>
<tr>
<td>object</td>
<td>A pointer to an Objective-C foreign object or nil.</td>
</tr>
<tr>
<td>center</td>
<td>A notification center.</td>
</tr>
</tbody>
</table>

Description
The function add-observer calls the Objective-C instance method "addObserver:selector:name:object:" of center to add target as an observer for selector with the given name and object, which both default to nil.
If *center* is omitted then it defaults to the default notification center.

See also remove-observer

ns-not-found

Constant

Summary
A constant similar to the Cocoa constant *NSNotFound*.

Package
cocoa

Description
The constant *ns-not-found* has the same value as the Cocoa Foundation constant *NSNotFound*.

See also

ns-point

FLI type descriptor

Summary
A foreign type for the Objective-C structure type *NSPoint*.

Package
cocoa

Syntax
ns-point

Arguments
None.

Description
The FLI type *ns-point* is a structure type for use as the Objective-C type *NSPoint*. The structure has two slots, *:x* and *:y*, both of foreign type *:float*.

When used directly in method definition or invocation, it allows automatic conversion to/from a vector of two elements of the form #(*x* *y*).
See also
ns-rect
set-ns-point*

ns-range

FLI type descriptor

Summary
A foreign type for the Objective-C structure type **NSRange**.

Package
cocoa

Syntax
ns-range

Arguments
None.

Description
The FLI type **ns-range** is a structure type for use as the Objective-C type **NSRange**. The structure has two slots, :location and :length, both of foreign type (:unsigned :int).

When used directly in method definition or invocation, it allows automatic conversion to/from a cons of the form (location . length).

See also
set-ns-range*

ns-rect

FLI type descriptor

Summary
A foreign type for the Objective-C structure type **NSRect**.

Package
cocoa

Syntax
ns-rect

Arguments
None.
Description

The FLI type `ns-rect` is a structure type for use as the Objective-C type `NSRect`. The structure has two slots, :origin of foreign type `ns-point` and :size of foreign type `ns-size`. When used directly in method definition or invocation, it allows automatic conversion to/from a vector of four elements of the form `#(x y width height)`.

See also

`ns-point`
`ns-size`
`set-ns-rect`

ns-size

FLI type descriptor

Summary

A foreign type for the Objective-C structure type `NSSize`.

Package

cocoa

Syntax

`ns-size`

Arguments

None.

Description

The FLI type `ns-size` is a structure type for use as the Objective-C type `NSSize`. The structure has two slots, :width and :height, both of foreign type :float.

When used directly in method definition or invocation, it allows automatic conversion to/from a vector of two elements of the form `#(width height)`.

See also

`ns-rect`
`set-ns-size`

remove-observer

Function

Summary

Removes an observer from a notification center.
Package cocoa

Signature remove-observer target &key name object center

Arguments
- **target**: A pointer to an Objective-C foreign object.
- **name**: A string or nil.
- **object**: A pointer to an Objective-C foreign object or nil.
- **center**: A notification center.

Description The function `remove-observer` calls the Objective-C instance method `removeObserver:name:object:` of `center` to remove `target` as an observer with the given `name` and `object`, which both default to nil. If `center` is omitted then it defaults to the default notification center.

See also add-observer

set-ns-point

Function

Summary Set the slots in a **ns-point** structure.

Package cocoa

Signature set-ns-point* point x y => point

Arguments
- **point**: A pointer to a foreign object of type **ns-point**.
- **x**: A real.
- **y**: A real.

Values
- **point**: The `point` argument.
set-ns-point*

Description The function \texttt{set-ns-point*} sets the slots of the foreign \texttt{ns-point} structure pointed to by \texttt{point} to the values of \texttt{x} and \texttt{y}.

See also \texttt{ns-point}
\texttt{set-ns-rect*}

set-ns-range*

Function

Summary Set the slots in a \texttt{ns-range} structure.

Package \texttt{cocoa}

Signature \texttt{set-ns-range* range location length => range}

Arguments

\begin{itemize}
 \item \textit{range} A pointer to a foreign object of type \texttt{ns-range}.
 \item \textit{location} A positive integer.
 \item \textit{length} A positive integer.
\end{itemize}

Values \texttt{range} The \texttt{range} argument.

Description The function \texttt{set-ns-range*} sets the slots of the foreign \texttt{ns-range} structure pointed to by \texttt{range} to the values of \texttt{location} and \texttt{length}.

See also \texttt{ns-range}

set-ns-rect*

Function

Summary Set the slots in a \texttt{ns-rect} structure.

Package \texttt{cocoa}

Signature \texttt{set-ns-rect* rect x y width height => rect}
Arguments
rect A pointer to a foreign object of type ns-rect.
x A real.
y A real.
width A real.
height A real.

Values
rect The rect argument.

Description
The function set-ns-rect* sets the slots of the foreign ns-rect structure pointed to by rect to the values of x, y, width and height.

See also
ns-rect
set-ns-point*
set-ns-size*

set-ns-size*

Function

Summary
Set the slots in a ns-size structure.

Package
cocoa

Signature
set-ns-size* size width height=> size

Arguments
size A pointer to a foreign object of type ns-size.
width A real.
height A real.

Values
size The size argument.
Description

The function \texttt{set-ns-size*} sets the slots of the foreign \texttt{ns-size} structure pointed to by \texttt{size} to the values of \textit{width} and \textit{height}.

See also

\texttt{ns-size}

\texttt{set-ns-rect*}
This chapter enumerates the set of examples in the LispWorks library relevant to the content of this manual. Each example file contains complete, self-contained code and detailed comments, which include one or more entry points near the start of the file which you can run to start the program.

To run the example code:

1. Open the file in the Editor tool in the LispWorks IDE. Evaluating the call to `example-edit-file` shown below will achieve this.

2. Compile the example code, by Ctrl+Shift+B.

3. Place the cursor at the end of the entry point form and press Ctrl+X Ctrl+E to run it.

4. Read the comment at the top of the file, which may contain further instructions on how to interact with the example.

5.1 Example definitions

This file contains various example definitions used in this manual:

```lisp
(example-edit-file "objc/manual")
```
5.2 Displaying Cocoa classes in CAPI windows

5.2.1 Using Web Kit to display HTML

This example demonstrates the use of `capi:cocoa-view-pane` containing a `WebView` from Apple's Web Kit and allowing an HTML page to be viewed:

```lisp
(example-edit-file "objc/web-kit")
```

5.2.2 Showing a movie using NSMovieView

This example demonstrates the use of `capi:cocoa-view-pane` containing a `NSMovieView` and allowing a movie file to be opened and played:

```lisp
(example-edit-file "objc/movie-view")
```

5.3 nib file example

This example connects a nib file (as generated by Apple's Interface Builder) to a Lisp implementation of an Objective-C class which acts as the MVC controller:

```lisp
(example-edit-file "objc/area-calculator/area-calculator")
```

Use this script to build it as a standalone Cocoa application:

```lisp
(example-edit-file "objc/area-calculator/deliver")
```
Index

A
abstract classes 15
add-observer function 63
addObserver:selector:name:object: Objective-C method 63
alloc Objective-C method 10, 17, 56
alloc-init-object function 17
allocWithZone: Objective-C method 10, 56
Apple Interface Builder 61
argument conversion 4, 12
array return type 6
associated objects 9, 10, 13, 16
autorelease function 8, 18
autorelease Objective-C method 8
autorelease pools 8

B
boolean return type 5
boolean type 3

c
can_invoke-p function 7, 8, 18
class methods 3
classes
abstract 15
cocoa-view-pane 72
defining 9
standard-objc-object 2, 9, 22,

D
data types 2
define-c-struct macro 3
define-objc-class macro 9, 13, 15, 21
define-objc-class-method macro 11, 14, 24
define-objc-method macro 11, 14, 26
define-objc-protocol macro 16, 31
define-objc-struct macro 3, 5, 13, 32
defining
classes 9
methods 11
protocols 16
structures 3
description function 33

E
ensure-objc-initialized function 1, 34

Cocoa application 60
cocoa-view-pane class 72
coerce-to-objc-class function 10, 19
coerce-to-selector function 8, 20
constants
ns-not-found 64
conversion
argument and result 4, 12
current-super macro 14, 20

D
data types 2
define-c-struct macro 3
define-objc-class macro 9, 13, 15, 21
define-objc-class-method macro 11, 14, 24
define-objc-method macro 11, 14, 26
define-objc-protocol macro 16, 31
define-objc-struct macro 3, 5, 13, 32
defining
classes 9
methods 11
protocols 16
structures 3
description function 33

E
ensure-objc-initialized function 1, 34
Index

F
foreign types
ns-point 12, 59, 64
ns-range 12, 59, 65
ns-rect 6, 12, 59, 65
ns-size 12, 59, 66
objc-at-question-mark 43
objc-bool 3, 12, 44
objc-c++-bool 45
objc-class 2, 9, 13, 45
objc-c-string 2, 12, 44
objc-object-pointer 2, 6, 9, 12, 13, 49
objc-unknown 52
sel 2, 8, 54
functions
add-observer 63
alloc-init-object 17
autoreleasepool 8, 18
can-invoke-p 7, 8, 18
coerce-to-objc-class 10, 19
coerce-to-selector 8, 20
description 33
ensure-objc-initialized 1, 34
invoke 3, 4, 5, 6, 7, 14, 35
invoke-bool 5, 39
invoke-into 5, 6, 39
make-autorelease-pool 8, 42
objc-class-method-signature 46
objc-class-name 47
objc-object-destroyed 16, 48
objc-object-from-pointer 9, 48
objc-object-pointer 9, 10, 50
objc-object-var-value 16, 51
release 8, 52
remove-observer 66
retain 8, 53
retain-count 8, 53
selector-name 8, 54
set-ns-point* 59, 67
set-ns-range* 59, 68
set-ns-rect* 59, 68
set-ns-size* 59, 69
trace-invoke 56
untrace-invoke 57
init Objective-C method 10, 17, 56
: init-function initarg 10, 55
initialization 1
instance methods 3
instance variables 15, 51
integer types 3
@interface 11
invoke function 3, 4, 5, 6, 7, 14, 35
invoke-bool function 5, 39
invoke-into function 5, 6, 39
invoking methods 3
M
macros
current-super 14, 20
define-c-struct 3
define-objc-class 9, 13, 15, 21
define-objc-class-method 11, 14, 24
define-objc-method 11, 14, 26
define-objc-protocol 16, 31
define-objc-struct 3, 5, 13, 32
with-autorelease-pool 8, 42
make-autorelease-pool function 8, 42
memory management
foreign objects 8
Lisp objects 16
methods
check for existence 7
defining 11
inheritance 13
instance and class 3
invoking 3
naming 4, 11
multiple inheritance 15
N
nib file 61
NSArray Objective-C class 6, 13, 28, 30, 37, 40, 41, 42
ns-not-found constant 64
NSObject Objective-C class 8, 10, 14, 22
ns-point foreign type 12, 59, 64
ns-range foreign type 12, 59, 65
ns-rect foreign type 6, 12, 59, 65
ns-size foreign type 12, 59, 66
NSString Objective-C class 6, 13, 28, 30, 36, 40

I
@implementation 11
inheritance 13
Index

O
objc-at-question-mark foreign type 43
objc-bool foreign type 3, 12, 44
objc-c++-bool foreign type 45
objc-class foreign type 2, 9, 13, 45
objc-class-method-signature function 46
objc-class-name class option 9, 22
objc-class-name function 47
objc-c-string foreign type 2, 12, 44
objc-instance-vars class option 15, 22
objc-object-destroyed function 16, 48
objc-object-from-pointer function 9, 48
objc-object-pointer foreign type 2, 6, 9, 12, 13, 49
objc-object-pointer function 9, 10, 50
objc-object-pointer reader function 55
objc-object-var-value function 16, 51
objc-protocols class option 16, 23
objc-superclass-name class option 14, 22
objc-unknown foreign type 52
Objective-C classes
NSArray 6, 13, 28, 30, 37, 40, 41, 42
NSObject 8, 10, 14, 22
NSString 6, 13, 28, 30, 36, 40
Objective-C methods
addObserver:selector:name:object: 63
alloc 10, 17, 56
allocWithZone: 10, 56
autorelease 8
init 10, 17, 56
release 8
removeObserver:name:object: 67
respondsToSelector: 7, 8
retain 8
retainCount 8
objects and pointers 9

P
:pointer initarg 55
pointer types 2

R
reader functions
objc-object-pointer 55
reference count 8, 16
release function 8, 52
release Objective-C method 8
remove-observer function 66
removeObserver:name:object: Objective-C method 67
respondsToSelector: Objective-C method 7, 8
result conversion 4, 12
retain function 8, 53
retain Objective-C method 8
retain-count function 8, 53
retainCount Objective-C method 8
return types
array 6
boolean 5
string 6
structure 5, 13, 41
unsigned char * 41

S
sel foreign type 2, 8, 54
selector-name function 8, 54
selectors 8
Self-contained examples
Cocoa and CAPI 72
Cocoa classes 72
definitions 71
nib files 72
set-ns-point* function 59, 67
set-ns-range* function 59, 68
set-ns-rect* function 59, 68
set-ns-size* function 59, 69
standard-objc-object class 2, 9, 22, 55
string return type 6
strings 5, 6
structure return type 5, 13, 41
structure types 3
super 14

T
trace-invoke function 56
Index

U
unsigned char *
return type 41
untrace-invoke function 57

W
with-autorelease-pool macro 8,
57